|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) Microsoft Corporation. | 
|  | * | 
|  | * Author: | 
|  | *   Jake Oshins <jakeo@microsoft.com> | 
|  | * | 
|  | * This driver acts as a paravirtual front-end for PCI Express root buses. | 
|  | * When a PCI Express function (either an entire device or an SR-IOV | 
|  | * Virtual Function) is being passed through to the VM, this driver exposes | 
|  | * a new bus to the guest VM.  This is modeled as a root PCI bus because | 
|  | * no bridges are being exposed to the VM.  In fact, with a "Generation 2" | 
|  | * VM within Hyper-V, there may seem to be no PCI bus at all in the VM | 
|  | * until a device as been exposed using this driver. | 
|  | * | 
|  | * Each root PCI bus has its own PCI domain, which is called "Segment" in | 
|  | * the PCI Firmware Specifications.  Thus while each device passed through | 
|  | * to the VM using this front-end will appear at "device 0", the domain will | 
|  | * be unique.  Typically, each bus will have one PCI function on it, though | 
|  | * this driver does support more than one. | 
|  | * | 
|  | * In order to map the interrupts from the device through to the guest VM, | 
|  | * this driver also implements an IRQ Domain, which handles interrupts (either | 
|  | * MSI or MSI-X) associated with the functions on the bus.  As interrupts are | 
|  | * set up, torn down, or reaffined, this driver communicates with the | 
|  | * underlying hypervisor to adjust the mappings in the I/O MMU so that each | 
|  | * interrupt will be delivered to the correct virtual processor at the right | 
|  | * vector.  This driver does not support level-triggered (line-based) | 
|  | * interrupts, and will report that the Interrupt Line register in the | 
|  | * function's configuration space is zero. | 
|  | * | 
|  | * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V | 
|  | * facilities.  For instance, the configuration space of a function exposed | 
|  | * by Hyper-V is mapped into a single page of memory space, and the | 
|  | * read and write handlers for config space must be aware of this mechanism. | 
|  | * Similarly, device setup and teardown involves messages sent to and from | 
|  | * the PCI back-end driver in Hyper-V. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci-ecam.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/semaphore.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/irqchip/irq-msi-lib.h> | 
|  | #include <linux/msi.h> | 
|  | #include <linux/hyperv.h> | 
|  | #include <linux/refcount.h> | 
|  | #include <linux/irqdomain.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <asm/mshyperv.h> | 
|  |  | 
|  | /* | 
|  | * Protocol versions. The low word is the minor version, the high word the | 
|  | * major version. | 
|  | */ | 
|  |  | 
|  | #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) | 
|  | #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) | 
|  | #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) | 
|  |  | 
|  | enum pci_protocol_version_t { | 
|  | PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */ | 
|  | PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */ | 
|  | PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */ | 
|  | PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */ | 
|  | }; | 
|  |  | 
|  | #define CPU_AFFINITY_ALL	-1ULL | 
|  |  | 
|  | /* | 
|  | * Supported protocol versions in the order of probing - highest go | 
|  | * first. | 
|  | */ | 
|  | static enum pci_protocol_version_t pci_protocol_versions[] = { | 
|  | PCI_PROTOCOL_VERSION_1_4, | 
|  | PCI_PROTOCOL_VERSION_1_3, | 
|  | PCI_PROTOCOL_VERSION_1_2, | 
|  | PCI_PROTOCOL_VERSION_1_1, | 
|  | }; | 
|  |  | 
|  | #define PCI_CONFIG_MMIO_LENGTH	0x2000 | 
|  | #define CFG_PAGE_OFFSET 0x1000 | 
|  | #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) | 
|  |  | 
|  | #define MAX_SUPPORTED_MSI_MESSAGES 0x400 | 
|  |  | 
|  | #define STATUS_REVISION_MISMATCH 0xC0000059 | 
|  |  | 
|  | /* space for 32bit serial number as string */ | 
|  | #define SLOT_NAME_SIZE 11 | 
|  |  | 
|  | /* | 
|  | * Size of requestor for VMbus; the value is based on the observation | 
|  | * that having more than one request outstanding is 'rare', and so 64 | 
|  | * should be generous in ensuring that we don't ever run out. | 
|  | */ | 
|  | #define HV_PCI_RQSTOR_SIZE 64 | 
|  |  | 
|  | /* | 
|  | * Message Types | 
|  | */ | 
|  |  | 
|  | enum pci_message_type { | 
|  | /* | 
|  | * Version 1.1 | 
|  | */ | 
|  | PCI_MESSAGE_BASE                = 0x42490000, | 
|  | PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0, | 
|  | PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1, | 
|  | PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4, | 
|  | PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, | 
|  | PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6, | 
|  | PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7, | 
|  | PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8, | 
|  | PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9, | 
|  | PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA, | 
|  | PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB, | 
|  | PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC, | 
|  | PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD, | 
|  | PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE, | 
|  | PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF, | 
|  | PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10, | 
|  | PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11, | 
|  | PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12, | 
|  | PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13, | 
|  | PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14, | 
|  | PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15, | 
|  | PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16, | 
|  | PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17, | 
|  | PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */ | 
|  | PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19, | 
|  | PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A, | 
|  | PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B, | 
|  | PCI_MESSAGE_MAXIMUM | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Structures defining the virtual PCI Express protocol. | 
|  | */ | 
|  |  | 
|  | union pci_version { | 
|  | struct { | 
|  | u16 minor_version; | 
|  | u16 major_version; | 
|  | } parts; | 
|  | u32 version; | 
|  | } __packed; | 
|  |  | 
|  | /* | 
|  | * Function numbers are 8-bits wide on Express, as interpreted through ARI, | 
|  | * which is all this driver does.  This representation is the one used in | 
|  | * Windows, which is what is expected when sending this back and forth with | 
|  | * the Hyper-V parent partition. | 
|  | */ | 
|  | union win_slot_encoding { | 
|  | struct { | 
|  | u32	dev:5; | 
|  | u32	func:3; | 
|  | u32	reserved:24; | 
|  | } bits; | 
|  | u32 slot; | 
|  | } __packed; | 
|  |  | 
|  | /* | 
|  | * Pretty much as defined in the PCI Specifications. | 
|  | */ | 
|  | struct pci_function_description { | 
|  | u16	v_id;	/* vendor ID */ | 
|  | u16	d_id;	/* device ID */ | 
|  | u8	rev; | 
|  | u8	prog_intf; | 
|  | u8	subclass; | 
|  | u8	base_class; | 
|  | u32	subsystem_id; | 
|  | union win_slot_encoding win_slot; | 
|  | u32	ser;	/* serial number */ | 
|  | } __packed; | 
|  |  | 
|  | enum pci_device_description_flags { | 
|  | HV_PCI_DEVICE_FLAG_NONE			= 0x0, | 
|  | HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1, | 
|  | }; | 
|  |  | 
|  | struct pci_function_description2 { | 
|  | u16	v_id;	/* vendor ID */ | 
|  | u16	d_id;	/* device ID */ | 
|  | u8	rev; | 
|  | u8	prog_intf; | 
|  | u8	subclass; | 
|  | u8	base_class; | 
|  | u32	subsystem_id; | 
|  | union	win_slot_encoding win_slot; | 
|  | u32	ser;	/* serial number */ | 
|  | u32	flags; | 
|  | u16	virtual_numa_node; | 
|  | u16	reserved; | 
|  | } __packed; | 
|  |  | 
|  | /** | 
|  | * struct hv_msi_desc | 
|  | * @vector:		IDT entry | 
|  | * @delivery_mode:	As defined in Intel's Programmer's | 
|  | *			Reference Manual, Volume 3, Chapter 8. | 
|  | * @vector_count:	Number of contiguous entries in the | 
|  | *			Interrupt Descriptor Table that are | 
|  | *			occupied by this Message-Signaled | 
|  | *			Interrupt. For "MSI", as first defined | 
|  | *			in PCI 2.2, this can be between 1 and | 
|  | *			32. For "MSI-X," as first defined in PCI | 
|  | *			3.0, this must be 1, as each MSI-X table | 
|  | *			entry would have its own descriptor. | 
|  | * @reserved:		Empty space | 
|  | * @cpu_mask:		All the target virtual processors. | 
|  | */ | 
|  | struct hv_msi_desc { | 
|  | u8	vector; | 
|  | u8	delivery_mode; | 
|  | u16	vector_count; | 
|  | u32	reserved; | 
|  | u64	cpu_mask; | 
|  | } __packed; | 
|  |  | 
|  | /** | 
|  | * struct hv_msi_desc2 - 1.2 version of hv_msi_desc | 
|  | * @vector:		IDT entry | 
|  | * @delivery_mode:	As defined in Intel's Programmer's | 
|  | *			Reference Manual, Volume 3, Chapter 8. | 
|  | * @vector_count:	Number of contiguous entries in the | 
|  | *			Interrupt Descriptor Table that are | 
|  | *			occupied by this Message-Signaled | 
|  | *			Interrupt. For "MSI", as first defined | 
|  | *			in PCI 2.2, this can be between 1 and | 
|  | *			32. For "MSI-X," as first defined in PCI | 
|  | *			3.0, this must be 1, as each MSI-X table | 
|  | *			entry would have its own descriptor. | 
|  | * @processor_count:	number of bits enabled in array. | 
|  | * @processor_array:	All the target virtual processors. | 
|  | */ | 
|  | struct hv_msi_desc2 { | 
|  | u8	vector; | 
|  | u8	delivery_mode; | 
|  | u16	vector_count; | 
|  | u16	processor_count; | 
|  | u16	processor_array[32]; | 
|  | } __packed; | 
|  |  | 
|  | /* | 
|  | * struct hv_msi_desc3 - 1.3 version of hv_msi_desc | 
|  | *	Everything is the same as in 'hv_msi_desc2' except that the size of the | 
|  | *	'vector' field is larger to support bigger vector values. For ex: LPI | 
|  | *	vectors on ARM. | 
|  | */ | 
|  | struct hv_msi_desc3 { | 
|  | u32	vector; | 
|  | u8	delivery_mode; | 
|  | u8	reserved; | 
|  | u16	vector_count; | 
|  | u16	processor_count; | 
|  | u16	processor_array[32]; | 
|  | } __packed; | 
|  |  | 
|  | /** | 
|  | * struct tran_int_desc | 
|  | * @reserved:		unused, padding | 
|  | * @vector_count:	same as in hv_msi_desc | 
|  | * @data:		This is the "data payload" value that is | 
|  | *			written by the device when it generates | 
|  | *			a message-signaled interrupt, either MSI | 
|  | *			or MSI-X. | 
|  | * @address:		This is the address to which the data | 
|  | *			payload is written on interrupt | 
|  | *			generation. | 
|  | */ | 
|  | struct tran_int_desc { | 
|  | u16	reserved; | 
|  | u16	vector_count; | 
|  | u32	data; | 
|  | u64	address; | 
|  | } __packed; | 
|  |  | 
|  | /* | 
|  | * A generic message format for virtual PCI. | 
|  | * Specific message formats are defined later in the file. | 
|  | */ | 
|  |  | 
|  | struct pci_message { | 
|  | u32 type; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_child_message { | 
|  | struct pci_message message_type; | 
|  | union win_slot_encoding wslot; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_incoming_message { | 
|  | struct vmpacket_descriptor hdr; | 
|  | struct pci_message message_type; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_response { | 
|  | struct vmpacket_descriptor hdr; | 
|  | s32 status;			/* negative values are failures */ | 
|  | } __packed; | 
|  |  | 
|  | struct pci_packet { | 
|  | void (*completion_func)(void *context, struct pci_response *resp, | 
|  | int resp_packet_size); | 
|  | void *compl_ctxt; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Specific message types supporting the PCI protocol. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Version negotiation message. Sent from the guest to the host. | 
|  | * The guest is free to try different versions until the host | 
|  | * accepts the version. | 
|  | * | 
|  | * pci_version: The protocol version requested. | 
|  | * is_last_attempt: If TRUE, this is the last version guest will request. | 
|  | * reservedz: Reserved field, set to zero. | 
|  | */ | 
|  |  | 
|  | struct pci_version_request { | 
|  | struct pci_message message_type; | 
|  | u32 protocol_version; | 
|  | } __packed; | 
|  |  | 
|  | /* | 
|  | * Bus D0 Entry.  This is sent from the guest to the host when the virtual | 
|  | * bus (PCI Express port) is ready for action. | 
|  | */ | 
|  |  | 
|  | struct pci_bus_d0_entry { | 
|  | struct pci_message message_type; | 
|  | u32 reserved; | 
|  | u64 mmio_base; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_bus_relations { | 
|  | struct pci_incoming_message incoming; | 
|  | u32 device_count; | 
|  | struct pci_function_description func[]; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_bus_relations2 { | 
|  | struct pci_incoming_message incoming; | 
|  | u32 device_count; | 
|  | struct pci_function_description2 func[]; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_q_res_req_response { | 
|  | struct vmpacket_descriptor hdr; | 
|  | s32 status;			/* negative values are failures */ | 
|  | u32 probed_bar[PCI_STD_NUM_BARS]; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_set_power { | 
|  | struct pci_message message_type; | 
|  | union win_slot_encoding wslot; | 
|  | u32 power_state;		/* In Windows terms */ | 
|  | u32 reserved; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_set_power_response { | 
|  | struct vmpacket_descriptor hdr; | 
|  | s32 status;			/* negative values are failures */ | 
|  | union win_slot_encoding wslot; | 
|  | u32 resultant_state;		/* In Windows terms */ | 
|  | u32 reserved; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_resources_assigned { | 
|  | struct pci_message message_type; | 
|  | union win_slot_encoding wslot; | 
|  | u8 memory_range[0x14][6];	/* not used here */ | 
|  | u32 msi_descriptors; | 
|  | u32 reserved[4]; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_resources_assigned2 { | 
|  | struct pci_message message_type; | 
|  | union win_slot_encoding wslot; | 
|  | u8 memory_range[0x14][6];	/* not used here */ | 
|  | u32 msi_descriptor_count; | 
|  | u8 reserved[70]; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_create_interrupt { | 
|  | struct pci_message message_type; | 
|  | union win_slot_encoding wslot; | 
|  | struct hv_msi_desc int_desc; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_create_int_response { | 
|  | struct pci_response response; | 
|  | u32 reserved; | 
|  | struct tran_int_desc int_desc; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_create_interrupt2 { | 
|  | struct pci_message message_type; | 
|  | union win_slot_encoding wslot; | 
|  | struct hv_msi_desc2 int_desc; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_create_interrupt3 { | 
|  | struct pci_message message_type; | 
|  | union win_slot_encoding wslot; | 
|  | struct hv_msi_desc3 int_desc; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_delete_interrupt { | 
|  | struct pci_message message_type; | 
|  | union win_slot_encoding wslot; | 
|  | struct tran_int_desc int_desc; | 
|  | } __packed; | 
|  |  | 
|  | /* | 
|  | * Note: the VM must pass a valid block id, wslot and bytes_requested. | 
|  | */ | 
|  | struct pci_read_block { | 
|  | struct pci_message message_type; | 
|  | u32 block_id; | 
|  | union win_slot_encoding wslot; | 
|  | u32 bytes_requested; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_read_block_response { | 
|  | struct vmpacket_descriptor hdr; | 
|  | u32 status; | 
|  | u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; | 
|  | } __packed; | 
|  |  | 
|  | /* | 
|  | * Note: the VM must pass a valid block id, wslot and byte_count. | 
|  | */ | 
|  | struct pci_write_block { | 
|  | struct pci_message message_type; | 
|  | u32 block_id; | 
|  | union win_slot_encoding wslot; | 
|  | u32 byte_count; | 
|  | u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_dev_inval_block { | 
|  | struct pci_incoming_message incoming; | 
|  | union win_slot_encoding wslot; | 
|  | u64 block_mask; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_dev_incoming { | 
|  | struct pci_incoming_message incoming; | 
|  | union win_slot_encoding wslot; | 
|  | } __packed; | 
|  |  | 
|  | struct pci_eject_response { | 
|  | struct pci_message message_type; | 
|  | union win_slot_encoding wslot; | 
|  | u32 status; | 
|  | } __packed; | 
|  |  | 
|  | static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K); | 
|  |  | 
|  | /* | 
|  | * Driver specific state. | 
|  | */ | 
|  |  | 
|  | enum hv_pcibus_state { | 
|  | hv_pcibus_init = 0, | 
|  | hv_pcibus_probed, | 
|  | hv_pcibus_installed, | 
|  | hv_pcibus_removing, | 
|  | hv_pcibus_maximum | 
|  | }; | 
|  |  | 
|  | struct hv_pcibus_device { | 
|  | #ifdef CONFIG_X86 | 
|  | struct pci_sysdata sysdata; | 
|  | #elif defined(CONFIG_ARM64) | 
|  | struct pci_config_window sysdata; | 
|  | #endif | 
|  | struct pci_host_bridge *bridge; | 
|  | struct fwnode_handle *fwnode; | 
|  | /* Protocol version negotiated with the host */ | 
|  | enum pci_protocol_version_t protocol_version; | 
|  |  | 
|  | struct mutex state_lock; | 
|  | enum hv_pcibus_state state; | 
|  |  | 
|  | struct hv_device *hdev; | 
|  | resource_size_t low_mmio_space; | 
|  | resource_size_t high_mmio_space; | 
|  | struct resource *mem_config; | 
|  | struct resource *low_mmio_res; | 
|  | struct resource *high_mmio_res; | 
|  | struct completion *survey_event; | 
|  | struct pci_bus *pci_bus; | 
|  | spinlock_t config_lock;	/* Avoid two threads writing index page */ | 
|  | spinlock_t device_list_lock;	/* Protect lists below */ | 
|  | void __iomem *cfg_addr; | 
|  |  | 
|  | struct list_head children; | 
|  | struct list_head dr_list; | 
|  |  | 
|  | struct irq_domain *irq_domain; | 
|  |  | 
|  | struct workqueue_struct *wq; | 
|  |  | 
|  | /* Highest slot of child device with resources allocated */ | 
|  | int wslot_res_allocated; | 
|  | bool use_calls; /* Use hypercalls to access mmio cfg space */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Tracks "Device Relations" messages from the host, which must be both | 
|  | * processed in order and deferred so that they don't run in the context | 
|  | * of the incoming packet callback. | 
|  | */ | 
|  | struct hv_dr_work { | 
|  | struct work_struct wrk; | 
|  | struct hv_pcibus_device *bus; | 
|  | }; | 
|  |  | 
|  | struct hv_pcidev_description { | 
|  | u16	v_id;	/* vendor ID */ | 
|  | u16	d_id;	/* device ID */ | 
|  | u8	rev; | 
|  | u8	prog_intf; | 
|  | u8	subclass; | 
|  | u8	base_class; | 
|  | u32	subsystem_id; | 
|  | union	win_slot_encoding win_slot; | 
|  | u32	ser;	/* serial number */ | 
|  | u32	flags; | 
|  | u16	virtual_numa_node; | 
|  | }; | 
|  |  | 
|  | struct hv_dr_state { | 
|  | struct list_head list_entry; | 
|  | u32 device_count; | 
|  | struct hv_pcidev_description func[] __counted_by(device_count); | 
|  | }; | 
|  |  | 
|  | struct hv_pci_dev { | 
|  | /* List protected by pci_rescan_remove_lock */ | 
|  | struct list_head list_entry; | 
|  | refcount_t refs; | 
|  | struct pci_slot *pci_slot; | 
|  | struct hv_pcidev_description desc; | 
|  | bool reported_missing; | 
|  | struct hv_pcibus_device *hbus; | 
|  | struct work_struct wrk; | 
|  |  | 
|  | void (*block_invalidate)(void *context, u64 block_mask); | 
|  | void *invalidate_context; | 
|  |  | 
|  | /* | 
|  | * What would be observed if one wrote 0xFFFFFFFF to a BAR and then | 
|  | * read it back, for each of the BAR offsets within config space. | 
|  | */ | 
|  | u32 probed_bar[PCI_STD_NUM_BARS]; | 
|  | }; | 
|  |  | 
|  | struct hv_pci_compl { | 
|  | struct completion host_event; | 
|  | s32 completion_status; | 
|  | }; | 
|  |  | 
|  | static void hv_pci_onchannelcallback(void *context); | 
|  |  | 
|  | #ifdef CONFIG_X86 | 
|  | #define DELIVERY_MODE		APIC_DELIVERY_MODE_FIXED | 
|  | #define HV_MSI_CHIP_FLAGS	MSI_CHIP_FLAG_SET_ACK | 
|  |  | 
|  | static int hv_pci_irqchip_init(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct irq_domain *hv_pci_get_root_domain(void) | 
|  | { | 
|  | return x86_vector_domain; | 
|  | } | 
|  |  | 
|  | static unsigned int hv_msi_get_int_vector(struct irq_data *data) | 
|  | { | 
|  | struct irq_cfg *cfg = irqd_cfg(data); | 
|  |  | 
|  | return cfg->vector; | 
|  | } | 
|  |  | 
|  | #define hv_msi_prepare		pci_msi_prepare | 
|  |  | 
|  | /** | 
|  | * hv_irq_retarget_interrupt() - "Unmask" the IRQ by setting its current | 
|  | * affinity. | 
|  | * @data:	Describes the IRQ | 
|  | * | 
|  | * Build new a destination for the MSI and make a hypercall to | 
|  | * update the Interrupt Redirection Table. "Device Logical ID" | 
|  | * is built out of this PCI bus's instance GUID and the function | 
|  | * number of the device. | 
|  | */ | 
|  | static void hv_irq_retarget_interrupt(struct irq_data *data) | 
|  | { | 
|  | struct msi_desc *msi_desc = irq_data_get_msi_desc(data); | 
|  | struct hv_retarget_device_interrupt *params; | 
|  | struct tran_int_desc *int_desc; | 
|  | struct hv_pcibus_device *hbus; | 
|  | const struct cpumask *dest; | 
|  | cpumask_var_t tmp; | 
|  | struct pci_bus *pbus; | 
|  | struct pci_dev *pdev; | 
|  | unsigned long flags; | 
|  | u32 var_size = 0; | 
|  | int cpu, nr_bank; | 
|  | u64 res; | 
|  |  | 
|  | dest = irq_data_get_effective_affinity_mask(data); | 
|  | pdev = msi_desc_to_pci_dev(msi_desc); | 
|  | pbus = pdev->bus; | 
|  | hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); | 
|  | int_desc = data->chip_data; | 
|  | if (!int_desc) { | 
|  | dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n", | 
|  | __func__, data->irq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | params = *this_cpu_ptr(hyperv_pcpu_input_arg); | 
|  | memset(params, 0, sizeof(*params)); | 
|  | params->partition_id = HV_PARTITION_ID_SELF; | 
|  | params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; | 
|  | params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; | 
|  | params->int_entry.msi_entry.data.as_uint32 = int_desc->data; | 
|  | params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | | 
|  | (hbus->hdev->dev_instance.b[4] << 16) | | 
|  | (hbus->hdev->dev_instance.b[7] << 8) | | 
|  | (hbus->hdev->dev_instance.b[6] & 0xf8) | | 
|  | PCI_FUNC(pdev->devfn); | 
|  | params->int_target.vector = hv_msi_get_int_vector(data); | 
|  |  | 
|  | if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { | 
|  | /* | 
|  | * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the | 
|  | * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides | 
|  | * with >64 VP support. | 
|  | * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED | 
|  | * is not sufficient for this hypercall. | 
|  | */ | 
|  | params->int_target.flags |= | 
|  | HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; | 
|  |  | 
|  | if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { | 
|  | res = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cpumask_and(tmp, dest, cpu_online_mask); | 
|  | nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); | 
|  | free_cpumask_var(tmp); | 
|  |  | 
|  | if (nr_bank <= 0) { | 
|  | res = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * var-sized hypercall, var-size starts after vp_mask (thus | 
|  | * vp_set.format does not count, but vp_set.valid_bank_mask | 
|  | * does). | 
|  | */ | 
|  | var_size = 1 + nr_bank; | 
|  | } else { | 
|  | for_each_cpu_and(cpu, dest, cpu_online_mask) { | 
|  | params->int_target.vp_mask |= | 
|  | (1ULL << hv_cpu_number_to_vp_number(cpu)); | 
|  | } | 
|  | } | 
|  |  | 
|  | res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), | 
|  | params, NULL); | 
|  |  | 
|  | out: | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* | 
|  | * During hibernation, when a CPU is offlined, the kernel tries | 
|  | * to move the interrupt to the remaining CPUs that haven't | 
|  | * been offlined yet. In this case, the below hv_do_hypercall() | 
|  | * always fails since the vmbus channel has been closed: | 
|  | * refer to cpu_disable_common() -> fixup_irqs() -> | 
|  | * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). | 
|  | * | 
|  | * Suppress the error message for hibernation because the failure | 
|  | * during hibernation does not matter (at this time all the devices | 
|  | * have been frozen). Note: the correct affinity info is still updated | 
|  | * into the irqdata data structure in migrate_one_irq() -> | 
|  | * irq_do_set_affinity(), so later when the VM resumes, | 
|  | * hv_pci_restore_msi_state() is able to correctly restore the | 
|  | * interrupt with the correct affinity. | 
|  | */ | 
|  | if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) | 
|  | dev_err(&hbus->hdev->device, | 
|  | "%s() failed: %#llx", __func__, res); | 
|  | } | 
|  |  | 
|  | static void hv_arch_irq_unmask(struct irq_data *data) | 
|  | { | 
|  | if (hv_root_partition()) | 
|  | /* | 
|  | * In case of the nested root partition, the nested hypervisor | 
|  | * is taking care of interrupt remapping and thus the | 
|  | * MAP_DEVICE_INTERRUPT hypercall is required instead of | 
|  | * RETARGET_INTERRUPT. | 
|  | */ | 
|  | (void)hv_map_msi_interrupt(data, NULL); | 
|  | else | 
|  | hv_irq_retarget_interrupt(data); | 
|  | } | 
|  | #elif defined(CONFIG_ARM64) | 
|  | /* | 
|  | * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit | 
|  | * of room at the start to allow for SPIs to be specified through ACPI and | 
|  | * starting with a power of two to satisfy power of 2 multi-MSI requirement. | 
|  | */ | 
|  | #define HV_PCI_MSI_SPI_START	64 | 
|  | #define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START) | 
|  | #define DELIVERY_MODE		0 | 
|  | #define HV_MSI_CHIP_FLAGS	MSI_CHIP_FLAG_SET_EOI | 
|  | #define hv_msi_prepare		NULL | 
|  |  | 
|  | struct hv_pci_chip_data { | 
|  | DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); | 
|  | struct mutex	map_lock; | 
|  | }; | 
|  |  | 
|  | /* Hyper-V vPCI MSI GIC IRQ domain */ | 
|  | static struct irq_domain *hv_msi_gic_irq_domain; | 
|  |  | 
|  | /* Hyper-V PCI MSI IRQ chip */ | 
|  | static struct irq_chip hv_arm64_msi_irq_chip = { | 
|  | .name = "MSI", | 
|  | .irq_set_affinity = irq_chip_set_affinity_parent, | 
|  | .irq_eoi = irq_chip_eoi_parent, | 
|  | .irq_mask = irq_chip_mask_parent, | 
|  | .irq_unmask = irq_chip_unmask_parent | 
|  | }; | 
|  |  | 
|  | static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) | 
|  | { | 
|  | return irqd->parent_data->hwirq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from | 
|  | *			the bitmap. | 
|  | * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from | 
|  | *			the parent domain. | 
|  | */ | 
|  | static void hv_pci_vec_irq_free(struct irq_domain *domain, | 
|  | unsigned int virq, | 
|  | unsigned int nr_bm_irqs, | 
|  | unsigned int nr_dom_irqs) | 
|  | { | 
|  | struct hv_pci_chip_data *chip_data = domain->host_data; | 
|  | struct irq_data *d = irq_domain_get_irq_data(domain, virq); | 
|  | int first = d->hwirq - HV_PCI_MSI_SPI_START; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&chip_data->map_lock); | 
|  | bitmap_release_region(chip_data->spi_map, | 
|  | first, | 
|  | get_count_order(nr_bm_irqs)); | 
|  | mutex_unlock(&chip_data->map_lock); | 
|  | for (i = 0; i < nr_dom_irqs; i++) { | 
|  | if (i) | 
|  | d = irq_domain_get_irq_data(domain, virq + i); | 
|  | irq_domain_reset_irq_data(d); | 
|  | } | 
|  |  | 
|  | irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); | 
|  | } | 
|  |  | 
|  | static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, | 
|  | unsigned int virq, | 
|  | unsigned int nr_irqs) | 
|  | { | 
|  | hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); | 
|  | } | 
|  |  | 
|  | static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, | 
|  | unsigned int nr_irqs, | 
|  | irq_hw_number_t *hwirq) | 
|  | { | 
|  | struct hv_pci_chip_data *chip_data = domain->host_data; | 
|  | int index; | 
|  |  | 
|  | /* Find and allocate region from the SPI bitmap */ | 
|  | mutex_lock(&chip_data->map_lock); | 
|  | index = bitmap_find_free_region(chip_data->spi_map, | 
|  | HV_PCI_MSI_SPI_NR, | 
|  | get_count_order(nr_irqs)); | 
|  | mutex_unlock(&chip_data->map_lock); | 
|  | if (index < 0) | 
|  | return -ENOSPC; | 
|  |  | 
|  | *hwirq = index + HV_PCI_MSI_SPI_START; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, | 
|  | unsigned int virq, | 
|  | irq_hw_number_t hwirq) | 
|  | { | 
|  | struct irq_fwspec fwspec; | 
|  | struct irq_data *d; | 
|  | int ret; | 
|  |  | 
|  | fwspec.fwnode = domain->parent->fwnode; | 
|  | if (is_of_node(fwspec.fwnode)) { | 
|  | /* SPI lines for OF translations start at offset 32 */ | 
|  | fwspec.param_count = 3; | 
|  | fwspec.param[0] = 0; | 
|  | fwspec.param[1] = hwirq - 32; | 
|  | fwspec.param[2] = IRQ_TYPE_EDGE_RISING; | 
|  | } else { | 
|  | fwspec.param_count = 2; | 
|  | fwspec.param[0] = hwirq; | 
|  | fwspec.param[1] = IRQ_TYPE_EDGE_RISING; | 
|  | } | 
|  |  | 
|  | ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Since the interrupt specifier is not coming from ACPI or DT, the | 
|  | * trigger type will need to be set explicitly. Otherwise, it will be | 
|  | * set to whatever is in the GIC configuration. | 
|  | */ | 
|  | d = irq_domain_get_irq_data(domain->parent, virq); | 
|  |  | 
|  | return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); | 
|  | } | 
|  |  | 
|  | static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, | 
|  | unsigned int virq, unsigned int nr_irqs, | 
|  | void *args) | 
|  | { | 
|  | irq_hw_number_t hwirq; | 
|  | unsigned int i; | 
|  | int ret; | 
|  |  | 
|  | ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < nr_irqs; i++) { | 
|  | ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, | 
|  | hwirq + i); | 
|  | if (ret) { | 
|  | hv_pci_vec_irq_free(domain, virq, nr_irqs, i); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | irq_domain_set_hwirq_and_chip(domain, virq + i, | 
|  | hwirq + i, | 
|  | &hv_arm64_msi_irq_chip, | 
|  | domain->host_data); | 
|  | pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pick the first cpu as the irq affinity that can be temporarily used for | 
|  | * composing MSI from the hypervisor. GIC will eventually set the right | 
|  | * affinity for the irq and the 'unmask' will retarget the interrupt to that | 
|  | * cpu. | 
|  | */ | 
|  | static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, | 
|  | struct irq_data *irqd, bool reserve) | 
|  | { | 
|  | int cpu = cpumask_first(cpu_present_mask); | 
|  |  | 
|  | irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct irq_domain_ops hv_pci_domain_ops = { | 
|  | .alloc	= hv_pci_vec_irq_domain_alloc, | 
|  | .free	= hv_pci_vec_irq_domain_free, | 
|  | .activate = hv_pci_vec_irq_domain_activate, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  |  | 
|  | static struct irq_domain *hv_pci_of_irq_domain_parent(void) | 
|  | { | 
|  | struct device_node *parent; | 
|  | struct irq_domain *domain; | 
|  |  | 
|  | parent = of_irq_find_parent(hv_get_vmbus_root_device()->of_node); | 
|  | if (!parent) | 
|  | return NULL; | 
|  | domain = irq_find_host(parent); | 
|  | of_node_put(parent); | 
|  |  | 
|  | return domain; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  |  | 
|  | static struct irq_domain *hv_pci_acpi_irq_domain_parent(void) | 
|  | { | 
|  | acpi_gsi_domain_disp_fn gsi_domain_disp_fn; | 
|  |  | 
|  | gsi_domain_disp_fn = acpi_get_gsi_dispatcher(); | 
|  | if (!gsi_domain_disp_fn) | 
|  | return NULL; | 
|  | return irq_find_matching_fwnode(gsi_domain_disp_fn(0), | 
|  | DOMAIN_BUS_ANY); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int hv_pci_irqchip_init(void) | 
|  | { | 
|  | static struct hv_pci_chip_data *chip_data; | 
|  | struct fwnode_handle *fn = NULL; | 
|  | struct irq_domain *irq_domain_parent = NULL; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); | 
|  | if (!chip_data) | 
|  | return ret; | 
|  |  | 
|  | mutex_init(&chip_data->map_lock); | 
|  | fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); | 
|  | if (!fn) | 
|  | goto free_chip; | 
|  |  | 
|  | /* | 
|  | * IRQ domain once enabled, should not be removed since there is no | 
|  | * way to ensure that all the corresponding devices are also gone and | 
|  | * no interrupts will be generated. | 
|  | */ | 
|  | #ifdef CONFIG_ACPI | 
|  | if (!acpi_disabled) | 
|  | irq_domain_parent = hv_pci_acpi_irq_domain_parent(); | 
|  | #endif | 
|  | #ifdef CONFIG_OF | 
|  | if (!irq_domain_parent) | 
|  | irq_domain_parent = hv_pci_of_irq_domain_parent(); | 
|  | #endif | 
|  | if (!irq_domain_parent) { | 
|  | WARN_ONCE(1, "Invalid firmware configuration for VMBus interrupts\n"); | 
|  | ret = -EINVAL; | 
|  | goto free_chip; | 
|  | } | 
|  |  | 
|  | hv_msi_gic_irq_domain = irq_domain_create_hierarchy(irq_domain_parent, 0, | 
|  | HV_PCI_MSI_SPI_NR, | 
|  | fn, &hv_pci_domain_ops, | 
|  | chip_data); | 
|  |  | 
|  | if (!hv_msi_gic_irq_domain) { | 
|  | pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); | 
|  | goto free_chip; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_chip: | 
|  | kfree(chip_data); | 
|  | if (fn) | 
|  | irq_domain_free_fwnode(fn); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct irq_domain *hv_pci_get_root_domain(void) | 
|  | { | 
|  | return hv_msi_gic_irq_domain; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD | 
|  | * registers which Hyper-V already supports, so no hypercall needed. | 
|  | */ | 
|  | static void hv_arch_irq_unmask(struct irq_data *data) { } | 
|  | #endif /* CONFIG_ARM64 */ | 
|  |  | 
|  | /** | 
|  | * hv_pci_generic_compl() - Invoked for a completion packet | 
|  | * @context:		Set up by the sender of the packet. | 
|  | * @resp:		The response packet | 
|  | * @resp_packet_size:	Size in bytes of the packet | 
|  | * | 
|  | * This function is used to trigger an event and report status | 
|  | * for any message for which the completion packet contains a | 
|  | * status and nothing else. | 
|  | */ | 
|  | static void hv_pci_generic_compl(void *context, struct pci_response *resp, | 
|  | int resp_packet_size) | 
|  | { | 
|  | struct hv_pci_compl *comp_pkt = context; | 
|  |  | 
|  | comp_pkt->completion_status = resp->status; | 
|  | complete(&comp_pkt->host_event); | 
|  | } | 
|  |  | 
|  | static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, | 
|  | u32 wslot); | 
|  |  | 
|  | static void get_pcichild(struct hv_pci_dev *hpdev) | 
|  | { | 
|  | refcount_inc(&hpdev->refs); | 
|  | } | 
|  |  | 
|  | static void put_pcichild(struct hv_pci_dev *hpdev) | 
|  | { | 
|  | if (refcount_dec_and_test(&hpdev->refs)) | 
|  | kfree(hpdev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is no good way to get notified from vmbus_onoffer_rescind(), | 
|  | * so let's use polling here, since this is not a hot path. | 
|  | */ | 
|  | static int wait_for_response(struct hv_device *hdev, | 
|  | struct completion *comp) | 
|  | { | 
|  | while (true) { | 
|  | if (hdev->channel->rescind) { | 
|  | dev_warn_once(&hdev->device, "The device is gone.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (wait_for_completion_timeout(comp, HZ / 10)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * devfn_to_wslot() - Convert from Linux PCI slot to Windows | 
|  | * @devfn:	The Linux representation of PCI slot | 
|  | * | 
|  | * Windows uses a slightly different representation of PCI slot. | 
|  | * | 
|  | * Return: The Windows representation | 
|  | */ | 
|  | static u32 devfn_to_wslot(int devfn) | 
|  | { | 
|  | union win_slot_encoding wslot; | 
|  |  | 
|  | wslot.slot = 0; | 
|  | wslot.bits.dev = PCI_SLOT(devfn); | 
|  | wslot.bits.func = PCI_FUNC(devfn); | 
|  |  | 
|  | return wslot.slot; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wslot_to_devfn() - Convert from Windows PCI slot to Linux | 
|  | * @wslot:	The Windows representation of PCI slot | 
|  | * | 
|  | * Windows uses a slightly different representation of PCI slot. | 
|  | * | 
|  | * Return: The Linux representation | 
|  | */ | 
|  | static int wslot_to_devfn(u32 wslot) | 
|  | { | 
|  | union win_slot_encoding slot_no; | 
|  |  | 
|  | slot_no.slot = wslot; | 
|  | return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); | 
|  | } | 
|  |  | 
|  | static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) | 
|  | { | 
|  | struct hv_mmio_read_input *in; | 
|  | struct hv_mmio_read_output *out; | 
|  | u64 ret; | 
|  |  | 
|  | /* | 
|  | * Must be called with interrupts disabled so it is safe | 
|  | * to use the per-cpu input argument page.  Use it for | 
|  | * both input and output. | 
|  | */ | 
|  | in = *this_cpu_ptr(hyperv_pcpu_input_arg); | 
|  | out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); | 
|  | in->gpa = gpa; | 
|  | in->size = size; | 
|  |  | 
|  | ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); | 
|  | if (hv_result_success(ret)) { | 
|  | switch (size) { | 
|  | case 1: | 
|  | *val = *(u8 *)(out->data); | 
|  | break; | 
|  | case 2: | 
|  | *val = *(u16 *)(out->data); | 
|  | break; | 
|  | default: | 
|  | *val = *(u32 *)(out->data); | 
|  | break; | 
|  | } | 
|  | } else | 
|  | dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", | 
|  | ret, gpa, size); | 
|  | } | 
|  |  | 
|  | static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) | 
|  | { | 
|  | struct hv_mmio_write_input *in; | 
|  | u64 ret; | 
|  |  | 
|  | /* | 
|  | * Must be called with interrupts disabled so it is safe | 
|  | * to use the per-cpu input argument memory. | 
|  | */ | 
|  | in = *this_cpu_ptr(hyperv_pcpu_input_arg); | 
|  | in->gpa = gpa; | 
|  | in->size = size; | 
|  | switch (size) { | 
|  | case 1: | 
|  | *(u8 *)(in->data) = val; | 
|  | break; | 
|  | case 2: | 
|  | *(u16 *)(in->data) = val; | 
|  | break; | 
|  | default: | 
|  | *(u32 *)(in->data) = val; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); | 
|  | if (!hv_result_success(ret)) | 
|  | dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", | 
|  | ret, gpa, size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PCI Configuration Space for these root PCI buses is implemented as a pair | 
|  | * of pages in memory-mapped I/O space.  Writing to the first page chooses | 
|  | * the PCI function being written or read.  Once the first page has been | 
|  | * written to, the following page maps in the entire configuration space of | 
|  | * the function. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * _hv_pcifront_read_config() - Internal PCI config read | 
|  | * @hpdev:	The PCI driver's representation of the device | 
|  | * @where:	Offset within config space | 
|  | * @size:	Size of the transfer | 
|  | * @val:	Pointer to the buffer receiving the data | 
|  | */ | 
|  | static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, | 
|  | int size, u32 *val) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hpdev->hbus; | 
|  | struct device *dev = &hbus->hdev->device; | 
|  | int offset = where + CFG_PAGE_OFFSET; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * If the attempt is to read the IDs or the ROM BAR, simulate that. | 
|  | */ | 
|  | if (where + size <= PCI_COMMAND) { | 
|  | memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); | 
|  | } else if (where >= PCI_CLASS_REVISION && where + size <= | 
|  | PCI_CACHE_LINE_SIZE) { | 
|  | memcpy(val, ((u8 *)&hpdev->desc.rev) + where - | 
|  | PCI_CLASS_REVISION, size); | 
|  | } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= | 
|  | PCI_ROM_ADDRESS) { | 
|  | memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - | 
|  | PCI_SUBSYSTEM_VENDOR_ID, size); | 
|  | } else if (where >= PCI_ROM_ADDRESS && where + size <= | 
|  | PCI_CAPABILITY_LIST) { | 
|  | /* ROM BARs are unimplemented */ | 
|  | *val = 0; | 
|  | } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) || | 
|  | (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) { | 
|  | /* | 
|  | * Interrupt Line and Interrupt PIN are hard-wired to zero | 
|  | * because this front-end only supports message-signaled | 
|  | * interrupts. | 
|  | */ | 
|  | *val = 0; | 
|  | } else if (where + size <= CFG_PAGE_SIZE) { | 
|  |  | 
|  | spin_lock_irqsave(&hbus->config_lock, flags); | 
|  | if (hbus->use_calls) { | 
|  | phys_addr_t addr = hbus->mem_config->start + offset; | 
|  |  | 
|  | hv_pci_write_mmio(dev, hbus->mem_config->start, 4, | 
|  | hpdev->desc.win_slot.slot); | 
|  | hv_pci_read_mmio(dev, addr, size, val); | 
|  | } else { | 
|  | void __iomem *addr = hbus->cfg_addr + offset; | 
|  |  | 
|  | /* Choose the function to be read. (See comment above) */ | 
|  | writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); | 
|  | /* Make sure the function was chosen before reading. */ | 
|  | mb(); | 
|  | /* Read from that function's config space. */ | 
|  | switch (size) { | 
|  | case 1: | 
|  | *val = readb(addr); | 
|  | break; | 
|  | case 2: | 
|  | *val = readw(addr); | 
|  | break; | 
|  | default: | 
|  | *val = readl(addr); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Make sure the read was done before we release the | 
|  | * spinlock allowing consecutive reads/writes. | 
|  | */ | 
|  | mb(); | 
|  | } | 
|  | spin_unlock_irqrestore(&hbus->config_lock, flags); | 
|  | } else { | 
|  | dev_err(dev, "Attempt to read beyond a function's config space.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hpdev->hbus; | 
|  | struct device *dev = &hbus->hdev->device; | 
|  | u32 val; | 
|  | u16 ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&hbus->config_lock, flags); | 
|  |  | 
|  | if (hbus->use_calls) { | 
|  | phys_addr_t addr = hbus->mem_config->start + | 
|  | CFG_PAGE_OFFSET + PCI_VENDOR_ID; | 
|  |  | 
|  | hv_pci_write_mmio(dev, hbus->mem_config->start, 4, | 
|  | hpdev->desc.win_slot.slot); | 
|  | hv_pci_read_mmio(dev, addr, 2, &val); | 
|  | ret = val;  /* Truncates to 16 bits */ | 
|  | } else { | 
|  | void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + | 
|  | PCI_VENDOR_ID; | 
|  | /* Choose the function to be read. (See comment above) */ | 
|  | writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); | 
|  | /* Make sure the function was chosen before we start reading. */ | 
|  | mb(); | 
|  | /* Read from that function's config space. */ | 
|  | ret = readw(addr); | 
|  | /* | 
|  | * mb() is not required here, because the | 
|  | * spin_unlock_irqrestore() is a barrier. | 
|  | */ | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&hbus->config_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _hv_pcifront_write_config() - Internal PCI config write | 
|  | * @hpdev:	The PCI driver's representation of the device | 
|  | * @where:	Offset within config space | 
|  | * @size:	Size of the transfer | 
|  | * @val:	The data being transferred | 
|  | */ | 
|  | static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, | 
|  | int size, u32 val) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hpdev->hbus; | 
|  | struct device *dev = &hbus->hdev->device; | 
|  | int offset = where + CFG_PAGE_OFFSET; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (where >= PCI_SUBSYSTEM_VENDOR_ID && | 
|  | where + size <= PCI_CAPABILITY_LIST) { | 
|  | /* SSIDs and ROM BARs are read-only */ | 
|  | } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { | 
|  | spin_lock_irqsave(&hbus->config_lock, flags); | 
|  |  | 
|  | if (hbus->use_calls) { | 
|  | phys_addr_t addr = hbus->mem_config->start + offset; | 
|  |  | 
|  | hv_pci_write_mmio(dev, hbus->mem_config->start, 4, | 
|  | hpdev->desc.win_slot.slot); | 
|  | hv_pci_write_mmio(dev, addr, size, val); | 
|  | } else { | 
|  | void __iomem *addr = hbus->cfg_addr + offset; | 
|  |  | 
|  | /* Choose the function to write. (See comment above) */ | 
|  | writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); | 
|  | /* Make sure the function was chosen before writing. */ | 
|  | wmb(); | 
|  | /* Write to that function's config space. */ | 
|  | switch (size) { | 
|  | case 1: | 
|  | writeb(val, addr); | 
|  | break; | 
|  | case 2: | 
|  | writew(val, addr); | 
|  | break; | 
|  | default: | 
|  | writel(val, addr); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Make sure the write was done before we release the | 
|  | * spinlock allowing consecutive reads/writes. | 
|  | */ | 
|  | mb(); | 
|  | } | 
|  | spin_unlock_irqrestore(&hbus->config_lock, flags); | 
|  | } else { | 
|  | dev_err(dev, "Attempt to write beyond a function's config space.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pcifront_read_config() - Read configuration space | 
|  | * @bus: PCI Bus structure | 
|  | * @devfn: Device/function | 
|  | * @where: Offset from base | 
|  | * @size: Byte/word/dword | 
|  | * @val: Value to be read | 
|  | * | 
|  | * Return: PCIBIOS_SUCCESSFUL on success | 
|  | *	   PCIBIOS_DEVICE_NOT_FOUND on failure | 
|  | */ | 
|  | static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, | 
|  | int where, int size, u32 *val) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = | 
|  | container_of(bus->sysdata, struct hv_pcibus_device, sysdata); | 
|  | struct hv_pci_dev *hpdev; | 
|  |  | 
|  | hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); | 
|  | if (!hpdev) | 
|  | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  |  | 
|  | _hv_pcifront_read_config(hpdev, where, size, val); | 
|  |  | 
|  | put_pcichild(hpdev); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pcifront_write_config() - Write configuration space | 
|  | * @bus: PCI Bus structure | 
|  | * @devfn: Device/function | 
|  | * @where: Offset from base | 
|  | * @size: Byte/word/dword | 
|  | * @val: Value to be written to device | 
|  | * | 
|  | * Return: PCIBIOS_SUCCESSFUL on success | 
|  | *	   PCIBIOS_DEVICE_NOT_FOUND on failure | 
|  | */ | 
|  | static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, | 
|  | int where, int size, u32 val) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = | 
|  | container_of(bus->sysdata, struct hv_pcibus_device, sysdata); | 
|  | struct hv_pci_dev *hpdev; | 
|  |  | 
|  | hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); | 
|  | if (!hpdev) | 
|  | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  |  | 
|  | _hv_pcifront_write_config(hpdev, where, size, val); | 
|  |  | 
|  | put_pcichild(hpdev); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  |  | 
|  | /* PCIe operations */ | 
|  | static struct pci_ops hv_pcifront_ops = { | 
|  | .read  = hv_pcifront_read_config, | 
|  | .write = hv_pcifront_write_config, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Paravirtual backchannel | 
|  | * | 
|  | * Hyper-V SR-IOV provides a backchannel mechanism in software for | 
|  | * communication between a VF driver and a PF driver.  These | 
|  | * "configuration blocks" are similar in concept to PCI configuration space, | 
|  | * but instead of doing reads and writes in 32-bit chunks through a very slow | 
|  | * path, packets of up to 128 bytes can be sent or received asynchronously. | 
|  | * | 
|  | * Nearly every SR-IOV device contains just such a communications channel in | 
|  | * hardware, so using this one in software is usually optional.  Using the | 
|  | * software channel, however, allows driver implementers to leverage software | 
|  | * tools that fuzz the communications channel looking for vulnerabilities. | 
|  | * | 
|  | * The usage model for these packets puts the responsibility for reading or | 
|  | * writing on the VF driver.  The VF driver sends a read or a write packet, | 
|  | * indicating which "block" is being referred to by number. | 
|  | * | 
|  | * If the PF driver wishes to initiate communication, it can "invalidate" one or | 
|  | * more of the first 64 blocks.  This invalidation is delivered via a callback | 
|  | * supplied to the VF driver by this driver. | 
|  | * | 
|  | * No protocol is implied, except that supplied by the PF and VF drivers. | 
|  | */ | 
|  |  | 
|  | struct hv_read_config_compl { | 
|  | struct hv_pci_compl comp_pkt; | 
|  | void *buf; | 
|  | unsigned int len; | 
|  | unsigned int bytes_returned; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * hv_pci_read_config_compl() - Invoked when a response packet | 
|  | * for a read config block operation arrives. | 
|  | * @context:		Identifies the read config operation | 
|  | * @resp:		The response packet itself | 
|  | * @resp_packet_size:	Size in bytes of the response packet | 
|  | */ | 
|  | static void hv_pci_read_config_compl(void *context, struct pci_response *resp, | 
|  | int resp_packet_size) | 
|  | { | 
|  | struct hv_read_config_compl *comp = context; | 
|  | struct pci_read_block_response *read_resp = | 
|  | (struct pci_read_block_response *)resp; | 
|  | unsigned int data_len, hdr_len; | 
|  |  | 
|  | hdr_len = offsetof(struct pci_read_block_response, bytes); | 
|  | if (resp_packet_size < hdr_len) { | 
|  | comp->comp_pkt.completion_status = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | data_len = resp_packet_size - hdr_len; | 
|  | if (data_len > 0 && read_resp->status == 0) { | 
|  | comp->bytes_returned = min(comp->len, data_len); | 
|  | memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); | 
|  | } else { | 
|  | comp->bytes_returned = 0; | 
|  | } | 
|  |  | 
|  | comp->comp_pkt.completion_status = read_resp->status; | 
|  | out: | 
|  | complete(&comp->comp_pkt.host_event); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_read_config_block() - Sends a read config block request to | 
|  | * the back-end driver running in the Hyper-V parent partition. | 
|  | * @pdev:		The PCI driver's representation for this device. | 
|  | * @buf:		Buffer into which the config block will be copied. | 
|  | * @len:		Size in bytes of buf. | 
|  | * @block_id:		Identifies the config block which has been requested. | 
|  | * @bytes_returned:	Size which came back from the back-end driver. | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_read_config_block(struct pci_dev *pdev, void *buf, | 
|  | unsigned int len, unsigned int block_id, | 
|  | unsigned int *bytes_returned) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = | 
|  | container_of(pdev->bus->sysdata, struct hv_pcibus_device, | 
|  | sysdata); | 
|  | struct { | 
|  | struct pci_packet pkt; | 
|  | char buf[sizeof(struct pci_read_block)]; | 
|  | } pkt; | 
|  | struct hv_read_config_compl comp_pkt; | 
|  | struct pci_read_block *read_blk; | 
|  | int ret; | 
|  |  | 
|  | if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | init_completion(&comp_pkt.comp_pkt.host_event); | 
|  | comp_pkt.buf = buf; | 
|  | comp_pkt.len = len; | 
|  |  | 
|  | memset(&pkt, 0, sizeof(pkt)); | 
|  | pkt.pkt.completion_func = hv_pci_read_config_compl; | 
|  | pkt.pkt.compl_ctxt = &comp_pkt; | 
|  | read_blk = (struct pci_read_block *)pkt.buf; | 
|  | read_blk->message_type.type = PCI_READ_BLOCK; | 
|  | read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); | 
|  | read_blk->block_id = block_id; | 
|  | read_blk->bytes_requested = len; | 
|  |  | 
|  | ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, | 
|  | sizeof(*read_blk), (unsigned long)&pkt.pkt, | 
|  | VM_PKT_DATA_INBAND, | 
|  | VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (comp_pkt.comp_pkt.completion_status != 0 || | 
|  | comp_pkt.bytes_returned == 0) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "Read Config Block failed: 0x%x, bytes_returned=%d\n", | 
|  | comp_pkt.comp_pkt.completion_status, | 
|  | comp_pkt.bytes_returned); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | *bytes_returned = comp_pkt.bytes_returned; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_write_config_compl() - Invoked when a response packet for a write | 
|  | * config block operation arrives. | 
|  | * @context:		Identifies the write config operation | 
|  | * @resp:		The response packet itself | 
|  | * @resp_packet_size:	Size in bytes of the response packet | 
|  | */ | 
|  | static void hv_pci_write_config_compl(void *context, struct pci_response *resp, | 
|  | int resp_packet_size) | 
|  | { | 
|  | struct hv_pci_compl *comp_pkt = context; | 
|  |  | 
|  | comp_pkt->completion_status = resp->status; | 
|  | complete(&comp_pkt->host_event); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_write_config_block() - Sends a write config block request to the | 
|  | * back-end driver running in the Hyper-V parent partition. | 
|  | * @pdev:		The PCI driver's representation for this device. | 
|  | * @buf:		Buffer from which the config block will	be copied. | 
|  | * @len:		Size in bytes of buf. | 
|  | * @block_id:		Identifies the config block which is being written. | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_write_config_block(struct pci_dev *pdev, void *buf, | 
|  | unsigned int len, unsigned int block_id) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = | 
|  | container_of(pdev->bus->sysdata, struct hv_pcibus_device, | 
|  | sysdata); | 
|  | struct { | 
|  | struct pci_packet pkt; | 
|  | char buf[sizeof(struct pci_write_block)]; | 
|  | u32 reserved; | 
|  | } pkt; | 
|  | struct hv_pci_compl comp_pkt; | 
|  | struct pci_write_block *write_blk; | 
|  | u32 pkt_size; | 
|  | int ret; | 
|  |  | 
|  | if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | init_completion(&comp_pkt.host_event); | 
|  |  | 
|  | memset(&pkt, 0, sizeof(pkt)); | 
|  | pkt.pkt.completion_func = hv_pci_write_config_compl; | 
|  | pkt.pkt.compl_ctxt = &comp_pkt; | 
|  | write_blk = (struct pci_write_block *)pkt.buf; | 
|  | write_blk->message_type.type = PCI_WRITE_BLOCK; | 
|  | write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); | 
|  | write_blk->block_id = block_id; | 
|  | write_blk->byte_count = len; | 
|  | memcpy(write_blk->bytes, buf, len); | 
|  | pkt_size = offsetof(struct pci_write_block, bytes) + len; | 
|  | /* | 
|  | * This quirk is required on some hosts shipped around 2018, because | 
|  | * these hosts don't check the pkt_size correctly (new hosts have been | 
|  | * fixed since early 2019). The quirk is also safe on very old hosts | 
|  | * and new hosts, because, on them, what really matters is the length | 
|  | * specified in write_blk->byte_count. | 
|  | */ | 
|  | pkt_size += sizeof(pkt.reserved); | 
|  |  | 
|  | ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, | 
|  | (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, | 
|  | VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (comp_pkt.completion_status != 0) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "Write Config Block failed: 0x%x\n", | 
|  | comp_pkt.completion_status); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_register_block_invalidate() - Invoked when a config block invalidation | 
|  | * arrives from the back-end driver. | 
|  | * @pdev:		The PCI driver's representation for this device. | 
|  | * @context:		Identifies the device. | 
|  | * @block_invalidate:	Identifies all of the blocks being invalidated. | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, | 
|  | void (*block_invalidate)(void *context, | 
|  | u64 block_mask)) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = | 
|  | container_of(pdev->bus->sysdata, struct hv_pcibus_device, | 
|  | sysdata); | 
|  | struct hv_pci_dev *hpdev; | 
|  |  | 
|  | hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); | 
|  | if (!hpdev) | 
|  | return -ENODEV; | 
|  |  | 
|  | hpdev->block_invalidate = block_invalidate; | 
|  | hpdev->invalidate_context = context; | 
|  |  | 
|  | put_pcichild(hpdev); | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Interrupt management hooks */ | 
|  | static void hv_int_desc_free(struct hv_pci_dev *hpdev, | 
|  | struct tran_int_desc *int_desc) | 
|  | { | 
|  | struct pci_delete_interrupt *int_pkt; | 
|  | struct { | 
|  | struct pci_packet pkt; | 
|  | u8 buffer[sizeof(struct pci_delete_interrupt)]; | 
|  | } ctxt; | 
|  |  | 
|  | if (!int_desc->vector_count) { | 
|  | kfree(int_desc); | 
|  | return; | 
|  | } | 
|  | memset(&ctxt, 0, sizeof(ctxt)); | 
|  | int_pkt = (struct pci_delete_interrupt *)ctxt.buffer; | 
|  | int_pkt->message_type.type = | 
|  | PCI_DELETE_INTERRUPT_MESSAGE; | 
|  | int_pkt->wslot.slot = hpdev->desc.win_slot.slot; | 
|  | int_pkt->int_desc = *int_desc; | 
|  | vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), | 
|  | 0, VM_PKT_DATA_INBAND, 0); | 
|  | kfree(int_desc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_msi_free() - Free the MSI. | 
|  | * @domain:	The interrupt domain pointer | 
|  | * @info:	Extra MSI-related context | 
|  | * @irq:	Identifies the IRQ. | 
|  | * | 
|  | * The Hyper-V parent partition and hypervisor are tracking the | 
|  | * messages that are in use, keeping the interrupt redirection | 
|  | * table up to date.  This callback sends a message that frees | 
|  | * the IRT entry and related tracking nonsense. | 
|  | */ | 
|  | static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, | 
|  | unsigned int irq) | 
|  | { | 
|  | struct hv_pcibus_device *hbus; | 
|  | struct hv_pci_dev *hpdev; | 
|  | struct pci_dev *pdev; | 
|  | struct tran_int_desc *int_desc; | 
|  | struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); | 
|  | struct msi_desc *msi = irq_data_get_msi_desc(irq_data); | 
|  |  | 
|  | pdev = msi_desc_to_pci_dev(msi); | 
|  | hbus = domain->host_data; | 
|  | int_desc = irq_data_get_irq_chip_data(irq_data); | 
|  | if (!int_desc) | 
|  | return; | 
|  |  | 
|  | irq_data->chip_data = NULL; | 
|  | hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); | 
|  | if (!hpdev) { | 
|  | kfree(int_desc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | hv_int_desc_free(hpdev, int_desc); | 
|  | put_pcichild(hpdev); | 
|  | } | 
|  |  | 
|  | static void hv_irq_mask(struct irq_data *data) | 
|  | { | 
|  | if (data->parent_data->chip->irq_mask) | 
|  | irq_chip_mask_parent(data); | 
|  | } | 
|  |  | 
|  | static void hv_irq_unmask(struct irq_data *data) | 
|  | { | 
|  | hv_arch_irq_unmask(data); | 
|  |  | 
|  | if (data->parent_data->chip->irq_unmask) | 
|  | irq_chip_unmask_parent(data); | 
|  | } | 
|  |  | 
|  | struct compose_comp_ctxt { | 
|  | struct hv_pci_compl comp_pkt; | 
|  | struct tran_int_desc int_desc; | 
|  | }; | 
|  |  | 
|  | static void hv_pci_compose_compl(void *context, struct pci_response *resp, | 
|  | int resp_packet_size) | 
|  | { | 
|  | struct compose_comp_ctxt *comp_pkt = context; | 
|  | struct pci_create_int_response *int_resp = | 
|  | (struct pci_create_int_response *)resp; | 
|  |  | 
|  | if (resp_packet_size < sizeof(*int_resp)) { | 
|  | comp_pkt->comp_pkt.completion_status = -1; | 
|  | goto out; | 
|  | } | 
|  | comp_pkt->comp_pkt.completion_status = resp->status; | 
|  | comp_pkt->int_desc = int_resp->int_desc; | 
|  | out: | 
|  | complete(&comp_pkt->comp_pkt.host_event); | 
|  | } | 
|  |  | 
|  | static u32 hv_compose_msi_req_v1( | 
|  | struct pci_create_interrupt *int_pkt, | 
|  | u32 slot, u8 vector, u16 vector_count) | 
|  | { | 
|  | int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; | 
|  | int_pkt->wslot.slot = slot; | 
|  | int_pkt->int_desc.vector = vector; | 
|  | int_pkt->int_desc.vector_count = vector_count; | 
|  | int_pkt->int_desc.delivery_mode = DELIVERY_MODE; | 
|  |  | 
|  | /* | 
|  | * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in | 
|  | * hv_irq_unmask(). | 
|  | */ | 
|  | int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; | 
|  |  | 
|  | return sizeof(*int_pkt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and | 
|  | * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be | 
|  | * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V | 
|  | * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is | 
|  | * not irrelevant because Hyper-V chooses the physical CPU to handle the | 
|  | * interrupts based on the vCPU specified in message sent to the vPCI VSP in | 
|  | * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, | 
|  | * but assigning too many vPCI device interrupts to the same pCPU can cause a | 
|  | * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V | 
|  | * to spread out the pCPUs that it selects. | 
|  | * | 
|  | * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() | 
|  | * to always return the same dummy vCPU, because a second call to | 
|  | * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a | 
|  | * new pCPU for the interrupt. But for the multi-MSI case, the second call to | 
|  | * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the | 
|  | * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that | 
|  | * the pCPUs are spread out. All interrupts for a multi-MSI device end up using | 
|  | * the same pCPU, even though the vCPUs will be spread out by later calls | 
|  | * to hv_irq_unmask(), but that is the best we can do now. | 
|  | * | 
|  | * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* | 
|  | * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an | 
|  | * enhancement is planned for a future version. With that enhancement, the | 
|  | * dummy vCPU selection won't matter, and interrupts for the same multi-MSI | 
|  | * device will be spread across multiple pCPUs. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten | 
|  | * by subsequent retarget in hv_irq_unmask(). | 
|  | */ | 
|  | static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) | 
|  | { | 
|  | return cpumask_first_and(affinity, cpu_online_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. | 
|  | */ | 
|  | static int hv_compose_multi_msi_req_get_cpu(void) | 
|  | { | 
|  | static DEFINE_SPINLOCK(multi_msi_cpu_lock); | 
|  |  | 
|  | /* -1 means starting with CPU 0 */ | 
|  | static int cpu_next = -1; | 
|  |  | 
|  | unsigned long flags; | 
|  | int cpu; | 
|  |  | 
|  | spin_lock_irqsave(&multi_msi_cpu_lock, flags); | 
|  |  | 
|  | cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask); | 
|  | cpu = cpu_next; | 
|  |  | 
|  | spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); | 
|  |  | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | static u32 hv_compose_msi_req_v2( | 
|  | struct pci_create_interrupt2 *int_pkt, int cpu, | 
|  | u32 slot, u8 vector, u16 vector_count) | 
|  | { | 
|  | int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; | 
|  | int_pkt->wslot.slot = slot; | 
|  | int_pkt->int_desc.vector = vector; | 
|  | int_pkt->int_desc.vector_count = vector_count; | 
|  | int_pkt->int_desc.delivery_mode = DELIVERY_MODE; | 
|  | int_pkt->int_desc.processor_array[0] = | 
|  | hv_cpu_number_to_vp_number(cpu); | 
|  | int_pkt->int_desc.processor_count = 1; | 
|  |  | 
|  | return sizeof(*int_pkt); | 
|  | } | 
|  |  | 
|  | static u32 hv_compose_msi_req_v3( | 
|  | struct pci_create_interrupt3 *int_pkt, int cpu, | 
|  | u32 slot, u32 vector, u16 vector_count) | 
|  | { | 
|  | int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; | 
|  | int_pkt->wslot.slot = slot; | 
|  | int_pkt->int_desc.vector = vector; | 
|  | int_pkt->int_desc.reserved = 0; | 
|  | int_pkt->int_desc.vector_count = vector_count; | 
|  | int_pkt->int_desc.delivery_mode = DELIVERY_MODE; | 
|  | int_pkt->int_desc.processor_array[0] = | 
|  | hv_cpu_number_to_vp_number(cpu); | 
|  | int_pkt->int_desc.processor_count = 1; | 
|  |  | 
|  | return sizeof(*int_pkt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_compose_msi_msg() - Supplies a valid MSI address/data | 
|  | * @data:	Everything about this MSI | 
|  | * @msg:	Buffer that is filled in by this function | 
|  | * | 
|  | * This function unpacks the IRQ looking for target CPU set, IDT | 
|  | * vector and mode and sends a message to the parent partition | 
|  | * asking for a mapping for that tuple in this partition.  The | 
|  | * response supplies a data value and address to which that data | 
|  | * should be written to trigger that interrupt. | 
|  | */ | 
|  | static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) | 
|  | { | 
|  | struct hv_pcibus_device *hbus; | 
|  | struct vmbus_channel *channel; | 
|  | struct hv_pci_dev *hpdev; | 
|  | struct pci_bus *pbus; | 
|  | struct pci_dev *pdev; | 
|  | const struct cpumask *dest; | 
|  | struct compose_comp_ctxt comp; | 
|  | struct tran_int_desc *int_desc; | 
|  | struct msi_desc *msi_desc; | 
|  | /* | 
|  | * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 | 
|  | * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. | 
|  | */ | 
|  | u16 vector_count; | 
|  | u32 vector; | 
|  | struct { | 
|  | struct pci_packet pci_pkt; | 
|  | union { | 
|  | struct pci_create_interrupt v1; | 
|  | struct pci_create_interrupt2 v2; | 
|  | struct pci_create_interrupt3 v3; | 
|  | } int_pkts; | 
|  | } __packed ctxt; | 
|  | bool multi_msi; | 
|  | u64 trans_id; | 
|  | u32 size; | 
|  | int ret; | 
|  | int cpu; | 
|  |  | 
|  | msi_desc  = irq_data_get_msi_desc(data); | 
|  | multi_msi = !msi_desc->pci.msi_attrib.is_msix && | 
|  | msi_desc->nvec_used > 1; | 
|  |  | 
|  | /* Reuse the previous allocation */ | 
|  | if (data->chip_data && multi_msi) { | 
|  | int_desc = data->chip_data; | 
|  | msg->address_hi = int_desc->address >> 32; | 
|  | msg->address_lo = int_desc->address & 0xffffffff; | 
|  | msg->data = int_desc->data; | 
|  | return; | 
|  | } | 
|  |  | 
|  | pdev = msi_desc_to_pci_dev(msi_desc); | 
|  | dest = irq_data_get_effective_affinity_mask(data); | 
|  | pbus = pdev->bus; | 
|  | hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); | 
|  | channel = hbus->hdev->channel; | 
|  | hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); | 
|  | if (!hpdev) | 
|  | goto return_null_message; | 
|  |  | 
|  | /* Free any previous message that might have already been composed. */ | 
|  | if (data->chip_data && !multi_msi) { | 
|  | int_desc = data->chip_data; | 
|  | data->chip_data = NULL; | 
|  | hv_int_desc_free(hpdev, int_desc); | 
|  | } | 
|  |  | 
|  | int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); | 
|  | if (!int_desc) | 
|  | goto drop_reference; | 
|  |  | 
|  | if (multi_msi) { | 
|  | /* | 
|  | * If this is not the first MSI of Multi MSI, we already have | 
|  | * a mapping.  Can exit early. | 
|  | */ | 
|  | if (msi_desc->irq != data->irq) { | 
|  | data->chip_data = int_desc; | 
|  | int_desc->address = msi_desc->msg.address_lo | | 
|  | (u64)msi_desc->msg.address_hi << 32; | 
|  | int_desc->data = msi_desc->msg.data + | 
|  | (data->irq - msi_desc->irq); | 
|  | msg->address_hi = msi_desc->msg.address_hi; | 
|  | msg->address_lo = msi_desc->msg.address_lo; | 
|  | msg->data = int_desc->data; | 
|  | put_pcichild(hpdev); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * The vector we select here is a dummy value.  The correct | 
|  | * value gets sent to the hypervisor in unmask().  This needs | 
|  | * to be aligned with the count, and also not zero.  Multi-msi | 
|  | * is powers of 2 up to 32, so 32 will always work here. | 
|  | */ | 
|  | vector = 32; | 
|  | vector_count = msi_desc->nvec_used; | 
|  | cpu = hv_compose_multi_msi_req_get_cpu(); | 
|  | } else { | 
|  | vector = hv_msi_get_int_vector(data); | 
|  | vector_count = 1; | 
|  | cpu = hv_compose_msi_req_get_cpu(dest); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' | 
|  | * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly | 
|  | * for better readability. | 
|  | */ | 
|  | memset(&ctxt, 0, sizeof(ctxt)); | 
|  | init_completion(&comp.comp_pkt.host_event); | 
|  | ctxt.pci_pkt.completion_func = hv_pci_compose_compl; | 
|  | ctxt.pci_pkt.compl_ctxt = ∁ | 
|  |  | 
|  | switch (hbus->protocol_version) { | 
|  | case PCI_PROTOCOL_VERSION_1_1: | 
|  | size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, | 
|  | hpdev->desc.win_slot.slot, | 
|  | (u8)vector, | 
|  | vector_count); | 
|  | break; | 
|  |  | 
|  | case PCI_PROTOCOL_VERSION_1_2: | 
|  | case PCI_PROTOCOL_VERSION_1_3: | 
|  | size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, | 
|  | cpu, | 
|  | hpdev->desc.win_slot.slot, | 
|  | (u8)vector, | 
|  | vector_count); | 
|  | break; | 
|  |  | 
|  | case PCI_PROTOCOL_VERSION_1_4: | 
|  | size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, | 
|  | cpu, | 
|  | hpdev->desc.win_slot.slot, | 
|  | vector, | 
|  | vector_count); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* As we only negotiate protocol versions known to this driver, | 
|  | * this path should never hit. However, this is it not a hot | 
|  | * path so we print a message to aid future updates. | 
|  | */ | 
|  | dev_err(&hbus->hdev->device, | 
|  | "Unexpected vPCI protocol, update driver."); | 
|  | goto free_int_desc; | 
|  | } | 
|  |  | 
|  | ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, | 
|  | size, (unsigned long)&ctxt.pci_pkt, | 
|  | &trans_id, VM_PKT_DATA_INBAND, | 
|  | VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
|  | if (ret) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "Sending request for interrupt failed: 0x%x", | 
|  | comp.comp_pkt.completion_status); | 
|  | goto free_int_desc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevents hv_pci_onchannelcallback() from running concurrently | 
|  | * in the tasklet. | 
|  | */ | 
|  | tasklet_disable_in_atomic(&channel->callback_event); | 
|  |  | 
|  | /* | 
|  | * Since this function is called with IRQ locks held, can't | 
|  | * do normal wait for completion; instead poll. | 
|  | */ | 
|  | while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* 0xFFFF means an invalid PCI VENDOR ID. */ | 
|  | if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { | 
|  | dev_err_once(&hbus->hdev->device, | 
|  | "the device has gone\n"); | 
|  | goto enable_tasklet; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that the ring buffer data structure doesn't get | 
|  | * freed while we dereference the ring buffer pointer.  Test | 
|  | * for the channel's onchannel_callback being NULL within a | 
|  | * sched_lock critical section.  See also the inline comments | 
|  | * in vmbus_reset_channel_cb(). | 
|  | */ | 
|  | spin_lock_irqsave(&channel->sched_lock, flags); | 
|  | if (unlikely(channel->onchannel_callback == NULL)) { | 
|  | spin_unlock_irqrestore(&channel->sched_lock, flags); | 
|  | goto enable_tasklet; | 
|  | } | 
|  | hv_pci_onchannelcallback(hbus); | 
|  | spin_unlock_irqrestore(&channel->sched_lock, flags); | 
|  |  | 
|  | udelay(100); | 
|  | } | 
|  |  | 
|  | tasklet_enable(&channel->callback_event); | 
|  |  | 
|  | if (comp.comp_pkt.completion_status < 0) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "Request for interrupt failed: 0x%x", | 
|  | comp.comp_pkt.completion_status); | 
|  | goto free_int_desc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record the assignment so that this can be unwound later. Using | 
|  | * irq_set_chip_data() here would be appropriate, but the lock it takes | 
|  | * is already held. | 
|  | */ | 
|  | *int_desc = comp.int_desc; | 
|  | data->chip_data = int_desc; | 
|  |  | 
|  | /* Pass up the result. */ | 
|  | msg->address_hi = comp.int_desc.address >> 32; | 
|  | msg->address_lo = comp.int_desc.address & 0xffffffff; | 
|  | msg->data = comp.int_desc.data; | 
|  |  | 
|  | put_pcichild(hpdev); | 
|  | return; | 
|  |  | 
|  | enable_tasklet: | 
|  | tasklet_enable(&channel->callback_event); | 
|  | /* | 
|  | * The completion packet on the stack becomes invalid after 'return'; | 
|  | * remove the ID from the VMbus requestor if the identifier is still | 
|  | * mapped to/associated with the packet.  (The identifier could have | 
|  | * been 're-used', i.e., already removed and (re-)mapped.) | 
|  | * | 
|  | * Cf. hv_pci_onchannelcallback(). | 
|  | */ | 
|  | vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); | 
|  | free_int_desc: | 
|  | kfree(int_desc); | 
|  | drop_reference: | 
|  | put_pcichild(hpdev); | 
|  | return_null_message: | 
|  | msg->address_hi = 0; | 
|  | msg->address_lo = 0; | 
|  | msg->data = 0; | 
|  | } | 
|  |  | 
|  | static bool hv_pcie_init_dev_msi_info(struct device *dev, struct irq_domain *domain, | 
|  | struct irq_domain *real_parent, struct msi_domain_info *info) | 
|  | { | 
|  | struct irq_chip *chip = info->chip; | 
|  |  | 
|  | if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info)) | 
|  | return false; | 
|  |  | 
|  | info->ops->msi_prepare = hv_msi_prepare; | 
|  |  | 
|  | chip->irq_set_affinity = irq_chip_set_affinity_parent; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_X86)) | 
|  | chip->flags |= IRQCHIP_MOVE_DEFERRED; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define HV_PCIE_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS		| \ | 
|  | MSI_FLAG_USE_DEF_CHIP_OPS		| \ | 
|  | MSI_FLAG_PCI_MSI_MASK_PARENT) | 
|  | #define HV_PCIE_MSI_FLAGS_SUPPORTED (MSI_FLAG_MULTI_PCI_MSI		| \ | 
|  | MSI_FLAG_PCI_MSIX			| \ | 
|  | MSI_FLAG_PCI_MSIX_ALLOC_DYN	| \ | 
|  | MSI_GENERIC_FLAGS_MASK) | 
|  |  | 
|  | static const struct msi_parent_ops hv_pcie_msi_parent_ops = { | 
|  | .required_flags		= HV_PCIE_MSI_FLAGS_REQUIRED, | 
|  | .supported_flags	= HV_PCIE_MSI_FLAGS_SUPPORTED, | 
|  | .bus_select_token	= DOMAIN_BUS_PCI_MSI, | 
|  | .chip_flags		= HV_MSI_CHIP_FLAGS, | 
|  | .prefix			= "HV-", | 
|  | .init_dev_msi_info	= hv_pcie_init_dev_msi_info, | 
|  | }; | 
|  |  | 
|  | /* HW Interrupt Chip Descriptor */ | 
|  | static struct irq_chip hv_msi_irq_chip = { | 
|  | .name			= "Hyper-V PCIe MSI", | 
|  | .irq_compose_msi_msg	= hv_compose_msi_msg, | 
|  | .irq_set_affinity	= irq_chip_set_affinity_parent, | 
|  | .irq_ack		= irq_chip_ack_parent, | 
|  | .irq_eoi		= irq_chip_eoi_parent, | 
|  | .irq_mask		= hv_irq_mask, | 
|  | .irq_unmask		= hv_irq_unmask, | 
|  | }; | 
|  |  | 
|  | static int hv_pcie_domain_alloc(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs, | 
|  | void *arg) | 
|  | { | 
|  | /* | 
|  | * TODO: Allocating and populating struct tran_int_desc in hv_compose_msi_msg() | 
|  | * should be moved here. | 
|  | */ | 
|  | int ret; | 
|  |  | 
|  | ret = irq_domain_alloc_irqs_parent(d, virq, nr_irqs, arg); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | for (int i = 0; i < nr_irqs; i++) { | 
|  | irq_domain_set_hwirq_and_chip(d, virq + i, 0, &hv_msi_irq_chip, NULL); | 
|  | if (IS_ENABLED(CONFIG_X86)) | 
|  | __irq_set_handler(virq + i, handle_edge_irq, 0, "edge"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hv_pcie_domain_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) | 
|  | { | 
|  | struct msi_domain_info *info = d->host_data; | 
|  |  | 
|  | for (int i = 0; i < nr_irqs; i++) | 
|  | hv_msi_free(d, info, virq + i); | 
|  |  | 
|  | irq_domain_free_irqs_top(d, virq, nr_irqs); | 
|  | } | 
|  |  | 
|  | static const struct irq_domain_ops hv_pcie_domain_ops = { | 
|  | .alloc	= hv_pcie_domain_alloc, | 
|  | .free	= hv_pcie_domain_free, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * hv_pcie_init_irq_domain() - Initialize IRQ domain | 
|  | * @hbus:	The root PCI bus | 
|  | * | 
|  | * This function creates an IRQ domain which will be used for | 
|  | * interrupts from devices that have been passed through.  These | 
|  | * devices only support MSI and MSI-X, not line-based interrupts | 
|  | * or simulations of line-based interrupts through PCIe's | 
|  | * fabric-layer messages.  Because interrupts are remapped, we | 
|  | * can support multi-message MSI here. | 
|  | * | 
|  | * Return: '0' on success and error value on failure | 
|  | */ | 
|  | static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | struct irq_domain_info info = { | 
|  | .fwnode		= hbus->fwnode, | 
|  | .ops		= &hv_pcie_domain_ops, | 
|  | .host_data	= hbus, | 
|  | .parent		= hv_pci_get_root_domain(), | 
|  | }; | 
|  |  | 
|  | hbus->irq_domain = msi_create_parent_irq_domain(&info, &hv_pcie_msi_parent_ops); | 
|  | if (!hbus->irq_domain) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "Failed to build an MSI IRQ domain\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_bar_size() - Get the address space consumed by a BAR | 
|  | * @bar_val:	Value that a BAR returned after -1 was written | 
|  | *              to it. | 
|  | * | 
|  | * This function returns the size of the BAR, rounded up to 1 | 
|  | * page.  It has to be rounded up because the hypervisor's page | 
|  | * table entry that maps the BAR into the VM can't specify an | 
|  | * offset within a page.  The invariant is that the hypervisor | 
|  | * must place any BARs of smaller than page length at the | 
|  | * beginning of a page. | 
|  | * | 
|  | * Return:	Size in bytes of the consumed MMIO space. | 
|  | */ | 
|  | static u64 get_bar_size(u64 bar_val) | 
|  | { | 
|  | return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), | 
|  | PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * survey_child_resources() - Total all MMIO requirements | 
|  | * @hbus:	Root PCI bus, as understood by this driver | 
|  | */ | 
|  | static void survey_child_resources(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | struct hv_pci_dev *hpdev; | 
|  | resource_size_t bar_size = 0; | 
|  | unsigned long flags; | 
|  | struct completion *event; | 
|  | u64 bar_val; | 
|  | int i; | 
|  |  | 
|  | /* If nobody is waiting on the answer, don't compute it. */ | 
|  | event = xchg(&hbus->survey_event, NULL); | 
|  | if (!event) | 
|  | return; | 
|  |  | 
|  | /* If the answer has already been computed, go with it. */ | 
|  | if (hbus->low_mmio_space || hbus->high_mmio_space) { | 
|  | complete(event); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Due to an interesting quirk of the PCI spec, all memory regions | 
|  | * for a child device are a power of 2 in size and aligned in memory, | 
|  | * so it's sufficient to just add them up without tracking alignment. | 
|  | */ | 
|  | list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
|  | for (i = 0; i < PCI_STD_NUM_BARS; i++) { | 
|  | if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) | 
|  | dev_err(&hbus->hdev->device, | 
|  | "There's an I/O BAR in this list!\n"); | 
|  |  | 
|  | if (hpdev->probed_bar[i] != 0) { | 
|  | /* | 
|  | * A probed BAR has all the upper bits set that | 
|  | * can be changed. | 
|  | */ | 
|  |  | 
|  | bar_val = hpdev->probed_bar[i]; | 
|  | if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) | 
|  | bar_val |= | 
|  | ((u64)hpdev->probed_bar[++i] << 32); | 
|  | else | 
|  | bar_val |= 0xffffffff00000000ULL; | 
|  |  | 
|  | bar_size = get_bar_size(bar_val); | 
|  |  | 
|  | if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) | 
|  | hbus->high_mmio_space += bar_size; | 
|  | else | 
|  | hbus->low_mmio_space += bar_size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  | complete(event); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * prepopulate_bars() - Fill in BARs with defaults | 
|  | * @hbus:	Root PCI bus, as understood by this driver | 
|  | * | 
|  | * The core PCI driver code seems much, much happier if the BARs | 
|  | * for a device have values upon first scan. So fill them in. | 
|  | * The algorithm below works down from large sizes to small, | 
|  | * attempting to pack the assignments optimally. The assumption, | 
|  | * enforced in other parts of the code, is that the beginning of | 
|  | * the memory-mapped I/O space will be aligned on the largest | 
|  | * BAR size. | 
|  | */ | 
|  | static void prepopulate_bars(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | resource_size_t high_size = 0; | 
|  | resource_size_t low_size = 0; | 
|  | resource_size_t high_base = 0; | 
|  | resource_size_t low_base = 0; | 
|  | resource_size_t bar_size; | 
|  | struct hv_pci_dev *hpdev; | 
|  | unsigned long flags; | 
|  | u64 bar_val; | 
|  | u32 command; | 
|  | bool high; | 
|  | int i; | 
|  |  | 
|  | if (hbus->low_mmio_space) { | 
|  | low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); | 
|  | low_base = hbus->low_mmio_res->start; | 
|  | } | 
|  |  | 
|  | if (hbus->high_mmio_space) { | 
|  | high_size = 1ULL << | 
|  | (63 - __builtin_clzll(hbus->high_mmio_space)); | 
|  | high_base = hbus->high_mmio_res->start; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Clear the memory enable bit, in case it's already set. This occurs | 
|  | * in the suspend path of hibernation, where the device is suspended, | 
|  | * resumed and suspended again: see hibernation_snapshot() and | 
|  | * hibernation_platform_enter(). | 
|  | * | 
|  | * If the memory enable bit is already set, Hyper-V silently ignores | 
|  | * the below BAR updates, and the related PCI device driver can not | 
|  | * work, because reading from the device register(s) always returns | 
|  | * 0xFFFFFFFF (PCI_ERROR_RESPONSE). | 
|  | */ | 
|  | list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
|  | _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); | 
|  | command &= ~PCI_COMMAND_MEMORY; | 
|  | _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); | 
|  | } | 
|  |  | 
|  | /* Pick addresses for the BARs. */ | 
|  | do { | 
|  | list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
|  | for (i = 0; i < PCI_STD_NUM_BARS; i++) { | 
|  | bar_val = hpdev->probed_bar[i]; | 
|  | if (bar_val == 0) | 
|  | continue; | 
|  | high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; | 
|  | if (high) { | 
|  | bar_val |= | 
|  | ((u64)hpdev->probed_bar[i + 1] | 
|  | << 32); | 
|  | } else { | 
|  | bar_val |= 0xffffffffULL << 32; | 
|  | } | 
|  | bar_size = get_bar_size(bar_val); | 
|  | if (high) { | 
|  | if (high_size != bar_size) { | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  | _hv_pcifront_write_config(hpdev, | 
|  | PCI_BASE_ADDRESS_0 + (4 * i), | 
|  | 4, | 
|  | (u32)(high_base & 0xffffff00)); | 
|  | i++; | 
|  | _hv_pcifront_write_config(hpdev, | 
|  | PCI_BASE_ADDRESS_0 + (4 * i), | 
|  | 4, (u32)(high_base >> 32)); | 
|  | high_base += bar_size; | 
|  | } else { | 
|  | if (low_size != bar_size) | 
|  | continue; | 
|  | _hv_pcifront_write_config(hpdev, | 
|  | PCI_BASE_ADDRESS_0 + (4 * i), | 
|  | 4, | 
|  | (u32)(low_base & 0xffffff00)); | 
|  | low_base += bar_size; | 
|  | } | 
|  | } | 
|  | if (high_size <= 1 && low_size <= 1) { | 
|  | /* | 
|  | * No need to set the PCI_COMMAND_MEMORY bit as | 
|  | * the core PCI driver doesn't require the bit | 
|  | * to be pre-set. Actually here we intentionally | 
|  | * keep the bit off so that the PCI BAR probing | 
|  | * in the core PCI driver doesn't cause Hyper-V | 
|  | * to unnecessarily unmap/map the virtual BARs | 
|  | * from/to the physical BARs multiple times. | 
|  | * This reduces the VM boot time significantly | 
|  | * if the BAR sizes are huge. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | high_size >>= 1; | 
|  | low_size >>= 1; | 
|  | }  while (high_size || low_size); | 
|  |  | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assign entries in sysfs pci slot directory. | 
|  | * | 
|  | * Note that this function does not need to lock the children list | 
|  | * because it is called from pci_devices_present_work which | 
|  | * is serialized with hv_eject_device_work because they are on the | 
|  | * same ordered workqueue. Therefore hbus->children list will not change | 
|  | * even when pci_create_slot sleeps. | 
|  | */ | 
|  | static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | struct hv_pci_dev *hpdev; | 
|  | char name[SLOT_NAME_SIZE]; | 
|  | int slot_nr; | 
|  |  | 
|  | list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
|  | if (hpdev->pci_slot) | 
|  | continue; | 
|  |  | 
|  | slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); | 
|  | snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); | 
|  | hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, | 
|  | name, NULL); | 
|  | if (IS_ERR(hpdev->pci_slot)) { | 
|  | pr_warn("pci_create slot %s failed\n", name); | 
|  | hpdev->pci_slot = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove entries in sysfs pci slot directory. | 
|  | */ | 
|  | static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | struct hv_pci_dev *hpdev; | 
|  |  | 
|  | list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
|  | if (!hpdev->pci_slot) | 
|  | continue; | 
|  | pci_destroy_slot(hpdev->pci_slot); | 
|  | hpdev->pci_slot = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set NUMA node for the devices on the bus | 
|  | */ | 
|  | static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | struct pci_dev *dev; | 
|  | struct pci_bus *bus = hbus->bridge->bus; | 
|  | struct hv_pci_dev *hv_dev; | 
|  |  | 
|  | list_for_each_entry(dev, &bus->devices, bus_list) { | 
|  | hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); | 
|  | if (!hv_dev) | 
|  | continue; | 
|  |  | 
|  | if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && | 
|  | hv_dev->desc.virtual_numa_node < num_possible_nodes()) | 
|  | /* | 
|  | * The kernel may boot with some NUMA nodes offline | 
|  | * (e.g. in a KDUMP kernel) or with NUMA disabled via | 
|  | * "numa=off". In those cases, adjust the host provided | 
|  | * NUMA node to a valid NUMA node used by the kernel. | 
|  | */ | 
|  | set_dev_node(&dev->dev, | 
|  | numa_map_to_online_node( | 
|  | hv_dev->desc.virtual_numa_node)); | 
|  |  | 
|  | put_pcichild(hv_dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * create_root_hv_pci_bus() - Expose a new root PCI bus | 
|  | * @hbus:	Root PCI bus, as understood by this driver | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | int error; | 
|  | struct pci_host_bridge *bridge = hbus->bridge; | 
|  |  | 
|  | bridge->dev.parent = &hbus->hdev->device; | 
|  | bridge->sysdata = &hbus->sysdata; | 
|  | bridge->ops = &hv_pcifront_ops; | 
|  |  | 
|  | error = pci_scan_root_bus_bridge(bridge); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | pci_lock_rescan_remove(); | 
|  | hv_pci_assign_numa_node(hbus); | 
|  | pci_bus_assign_resources(bridge->bus); | 
|  | hv_pci_assign_slots(hbus); | 
|  | pci_bus_add_devices(bridge->bus); | 
|  | pci_unlock_rescan_remove(); | 
|  | hbus->state = hv_pcibus_installed; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct q_res_req_compl { | 
|  | struct completion host_event; | 
|  | struct hv_pci_dev *hpdev; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * q_resource_requirements() - Query Resource Requirements | 
|  | * @context:		The completion context. | 
|  | * @resp:		The response that came from the host. | 
|  | * @resp_packet_size:	The size in bytes of resp. | 
|  | * | 
|  | * This function is invoked on completion of a Query Resource | 
|  | * Requirements packet. | 
|  | */ | 
|  | static void q_resource_requirements(void *context, struct pci_response *resp, | 
|  | int resp_packet_size) | 
|  | { | 
|  | struct q_res_req_compl *completion = context; | 
|  | struct pci_q_res_req_response *q_res_req = | 
|  | (struct pci_q_res_req_response *)resp; | 
|  | s32 status; | 
|  | int i; | 
|  |  | 
|  | status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; | 
|  | if (status < 0) { | 
|  | dev_err(&completion->hpdev->hbus->hdev->device, | 
|  | "query resource requirements failed: %x\n", | 
|  | status); | 
|  | } else { | 
|  | for (i = 0; i < PCI_STD_NUM_BARS; i++) { | 
|  | completion->hpdev->probed_bar[i] = | 
|  | q_res_req->probed_bar[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | complete(&completion->host_event); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * new_pcichild_device() - Create a new child device | 
|  | * @hbus:	The internal struct tracking this root PCI bus. | 
|  | * @desc:	The information supplied so far from the host | 
|  | *              about the device. | 
|  | * | 
|  | * This function creates the tracking structure for a new child | 
|  | * device and kicks off the process of figuring out what it is. | 
|  | * | 
|  | * Return: Pointer to the new tracking struct | 
|  | */ | 
|  | static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, | 
|  | struct hv_pcidev_description *desc) | 
|  | { | 
|  | struct hv_pci_dev *hpdev; | 
|  | struct pci_child_message *res_req; | 
|  | struct q_res_req_compl comp_pkt; | 
|  | struct { | 
|  | struct pci_packet init_packet; | 
|  | u8 buffer[sizeof(struct pci_child_message)]; | 
|  | } pkt; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); | 
|  | if (!hpdev) | 
|  | return NULL; | 
|  |  | 
|  | hpdev->hbus = hbus; | 
|  |  | 
|  | memset(&pkt, 0, sizeof(pkt)); | 
|  | init_completion(&comp_pkt.host_event); | 
|  | comp_pkt.hpdev = hpdev; | 
|  | pkt.init_packet.compl_ctxt = &comp_pkt; | 
|  | pkt.init_packet.completion_func = q_resource_requirements; | 
|  | res_req = (struct pci_child_message *)pkt.buffer; | 
|  | res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; | 
|  | res_req->wslot.slot = desc->win_slot.slot; | 
|  |  | 
|  | ret = vmbus_sendpacket(hbus->hdev->channel, res_req, | 
|  | sizeof(struct pci_child_message), | 
|  | (unsigned long)&pkt.init_packet, | 
|  | VM_PKT_DATA_INBAND, | 
|  | VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) | 
|  | goto error; | 
|  |  | 
|  | hpdev->desc = *desc; | 
|  | refcount_set(&hpdev->refs, 1); | 
|  | get_pcichild(hpdev); | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  |  | 
|  | list_add_tail(&hpdev->list_entry, &hbus->children); | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  | return hpdev; | 
|  |  | 
|  | error: | 
|  | kfree(hpdev); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_pcichild_wslot() - Find device from slot | 
|  | * @hbus:	Root PCI bus, as understood by this driver | 
|  | * @wslot:	Location on the bus | 
|  | * | 
|  | * This function looks up a PCI device and returns the internal | 
|  | * representation of it.  It acquires a reference on it, so that | 
|  | * the device won't be deleted while somebody is using it.  The | 
|  | * caller is responsible for calling put_pcichild() to release | 
|  | * this reference. | 
|  | * | 
|  | * Return:	Internal representation of a PCI device | 
|  | */ | 
|  | static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, | 
|  | u32 wslot) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct hv_pci_dev *iter, *hpdev = NULL; | 
|  |  | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  | list_for_each_entry(iter, &hbus->children, list_entry) { | 
|  | if (iter->desc.win_slot.slot == wslot) { | 
|  | hpdev = iter; | 
|  | get_pcichild(hpdev); | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  |  | 
|  | return hpdev; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_devices_present_work() - Handle new list of child devices | 
|  | * @work:	Work struct embedded in struct hv_dr_work | 
|  | * | 
|  | * "Bus Relations" is the Windows term for "children of this | 
|  | * bus."  The terminology is preserved here for people trying to | 
|  | * debug the interaction between Hyper-V and Linux.  This | 
|  | * function is called when the parent partition reports a list | 
|  | * of functions that should be observed under this PCI Express | 
|  | * port (bus). | 
|  | * | 
|  | * This function updates the list, and must tolerate being | 
|  | * called multiple times with the same information.  The typical | 
|  | * number of child devices is one, with very atypical cases | 
|  | * involving three or four, so the algorithms used here can be | 
|  | * simple and inefficient. | 
|  | * | 
|  | * It must also treat the omission of a previously observed device as | 
|  | * notification that the device no longer exists. | 
|  | * | 
|  | * Note that this function is serialized with hv_eject_device_work(), | 
|  | * because both are pushed to the ordered workqueue hbus->wq. | 
|  | */ | 
|  | static void pci_devices_present_work(struct work_struct *work) | 
|  | { | 
|  | u32 child_no; | 
|  | bool found; | 
|  | struct hv_pcidev_description *new_desc; | 
|  | struct hv_pci_dev *hpdev; | 
|  | struct hv_pcibus_device *hbus; | 
|  | struct list_head removed; | 
|  | struct hv_dr_work *dr_wrk; | 
|  | struct hv_dr_state *dr = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | dr_wrk = container_of(work, struct hv_dr_work, wrk); | 
|  | hbus = dr_wrk->bus; | 
|  | kfree(dr_wrk); | 
|  |  | 
|  | INIT_LIST_HEAD(&removed); | 
|  |  | 
|  | /* Pull this off the queue and process it if it was the last one. */ | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  | while (!list_empty(&hbus->dr_list)) { | 
|  | dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, | 
|  | list_entry); | 
|  | list_del(&dr->list_entry); | 
|  |  | 
|  | /* Throw this away if the list still has stuff in it. */ | 
|  | if (!list_empty(&hbus->dr_list)) { | 
|  | kfree(dr); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  |  | 
|  | if (!dr) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&hbus->state_lock); | 
|  |  | 
|  | /* First, mark all existing children as reported missing. */ | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  | list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
|  | hpdev->reported_missing = true; | 
|  | } | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  |  | 
|  | /* Next, add back any reported devices. */ | 
|  | for (child_no = 0; child_no < dr->device_count; child_no++) { | 
|  | found = false; | 
|  | new_desc = &dr->func[child_no]; | 
|  |  | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  | list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
|  | if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && | 
|  | (hpdev->desc.v_id == new_desc->v_id) && | 
|  | (hpdev->desc.d_id == new_desc->d_id) && | 
|  | (hpdev->desc.ser == new_desc->ser)) { | 
|  | hpdev->reported_missing = false; | 
|  | found = true; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  |  | 
|  | if (!found) { | 
|  | hpdev = new_pcichild_device(hbus, new_desc); | 
|  | if (!hpdev) | 
|  | dev_err(&hbus->hdev->device, | 
|  | "couldn't record a child device.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Move missing children to a list on the stack. */ | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  | do { | 
|  | found = false; | 
|  | list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
|  | if (hpdev->reported_missing) { | 
|  | found = true; | 
|  | put_pcichild(hpdev); | 
|  | list_move_tail(&hpdev->list_entry, &removed); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } while (found); | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  |  | 
|  | /* Delete everything that should no longer exist. */ | 
|  | while (!list_empty(&removed)) { | 
|  | hpdev = list_first_entry(&removed, struct hv_pci_dev, | 
|  | list_entry); | 
|  | list_del(&hpdev->list_entry); | 
|  |  | 
|  | if (hpdev->pci_slot) | 
|  | pci_destroy_slot(hpdev->pci_slot); | 
|  |  | 
|  | put_pcichild(hpdev); | 
|  | } | 
|  |  | 
|  | switch (hbus->state) { | 
|  | case hv_pcibus_installed: | 
|  | /* | 
|  | * Tell the core to rescan bus | 
|  | * because there may have been changes. | 
|  | */ | 
|  | pci_lock_rescan_remove(); | 
|  | pci_scan_child_bus(hbus->bridge->bus); | 
|  | hv_pci_assign_numa_node(hbus); | 
|  | hv_pci_assign_slots(hbus); | 
|  | pci_unlock_rescan_remove(); | 
|  | break; | 
|  |  | 
|  | case hv_pcibus_init: | 
|  | case hv_pcibus_probed: | 
|  | survey_child_resources(hbus); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&hbus->state_lock); | 
|  |  | 
|  | kfree(dr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_start_relations_work() - Queue work to start device discovery | 
|  | * @hbus:	Root PCI bus, as understood by this driver | 
|  | * @dr:		The list of children returned from host | 
|  | * | 
|  | * Return:  0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, | 
|  | struct hv_dr_state *dr) | 
|  | { | 
|  | struct hv_dr_work *dr_wrk; | 
|  | unsigned long flags; | 
|  | bool pending_dr; | 
|  |  | 
|  | if (hbus->state == hv_pcibus_removing) { | 
|  | dev_info(&hbus->hdev->device, | 
|  | "PCI VMBus BUS_RELATIONS: ignored\n"); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); | 
|  | if (!dr_wrk) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); | 
|  | dr_wrk->bus = hbus; | 
|  |  | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  | /* | 
|  | * If pending_dr is true, we have already queued a work, | 
|  | * which will see the new dr. Otherwise, we need to | 
|  | * queue a new work. | 
|  | */ | 
|  | pending_dr = !list_empty(&hbus->dr_list); | 
|  | list_add_tail(&dr->list_entry, &hbus->dr_list); | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  |  | 
|  | if (pending_dr) | 
|  | kfree(dr_wrk); | 
|  | else | 
|  | queue_work(hbus->wq, &dr_wrk->wrk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_devices_present() - Handle list of new children | 
|  | * @hbus:      Root PCI bus, as understood by this driver | 
|  | * @relations: Packet from host listing children | 
|  | * | 
|  | * Process a new list of devices on the bus. The list of devices is | 
|  | * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, | 
|  | * whenever a new list of devices for this bus appears. | 
|  | */ | 
|  | static void hv_pci_devices_present(struct hv_pcibus_device *hbus, | 
|  | struct pci_bus_relations *relations) | 
|  | { | 
|  | struct hv_dr_state *dr; | 
|  | int i; | 
|  |  | 
|  | dr = kzalloc(struct_size(dr, func, relations->device_count), | 
|  | GFP_NOWAIT); | 
|  | if (!dr) | 
|  | return; | 
|  |  | 
|  | dr->device_count = relations->device_count; | 
|  | for (i = 0; i < dr->device_count; i++) { | 
|  | dr->func[i].v_id = relations->func[i].v_id; | 
|  | dr->func[i].d_id = relations->func[i].d_id; | 
|  | dr->func[i].rev = relations->func[i].rev; | 
|  | dr->func[i].prog_intf = relations->func[i].prog_intf; | 
|  | dr->func[i].subclass = relations->func[i].subclass; | 
|  | dr->func[i].base_class = relations->func[i].base_class; | 
|  | dr->func[i].subsystem_id = relations->func[i].subsystem_id; | 
|  | dr->func[i].win_slot = relations->func[i].win_slot; | 
|  | dr->func[i].ser = relations->func[i].ser; | 
|  | } | 
|  |  | 
|  | if (hv_pci_start_relations_work(hbus, dr)) | 
|  | kfree(dr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_devices_present2() - Handle list of new children | 
|  | * @hbus:	Root PCI bus, as understood by this driver | 
|  | * @relations:	Packet from host listing children | 
|  | * | 
|  | * This function is the v2 version of hv_pci_devices_present() | 
|  | */ | 
|  | static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, | 
|  | struct pci_bus_relations2 *relations) | 
|  | { | 
|  | struct hv_dr_state *dr; | 
|  | int i; | 
|  |  | 
|  | dr = kzalloc(struct_size(dr, func, relations->device_count), | 
|  | GFP_NOWAIT); | 
|  | if (!dr) | 
|  | return; | 
|  |  | 
|  | dr->device_count = relations->device_count; | 
|  | for (i = 0; i < dr->device_count; i++) { | 
|  | dr->func[i].v_id = relations->func[i].v_id; | 
|  | dr->func[i].d_id = relations->func[i].d_id; | 
|  | dr->func[i].rev = relations->func[i].rev; | 
|  | dr->func[i].prog_intf = relations->func[i].prog_intf; | 
|  | dr->func[i].subclass = relations->func[i].subclass; | 
|  | dr->func[i].base_class = relations->func[i].base_class; | 
|  | dr->func[i].subsystem_id = relations->func[i].subsystem_id; | 
|  | dr->func[i].win_slot = relations->func[i].win_slot; | 
|  | dr->func[i].ser = relations->func[i].ser; | 
|  | dr->func[i].flags = relations->func[i].flags; | 
|  | dr->func[i].virtual_numa_node = | 
|  | relations->func[i].virtual_numa_node; | 
|  | } | 
|  |  | 
|  | if (hv_pci_start_relations_work(hbus, dr)) | 
|  | kfree(dr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_eject_device_work() - Asynchronously handles ejection | 
|  | * @work:	Work struct embedded in internal device struct | 
|  | * | 
|  | * This function handles ejecting a device.  Windows will | 
|  | * attempt to gracefully eject a device, waiting 60 seconds to | 
|  | * hear back from the guest OS that this completed successfully. | 
|  | * If this timer expires, the device will be forcibly removed. | 
|  | */ | 
|  | static void hv_eject_device_work(struct work_struct *work) | 
|  | { | 
|  | struct pci_eject_response *ejct_pkt; | 
|  | struct hv_pcibus_device *hbus; | 
|  | struct hv_pci_dev *hpdev; | 
|  | struct pci_dev *pdev; | 
|  | unsigned long flags; | 
|  | int wslot; | 
|  | struct { | 
|  | struct pci_packet pkt; | 
|  | u8 buffer[sizeof(struct pci_eject_response)]; | 
|  | } ctxt; | 
|  |  | 
|  | hpdev = container_of(work, struct hv_pci_dev, wrk); | 
|  | hbus = hpdev->hbus; | 
|  |  | 
|  | mutex_lock(&hbus->state_lock); | 
|  |  | 
|  | /* | 
|  | * Ejection can come before or after the PCI bus has been set up, so | 
|  | * attempt to find it and tear down the bus state, if it exists.  This | 
|  | * must be done without constructs like pci_domain_nr(hbus->bridge->bus) | 
|  | * because hbus->bridge->bus may not exist yet. | 
|  | */ | 
|  | wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); | 
|  | pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); | 
|  | if (pdev) { | 
|  | pci_lock_rescan_remove(); | 
|  | pci_stop_and_remove_bus_device(pdev); | 
|  | pci_dev_put(pdev); | 
|  | pci_unlock_rescan_remove(); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  | list_del(&hpdev->list_entry); | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  |  | 
|  | if (hpdev->pci_slot) | 
|  | pci_destroy_slot(hpdev->pci_slot); | 
|  |  | 
|  | memset(&ctxt, 0, sizeof(ctxt)); | 
|  | ejct_pkt = (struct pci_eject_response *)ctxt.buffer; | 
|  | ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; | 
|  | ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; | 
|  | vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, | 
|  | sizeof(*ejct_pkt), 0, | 
|  | VM_PKT_DATA_INBAND, 0); | 
|  |  | 
|  | /* For the get_pcichild() in hv_pci_eject_device() */ | 
|  | put_pcichild(hpdev); | 
|  | /* For the two refs got in new_pcichild_device() */ | 
|  | put_pcichild(hpdev); | 
|  | put_pcichild(hpdev); | 
|  | /* hpdev has been freed. Do not use it any more. */ | 
|  |  | 
|  | mutex_unlock(&hbus->state_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_eject_device() - Handles device ejection | 
|  | * @hpdev:	Internal device tracking struct | 
|  | * | 
|  | * This function is invoked when an ejection packet arrives.  It | 
|  | * just schedules work so that we don't re-enter the packet | 
|  | * delivery code handling the ejection. | 
|  | */ | 
|  | static void hv_pci_eject_device(struct hv_pci_dev *hpdev) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hpdev->hbus; | 
|  | struct hv_device *hdev = hbus->hdev; | 
|  |  | 
|  | if (hbus->state == hv_pcibus_removing) { | 
|  | dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | get_pcichild(hpdev); | 
|  | INIT_WORK(&hpdev->wrk, hv_eject_device_work); | 
|  | queue_work(hbus->wq, &hpdev->wrk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_onchannelcallback() - Handles incoming packets | 
|  | * @context:	Internal bus tracking struct | 
|  | * | 
|  | * This function is invoked whenever the host sends a packet to | 
|  | * this channel (which is private to this root PCI bus). | 
|  | */ | 
|  | static void hv_pci_onchannelcallback(void *context) | 
|  | { | 
|  | const int packet_size = 0x100; | 
|  | int ret; | 
|  | struct hv_pcibus_device *hbus = context; | 
|  | struct vmbus_channel *chan = hbus->hdev->channel; | 
|  | u32 bytes_recvd; | 
|  | u64 req_id, req_addr; | 
|  | struct vmpacket_descriptor *desc; | 
|  | unsigned char *buffer; | 
|  | int bufferlen = packet_size; | 
|  | struct pci_packet *comp_packet; | 
|  | struct pci_response *response; | 
|  | struct pci_incoming_message *new_message; | 
|  | struct pci_bus_relations *bus_rel; | 
|  | struct pci_bus_relations2 *bus_rel2; | 
|  | struct pci_dev_inval_block *inval; | 
|  | struct pci_dev_incoming *dev_message; | 
|  | struct hv_pci_dev *hpdev; | 
|  | unsigned long flags; | 
|  |  | 
|  | buffer = kmalloc(bufferlen, GFP_ATOMIC); | 
|  | if (!buffer) | 
|  | return; | 
|  |  | 
|  | while (1) { | 
|  | ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, | 
|  | &bytes_recvd, &req_id); | 
|  |  | 
|  | if (ret == -ENOBUFS) { | 
|  | kfree(buffer); | 
|  | /* Handle large packet */ | 
|  | bufferlen = bytes_recvd; | 
|  | buffer = kmalloc(bytes_recvd, GFP_ATOMIC); | 
|  | if (!buffer) | 
|  | return; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Zero length indicates there are no more packets. */ | 
|  | if (ret || !bytes_recvd) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * All incoming packets must be at least as large as a | 
|  | * response. | 
|  | */ | 
|  | if (bytes_recvd <= sizeof(struct pci_response)) | 
|  | continue; | 
|  | desc = (struct vmpacket_descriptor *)buffer; | 
|  |  | 
|  | switch (desc->type) { | 
|  | case VM_PKT_COMP: | 
|  |  | 
|  | lock_requestor(chan, flags); | 
|  | req_addr = __vmbus_request_addr_match(chan, req_id, | 
|  | VMBUS_RQST_ADDR_ANY); | 
|  | if (req_addr == VMBUS_RQST_ERROR) { | 
|  | unlock_requestor(chan, flags); | 
|  | dev_err(&hbus->hdev->device, | 
|  | "Invalid transaction ID %llx\n", | 
|  | req_id); | 
|  | break; | 
|  | } | 
|  | comp_packet = (struct pci_packet *)req_addr; | 
|  | response = (struct pci_response *)buffer; | 
|  | /* | 
|  | * Call ->completion_func() within the critical section to make | 
|  | * sure that the packet pointer is still valid during the call: | 
|  | * here 'valid' means that there's a task still waiting for the | 
|  | * completion, and that the packet data is still on the waiting | 
|  | * task's stack.  Cf. hv_compose_msi_msg(). | 
|  | */ | 
|  | comp_packet->completion_func(comp_packet->compl_ctxt, | 
|  | response, | 
|  | bytes_recvd); | 
|  | unlock_requestor(chan, flags); | 
|  | break; | 
|  |  | 
|  | case VM_PKT_DATA_INBAND: | 
|  |  | 
|  | new_message = (struct pci_incoming_message *)buffer; | 
|  | switch (new_message->message_type.type) { | 
|  | case PCI_BUS_RELATIONS: | 
|  |  | 
|  | bus_rel = (struct pci_bus_relations *)buffer; | 
|  | if (bytes_recvd < sizeof(*bus_rel) || | 
|  | bytes_recvd < | 
|  | struct_size(bus_rel, func, | 
|  | bus_rel->device_count)) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "bus relations too small\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | hv_pci_devices_present(hbus, bus_rel); | 
|  | break; | 
|  |  | 
|  | case PCI_BUS_RELATIONS2: | 
|  |  | 
|  | bus_rel2 = (struct pci_bus_relations2 *)buffer; | 
|  | if (bytes_recvd < sizeof(*bus_rel2) || | 
|  | bytes_recvd < | 
|  | struct_size(bus_rel2, func, | 
|  | bus_rel2->device_count)) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "bus relations v2 too small\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | hv_pci_devices_present2(hbus, bus_rel2); | 
|  | break; | 
|  |  | 
|  | case PCI_EJECT: | 
|  |  | 
|  | dev_message = (struct pci_dev_incoming *)buffer; | 
|  | if (bytes_recvd < sizeof(*dev_message)) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "eject message too small\n"); | 
|  | break; | 
|  | } | 
|  | hpdev = get_pcichild_wslot(hbus, | 
|  | dev_message->wslot.slot); | 
|  | if (hpdev) { | 
|  | hv_pci_eject_device(hpdev); | 
|  | put_pcichild(hpdev); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PCI_INVALIDATE_BLOCK: | 
|  |  | 
|  | inval = (struct pci_dev_inval_block *)buffer; | 
|  | if (bytes_recvd < sizeof(*inval)) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "invalidate message too small\n"); | 
|  | break; | 
|  | } | 
|  | hpdev = get_pcichild_wslot(hbus, | 
|  | inval->wslot.slot); | 
|  | if (hpdev) { | 
|  | if (hpdev->block_invalidate) { | 
|  | hpdev->block_invalidate( | 
|  | hpdev->invalidate_context, | 
|  | inval->block_mask); | 
|  | } | 
|  | put_pcichild(hpdev); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_warn(&hbus->hdev->device, | 
|  | "Unimplemented protocol message %x\n", | 
|  | new_message->message_type.type); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(&hbus->hdev->device, | 
|  | "unhandled packet type %d, tid %llx len %d\n", | 
|  | desc->type, req_id, bytes_recvd); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(buffer); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_protocol_negotiation() - Set up protocol | 
|  | * @hdev:		VMBus's tracking struct for this root PCI bus. | 
|  | * @version:		Array of supported channel protocol versions in | 
|  | *			the order of probing - highest go first. | 
|  | * @num_version:	Number of elements in the version array. | 
|  | * | 
|  | * This driver is intended to support running on Windows 10 | 
|  | * (server) and later versions. It will not run on earlier | 
|  | * versions, as they assume that many of the operations which | 
|  | * Linux needs accomplished with a spinlock held were done via | 
|  | * asynchronous messaging via VMBus.  Windows 10 increases the | 
|  | * surface area of PCI emulation so that these actions can take | 
|  | * place by suspending a virtual processor for their duration. | 
|  | * | 
|  | * This function negotiates the channel protocol version, | 
|  | * failing if the host doesn't support the necessary protocol | 
|  | * level. | 
|  | */ | 
|  | static int hv_pci_protocol_negotiation(struct hv_device *hdev, | 
|  | enum pci_protocol_version_t version[], | 
|  | int num_version) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
|  | struct pci_version_request *version_req; | 
|  | struct hv_pci_compl comp_pkt; | 
|  | struct pci_packet *pkt; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Initiate the handshake with the host and negotiate | 
|  | * a version that the host can support. We start with the | 
|  | * highest version number and go down if the host cannot | 
|  | * support it. | 
|  | */ | 
|  | pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); | 
|  | if (!pkt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | init_completion(&comp_pkt.host_event); | 
|  | pkt->completion_func = hv_pci_generic_compl; | 
|  | pkt->compl_ctxt = &comp_pkt; | 
|  | version_req = (struct pci_version_request *)(pkt + 1); | 
|  | version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; | 
|  |  | 
|  | for (i = 0; i < num_version; i++) { | 
|  | version_req->protocol_version = version[i]; | 
|  | ret = vmbus_sendpacket(hdev->channel, version_req, | 
|  | sizeof(struct pci_version_request), | 
|  | (unsigned long)pkt, VM_PKT_DATA_INBAND, | 
|  | VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
|  | if (!ret) | 
|  | ret = wait_for_response(hdev, &comp_pkt.host_event); | 
|  |  | 
|  | if (ret) { | 
|  | dev_err(&hdev->device, | 
|  | "PCI Pass-through VSP failed to request version: %d", | 
|  | ret); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | if (comp_pkt.completion_status >= 0) { | 
|  | hbus->protocol_version = version[i]; | 
|  | dev_info(&hdev->device, | 
|  | "PCI VMBus probing: Using version %#x\n", | 
|  | hbus->protocol_version); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { | 
|  | dev_err(&hdev->device, | 
|  | "PCI Pass-through VSP failed version request: %#x", | 
|  | comp_pkt.completion_status); | 
|  | ret = -EPROTO; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | reinit_completion(&comp_pkt.host_event); | 
|  | } | 
|  |  | 
|  | dev_err(&hdev->device, | 
|  | "PCI pass-through VSP failed to find supported version"); | 
|  | ret = -EPROTO; | 
|  |  | 
|  | exit: | 
|  | kfree(pkt); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_free_bridge_windows() - Release memory regions for the | 
|  | * bus | 
|  | * @hbus:	Root PCI bus, as understood by this driver | 
|  | */ | 
|  | static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | /* | 
|  | * Set the resources back to the way they looked when they | 
|  | * were allocated by setting IORESOURCE_BUSY again. | 
|  | */ | 
|  |  | 
|  | if (hbus->low_mmio_space && hbus->low_mmio_res) { | 
|  | hbus->low_mmio_res->flags |= IORESOURCE_BUSY; | 
|  | vmbus_free_mmio(hbus->low_mmio_res->start, | 
|  | resource_size(hbus->low_mmio_res)); | 
|  | } | 
|  |  | 
|  | if (hbus->high_mmio_space && hbus->high_mmio_res) { | 
|  | hbus->high_mmio_res->flags |= IORESOURCE_BUSY; | 
|  | vmbus_free_mmio(hbus->high_mmio_res->start, | 
|  | resource_size(hbus->high_mmio_res)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_allocate_bridge_windows() - Allocate memory regions | 
|  | * for the bus | 
|  | * @hbus:	Root PCI bus, as understood by this driver | 
|  | * | 
|  | * This function calls vmbus_allocate_mmio(), which is itself a | 
|  | * bit of a compromise.  Ideally, we might change the pnp layer | 
|  | * in the kernel such that it comprehends either PCI devices | 
|  | * which are "grandchildren of ACPI," with some intermediate bus | 
|  | * node (in this case, VMBus) or change it such that it | 
|  | * understands VMBus.  The pnp layer, however, has been declared | 
|  | * deprecated, and not subject to change. | 
|  | * | 
|  | * The workaround, implemented here, is to ask VMBus to allocate | 
|  | * MMIO space for this bus.  VMBus itself knows which ranges are | 
|  | * appropriate by looking at its own ACPI objects.  Then, after | 
|  | * these ranges are claimed, they're modified to look like they | 
|  | * would have looked if the ACPI and pnp code had allocated | 
|  | * bridge windows.  These descriptors have to exist in this form | 
|  | * in order to satisfy the code which will get invoked when the | 
|  | * endpoint PCI function driver calls request_mem_region() or | 
|  | * request_mem_region_exclusive(). | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | resource_size_t align; | 
|  | int ret; | 
|  |  | 
|  | if (hbus->low_mmio_space) { | 
|  | align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); | 
|  | ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, | 
|  | (u64)(u32)0xffffffff, | 
|  | hbus->low_mmio_space, | 
|  | align, false); | 
|  | if (ret) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", | 
|  | hbus->low_mmio_space); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Modify this resource to become a bridge window. */ | 
|  | hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; | 
|  | hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; | 
|  | pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); | 
|  | } | 
|  |  | 
|  | if (hbus->high_mmio_space) { | 
|  | align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); | 
|  | ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, | 
|  | 0x100000000, -1, | 
|  | hbus->high_mmio_space, align, | 
|  | false); | 
|  | if (ret) { | 
|  | dev_err(&hbus->hdev->device, | 
|  | "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", | 
|  | hbus->high_mmio_space); | 
|  | goto release_low_mmio; | 
|  | } | 
|  |  | 
|  | /* Modify this resource to become a bridge window. */ | 
|  | hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; | 
|  | hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; | 
|  | pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | release_low_mmio: | 
|  | if (hbus->low_mmio_res) { | 
|  | vmbus_free_mmio(hbus->low_mmio_res->start, | 
|  | resource_size(hbus->low_mmio_res)); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_allocate_config_window() - Find MMIO space for PCI Config | 
|  | * @hbus:	Root PCI bus, as understood by this driver | 
|  | * | 
|  | * This function claims memory-mapped I/O space for accessing | 
|  | * configuration space for the functions on this bus. | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_allocate_config_window(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Set up a region of MMIO space to use for accessing configuration | 
|  | * space. | 
|  | */ | 
|  | ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, | 
|  | PCI_CONFIG_MMIO_LENGTH, 0x1000, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * vmbus_allocate_mmio() gets used for allocating both device endpoint | 
|  | * resource claims (those which cannot be overlapped) and the ranges | 
|  | * which are valid for the children of this bus, which are intended | 
|  | * to be overlapped by those children.  Set the flag on this claim | 
|  | * meaning that this region can't be overlapped. | 
|  | */ | 
|  |  | 
|  | hbus->mem_config->flags |= IORESOURCE_BUSY; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hv_free_config_window(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); | 
|  | } | 
|  |  | 
|  | static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); | 
|  |  | 
|  | /** | 
|  | * hv_pci_enter_d0() - Bring the "bus" into the D0 power state | 
|  | * @hdev:	VMBus's tracking struct for this root PCI bus | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_pci_enter_d0(struct hv_device *hdev) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
|  | struct pci_bus_d0_entry *d0_entry; | 
|  | struct hv_pci_compl comp_pkt; | 
|  | struct pci_packet *pkt; | 
|  | bool retry = true; | 
|  | int ret; | 
|  |  | 
|  | enter_d0_retry: | 
|  | /* | 
|  | * Tell the host that the bus is ready to use, and moved into the | 
|  | * powered-on state.  This includes telling the host which region | 
|  | * of memory-mapped I/O space has been chosen for configuration space | 
|  | * access. | 
|  | */ | 
|  | pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); | 
|  | if (!pkt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | init_completion(&comp_pkt.host_event); | 
|  | pkt->completion_func = hv_pci_generic_compl; | 
|  | pkt->compl_ctxt = &comp_pkt; | 
|  | d0_entry = (struct pci_bus_d0_entry *)(pkt + 1); | 
|  | d0_entry->message_type.type = PCI_BUS_D0ENTRY; | 
|  | d0_entry->mmio_base = hbus->mem_config->start; | 
|  |  | 
|  | ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), | 
|  | (unsigned long)pkt, VM_PKT_DATA_INBAND, | 
|  | VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
|  | if (!ret) | 
|  | ret = wait_for_response(hdev, &comp_pkt.host_event); | 
|  |  | 
|  | if (ret) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * In certain case (Kdump) the pci device of interest was | 
|  | * not cleanly shut down and resource is still held on host | 
|  | * side, the host could return invalid device status. | 
|  | * We need to explicitly request host to release the resource | 
|  | * and try to enter D0 again. | 
|  | */ | 
|  | if (comp_pkt.completion_status < 0 && retry) { | 
|  | retry = false; | 
|  |  | 
|  | dev_err(&hdev->device, "Retrying D0 Entry\n"); | 
|  |  | 
|  | /* | 
|  | * Hv_pci_bus_exit() calls hv_send_resource_released() | 
|  | * to free up resources of its child devices. | 
|  | * In the kdump kernel we need to set the | 
|  | * wslot_res_allocated to 255 so it scans all child | 
|  | * devices to release resources allocated in the | 
|  | * normal kernel before panic happened. | 
|  | */ | 
|  | hbus->wslot_res_allocated = 255; | 
|  |  | 
|  | ret = hv_pci_bus_exit(hdev, true); | 
|  |  | 
|  | if (ret == 0) { | 
|  | kfree(pkt); | 
|  | goto enter_d0_retry; | 
|  | } | 
|  | dev_err(&hdev->device, | 
|  | "Retrying D0 failed with ret %d\n", ret); | 
|  | } | 
|  |  | 
|  | if (comp_pkt.completion_status < 0) { | 
|  | dev_err(&hdev->device, | 
|  | "PCI Pass-through VSP failed D0 Entry with status %x\n", | 
|  | comp_pkt.completion_status); | 
|  | ret = -EPROTO; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | exit: | 
|  | kfree(pkt); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_query_relations() - Ask host to send list of child | 
|  | * devices | 
|  | * @hdev:	VMBus's tracking struct for this root PCI bus | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_pci_query_relations(struct hv_device *hdev) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
|  | struct pci_message message; | 
|  | struct completion comp; | 
|  | int ret; | 
|  |  | 
|  | /* Ask the host to send along the list of child devices */ | 
|  | init_completion(&comp); | 
|  | if (cmpxchg(&hbus->survey_event, NULL, &comp)) | 
|  | return -ENOTEMPTY; | 
|  |  | 
|  | memset(&message, 0, sizeof(message)); | 
|  | message.type = PCI_QUERY_BUS_RELATIONS; | 
|  |  | 
|  | ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), | 
|  | 0, VM_PKT_DATA_INBAND, 0); | 
|  | if (!ret) | 
|  | ret = wait_for_response(hdev, &comp); | 
|  |  | 
|  | /* | 
|  | * In the case of fast device addition/removal, it's possible that | 
|  | * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we | 
|  | * already got a PCI_BUS_RELATIONS* message from the host and the | 
|  | * channel callback already scheduled a work to hbus->wq, which can be | 
|  | * running pci_devices_present_work() -> survey_child_resources() -> | 
|  | * complete(&hbus->survey_event), even after hv_pci_query_relations() | 
|  | * exits and the stack variable 'comp' is no longer valid; as a result, | 
|  | * a hang or a page fault may happen when the complete() calls | 
|  | * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from | 
|  | * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is | 
|  | * -ENODEV, there can't be any more work item scheduled to hbus->wq | 
|  | * after the flush_workqueue(): see vmbus_onoffer_rescind() -> | 
|  | * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() -> | 
|  | * channel->rescind = true. | 
|  | */ | 
|  | flush_workqueue(hbus->wq); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_send_resources_allocated() - Report local resource choices | 
|  | * @hdev:	VMBus's tracking struct for this root PCI bus | 
|  | * | 
|  | * The host OS is expecting to be sent a request as a message | 
|  | * which contains all the resources that the device will use. | 
|  | * The response contains those same resources, "translated" | 
|  | * which is to say, the values which should be used by the | 
|  | * hardware, when it delivers an interrupt.  (MMIO resources are | 
|  | * used in local terms.)  This is nice for Windows, and lines up | 
|  | * with the FDO/PDO split, which doesn't exist in Linux.  Linux | 
|  | * is deeply expecting to scan an emulated PCI configuration | 
|  | * space.  So this message is sent here only to drive the state | 
|  | * machine on the host forward. | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_send_resources_allocated(struct hv_device *hdev) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
|  | struct pci_resources_assigned *res_assigned; | 
|  | struct pci_resources_assigned2 *res_assigned2; | 
|  | struct hv_pci_compl comp_pkt; | 
|  | struct hv_pci_dev *hpdev; | 
|  | struct pci_packet *pkt; | 
|  | size_t size_res; | 
|  | int wslot; | 
|  | int ret; | 
|  |  | 
|  | size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) | 
|  | ? sizeof(*res_assigned) : sizeof(*res_assigned2); | 
|  |  | 
|  | pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); | 
|  | if (!pkt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | for (wslot = 0; wslot < 256; wslot++) { | 
|  | hpdev = get_pcichild_wslot(hbus, wslot); | 
|  | if (!hpdev) | 
|  | continue; | 
|  |  | 
|  | memset(pkt, 0, sizeof(*pkt) + size_res); | 
|  | init_completion(&comp_pkt.host_event); | 
|  | pkt->completion_func = hv_pci_generic_compl; | 
|  | pkt->compl_ctxt = &comp_pkt; | 
|  |  | 
|  | if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { | 
|  | res_assigned = | 
|  | (struct pci_resources_assigned *)(pkt + 1); | 
|  | res_assigned->message_type.type = | 
|  | PCI_RESOURCES_ASSIGNED; | 
|  | res_assigned->wslot.slot = hpdev->desc.win_slot.slot; | 
|  | } else { | 
|  | res_assigned2 = | 
|  | (struct pci_resources_assigned2 *)(pkt + 1); | 
|  | res_assigned2->message_type.type = | 
|  | PCI_RESOURCES_ASSIGNED2; | 
|  | res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; | 
|  | } | 
|  | put_pcichild(hpdev); | 
|  |  | 
|  | ret = vmbus_sendpacket(hdev->channel, pkt + 1, | 
|  | size_res, (unsigned long)pkt, | 
|  | VM_PKT_DATA_INBAND, | 
|  | VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
|  | if (!ret) | 
|  | ret = wait_for_response(hdev, &comp_pkt.host_event); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (comp_pkt.completion_status < 0) { | 
|  | ret = -EPROTO; | 
|  | dev_err(&hdev->device, | 
|  | "resource allocated returned 0x%x", | 
|  | comp_pkt.completion_status); | 
|  | break; | 
|  | } | 
|  |  | 
|  | hbus->wslot_res_allocated = wslot; | 
|  | } | 
|  |  | 
|  | kfree(pkt); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_send_resources_released() - Report local resources | 
|  | * released | 
|  | * @hdev:	VMBus's tracking struct for this root PCI bus | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_send_resources_released(struct hv_device *hdev) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
|  | struct pci_child_message pkt; | 
|  | struct hv_pci_dev *hpdev; | 
|  | int wslot; | 
|  | int ret; | 
|  |  | 
|  | for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { | 
|  | hpdev = get_pcichild_wslot(hbus, wslot); | 
|  | if (!hpdev) | 
|  | continue; | 
|  |  | 
|  | memset(&pkt, 0, sizeof(pkt)); | 
|  | pkt.message_type.type = PCI_RESOURCES_RELEASED; | 
|  | pkt.wslot.slot = hpdev->desc.win_slot.slot; | 
|  |  | 
|  | put_pcichild(hpdev); | 
|  |  | 
|  | ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, | 
|  | VM_PKT_DATA_INBAND, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | hbus->wslot_res_allocated = wslot - 1; | 
|  | } | 
|  |  | 
|  | hbus->wslot_res_allocated = -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define HVPCI_DOM_MAP_SIZE (64 * 1024) | 
|  | static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); | 
|  |  | 
|  | /* | 
|  | * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 | 
|  | * as invalid for passthrough PCI devices of this driver. | 
|  | */ | 
|  | #define HVPCI_DOM_INVALID 0 | 
|  |  | 
|  | /** | 
|  | * hv_get_dom_num() - Get a valid PCI domain number | 
|  | * Check if the PCI domain number is in use, and return another number if | 
|  | * it is in use. | 
|  | * | 
|  | * @dom: Requested domain number | 
|  | * | 
|  | * return: domain number on success, HVPCI_DOM_INVALID on failure | 
|  | */ | 
|  | static u16 hv_get_dom_num(u16 dom) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | if (test_and_set_bit(dom, hvpci_dom_map) == 0) | 
|  | return dom; | 
|  |  | 
|  | for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { | 
|  | if (test_and_set_bit(i, hvpci_dom_map) == 0) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return HVPCI_DOM_INVALID; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_put_dom_num() - Mark the PCI domain number as free | 
|  | * @dom: Domain number to be freed | 
|  | */ | 
|  | static void hv_put_dom_num(u16 dom) | 
|  | { | 
|  | clear_bit(dom, hvpci_dom_map); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_probe() - New VMBus channel probe, for a root PCI bus | 
|  | * @hdev:	VMBus's tracking struct for this root PCI bus | 
|  | * @dev_id:	Identifies the device itself | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | static int hv_pci_probe(struct hv_device *hdev, | 
|  | const struct hv_vmbus_device_id *dev_id) | 
|  | { | 
|  | struct pci_host_bridge *bridge; | 
|  | struct hv_pcibus_device *hbus; | 
|  | u16 dom_req, dom; | 
|  | char *name; | 
|  | int ret; | 
|  |  | 
|  | bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); | 
|  | if (!bridge) | 
|  | return -ENOMEM; | 
|  |  | 
|  | hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); | 
|  | if (!hbus) | 
|  | return -ENOMEM; | 
|  |  | 
|  | hbus->bridge = bridge; | 
|  | mutex_init(&hbus->state_lock); | 
|  | hbus->state = hv_pcibus_init; | 
|  | hbus->wslot_res_allocated = -1; | 
|  |  | 
|  | /* | 
|  | * The PCI bus "domain" is what is called "segment" in ACPI and other | 
|  | * specs. Pull it from the instance ID, to get something usually | 
|  | * unique. In rare cases of collision, we will find out another number | 
|  | * not in use. | 
|  | * | 
|  | * Note that, since this code only runs in a Hyper-V VM, Hyper-V | 
|  | * together with this guest driver can guarantee that (1) The only | 
|  | * domain used by Gen1 VMs for something that looks like a physical | 
|  | * PCI bus (which is actually emulated by the hypervisor) is domain 0. | 
|  | * (2) There will be no overlap between domains (after fixing possible | 
|  | * collisions) in the same VM. | 
|  | */ | 
|  | dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; | 
|  | dom = hv_get_dom_num(dom_req); | 
|  |  | 
|  | if (dom == HVPCI_DOM_INVALID) { | 
|  | dev_err(&hdev->device, | 
|  | "Unable to use dom# 0x%x or other numbers", dom_req); | 
|  | ret = -EINVAL; | 
|  | goto free_bus; | 
|  | } | 
|  |  | 
|  | if (dom != dom_req) | 
|  | dev_info(&hdev->device, | 
|  | "PCI dom# 0x%x has collision, using 0x%x", | 
|  | dom_req, dom); | 
|  |  | 
|  | hbus->bridge->domain_nr = dom; | 
|  | #ifdef CONFIG_X86 | 
|  | hbus->sysdata.domain = dom; | 
|  | hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); | 
|  | #elif defined(CONFIG_ARM64) | 
|  | /* | 
|  | * Set the PCI bus parent to be the corresponding VMbus | 
|  | * device. Then the VMbus device will be assigned as the | 
|  | * ACPI companion in pcibios_root_bridge_prepare() and | 
|  | * pci_dma_configure() will propagate device coherence | 
|  | * information to devices created on the bus. | 
|  | */ | 
|  | hbus->sysdata.parent = hdev->device.parent; | 
|  | hbus->use_calls = false; | 
|  | #endif | 
|  |  | 
|  | hbus->hdev = hdev; | 
|  | INIT_LIST_HEAD(&hbus->children); | 
|  | INIT_LIST_HEAD(&hbus->dr_list); | 
|  | spin_lock_init(&hbus->config_lock); | 
|  | spin_lock_init(&hbus->device_list_lock); | 
|  | hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, | 
|  | hbus->bridge->domain_nr); | 
|  | if (!hbus->wq) { | 
|  | ret = -ENOMEM; | 
|  | goto free_dom; | 
|  | } | 
|  |  | 
|  | hdev->channel->next_request_id_callback = vmbus_next_request_id; | 
|  | hdev->channel->request_addr_callback = vmbus_request_addr; | 
|  | hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; | 
|  |  | 
|  | ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, | 
|  | hv_pci_onchannelcallback, hbus); | 
|  | if (ret) | 
|  | goto destroy_wq; | 
|  |  | 
|  | hv_set_drvdata(hdev, hbus); | 
|  |  | 
|  | ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, | 
|  | ARRAY_SIZE(pci_protocol_versions)); | 
|  | if (ret) | 
|  | goto close; | 
|  |  | 
|  | ret = hv_allocate_config_window(hbus); | 
|  | if (ret) | 
|  | goto close; | 
|  |  | 
|  | hbus->cfg_addr = ioremap(hbus->mem_config->start, | 
|  | PCI_CONFIG_MMIO_LENGTH); | 
|  | if (!hbus->cfg_addr) { | 
|  | dev_err(&hdev->device, | 
|  | "Unable to map a virtual address for config space\n"); | 
|  | ret = -ENOMEM; | 
|  | goto free_config; | 
|  | } | 
|  |  | 
|  | name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | hbus->fwnode = irq_domain_alloc_named_fwnode(name); | 
|  | kfree(name); | 
|  | if (!hbus->fwnode) { | 
|  | ret = -ENOMEM; | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | ret = hv_pcie_init_irq_domain(hbus); | 
|  | if (ret) | 
|  | goto free_fwnode; | 
|  |  | 
|  | ret = hv_pci_query_relations(hdev); | 
|  | if (ret) | 
|  | goto free_irq_domain; | 
|  |  | 
|  | mutex_lock(&hbus->state_lock); | 
|  |  | 
|  | ret = hv_pci_enter_d0(hdev); | 
|  | if (ret) | 
|  | goto release_state_lock; | 
|  |  | 
|  | ret = hv_pci_allocate_bridge_windows(hbus); | 
|  | if (ret) | 
|  | goto exit_d0; | 
|  |  | 
|  | ret = hv_send_resources_allocated(hdev); | 
|  | if (ret) | 
|  | goto free_windows; | 
|  |  | 
|  | prepopulate_bars(hbus); | 
|  |  | 
|  | hbus->state = hv_pcibus_probed; | 
|  |  | 
|  | ret = create_root_hv_pci_bus(hbus); | 
|  | if (ret) | 
|  | goto free_windows; | 
|  |  | 
|  | mutex_unlock(&hbus->state_lock); | 
|  | return 0; | 
|  |  | 
|  | free_windows: | 
|  | hv_pci_free_bridge_windows(hbus); | 
|  | exit_d0: | 
|  | (void) hv_pci_bus_exit(hdev, true); | 
|  | release_state_lock: | 
|  | mutex_unlock(&hbus->state_lock); | 
|  | free_irq_domain: | 
|  | irq_domain_remove(hbus->irq_domain); | 
|  | free_fwnode: | 
|  | irq_domain_free_fwnode(hbus->fwnode); | 
|  | unmap: | 
|  | iounmap(hbus->cfg_addr); | 
|  | free_config: | 
|  | hv_free_config_window(hbus); | 
|  | close: | 
|  | vmbus_close(hdev->channel); | 
|  | destroy_wq: | 
|  | destroy_workqueue(hbus->wq); | 
|  | free_dom: | 
|  | hv_put_dom_num(hbus->bridge->domain_nr); | 
|  | free_bus: | 
|  | kfree(hbus); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
|  | struct vmbus_channel *chan = hdev->channel; | 
|  | struct { | 
|  | struct pci_packet teardown_packet; | 
|  | u8 buffer[sizeof(struct pci_message)]; | 
|  | } pkt; | 
|  | struct pci_message *msg; | 
|  | struct hv_pci_compl comp_pkt; | 
|  | struct hv_pci_dev *hpdev, *tmp; | 
|  | unsigned long flags; | 
|  | u64 trans_id; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * After the host sends the RESCIND_CHANNEL message, it doesn't | 
|  | * access the per-channel ringbuffer any longer. | 
|  | */ | 
|  | if (chan->rescind) | 
|  | return 0; | 
|  |  | 
|  | if (!keep_devs) { | 
|  | struct list_head removed; | 
|  |  | 
|  | /* Move all present children to the list on stack */ | 
|  | INIT_LIST_HEAD(&removed); | 
|  | spin_lock_irqsave(&hbus->device_list_lock, flags); | 
|  | list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) | 
|  | list_move_tail(&hpdev->list_entry, &removed); | 
|  | spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
|  |  | 
|  | /* Remove all children in the list */ | 
|  | list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { | 
|  | list_del(&hpdev->list_entry); | 
|  | if (hpdev->pci_slot) | 
|  | pci_destroy_slot(hpdev->pci_slot); | 
|  | /* For the two refs got in new_pcichild_device() */ | 
|  | put_pcichild(hpdev); | 
|  | put_pcichild(hpdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = hv_send_resources_released(hdev); | 
|  | if (ret) { | 
|  | dev_err(&hdev->device, | 
|  | "Couldn't send resources released packet(s)\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); | 
|  | init_completion(&comp_pkt.host_event); | 
|  | pkt.teardown_packet.completion_func = hv_pci_generic_compl; | 
|  | pkt.teardown_packet.compl_ctxt = &comp_pkt; | 
|  | msg = (struct pci_message *)pkt.buffer; | 
|  | msg->type = PCI_BUS_D0EXIT; | 
|  |  | 
|  | ret = vmbus_sendpacket_getid(chan, msg, sizeof(*msg), | 
|  | (unsigned long)&pkt.teardown_packet, | 
|  | &trans_id, VM_PKT_DATA_INBAND, | 
|  | VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { | 
|  | /* | 
|  | * The completion packet on the stack becomes invalid after | 
|  | * 'return'; remove the ID from the VMbus requestor if the | 
|  | * identifier is still mapped to/associated with the packet. | 
|  | * | 
|  | * Cf. hv_pci_onchannelcallback(). | 
|  | */ | 
|  | vmbus_request_addr_match(chan, trans_id, | 
|  | (unsigned long)&pkt.teardown_packet); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hv_pci_remove() - Remove routine for this VMBus channel | 
|  | * @hdev:	VMBus's tracking struct for this root PCI bus | 
|  | */ | 
|  | static void hv_pci_remove(struct hv_device *hdev) | 
|  | { | 
|  | struct hv_pcibus_device *hbus; | 
|  |  | 
|  | hbus = hv_get_drvdata(hdev); | 
|  | if (hbus->state == hv_pcibus_installed) { | 
|  | tasklet_disable(&hdev->channel->callback_event); | 
|  | hbus->state = hv_pcibus_removing; | 
|  | tasklet_enable(&hdev->channel->callback_event); | 
|  | destroy_workqueue(hbus->wq); | 
|  | hbus->wq = NULL; | 
|  | /* | 
|  | * At this point, no work is running or can be scheduled | 
|  | * on hbus-wq. We can't race with hv_pci_devices_present() | 
|  | * or hv_pci_eject_device(), it's safe to proceed. | 
|  | */ | 
|  |  | 
|  | /* Remove the bus from PCI's point of view. */ | 
|  | pci_lock_rescan_remove(); | 
|  | pci_stop_root_bus(hbus->bridge->bus); | 
|  | hv_pci_remove_slots(hbus); | 
|  | pci_remove_root_bus(hbus->bridge->bus); | 
|  | pci_unlock_rescan_remove(); | 
|  | } | 
|  |  | 
|  | hv_pci_bus_exit(hdev, false); | 
|  |  | 
|  | vmbus_close(hdev->channel); | 
|  |  | 
|  | iounmap(hbus->cfg_addr); | 
|  | hv_free_config_window(hbus); | 
|  | hv_pci_free_bridge_windows(hbus); | 
|  | irq_domain_remove(hbus->irq_domain); | 
|  | irq_domain_free_fwnode(hbus->fwnode); | 
|  |  | 
|  | hv_put_dom_num(hbus->bridge->domain_nr); | 
|  |  | 
|  | kfree(hbus); | 
|  | } | 
|  |  | 
|  | static int hv_pci_suspend(struct hv_device *hdev) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
|  | enum hv_pcibus_state old_state; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * hv_pci_suspend() must make sure there are no pending work items | 
|  | * before calling vmbus_close(), since it runs in a process context | 
|  | * as a callback in dpm_suspend().  When it starts to run, the channel | 
|  | * callback hv_pci_onchannelcallback(), which runs in a tasklet | 
|  | * context, can be still running concurrently and scheduling new work | 
|  | * items onto hbus->wq in hv_pci_devices_present() and | 
|  | * hv_pci_eject_device(), and the work item handlers can access the | 
|  | * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. | 
|  | * the work item handler pci_devices_present_work() -> | 
|  | * new_pcichild_device() writes to the vmbus channel. | 
|  | * | 
|  | * To eliminate the race, hv_pci_suspend() disables the channel | 
|  | * callback tasklet, sets hbus->state to hv_pcibus_removing, and | 
|  | * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, | 
|  | * it knows that no new work item can be scheduled, and then it flushes | 
|  | * hbus->wq and safely closes the vmbus channel. | 
|  | */ | 
|  | tasklet_disable(&hdev->channel->callback_event); | 
|  |  | 
|  | /* Change the hbus state to prevent new work items. */ | 
|  | old_state = hbus->state; | 
|  | if (hbus->state == hv_pcibus_installed) | 
|  | hbus->state = hv_pcibus_removing; | 
|  |  | 
|  | tasklet_enable(&hdev->channel->callback_event); | 
|  |  | 
|  | if (old_state != hv_pcibus_installed) | 
|  | return -EINVAL; | 
|  |  | 
|  | flush_workqueue(hbus->wq); | 
|  |  | 
|  | ret = hv_pci_bus_exit(hdev, true); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | vmbus_close(hdev->channel); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) | 
|  | { | 
|  | struct irq_data *irq_data; | 
|  | struct msi_desc *entry; | 
|  |  | 
|  | if (!pdev->msi_enabled && !pdev->msix_enabled) | 
|  | return 0; | 
|  |  | 
|  | guard(msi_descs_lock)(&pdev->dev); | 
|  | msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { | 
|  | irq_data = irq_get_irq_data(entry->irq); | 
|  | if (WARN_ON_ONCE(!irq_data)) | 
|  | return -EINVAL; | 
|  | hv_compose_msi_msg(irq_data, &entry->msg); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg() | 
|  | * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V | 
|  | * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() | 
|  | * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping | 
|  | * Table entries. | 
|  | */ | 
|  | static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) | 
|  | { | 
|  | pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); | 
|  | } | 
|  |  | 
|  | static int hv_pci_resume(struct hv_device *hdev) | 
|  | { | 
|  | struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
|  | enum pci_protocol_version_t version[1]; | 
|  | int ret; | 
|  |  | 
|  | hbus->state = hv_pcibus_init; | 
|  |  | 
|  | hdev->channel->next_request_id_callback = vmbus_next_request_id; | 
|  | hdev->channel->request_addr_callback = vmbus_request_addr; | 
|  | hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; | 
|  |  | 
|  | ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, | 
|  | hv_pci_onchannelcallback, hbus); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Only use the version that was in use before hibernation. */ | 
|  | version[0] = hbus->protocol_version; | 
|  | ret = hv_pci_protocol_negotiation(hdev, version, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = hv_pci_query_relations(hdev); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | mutex_lock(&hbus->state_lock); | 
|  |  | 
|  | ret = hv_pci_enter_d0(hdev); | 
|  | if (ret) | 
|  | goto release_state_lock; | 
|  |  | 
|  | ret = hv_send_resources_allocated(hdev); | 
|  | if (ret) | 
|  | goto release_state_lock; | 
|  |  | 
|  | prepopulate_bars(hbus); | 
|  |  | 
|  | hv_pci_restore_msi_state(hbus); | 
|  |  | 
|  | hbus->state = hv_pcibus_installed; | 
|  | mutex_unlock(&hbus->state_lock); | 
|  | return 0; | 
|  |  | 
|  | release_state_lock: | 
|  | mutex_unlock(&hbus->state_lock); | 
|  | out: | 
|  | vmbus_close(hdev->channel); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct hv_vmbus_device_id hv_pci_id_table[] = { | 
|  | /* PCI Pass-through Class ID */ | 
|  | /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ | 
|  | { HV_PCIE_GUID, }, | 
|  | { }, | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); | 
|  |  | 
|  | static struct hv_driver hv_pci_drv = { | 
|  | .name		= "hv_pci", | 
|  | .id_table	= hv_pci_id_table, | 
|  | .probe		= hv_pci_probe, | 
|  | .remove		= hv_pci_remove, | 
|  | .suspend	= hv_pci_suspend, | 
|  | .resume		= hv_pci_resume, | 
|  | }; | 
|  |  | 
|  | static void __exit exit_hv_pci_drv(void) | 
|  | { | 
|  | vmbus_driver_unregister(&hv_pci_drv); | 
|  |  | 
|  | hvpci_block_ops.read_block = NULL; | 
|  | hvpci_block_ops.write_block = NULL; | 
|  | hvpci_block_ops.reg_blk_invalidate = NULL; | 
|  | } | 
|  |  | 
|  | static int __init init_hv_pci_drv(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!hv_is_hyperv_initialized()) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (hv_root_partition() && !hv_nested) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_pci_irqchip_init(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Set the invalid domain number's bit, so it will not be used */ | 
|  | set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); | 
|  |  | 
|  | /* Initialize PCI block r/w interface */ | 
|  | hvpci_block_ops.read_block = hv_read_config_block; | 
|  | hvpci_block_ops.write_block = hv_write_config_block; | 
|  | hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; | 
|  |  | 
|  | return vmbus_driver_register(&hv_pci_drv); | 
|  | } | 
|  |  | 
|  | module_init(init_hv_pci_drv); | 
|  | module_exit(exit_hv_pci_drv); | 
|  |  | 
|  | MODULE_DESCRIPTION("Hyper-V PCI"); | 
|  | MODULE_LICENSE("GPL v2"); |