|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 2008 Cavium Networks | 
|  | * | 
|  | * Some parts of the code were originally released under BSD license: | 
|  | * | 
|  | * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights | 
|  | * reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions are | 
|  | * met: | 
|  | * | 
|  | *   * Redistributions of source code must retain the above copyright | 
|  | *     notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | *   * Redistributions in binary form must reproduce the above | 
|  | *     copyright notice, this list of conditions and the following | 
|  | *     disclaimer in the documentation and/or other materials provided | 
|  | *     with the distribution. | 
|  | * | 
|  | *   * Neither the name of Cavium Networks nor the names of | 
|  | *     its contributors may be used to endorse or promote products | 
|  | *     derived from this software without specific prior written | 
|  | *     permission. | 
|  | * | 
|  | * This Software, including technical data, may be subject to U.S. export | 
|  | * control laws, including the U.S. Export Administration Act and its associated | 
|  | * regulations, and may be subject to export or import regulations in other | 
|  | * countries. | 
|  | * | 
|  | * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" | 
|  | * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR | 
|  | * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO | 
|  | * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION | 
|  | * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM | 
|  | * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, | 
|  | * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF | 
|  | * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR | 
|  | * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR | 
|  | * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. | 
|  | */ | 
|  |  | 
|  | #include <linux/usb.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/usb/hcd.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/irqdomain.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/of.h> | 
|  |  | 
|  | #include <asm/octeon/octeon.h> | 
|  |  | 
|  | #include "octeon-hcd.h" | 
|  |  | 
|  | /** | 
|  | * enum cvmx_usb_speed - the possible USB device speeds | 
|  | * | 
|  | * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps | 
|  | * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps | 
|  | * @CVMX_USB_SPEED_LOW:  Device is operation at 1.5Mbps | 
|  | */ | 
|  | enum cvmx_usb_speed { | 
|  | CVMX_USB_SPEED_HIGH = 0, | 
|  | CVMX_USB_SPEED_FULL = 1, | 
|  | CVMX_USB_SPEED_LOW = 2, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * enum cvmx_usb_transfer - the possible USB transfer types | 
|  | * | 
|  | * @CVMX_USB_TRANSFER_CONTROL:	   USB transfer type control for hub and status | 
|  | *				   transfers | 
|  | * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low | 
|  | *				   priority periodic transfers | 
|  | * @CVMX_USB_TRANSFER_BULK:	   USB transfer type bulk for large low priority | 
|  | *				   transfers | 
|  | * @CVMX_USB_TRANSFER_INTERRUPT:   USB transfer type interrupt for high priority | 
|  | *				   periodic transfers | 
|  | */ | 
|  | enum cvmx_usb_transfer { | 
|  | CVMX_USB_TRANSFER_CONTROL = 0, | 
|  | CVMX_USB_TRANSFER_ISOCHRONOUS = 1, | 
|  | CVMX_USB_TRANSFER_BULK = 2, | 
|  | CVMX_USB_TRANSFER_INTERRUPT = 3, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * enum cvmx_usb_direction - the transfer directions | 
|  | * | 
|  | * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host | 
|  | * @CVMX_USB_DIRECTION_IN:  Data is transferring from the device/host to Octeon | 
|  | */ | 
|  | enum cvmx_usb_direction { | 
|  | CVMX_USB_DIRECTION_OUT, | 
|  | CVMX_USB_DIRECTION_IN, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * enum cvmx_usb_status - possible callback function status codes | 
|  | * | 
|  | * @CVMX_USB_STATUS_OK:		  The transaction / operation finished without | 
|  | *				  any errors | 
|  | * @CVMX_USB_STATUS_SHORT:	  FIXME: This is currently not implemented | 
|  | * @CVMX_USB_STATUS_CANCEL:	  The transaction was canceled while in flight | 
|  | *				  by a user call to cvmx_usb_cancel | 
|  | * @CVMX_USB_STATUS_ERROR:	  The transaction aborted with an unexpected | 
|  | *				  error status | 
|  | * @CVMX_USB_STATUS_STALL:	  The transaction received a USB STALL response | 
|  | *				  from the device | 
|  | * @CVMX_USB_STATUS_XACTERR:	  The transaction failed with an error from the | 
|  | *				  device even after a number of retries | 
|  | * @CVMX_USB_STATUS_DATATGLERR:	  The transaction failed with a data toggle | 
|  | *				  error even after a number of retries | 
|  | * @CVMX_USB_STATUS_BABBLEERR:	  The transaction failed with a babble error | 
|  | * @CVMX_USB_STATUS_FRAMEERR:	  The transaction failed with a frame error | 
|  | *				  even after a number of retries | 
|  | */ | 
|  | enum cvmx_usb_status { | 
|  | CVMX_USB_STATUS_OK, | 
|  | CVMX_USB_STATUS_SHORT, | 
|  | CVMX_USB_STATUS_CANCEL, | 
|  | CVMX_USB_STATUS_ERROR, | 
|  | CVMX_USB_STATUS_STALL, | 
|  | CVMX_USB_STATUS_XACTERR, | 
|  | CVMX_USB_STATUS_DATATGLERR, | 
|  | CVMX_USB_STATUS_BABBLEERR, | 
|  | CVMX_USB_STATUS_FRAMEERR, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct cvmx_usb_port_status - the USB port status information | 
|  | * | 
|  | * @port_enabled:	1 = Usb port is enabled, 0 = disabled | 
|  | * @port_over_current:	1 = Over current detected, 0 = Over current not | 
|  | *			detected. Octeon doesn't support over current detection. | 
|  | * @port_powered:	1 = Port power is being supplied to the device, 0 = | 
|  | *			power is off. Octeon doesn't support turning port power | 
|  | *			off. | 
|  | * @port_speed:		Current port speed. | 
|  | * @connected:		1 = A device is connected to the port, 0 = No device is | 
|  | *			connected. | 
|  | * @connect_change:	1 = Device connected state changed since the last set | 
|  | *			status call. | 
|  | */ | 
|  | struct cvmx_usb_port_status { | 
|  | u32 reserved			: 25; | 
|  | u32 port_enabled		: 1; | 
|  | u32 port_over_current		: 1; | 
|  | u32 port_powered		: 1; | 
|  | enum cvmx_usb_speed port_speed	: 2; | 
|  | u32 connected			: 1; | 
|  | u32 connect_change		: 1; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct cvmx_usb_iso_packet - descriptor for Isochronous packets | 
|  | * | 
|  | * @offset:	This is the offset in bytes into the main buffer where this data | 
|  | *		is stored. | 
|  | * @length:	This is the length in bytes of the data. | 
|  | * @status:	This is the status of this individual packet transfer. | 
|  | */ | 
|  | struct cvmx_usb_iso_packet { | 
|  | int offset; | 
|  | int length; | 
|  | enum cvmx_usb_status status; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * enum cvmx_usb_initialize_flags - flags used by the initialization function | 
|  | * | 
|  | * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI:    The USB port uses a 12MHz crystal | 
|  | *					      as clock source at USB_XO and | 
|  | *					      USB_XI. | 
|  | * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND:   The USB port uses 12/24/48MHz 2.5V | 
|  | *					      board clock source at USB_XO. | 
|  | *					      USB_XI should be tied to GND. | 
|  | * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field | 
|  | * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:    Speed of reference clock or | 
|  | *					      crystal | 
|  | * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:    Speed of reference clock | 
|  | * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:    Speed of reference clock | 
|  | * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA:	      Disable DMA and used polled IO for | 
|  | *					      data transfer use for the USB | 
|  | */ | 
|  | enum cvmx_usb_initialize_flags { | 
|  | CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI		= 1 << 0, | 
|  | CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND		= 1 << 1, | 
|  | CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK	= 3 << 3, | 
|  | CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ		= 1 << 3, | 
|  | CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ		= 2 << 3, | 
|  | CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ		= 3 << 3, | 
|  | /* Bits 3-4 used to encode the clock frequency */ | 
|  | CVMX_USB_INITIALIZE_FLAGS_NO_DMA		= 1 << 5, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * enum cvmx_usb_pipe_flags - internal flags for a pipe. | 
|  | * | 
|  | * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is | 
|  | *				   actively using hardware. | 
|  | * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed | 
|  | *				   pipe is in the ping state. | 
|  | */ | 
|  | enum cvmx_usb_pipe_flags { | 
|  | CVMX_USB_PIPE_FLAGS_SCHEDULED	= 1 << 17, | 
|  | CVMX_USB_PIPE_FLAGS_NEED_PING	= 1 << 18, | 
|  | }; | 
|  |  | 
|  | /* Maximum number of times to retry failed transactions */ | 
|  | #define MAX_RETRIES		3 | 
|  |  | 
|  | /* Maximum number of hardware channels supported by the USB block */ | 
|  | #define MAX_CHANNELS		8 | 
|  |  | 
|  | /* | 
|  | * The low level hardware can transfer a maximum of this number of bytes in each | 
|  | * transfer. The field is 19 bits wide | 
|  | */ | 
|  | #define MAX_TRANSFER_BYTES	((1 << 19) - 1) | 
|  |  | 
|  | /* | 
|  | * The low level hardware can transfer a maximum of this number of packets in | 
|  | * each transfer. The field is 10 bits wide | 
|  | */ | 
|  | #define MAX_TRANSFER_PACKETS	((1 << 10) - 1) | 
|  |  | 
|  | /** | 
|  | * Logical transactions may take numerous low level | 
|  | * transactions, especially when splits are concerned. This | 
|  | * enum represents all of the possible stages a transaction can | 
|  | * be in. Note that split completes are always even. This is so | 
|  | * the NAK handler can backup to the previous low level | 
|  | * transaction with a simple clearing of bit 0. | 
|  | */ | 
|  | enum cvmx_usb_stage { | 
|  | CVMX_USB_STAGE_NON_CONTROL, | 
|  | CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE, | 
|  | CVMX_USB_STAGE_SETUP, | 
|  | CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE, | 
|  | CVMX_USB_STAGE_DATA, | 
|  | CVMX_USB_STAGE_DATA_SPLIT_COMPLETE, | 
|  | CVMX_USB_STAGE_STATUS, | 
|  | CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct cvmx_usb_transaction - describes each pending USB transaction | 
|  | *				 regardless of type. These are linked together | 
|  | *				 to form a list of pending requests for a pipe. | 
|  | * | 
|  | * @node:		List node for transactions in the pipe. | 
|  | * @type:		Type of transaction, duplicated of the pipe. | 
|  | * @flags:		State flags for this transaction. | 
|  | * @buffer:		User's physical buffer address to read/write. | 
|  | * @buffer_length:	Size of the user's buffer in bytes. | 
|  | * @control_header:	For control transactions, physical address of the 8 | 
|  | *			byte standard header. | 
|  | * @iso_start_frame:	For ISO transactions, the starting frame number. | 
|  | * @iso_number_packets:	For ISO transactions, the number of packets in the | 
|  | *			request. | 
|  | * @iso_packets:	For ISO transactions, the sub packets in the request. | 
|  | * @actual_bytes:	Actual bytes transfer for this transaction. | 
|  | * @stage:		For control transactions, the current stage. | 
|  | * @urb:		URB. | 
|  | */ | 
|  | struct cvmx_usb_transaction { | 
|  | struct list_head node; | 
|  | enum cvmx_usb_transfer type; | 
|  | u64 buffer; | 
|  | int buffer_length; | 
|  | u64 control_header; | 
|  | int iso_start_frame; | 
|  | int iso_number_packets; | 
|  | struct cvmx_usb_iso_packet *iso_packets; | 
|  | int xfersize; | 
|  | int pktcnt; | 
|  | int retries; | 
|  | int actual_bytes; | 
|  | enum cvmx_usb_stage stage; | 
|  | struct urb *urb; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon | 
|  | *			  and some USB device. It contains a list of pending | 
|  | *			  request to the device. | 
|  | * | 
|  | * @node:		List node for pipe list | 
|  | * @next:		Pipe after this one in the list | 
|  | * @transactions:	List of pending transactions | 
|  | * @interval:		For periodic pipes, the interval between packets in | 
|  | *			frames | 
|  | * @next_tx_frame:	The next frame this pipe is allowed to transmit on | 
|  | * @flags:		State flags for this pipe | 
|  | * @device_speed:	Speed of device connected to this pipe | 
|  | * @transfer_type:	Type of transaction supported by this pipe | 
|  | * @transfer_dir:	IN or OUT. Ignored for Control | 
|  | * @multi_count:	Max packet in a row for the device | 
|  | * @max_packet:		The device's maximum packet size in bytes | 
|  | * @device_addr:	USB device address at other end of pipe | 
|  | * @endpoint_num:	USB endpoint number at other end of pipe | 
|  | * @hub_device_addr:	Hub address this device is connected to | 
|  | * @hub_port:		Hub port this device is connected to | 
|  | * @pid_toggle:		This toggles between 0/1 on every packet send to track | 
|  | *			the data pid needed | 
|  | * @channel:		Hardware DMA channel for this pipe | 
|  | * @split_sc_frame:	The low order bits of the frame number the split | 
|  | *			complete should be sent on | 
|  | */ | 
|  | struct cvmx_usb_pipe { | 
|  | struct list_head node; | 
|  | struct list_head transactions; | 
|  | u64 interval; | 
|  | u64 next_tx_frame; | 
|  | enum cvmx_usb_pipe_flags flags; | 
|  | enum cvmx_usb_speed device_speed; | 
|  | enum cvmx_usb_transfer transfer_type; | 
|  | enum cvmx_usb_direction transfer_dir; | 
|  | int multi_count; | 
|  | u16 max_packet; | 
|  | u8 device_addr; | 
|  | u8 endpoint_num; | 
|  | u8 hub_device_addr; | 
|  | u8 hub_port; | 
|  | u8 pid_toggle; | 
|  | u8 channel; | 
|  | s8 split_sc_frame; | 
|  | }; | 
|  |  | 
|  | struct cvmx_usb_tx_fifo { | 
|  | struct { | 
|  | int channel; | 
|  | int size; | 
|  | u64 address; | 
|  | } entry[MAX_CHANNELS + 1]; | 
|  | int head; | 
|  | int tail; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct octeon_hcd - the state of the USB block | 
|  | * | 
|  | * lock:		   Serialization lock. | 
|  | * init_flags:		   Flags passed to initialize. | 
|  | * index:		   Which USB block this is for. | 
|  | * idle_hardware_channels: Bit set for every idle hardware channel. | 
|  | * usbcx_hprt:		   Stored port status so we don't need to read a CSR to | 
|  | *			   determine splits. | 
|  | * pipe_for_channel:	   Map channels to pipes. | 
|  | * pipe:		   Storage for pipes. | 
|  | * indent:		   Used by debug output to indent functions. | 
|  | * port_status:		   Last port status used for change notification. | 
|  | * idle_pipes:		   List of open pipes that have no transactions. | 
|  | * active_pipes:	   Active pipes indexed by transfer type. | 
|  | * frame_number:	   Increments every SOF interrupt for time keeping. | 
|  | * active_split:	   Points to the current active split, or NULL. | 
|  | */ | 
|  | struct octeon_hcd { | 
|  | spinlock_t lock; /* serialization lock */ | 
|  | int init_flags; | 
|  | int index; | 
|  | int idle_hardware_channels; | 
|  | union cvmx_usbcx_hprt usbcx_hprt; | 
|  | struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS]; | 
|  | int indent; | 
|  | struct cvmx_usb_port_status port_status; | 
|  | struct list_head idle_pipes; | 
|  | struct list_head active_pipes[4]; | 
|  | u64 frame_number; | 
|  | struct cvmx_usb_transaction *active_split; | 
|  | struct cvmx_usb_tx_fifo periodic; | 
|  | struct cvmx_usb_tx_fifo nonperiodic; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This macro logically sets a single field in a CSR. It does the sequence | 
|  | * read, modify, and write | 
|  | */ | 
|  | #define USB_SET_FIELD32(address, _union, field, value)		\ | 
|  | do {							\ | 
|  | union _union c;					\ | 
|  | \ | 
|  | c.u32 = cvmx_usb_read_csr32(usb, address);	\ | 
|  | c.s.field = value;				\ | 
|  | cvmx_usb_write_csr32(usb, address, c.u32);	\ | 
|  | } while (0) | 
|  |  | 
|  | /* Returns the IO address to push/pop stuff data from the FIFOs */ | 
|  | #define USB_FIFO_ADDRESS(channel, usb_index) \ | 
|  | (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000) | 
|  |  | 
|  | /** | 
|  | * struct octeon_temp_buffer - a bounce buffer for USB transfers | 
|  | * @orig_buffer: the original buffer passed by the USB stack | 
|  | * @data:	 the newly allocated temporary buffer (excluding meta-data) | 
|  | * | 
|  | * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If | 
|  | * the buffer is too short, we need to allocate a temporary one, and this struct | 
|  | * represents it. | 
|  | */ | 
|  | struct octeon_temp_buffer { | 
|  | void *orig_buffer; | 
|  | u8 data[]; | 
|  | }; | 
|  |  | 
|  | static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p) | 
|  | { | 
|  | return container_of((void *)p, struct usb_hcd, hcd_priv); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer | 
|  | *                            (if needed) | 
|  | * @urb:	URB. | 
|  | * @mem_flags:	Memory allocation flags. | 
|  | * | 
|  | * This function allocates a temporary bounce buffer whenever it's needed | 
|  | * due to HW limitations. | 
|  | */ | 
|  | static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags) | 
|  | { | 
|  | struct octeon_temp_buffer *temp; | 
|  |  | 
|  | if (urb->num_sgs || urb->sg || | 
|  | (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) || | 
|  | !(urb->transfer_buffer_length % sizeof(u32))) | 
|  | return 0; | 
|  |  | 
|  | temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) + | 
|  | sizeof(*temp), mem_flags); | 
|  | if (!temp) | 
|  | return -ENOMEM; | 
|  |  | 
|  | temp->orig_buffer = urb->transfer_buffer; | 
|  | if (usb_urb_dir_out(urb)) | 
|  | memcpy(temp->data, urb->transfer_buffer, | 
|  | urb->transfer_buffer_length); | 
|  | urb->transfer_buffer = temp->data; | 
|  | urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * octeon_free_temp_buffer - free a temporary buffer used by USB transfers. | 
|  | * @urb: URB. | 
|  | * | 
|  | * Frees a buffer allocated by octeon_alloc_temp_buffer(). | 
|  | */ | 
|  | static void octeon_free_temp_buffer(struct urb *urb) | 
|  | { | 
|  | struct octeon_temp_buffer *temp; | 
|  | size_t length; | 
|  |  | 
|  | if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) | 
|  | return; | 
|  |  | 
|  | temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer, | 
|  | data); | 
|  | if (usb_urb_dir_in(urb)) { | 
|  | if (usb_pipeisoc(urb->pipe)) | 
|  | length = urb->transfer_buffer_length; | 
|  | else | 
|  | length = urb->actual_length; | 
|  |  | 
|  | memcpy(temp->orig_buffer, urb->transfer_buffer, length); | 
|  | } | 
|  | urb->transfer_buffer = temp->orig_buffer; | 
|  | urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; | 
|  | kfree(temp); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma(). | 
|  | * @hcd:	USB HCD structure. | 
|  | * @urb:	URB. | 
|  | * @mem_flags:	Memory allocation flags. | 
|  | */ | 
|  | static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = octeon_alloc_temp_buffer(urb, mem_flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); | 
|  | if (ret) | 
|  | octeon_free_temp_buffer(urb); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma() | 
|  | * @hcd:	USB HCD structure. | 
|  | * @urb:	URB. | 
|  | */ | 
|  | static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) | 
|  | { | 
|  | usb_hcd_unmap_urb_for_dma(hcd, urb); | 
|  | octeon_free_temp_buffer(urb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Read a USB 32bit CSR. It performs the necessary address swizzle | 
|  | * for 32bit CSRs and logs the value in a readable format if | 
|  | * debugging is on. | 
|  | * | 
|  | * @usb:     USB block this access is for | 
|  | * @address: 64bit address to read | 
|  | * | 
|  | * Returns: Result of the read | 
|  | */ | 
|  | static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address) | 
|  | { | 
|  | return cvmx_read64_uint32(address ^ 4); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Write a USB 32bit CSR. It performs the necessary address | 
|  | * swizzle for 32bit CSRs and logs the value in a readable format | 
|  | * if debugging is on. | 
|  | * | 
|  | * @usb:     USB block this access is for | 
|  | * @address: 64bit address to write | 
|  | * @value:   Value to write | 
|  | */ | 
|  | static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb, | 
|  | u64 address, u32 value) | 
|  | { | 
|  | cvmx_write64_uint32(address ^ 4, value); | 
|  | cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return non zero if this pipe connects to a non HIGH speed | 
|  | * device through a high speed hub. | 
|  | * | 
|  | * @usb:    USB block this access is for | 
|  | * @pipe:   Pipe to check | 
|  | * | 
|  | * Returns: Non zero if we need to do split transactions | 
|  | */ | 
|  | static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe) | 
|  | { | 
|  | return pipe->device_speed != CVMX_USB_SPEED_HIGH && | 
|  | usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Trivial utility function to return the correct PID for a pipe | 
|  | * | 
|  | * @pipe:   pipe to check | 
|  | * | 
|  | * Returns: PID for pipe | 
|  | */ | 
|  | static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe) | 
|  | { | 
|  | if (pipe->pid_toggle) | 
|  | return 2; /* Data1 */ | 
|  | return 0; /* Data0 */ | 
|  | } | 
|  |  | 
|  | /* Loops through register until txfflsh or rxfflsh become zero.*/ | 
|  | static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type) | 
|  | { | 
|  | int result; | 
|  | u64 address = CVMX_USBCX_GRSTCTL(usb->index); | 
|  | u64 done = cvmx_get_cycle() + 100 * | 
|  | (u64)octeon_get_clock_rate / 1000000; | 
|  | union cvmx_usbcx_grstctl c; | 
|  |  | 
|  | while (1) { | 
|  | c.u32 = cvmx_usb_read_csr32(usb, address); | 
|  | if (fflsh_type == 0 && c.s.txfflsh == 0) { | 
|  | result = 0; | 
|  | break; | 
|  | } else if (fflsh_type == 1 && c.s.rxfflsh == 0) { | 
|  | result = 0; | 
|  | break; | 
|  | } else if (cvmx_get_cycle() > done) { | 
|  | result = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | __delay(100); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void cvmx_fifo_setup(struct octeon_hcd *usb) | 
|  | { | 
|  | union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3; | 
|  | union cvmx_usbcx_gnptxfsiz npsiz; | 
|  | union cvmx_usbcx_hptxfsiz psiz; | 
|  |  | 
|  | usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_GHWCFG3(usb->index)); | 
|  |  | 
|  | /* | 
|  | * Program the USBC_GRXFSIZ register to select the size of the receive | 
|  | * FIFO (25%). | 
|  | */ | 
|  | USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz, | 
|  | rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4); | 
|  |  | 
|  | /* | 
|  | * Program the USBC_GNPTXFSIZ register to select the size and the start | 
|  | * address of the non-periodic transmit FIFO for nonperiodic | 
|  | * transactions (50%). | 
|  | */ | 
|  | npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index)); | 
|  | npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2; | 
|  | npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4; | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32); | 
|  |  | 
|  | /* | 
|  | * Program the USBC_HPTXFSIZ register to select the size and start | 
|  | * address of the periodic transmit FIFO for periodic transactions | 
|  | * (25%). | 
|  | */ | 
|  | psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index)); | 
|  | psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4; | 
|  | psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4; | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32); | 
|  |  | 
|  | /* Flush all FIFOs */ | 
|  | USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), | 
|  | cvmx_usbcx_grstctl, txfnum, 0x10); | 
|  | USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), | 
|  | cvmx_usbcx_grstctl, txfflsh, 1); | 
|  | cvmx_wait_tx_rx(usb, 0); | 
|  | USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), | 
|  | cvmx_usbcx_grstctl, rxfflsh, 1); | 
|  | cvmx_wait_tx_rx(usb, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Shutdown a USB port after a call to cvmx_usb_initialize(). | 
|  | * The port should be disabled with all pipes closed when this | 
|  | * function is called. | 
|  | * | 
|  | * @usb: USB device state populated by cvmx_usb_initialize(). | 
|  | * | 
|  | * Returns: 0 or a negative error code. | 
|  | */ | 
|  | static int cvmx_usb_shutdown(struct octeon_hcd *usb) | 
|  | { | 
|  | union cvmx_usbnx_clk_ctl usbn_clk_ctl; | 
|  |  | 
|  | /* Make sure all pipes are closed */ | 
|  | if (!list_empty(&usb->idle_pipes) || | 
|  | !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) || | 
|  | !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) || | 
|  | !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) || | 
|  | !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK])) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Disable the clocks and put them in power on reset */ | 
|  | usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index)); | 
|  | usbn_clk_ctl.s.enable = 1; | 
|  | usbn_clk_ctl.s.por = 1; | 
|  | usbn_clk_ctl.s.hclk_rst = 1; | 
|  | usbn_clk_ctl.s.prst = 0; | 
|  | usbn_clk_ctl.s.hrst = 0; | 
|  | cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Initialize a USB port for use. This must be called before any | 
|  | * other access to the Octeon USB port is made. The port starts | 
|  | * off in the disabled state. | 
|  | * | 
|  | * @dev:	 Pointer to struct device for logging purposes. | 
|  | * @usb:	 Pointer to struct octeon_hcd. | 
|  | * | 
|  | * Returns: 0 or a negative error code. | 
|  | */ | 
|  | static int cvmx_usb_initialize(struct device *dev, | 
|  | struct octeon_hcd *usb) | 
|  | { | 
|  | int channel; | 
|  | int divisor; | 
|  | int retries = 0; | 
|  | union cvmx_usbcx_hcfg usbcx_hcfg; | 
|  | union cvmx_usbnx_clk_ctl usbn_clk_ctl; | 
|  | union cvmx_usbcx_gintsts usbc_gintsts; | 
|  | union cvmx_usbcx_gahbcfg usbcx_gahbcfg; | 
|  | union cvmx_usbcx_gintmsk usbcx_gintmsk; | 
|  | union cvmx_usbcx_gusbcfg usbcx_gusbcfg; | 
|  | union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status; | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Power On Reset and PHY Initialization | 
|  | * | 
|  | * 1. Wait for DCOK to assert (nothing to do) | 
|  | * | 
|  | * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and | 
|  | *     USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0 | 
|  | */ | 
|  | usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index)); | 
|  | usbn_clk_ctl.s.por = 1; | 
|  | usbn_clk_ctl.s.hrst = 0; | 
|  | usbn_clk_ctl.s.prst = 0; | 
|  | usbn_clk_ctl.s.hclk_rst = 0; | 
|  | usbn_clk_ctl.s.enable = 0; | 
|  | /* | 
|  | * 2b. Select the USB reference clock/crystal parameters by writing | 
|  | *     appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON] | 
|  | */ | 
|  | if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) { | 
|  | /* | 
|  | * The USB port uses 12/24/48MHz 2.5V board clock | 
|  | * source at USB_XO. USB_XI should be tied to GND. | 
|  | * Most Octeon evaluation boards require this setting | 
|  | */ | 
|  | if (OCTEON_IS_MODEL(OCTEON_CN3XXX) || | 
|  | OCTEON_IS_MODEL(OCTEON_CN56XX) || | 
|  | OCTEON_IS_MODEL(OCTEON_CN50XX)) | 
|  | /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */ | 
|  | usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */ | 
|  | else | 
|  | /* From CN52XX manual */ | 
|  | usbn_clk_ctl.s.p_rtype = 1; | 
|  |  | 
|  | switch (usb->init_flags & | 
|  | CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) { | 
|  | case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: | 
|  | usbn_clk_ctl.s.p_c_sel = 0; | 
|  | break; | 
|  | case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: | 
|  | usbn_clk_ctl.s.p_c_sel = 1; | 
|  | break; | 
|  | case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: | 
|  | usbn_clk_ctl.s.p_c_sel = 2; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * The USB port uses a 12MHz crystal as clock source | 
|  | * at USB_XO and USB_XI | 
|  | */ | 
|  | if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) | 
|  | /* From CN31XX,CN30XX manual */ | 
|  | usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */ | 
|  | else | 
|  | /* From CN56XX,CN52XX,CN50XX manuals. */ | 
|  | usbn_clk_ctl.s.p_rtype = 0; | 
|  |  | 
|  | usbn_clk_ctl.s.p_c_sel = 0; | 
|  | } | 
|  | /* | 
|  | * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and | 
|  | *     setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down | 
|  | *     such that USB is as close as possible to 125Mhz | 
|  | */ | 
|  | divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000); | 
|  | /* Lower than 4 doesn't seem to work properly */ | 
|  | if (divisor < 4) | 
|  | divisor = 4; | 
|  | usbn_clk_ctl.s.divide = divisor; | 
|  | usbn_clk_ctl.s.divide2 = 0; | 
|  | cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); | 
|  |  | 
|  | /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */ | 
|  | usbn_clk_ctl.s.hclk_rst = 1; | 
|  | cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); | 
|  | /* 2e.  Wait 64 core-clock cycles for HCLK to stabilize */ | 
|  | __delay(64); | 
|  | /* | 
|  | * 3. Program the power-on reset field in the USBN clock-control | 
|  | *    register: | 
|  | *    USBN_CLK_CTL[POR] = 0 | 
|  | */ | 
|  | usbn_clk_ctl.s.por = 0; | 
|  | cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); | 
|  | /* 4. Wait 1 ms for PHY clock to start */ | 
|  | mdelay(1); | 
|  | /* | 
|  | * 5. Program the Reset input from automatic test equipment field in the | 
|  | *    USBP control and status register: | 
|  | *    USBN_USBP_CTL_STATUS[ATE_RESET] = 1 | 
|  | */ | 
|  | usbn_usbp_ctl_status.u64 = | 
|  | cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index)); | 
|  | usbn_usbp_ctl_status.s.ate_reset = 1; | 
|  | cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), | 
|  | usbn_usbp_ctl_status.u64); | 
|  | /* 6. Wait 10 cycles */ | 
|  | __delay(10); | 
|  | /* | 
|  | * 7. Clear ATE_RESET field in the USBN clock-control register: | 
|  | *    USBN_USBP_CTL_STATUS[ATE_RESET] = 0 | 
|  | */ | 
|  | usbn_usbp_ctl_status.s.ate_reset = 0; | 
|  | cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), | 
|  | usbn_usbp_ctl_status.u64); | 
|  | /* | 
|  | * 8. Program the PHY reset field in the USBN clock-control register: | 
|  | *    USBN_CLK_CTL[PRST] = 1 | 
|  | */ | 
|  | usbn_clk_ctl.s.prst = 1; | 
|  | cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); | 
|  | /* | 
|  | * 9. Program the USBP control and status register to select host or | 
|  | *    device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for | 
|  | *    device | 
|  | */ | 
|  | usbn_usbp_ctl_status.s.hst_mode = 0; | 
|  | cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), | 
|  | usbn_usbp_ctl_status.u64); | 
|  | /* 10. Wait 1 us */ | 
|  | udelay(1); | 
|  | /* | 
|  | * 11. Program the hreset_n field in the USBN clock-control register: | 
|  | *     USBN_CLK_CTL[HRST] = 1 | 
|  | */ | 
|  | usbn_clk_ctl.s.hrst = 1; | 
|  | cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); | 
|  | /* 12. Proceed to USB core initialization */ | 
|  | usbn_clk_ctl.s.enable = 1; | 
|  | cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); | 
|  | udelay(1); | 
|  |  | 
|  | /* | 
|  | * USB Core Initialization | 
|  | * | 
|  | * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to | 
|  | *    determine USB core configuration parameters. | 
|  | * | 
|  | *    Nothing needed | 
|  | * | 
|  | * 2. Program the following fields in the global AHB configuration | 
|  | *    register (USBC_GAHBCFG) | 
|  | *    DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode | 
|  | *    Burst length, USBC_GAHBCFG[HBSTLEN] = 0 | 
|  | *    Nonperiodic TxFIFO empty level (slave mode only), | 
|  | *    USBC_GAHBCFG[NPTXFEMPLVL] | 
|  | *    Periodic TxFIFO empty level (slave mode only), | 
|  | *    USBC_GAHBCFG[PTXFEMPLVL] | 
|  | *    Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1 | 
|  | */ | 
|  | usbcx_gahbcfg.u32 = 0; | 
|  | usbcx_gahbcfg.s.dmaen = !(usb->init_flags & | 
|  | CVMX_USB_INITIALIZE_FLAGS_NO_DMA); | 
|  | usbcx_gahbcfg.s.hbstlen = 0; | 
|  | usbcx_gahbcfg.s.nptxfemplvl = 1; | 
|  | usbcx_gahbcfg.s.ptxfemplvl = 1; | 
|  | usbcx_gahbcfg.s.glblintrmsk = 1; | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index), | 
|  | usbcx_gahbcfg.u32); | 
|  |  | 
|  | /* | 
|  | * 3. Program the following fields in USBC_GUSBCFG register. | 
|  | *    HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0 | 
|  | *    ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0 | 
|  | *    USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5 | 
|  | *    PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0 | 
|  | */ | 
|  | usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_GUSBCFG(usb->index)); | 
|  | usbcx_gusbcfg.s.toutcal = 0; | 
|  | usbcx_gusbcfg.s.ddrsel = 0; | 
|  | usbcx_gusbcfg.s.usbtrdtim = 0x5; | 
|  | usbcx_gusbcfg.s.phylpwrclksel = 0; | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index), | 
|  | usbcx_gusbcfg.u32); | 
|  |  | 
|  | /* | 
|  | * 4. The software must unmask the following bits in the USBC_GINTMSK | 
|  | *    register. | 
|  | *    OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1 | 
|  | *    Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1 | 
|  | */ | 
|  | usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_GINTMSK(usb->index)); | 
|  | usbcx_gintmsk.s.otgintmsk = 1; | 
|  | usbcx_gintmsk.s.modemismsk = 1; | 
|  | usbcx_gintmsk.s.hchintmsk = 1; | 
|  | usbcx_gintmsk.s.sofmsk = 0; | 
|  | /* We need RX FIFO interrupts if we don't have DMA */ | 
|  | if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) | 
|  | usbcx_gintmsk.s.rxflvlmsk = 1; | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index), | 
|  | usbcx_gintmsk.u32); | 
|  |  | 
|  | /* | 
|  | * Disable all channel interrupts. We'll enable them per channel later. | 
|  | */ | 
|  | for (channel = 0; channel < 8; channel++) | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCINTMSKX(channel, usb->index), | 
|  | 0); | 
|  |  | 
|  | /* | 
|  | * Host Port Initialization | 
|  | * | 
|  | * 1. Program the host-port interrupt-mask field to unmask, | 
|  | *    USBC_GINTMSK[PRTINT] = 1 | 
|  | */ | 
|  | USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), | 
|  | cvmx_usbcx_gintmsk, prtintmsk, 1); | 
|  | USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), | 
|  | cvmx_usbcx_gintmsk, disconnintmsk, 1); | 
|  |  | 
|  | /* | 
|  | * 2. Program the USBC_HCFG register to select full-speed host | 
|  | *    or high-speed host. | 
|  | */ | 
|  | usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index)); | 
|  | usbcx_hcfg.s.fslssupp = 0; | 
|  | usbcx_hcfg.s.fslspclksel = 0; | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32); | 
|  |  | 
|  | cvmx_fifo_setup(usb); | 
|  |  | 
|  | /* | 
|  | * If the controller is getting port events right after the reset, it | 
|  | * means the initialization failed. Try resetting the controller again | 
|  | * in such case. This is seen to happen after cold boot on DSR-1000N. | 
|  | */ | 
|  | usbc_gintsts.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_GINTSTS(usb->index)); | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), | 
|  | usbc_gintsts.u32); | 
|  | dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32); | 
|  | if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint) | 
|  | return 0; | 
|  | if (retries++ >= 5) | 
|  | return -EAGAIN; | 
|  | dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n", | 
|  | (int)usbc_gintsts.u32); | 
|  | msleep(50); | 
|  | cvmx_usb_shutdown(usb); | 
|  | msleep(50); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Reset a USB port. After this call succeeds, the USB port is | 
|  | * online and servicing requests. | 
|  | * | 
|  | * @usb: USB device state populated by cvmx_usb_initialize(). | 
|  | */ | 
|  | static void cvmx_usb_reset_port(struct octeon_hcd *usb) | 
|  | { | 
|  | usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HPRT(usb->index)); | 
|  |  | 
|  | /* Program the port reset bit to start the reset process */ | 
|  | USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, | 
|  | prtrst, 1); | 
|  |  | 
|  | /* | 
|  | * Wait at least 50ms (high speed), or 10ms (full speed) for the reset | 
|  | * process to complete. | 
|  | */ | 
|  | mdelay(50); | 
|  |  | 
|  | /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */ | 
|  | USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, | 
|  | prtrst, 0); | 
|  |  | 
|  | /* | 
|  | * Read the port speed field to get the enumerated speed, | 
|  | * USBC_HPRT[PRTSPD]. | 
|  | */ | 
|  | usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HPRT(usb->index)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Disable a USB port. After this call the USB port will not | 
|  | * generate data transfers and will not generate events. | 
|  | * Transactions in process will fail and call their | 
|  | * associated callbacks. | 
|  | * | 
|  | * @usb: USB device state populated by cvmx_usb_initialize(). | 
|  | * | 
|  | * Returns: 0 or a negative error code. | 
|  | */ | 
|  | static int cvmx_usb_disable(struct octeon_hcd *usb) | 
|  | { | 
|  | /* Disable the port */ | 
|  | USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, | 
|  | prtena, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the current state of the USB port. Use this call to | 
|  | * determine if the usb port has anything connected, is enabled, | 
|  | * or has some sort of error condition. The return value of this | 
|  | * call has "changed" bits to signal of the value of some fields | 
|  | * have changed between calls. | 
|  | * | 
|  | * @usb: USB device state populated by cvmx_usb_initialize(). | 
|  | * | 
|  | * Returns: Port status information | 
|  | */ | 
|  | static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb) | 
|  | { | 
|  | union cvmx_usbcx_hprt usbc_hprt; | 
|  | struct cvmx_usb_port_status result; | 
|  |  | 
|  | memset(&result, 0, sizeof(result)); | 
|  |  | 
|  | usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); | 
|  | result.port_enabled = usbc_hprt.s.prtena; | 
|  | result.port_over_current = usbc_hprt.s.prtovrcurract; | 
|  | result.port_powered = usbc_hprt.s.prtpwr; | 
|  | result.port_speed = usbc_hprt.s.prtspd; | 
|  | result.connected = usbc_hprt.s.prtconnsts; | 
|  | result.connect_change = | 
|  | result.connected != usb->port_status.connected; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Open a virtual pipe between the host and a USB device. A pipe | 
|  | * must be opened before data can be transferred between a device | 
|  | * and Octeon. | 
|  | * | 
|  | * @usb:	     USB device state populated by cvmx_usb_initialize(). | 
|  | * @device_addr: | 
|  | *		     USB device address to open the pipe to | 
|  | *		     (0-127). | 
|  | * @endpoint_num: | 
|  | *		     USB endpoint number to open the pipe to | 
|  | *		     (0-15). | 
|  | * @device_speed: | 
|  | *		     The speed of the device the pipe is going | 
|  | *		     to. This must match the device's speed, | 
|  | *		     which may be different than the port speed. | 
|  | * @max_packet:	     The maximum packet length the device can | 
|  | *		     transmit/receive (low speed=0-8, full | 
|  | *		     speed=0-1023, high speed=0-1024). This value | 
|  | *		     comes from the standard endpoint descriptor | 
|  | *		     field wMaxPacketSize bits <10:0>. | 
|  | * @transfer_type: | 
|  | *		     The type of transfer this pipe is for. | 
|  | * @transfer_dir: | 
|  | *		     The direction the pipe is in. This is not | 
|  | *		     used for control pipes. | 
|  | * @interval:	     For ISOCHRONOUS and INTERRUPT transfers, | 
|  | *		     this is how often the transfer is scheduled | 
|  | *		     for. All other transfers should specify | 
|  | *		     zero. The units are in frames (8000/sec at | 
|  | *		     high speed, 1000/sec for full speed). | 
|  | * @multi_count: | 
|  | *		     For high speed devices, this is the maximum | 
|  | *		     allowed number of packet per microframe. | 
|  | *		     Specify zero for non high speed devices. This | 
|  | *		     value comes from the standard endpoint descriptor | 
|  | *		     field wMaxPacketSize bits <12:11>. | 
|  | * @hub_device_addr: | 
|  | *		     Hub device address this device is connected | 
|  | *		     to. Devices connected directly to Octeon | 
|  | *		     use zero. This is only used when the device | 
|  | *		     is full/low speed behind a high speed hub. | 
|  | *		     The address will be of the high speed hub, | 
|  | *		     not and full speed hubs after it. | 
|  | * @hub_port:	     Which port on the hub the device is | 
|  | *		     connected. Use zero for devices connected | 
|  | *		     directly to Octeon. Like hub_device_addr, | 
|  | *		     this is only used for full/low speed | 
|  | *		     devices behind a high speed hub. | 
|  | * | 
|  | * Returns: A non-NULL value is a pipe. NULL means an error. | 
|  | */ | 
|  | static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb, | 
|  | int device_addr, | 
|  | int endpoint_num, | 
|  | enum cvmx_usb_speed | 
|  | device_speed, | 
|  | int max_packet, | 
|  | enum cvmx_usb_transfer | 
|  | transfer_type, | 
|  | enum cvmx_usb_direction | 
|  | transfer_dir, | 
|  | int interval, int multi_count, | 
|  | int hub_device_addr, | 
|  | int hub_port) | 
|  | { | 
|  | struct cvmx_usb_pipe *pipe; | 
|  |  | 
|  | pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC); | 
|  | if (!pipe) | 
|  | return NULL; | 
|  | if ((device_speed == CVMX_USB_SPEED_HIGH) && | 
|  | (transfer_dir == CVMX_USB_DIRECTION_OUT) && | 
|  | (transfer_type == CVMX_USB_TRANSFER_BULK)) | 
|  | pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; | 
|  | pipe->device_addr = device_addr; | 
|  | pipe->endpoint_num = endpoint_num; | 
|  | pipe->device_speed = device_speed; | 
|  | pipe->max_packet = max_packet; | 
|  | pipe->transfer_type = transfer_type; | 
|  | pipe->transfer_dir = transfer_dir; | 
|  | INIT_LIST_HEAD(&pipe->transactions); | 
|  |  | 
|  | /* | 
|  | * All pipes use interval to rate limit NAK processing. Force an | 
|  | * interval if one wasn't supplied | 
|  | */ | 
|  | if (!interval) | 
|  | interval = 1; | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | pipe->interval = interval * 8; | 
|  | /* Force start splits to be schedule on uFrame 0 */ | 
|  | pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) + | 
|  | pipe->interval; | 
|  | } else { | 
|  | pipe->interval = interval; | 
|  | pipe->next_tx_frame = usb->frame_number + pipe->interval; | 
|  | } | 
|  | pipe->multi_count = multi_count; | 
|  | pipe->hub_device_addr = hub_device_addr; | 
|  | pipe->hub_port = hub_port; | 
|  | pipe->pid_toggle = 0; | 
|  | pipe->split_sc_frame = -1; | 
|  | list_add_tail(&pipe->node, &usb->idle_pipes); | 
|  |  | 
|  | /* | 
|  | * We don't need to tell the hardware about this pipe yet since | 
|  | * it doesn't have any submitted requests | 
|  | */ | 
|  |  | 
|  | return pipe; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Poll the RX FIFOs and remove data as needed. This function is only used | 
|  | * in non DMA mode. It is very important that this function be called quickly | 
|  | * enough to prevent FIFO overflow. | 
|  | * | 
|  | * @usb:	USB device state populated by cvmx_usb_initialize(). | 
|  | */ | 
|  | static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb) | 
|  | { | 
|  | union cvmx_usbcx_grxstsph rx_status; | 
|  | int channel; | 
|  | int bytes; | 
|  | u64 address; | 
|  | u32 *ptr; | 
|  |  | 
|  | rx_status.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_GRXSTSPH(usb->index)); | 
|  | /* Only read data if IN data is there */ | 
|  | if (rx_status.s.pktsts != 2) | 
|  | return; | 
|  | /* Check if no data is available */ | 
|  | if (!rx_status.s.bcnt) | 
|  | return; | 
|  |  | 
|  | channel = rx_status.s.chnum; | 
|  | bytes = rx_status.s.bcnt; | 
|  | if (!bytes) | 
|  | return; | 
|  |  | 
|  | /* Get where the DMA engine would have written this data */ | 
|  | address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + | 
|  | channel * 8); | 
|  |  | 
|  | ptr = cvmx_phys_to_ptr(address); | 
|  | cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8, | 
|  | address + bytes); | 
|  |  | 
|  | /* Loop writing the FIFO data for this packet into memory */ | 
|  | while (bytes > 0) { | 
|  | *ptr++ = cvmx_usb_read_csr32(usb, | 
|  | USB_FIFO_ADDRESS(channel, usb->index)); | 
|  | bytes -= 4; | 
|  | } | 
|  | CVMX_SYNCW; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Fill the TX hardware fifo with data out of the software | 
|  | * fifos | 
|  | * | 
|  | * @usb:	    USB device state populated by cvmx_usb_initialize(). | 
|  | * @fifo:	    Software fifo to use | 
|  | * @available:	    Amount of space in the hardware fifo | 
|  | * | 
|  | * Returns: Non zero if the hardware fifo was too small and needs | 
|  | *	    to be serviced again. | 
|  | */ | 
|  | static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_tx_fifo *fifo, int available) | 
|  | { | 
|  | /* | 
|  | * We're done either when there isn't anymore space or the software FIFO | 
|  | * is empty | 
|  | */ | 
|  | while (available && (fifo->head != fifo->tail)) { | 
|  | int i = fifo->tail; | 
|  | const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address); | 
|  | u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel, | 
|  | usb->index) ^ 4; | 
|  | int words = available; | 
|  |  | 
|  | /* Limit the amount of data to what the SW fifo has */ | 
|  | if (fifo->entry[i].size <= available) { | 
|  | words = fifo->entry[i].size; | 
|  | fifo->tail++; | 
|  | if (fifo->tail > MAX_CHANNELS) | 
|  | fifo->tail = 0; | 
|  | } | 
|  |  | 
|  | /* Update the next locations and counts */ | 
|  | available -= words; | 
|  | fifo->entry[i].address += words * 4; | 
|  | fifo->entry[i].size -= words; | 
|  |  | 
|  | /* | 
|  | * Write the HW fifo data. The read every three writes is due | 
|  | * to an errata on CN3XXX chips | 
|  | */ | 
|  | while (words > 3) { | 
|  | cvmx_write64_uint32(csr_address, *ptr++); | 
|  | cvmx_write64_uint32(csr_address, *ptr++); | 
|  | cvmx_write64_uint32(csr_address, *ptr++); | 
|  | cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); | 
|  | words -= 3; | 
|  | } | 
|  | cvmx_write64_uint32(csr_address, *ptr++); | 
|  | if (--words) { | 
|  | cvmx_write64_uint32(csr_address, *ptr++); | 
|  | if (--words) | 
|  | cvmx_write64_uint32(csr_address, *ptr++); | 
|  | } | 
|  | cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); | 
|  | } | 
|  | return fifo->head != fifo->tail; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Check the hardware FIFOs and fill them as needed | 
|  | * | 
|  | * @usb:	USB device state populated by cvmx_usb_initialize(). | 
|  | */ | 
|  | static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb) | 
|  | { | 
|  | if (usb->periodic.head != usb->periodic.tail) { | 
|  | union cvmx_usbcx_hptxsts tx_status; | 
|  |  | 
|  | tx_status.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HPTXSTS(usb->index)); | 
|  | if (cvmx_usb_fill_tx_hw(usb, &usb->periodic, | 
|  | tx_status.s.ptxfspcavail)) | 
|  | USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), | 
|  | cvmx_usbcx_gintmsk, ptxfempmsk, 1); | 
|  | else | 
|  | USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), | 
|  | cvmx_usbcx_gintmsk, ptxfempmsk, 0); | 
|  | } | 
|  |  | 
|  | if (usb->nonperiodic.head != usb->nonperiodic.tail) { | 
|  | union cvmx_usbcx_gnptxsts tx_status; | 
|  |  | 
|  | tx_status.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_GNPTXSTS(usb->index)); | 
|  | if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic, | 
|  | tx_status.s.nptxfspcavail)) | 
|  | USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), | 
|  | cvmx_usbcx_gintmsk, nptxfempmsk, 1); | 
|  | else | 
|  | USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), | 
|  | cvmx_usbcx_gintmsk, nptxfempmsk, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Fill the TX FIFO with an outgoing packet | 
|  | * | 
|  | * @usb:	  USB device state populated by cvmx_usb_initialize(). | 
|  | * @channel:	  Channel number to get packet from | 
|  | */ | 
|  | static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel) | 
|  | { | 
|  | union cvmx_usbcx_hccharx hcchar; | 
|  | union cvmx_usbcx_hcspltx usbc_hcsplt; | 
|  | union cvmx_usbcx_hctsizx usbc_hctsiz; | 
|  | struct cvmx_usb_tx_fifo *fifo; | 
|  |  | 
|  | /* We only need to fill data on outbound channels */ | 
|  | hcchar.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCCHARX(channel, usb->index)); | 
|  | if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT) | 
|  | return; | 
|  |  | 
|  | /* OUT Splits only have data on the start and not the complete */ | 
|  | usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCSPLTX(channel, usb->index)); | 
|  | if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Find out how many bytes we need to fill and convert it into 32bit | 
|  | * words. | 
|  | */ | 
|  | usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCTSIZX(channel, usb->index)); | 
|  | if (!usbc_hctsiz.s.xfersize) | 
|  | return; | 
|  |  | 
|  | if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) || | 
|  | (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS)) | 
|  | fifo = &usb->periodic; | 
|  | else | 
|  | fifo = &usb->nonperiodic; | 
|  |  | 
|  | fifo->entry[fifo->head].channel = channel; | 
|  | fifo->entry[fifo->head].address = | 
|  | cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + | 
|  | channel * 8); | 
|  | fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2; | 
|  | fifo->head++; | 
|  | if (fifo->head > MAX_CHANNELS) | 
|  | fifo->head = 0; | 
|  |  | 
|  | cvmx_usb_poll_tx_fifo(usb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Perform channel specific setup for Control transactions. All | 
|  | * the generic stuff will already have been done in cvmx_usb_start_channel(). | 
|  | * | 
|  | * @usb:	  USB device state populated by cvmx_usb_initialize(). | 
|  | * @channel:	  Channel to setup | 
|  | * @pipe:	  Pipe for control transaction | 
|  | */ | 
|  | static void cvmx_usb_start_channel_control(struct octeon_hcd *usb, | 
|  | int channel, | 
|  | struct cvmx_usb_pipe *pipe) | 
|  | { | 
|  | struct usb_hcd *hcd = octeon_to_hcd(usb); | 
|  | struct device *dev = hcd->self.controller; | 
|  | struct cvmx_usb_transaction *transaction = | 
|  | list_first_entry(&pipe->transactions, typeof(*transaction), | 
|  | node); | 
|  | struct usb_ctrlrequest *header = | 
|  | cvmx_phys_to_ptr(transaction->control_header); | 
|  | int bytes_to_transfer = transaction->buffer_length - | 
|  | transaction->actual_bytes; | 
|  | int packets_to_transfer; | 
|  | union cvmx_usbcx_hctsizx usbc_hctsiz; | 
|  |  | 
|  | usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCTSIZX(channel, usb->index)); | 
|  |  | 
|  | switch (transaction->stage) { | 
|  | case CVMX_USB_STAGE_NON_CONTROL: | 
|  | case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE: | 
|  | dev_err(dev, "%s: ERROR - Non control stage\n", __func__); | 
|  | break; | 
|  | case CVMX_USB_STAGE_SETUP: | 
|  | usbc_hctsiz.s.pid = 3; /* Setup */ | 
|  | bytes_to_transfer = sizeof(*header); | 
|  | /* All Control operations start with a setup going OUT */ | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), | 
|  | cvmx_usbcx_hccharx, epdir, | 
|  | CVMX_USB_DIRECTION_OUT); | 
|  | /* | 
|  | * Setup send the control header instead of the buffer data. The | 
|  | * buffer data will be used in the next stage | 
|  | */ | 
|  | cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + | 
|  | channel * 8, | 
|  | transaction->control_header); | 
|  | break; | 
|  | case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE: | 
|  | usbc_hctsiz.s.pid = 3; /* Setup */ | 
|  | bytes_to_transfer = 0; | 
|  | /* All Control operations start with a setup going OUT */ | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), | 
|  | cvmx_usbcx_hccharx, epdir, | 
|  | CVMX_USB_DIRECTION_OUT); | 
|  |  | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), | 
|  | cvmx_usbcx_hcspltx, compsplt, 1); | 
|  | break; | 
|  | case CVMX_USB_STAGE_DATA: | 
|  | usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | if (header->bRequestType & USB_DIR_IN) | 
|  | bytes_to_transfer = 0; | 
|  | else if (bytes_to_transfer > pipe->max_packet) | 
|  | bytes_to_transfer = pipe->max_packet; | 
|  | } | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), | 
|  | cvmx_usbcx_hccharx, epdir, | 
|  | ((header->bRequestType & USB_DIR_IN) ? | 
|  | CVMX_USB_DIRECTION_IN : | 
|  | CVMX_USB_DIRECTION_OUT)); | 
|  | break; | 
|  | case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE: | 
|  | usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); | 
|  | if (!(header->bRequestType & USB_DIR_IN)) | 
|  | bytes_to_transfer = 0; | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), | 
|  | cvmx_usbcx_hccharx, epdir, | 
|  | ((header->bRequestType & USB_DIR_IN) ? | 
|  | CVMX_USB_DIRECTION_IN : | 
|  | CVMX_USB_DIRECTION_OUT)); | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), | 
|  | cvmx_usbcx_hcspltx, compsplt, 1); | 
|  | break; | 
|  | case CVMX_USB_STAGE_STATUS: | 
|  | usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); | 
|  | bytes_to_transfer = 0; | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), | 
|  | cvmx_usbcx_hccharx, epdir, | 
|  | ((header->bRequestType & USB_DIR_IN) ? | 
|  | CVMX_USB_DIRECTION_OUT : | 
|  | CVMX_USB_DIRECTION_IN)); | 
|  | break; | 
|  | case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE: | 
|  | usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); | 
|  | bytes_to_transfer = 0; | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), | 
|  | cvmx_usbcx_hccharx, epdir, | 
|  | ((header->bRequestType & USB_DIR_IN) ? | 
|  | CVMX_USB_DIRECTION_OUT : | 
|  | CVMX_USB_DIRECTION_IN)); | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), | 
|  | cvmx_usbcx_hcspltx, compsplt, 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure the transfer never exceeds the byte limit of the hardware. | 
|  | * Further bytes will be sent as continued transactions | 
|  | */ | 
|  | if (bytes_to_transfer > MAX_TRANSFER_BYTES) { | 
|  | /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */ | 
|  | bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet; | 
|  | bytes_to_transfer *= pipe->max_packet; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of packets to transfer. If the length is zero | 
|  | * we still need to transfer one packet | 
|  | */ | 
|  | packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer, | 
|  | pipe->max_packet); | 
|  | if (packets_to_transfer == 0) { | 
|  | packets_to_transfer = 1; | 
|  | } else if ((packets_to_transfer > 1) && | 
|  | (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) { | 
|  | /* | 
|  | * Limit to one packet when not using DMA. Channels must be | 
|  | * restarted between every packet for IN transactions, so there | 
|  | * is no reason to do multiple packets in a row | 
|  | */ | 
|  | packets_to_transfer = 1; | 
|  | bytes_to_transfer = packets_to_transfer * pipe->max_packet; | 
|  | } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) { | 
|  | /* | 
|  | * Limit the number of packet and data transferred to what the | 
|  | * hardware can handle | 
|  | */ | 
|  | packets_to_transfer = MAX_TRANSFER_PACKETS; | 
|  | bytes_to_transfer = packets_to_transfer * pipe->max_packet; | 
|  | } | 
|  |  | 
|  | usbc_hctsiz.s.xfersize = bytes_to_transfer; | 
|  | usbc_hctsiz.s.pktcnt = packets_to_transfer; | 
|  |  | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), | 
|  | usbc_hctsiz.u32); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Start a channel to perform the pipe's head transaction | 
|  | * | 
|  | * @usb:	  USB device state populated by cvmx_usb_initialize(). | 
|  | * @channel:	  Channel to setup | 
|  | * @pipe:	  Pipe to start | 
|  | */ | 
|  | static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel, | 
|  | struct cvmx_usb_pipe *pipe) | 
|  | { | 
|  | struct cvmx_usb_transaction *transaction = | 
|  | list_first_entry(&pipe->transactions, typeof(*transaction), | 
|  | node); | 
|  |  | 
|  | /* Make sure all writes to the DMA region get flushed */ | 
|  | CVMX_SYNCW; | 
|  |  | 
|  | /* Attach the channel to the pipe */ | 
|  | usb->pipe_for_channel[channel] = pipe; | 
|  | pipe->channel = channel; | 
|  | pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED; | 
|  |  | 
|  | /* Mark this channel as in use */ | 
|  | usb->idle_hardware_channels &= ~(1 << channel); | 
|  |  | 
|  | /* Enable the channel interrupt bits */ | 
|  | { | 
|  | union cvmx_usbcx_hcintx usbc_hcint; | 
|  | union cvmx_usbcx_hcintmskx usbc_hcintmsk; | 
|  | union cvmx_usbcx_haintmsk usbc_haintmsk; | 
|  |  | 
|  | /* Clear all channel status bits */ | 
|  | usbc_hcint.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCINTX(channel, usb->index)); | 
|  |  | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCINTX(channel, usb->index), | 
|  | usbc_hcint.u32); | 
|  |  | 
|  | usbc_hcintmsk.u32 = 0; | 
|  | usbc_hcintmsk.s.chhltdmsk = 1; | 
|  | if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { | 
|  | /* | 
|  | * Channels need these extra interrupts when we aren't | 
|  | * in DMA mode. | 
|  | */ | 
|  | usbc_hcintmsk.s.datatglerrmsk = 1; | 
|  | usbc_hcintmsk.s.frmovrunmsk = 1; | 
|  | usbc_hcintmsk.s.bblerrmsk = 1; | 
|  | usbc_hcintmsk.s.xacterrmsk = 1; | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | /* | 
|  | * Splits don't generate xfercompl, so we need | 
|  | * ACK and NYET. | 
|  | */ | 
|  | usbc_hcintmsk.s.nyetmsk = 1; | 
|  | usbc_hcintmsk.s.ackmsk = 1; | 
|  | } | 
|  | usbc_hcintmsk.s.nakmsk = 1; | 
|  | usbc_hcintmsk.s.stallmsk = 1; | 
|  | usbc_hcintmsk.s.xfercomplmsk = 1; | 
|  | } | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCINTMSKX(channel, usb->index), | 
|  | usbc_hcintmsk.u32); | 
|  |  | 
|  | /* Enable the channel interrupt to propagate */ | 
|  | usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HAINTMSK(usb->index)); | 
|  | usbc_haintmsk.s.haintmsk |= 1 << channel; | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index), | 
|  | usbc_haintmsk.u32); | 
|  | } | 
|  |  | 
|  | /* Setup the location the DMA engine uses. */ | 
|  | { | 
|  | u64 reg; | 
|  | u64 dma_address = transaction->buffer + | 
|  | transaction->actual_bytes; | 
|  |  | 
|  | if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) | 
|  | dma_address = transaction->buffer + | 
|  | transaction->iso_packets[0].offset + | 
|  | transaction->actual_bytes; | 
|  |  | 
|  | if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) | 
|  | reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index); | 
|  | else | 
|  | reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index); | 
|  | cvmx_write64_uint64(reg + channel * 8, dma_address); | 
|  | } | 
|  |  | 
|  | /* Setup both the size of the transfer and the SPLIT characteristics */ | 
|  | { | 
|  | union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0}; | 
|  | union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0}; | 
|  | int packets_to_transfer; | 
|  | int bytes_to_transfer = transaction->buffer_length - | 
|  | transaction->actual_bytes; | 
|  |  | 
|  | /* | 
|  | * ISOCHRONOUS transactions store each individual transfer size | 
|  | * in the packet structure, not the global buffer_length | 
|  | */ | 
|  | if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) | 
|  | bytes_to_transfer = | 
|  | transaction->iso_packets[0].length - | 
|  | transaction->actual_bytes; | 
|  |  | 
|  | /* | 
|  | * We need to do split transactions when we are talking to non | 
|  | * high speed devices that are behind a high speed hub | 
|  | */ | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | /* | 
|  | * On the start split phase (stage is even) record the | 
|  | * frame number we will need to send the split complete. | 
|  | * We only store the lower two bits since the time ahead | 
|  | * can only be two frames | 
|  | */ | 
|  | if ((transaction->stage & 1) == 0) { | 
|  | if (transaction->type == CVMX_USB_TRANSFER_BULK) | 
|  | pipe->split_sc_frame = | 
|  | (usb->frame_number + 1) & 0x7f; | 
|  | else | 
|  | pipe->split_sc_frame = | 
|  | (usb->frame_number + 2) & 0x7f; | 
|  | } else { | 
|  | pipe->split_sc_frame = -1; | 
|  | } | 
|  |  | 
|  | usbc_hcsplt.s.spltena = 1; | 
|  | usbc_hcsplt.s.hubaddr = pipe->hub_device_addr; | 
|  | usbc_hcsplt.s.prtaddr = pipe->hub_port; | 
|  | usbc_hcsplt.s.compsplt = (transaction->stage == | 
|  | CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE); | 
|  |  | 
|  | /* | 
|  | * SPLIT transactions can only ever transmit one data | 
|  | * packet so limit the transfer size to the max packet | 
|  | * size | 
|  | */ | 
|  | if (bytes_to_transfer > pipe->max_packet) | 
|  | bytes_to_transfer = pipe->max_packet; | 
|  |  | 
|  | /* | 
|  | * ISOCHRONOUS OUT splits are unique in that they limit | 
|  | * data transfers to 188 byte chunks representing the | 
|  | * begin/middle/end of the data or all | 
|  | */ | 
|  | if (!usbc_hcsplt.s.compsplt && | 
|  | (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) && | 
|  | (pipe->transfer_type == | 
|  | CVMX_USB_TRANSFER_ISOCHRONOUS)) { | 
|  | /* | 
|  | * Clear the split complete frame number as | 
|  | * there isn't going to be a split complete | 
|  | */ | 
|  | pipe->split_sc_frame = -1; | 
|  | /* | 
|  | * See if we've started this transfer and sent | 
|  | * data | 
|  | */ | 
|  | if (transaction->actual_bytes == 0) { | 
|  | /* | 
|  | * Nothing sent yet, this is either a | 
|  | * begin or the entire payload | 
|  | */ | 
|  | if (bytes_to_transfer <= 188) | 
|  | /* Entire payload in one go */ | 
|  | usbc_hcsplt.s.xactpos = 3; | 
|  | else | 
|  | /* First part of payload */ | 
|  | usbc_hcsplt.s.xactpos = 2; | 
|  | } else { | 
|  | /* | 
|  | * Continuing the previous data, we must | 
|  | * either be in the middle or at the end | 
|  | */ | 
|  | if (bytes_to_transfer <= 188) | 
|  | /* End of payload */ | 
|  | usbc_hcsplt.s.xactpos = 1; | 
|  | else | 
|  | /* Middle of payload */ | 
|  | usbc_hcsplt.s.xactpos = 0; | 
|  | } | 
|  | /* | 
|  | * Again, the transfer size is limited to 188 | 
|  | * bytes | 
|  | */ | 
|  | if (bytes_to_transfer > 188) | 
|  | bytes_to_transfer = 188; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure the transfer never exceeds the byte limit of the | 
|  | * hardware. Further bytes will be sent as continued | 
|  | * transactions | 
|  | */ | 
|  | if (bytes_to_transfer > MAX_TRANSFER_BYTES) { | 
|  | /* | 
|  | * Round MAX_TRANSFER_BYTES to a multiple of out packet | 
|  | * size | 
|  | */ | 
|  | bytes_to_transfer = MAX_TRANSFER_BYTES / | 
|  | pipe->max_packet; | 
|  | bytes_to_transfer *= pipe->max_packet; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of packets to transfer. If the length is | 
|  | * zero we still need to transfer one packet | 
|  | */ | 
|  | packets_to_transfer = | 
|  | DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet); | 
|  | if (packets_to_transfer == 0) { | 
|  | packets_to_transfer = 1; | 
|  | } else if ((packets_to_transfer > 1) && | 
|  | (usb->init_flags & | 
|  | CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) { | 
|  | /* | 
|  | * Limit to one packet when not using DMA. Channels must | 
|  | * be restarted between every packet for IN | 
|  | * transactions, so there is no reason to do multiple | 
|  | * packets in a row | 
|  | */ | 
|  | packets_to_transfer = 1; | 
|  | bytes_to_transfer = packets_to_transfer * | 
|  | pipe->max_packet; | 
|  | } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) { | 
|  | /* | 
|  | * Limit the number of packet and data transferred to | 
|  | * what the hardware can handle | 
|  | */ | 
|  | packets_to_transfer = MAX_TRANSFER_PACKETS; | 
|  | bytes_to_transfer = packets_to_transfer * | 
|  | pipe->max_packet; | 
|  | } | 
|  |  | 
|  | usbc_hctsiz.s.xfersize = bytes_to_transfer; | 
|  | usbc_hctsiz.s.pktcnt = packets_to_transfer; | 
|  |  | 
|  | /* Update the DATA0/DATA1 toggle */ | 
|  | usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); | 
|  | /* | 
|  | * High speed pipes may need a hardware ping before they start | 
|  | */ | 
|  | if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING) | 
|  | usbc_hctsiz.s.dopng = 1; | 
|  |  | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCSPLTX(channel, usb->index), | 
|  | usbc_hcsplt.u32); | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCTSIZX(channel, usb->index), | 
|  | usbc_hctsiz.u32); | 
|  | } | 
|  |  | 
|  | /* Setup the Host Channel Characteristics Register */ | 
|  | { | 
|  | union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0}; | 
|  |  | 
|  | /* | 
|  | * Set the startframe odd/even properly. This is only used for | 
|  | * periodic | 
|  | */ | 
|  | usbc_hcchar.s.oddfrm = usb->frame_number & 1; | 
|  |  | 
|  | /* | 
|  | * Set the number of back to back packets allowed by this | 
|  | * endpoint. Split transactions interpret "ec" as the number of | 
|  | * immediate retries of failure. These retries happen too | 
|  | * quickly, so we disable these entirely for splits | 
|  | */ | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) | 
|  | usbc_hcchar.s.ec = 1; | 
|  | else if (pipe->multi_count < 1) | 
|  | usbc_hcchar.s.ec = 1; | 
|  | else if (pipe->multi_count > 3) | 
|  | usbc_hcchar.s.ec = 3; | 
|  | else | 
|  | usbc_hcchar.s.ec = pipe->multi_count; | 
|  |  | 
|  | /* Set the rest of the endpoint specific settings */ | 
|  | usbc_hcchar.s.devaddr = pipe->device_addr; | 
|  | usbc_hcchar.s.eptype = transaction->type; | 
|  | usbc_hcchar.s.lspddev = | 
|  | (pipe->device_speed == CVMX_USB_SPEED_LOW); | 
|  | usbc_hcchar.s.epdir = pipe->transfer_dir; | 
|  | usbc_hcchar.s.epnum = pipe->endpoint_num; | 
|  | usbc_hcchar.s.mps = pipe->max_packet; | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCCHARX(channel, usb->index), | 
|  | usbc_hcchar.u32); | 
|  | } | 
|  |  | 
|  | /* Do transaction type specific fixups as needed */ | 
|  | switch (transaction->type) { | 
|  | case CVMX_USB_TRANSFER_CONTROL: | 
|  | cvmx_usb_start_channel_control(usb, channel, pipe); | 
|  | break; | 
|  | case CVMX_USB_TRANSFER_BULK: | 
|  | case CVMX_USB_TRANSFER_INTERRUPT: | 
|  | break; | 
|  | case CVMX_USB_TRANSFER_ISOCHRONOUS: | 
|  | if (!cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | /* | 
|  | * ISO transactions require different PIDs depending on | 
|  | * direction and how many packets are needed | 
|  | */ | 
|  | if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) { | 
|  | if (pipe->multi_count < 2) /* Need DATA0 */ | 
|  | USB_SET_FIELD32( | 
|  | CVMX_USBCX_HCTSIZX(channel, | 
|  | usb->index), | 
|  | cvmx_usbcx_hctsizx, pid, 0); | 
|  | else /* Need MDATA */ | 
|  | USB_SET_FIELD32( | 
|  | CVMX_USBCX_HCTSIZX(channel, | 
|  | usb->index), | 
|  | cvmx_usbcx_hctsizx, pid, 3); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | { | 
|  | union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 = | 
|  | cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCTSIZX(channel, | 
|  | usb->index)) | 
|  | }; | 
|  | transaction->xfersize = usbc_hctsiz.s.xfersize; | 
|  | transaction->pktcnt = usbc_hctsiz.s.pktcnt; | 
|  | } | 
|  | /* Remember when we start a split transaction */ | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) | 
|  | usb->active_split = transaction; | 
|  | USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), | 
|  | cvmx_usbcx_hccharx, chena, 1); | 
|  | if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) | 
|  | cvmx_usb_fill_tx_fifo(usb, channel); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Find a pipe that is ready to be scheduled to hardware. | 
|  | * @usb:	 USB device state populated by cvmx_usb_initialize(). | 
|  | * @xfer_type:	 Transfer type | 
|  | * | 
|  | * Returns: Pipe or NULL if none are ready | 
|  | */ | 
|  | static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(struct octeon_hcd *usb, | 
|  | enum cvmx_usb_transfer xfer_type) | 
|  | { | 
|  | struct list_head *list = usb->active_pipes + xfer_type; | 
|  | u64 current_frame = usb->frame_number; | 
|  | struct cvmx_usb_pipe *pipe; | 
|  |  | 
|  | list_for_each_entry(pipe, list, node) { | 
|  | struct cvmx_usb_transaction *t = | 
|  | list_first_entry(&pipe->transactions, typeof(*t), | 
|  | node); | 
|  | if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t && | 
|  | (pipe->next_tx_frame <= current_frame) && | 
|  | ((pipe->split_sc_frame == -1) || | 
|  | ((((int)current_frame - pipe->split_sc_frame) & 0x7f) < | 
|  | 0x40)) && | 
|  | (!usb->active_split || (usb->active_split == t))) { | 
|  | prefetch(t); | 
|  | return pipe; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb, | 
|  | int is_sof) | 
|  | { | 
|  | struct cvmx_usb_pipe *pipe; | 
|  |  | 
|  | /* Find a pipe needing service. */ | 
|  | if (is_sof) { | 
|  | /* | 
|  | * Only process periodic pipes on SOF interrupts. This way we | 
|  | * are sure that the periodic data is sent in the beginning of | 
|  | * the frame. | 
|  | */ | 
|  | pipe = cvmx_usb_find_ready_pipe(usb, | 
|  | CVMX_USB_TRANSFER_ISOCHRONOUS); | 
|  | if (pipe) | 
|  | return pipe; | 
|  | pipe = cvmx_usb_find_ready_pipe(usb, | 
|  | CVMX_USB_TRANSFER_INTERRUPT); | 
|  | if (pipe) | 
|  | return pipe; | 
|  | } | 
|  | pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL); | 
|  | if (pipe) | 
|  | return pipe; | 
|  | return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Called whenever a pipe might need to be scheduled to the | 
|  | * hardware. | 
|  | * | 
|  | * @usb:	 USB device state populated by cvmx_usb_initialize(). | 
|  | * @is_sof:	 True if this schedule was called on a SOF interrupt. | 
|  | */ | 
|  | static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof) | 
|  | { | 
|  | int channel; | 
|  | struct cvmx_usb_pipe *pipe; | 
|  | int need_sof; | 
|  | enum cvmx_usb_transfer ttype; | 
|  |  | 
|  | if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { | 
|  | /* | 
|  | * Without DMA we need to be careful to not schedule something | 
|  | * at the end of a frame and cause an overrun. | 
|  | */ | 
|  | union cvmx_usbcx_hfnum hfnum = { | 
|  | .u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HFNUM(usb->index)) | 
|  | }; | 
|  |  | 
|  | union cvmx_usbcx_hfir hfir = { | 
|  | .u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HFIR(usb->index)) | 
|  | }; | 
|  |  | 
|  | if (hfnum.s.frrem < hfir.s.frint / 4) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | while (usb->idle_hardware_channels) { | 
|  | /* Find an idle channel */ | 
|  | channel = __fls(usb->idle_hardware_channels); | 
|  | if (unlikely(channel > 7)) | 
|  | break; | 
|  |  | 
|  | pipe = cvmx_usb_next_pipe(usb, is_sof); | 
|  | if (!pipe) | 
|  | break; | 
|  |  | 
|  | cvmx_usb_start_channel(usb, channel, pipe); | 
|  | } | 
|  |  | 
|  | done: | 
|  | /* | 
|  | * Only enable SOF interrupts when we have transactions pending in the | 
|  | * future that might need to be scheduled | 
|  | */ | 
|  | need_sof = 0; | 
|  | for (ttype = CVMX_USB_TRANSFER_CONTROL; | 
|  | ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) { | 
|  | list_for_each_entry(pipe, &usb->active_pipes[ttype], node) { | 
|  | if (pipe->next_tx_frame > usb->frame_number) { | 
|  | need_sof = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), | 
|  | cvmx_usbcx_gintmsk, sofmsk, need_sof); | 
|  | } | 
|  |  | 
|  | static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb, | 
|  | enum cvmx_usb_status status, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct cvmx_usb_transaction | 
|  | *transaction, | 
|  | int bytes_transferred, | 
|  | struct urb *urb) | 
|  | { | 
|  | struct usb_hcd *hcd = octeon_to_hcd(usb); | 
|  | struct device *dev = hcd->self.controller; | 
|  |  | 
|  | if (likely(status == CVMX_USB_STATUS_OK)) | 
|  | urb->actual_length = bytes_transferred; | 
|  | else | 
|  | urb->actual_length = 0; | 
|  |  | 
|  | urb->hcpriv = NULL; | 
|  |  | 
|  | /* For Isochronous transactions we need to update the URB packet status | 
|  | * list from data in our private copy | 
|  | */ | 
|  | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
|  | int i; | 
|  | /* | 
|  | * The pointer to the private list is stored in the setup_packet | 
|  | * field. | 
|  | */ | 
|  | struct cvmx_usb_iso_packet *iso_packet = | 
|  | (struct cvmx_usb_iso_packet *)urb->setup_packet; | 
|  | /* Recalculate the transfer size by adding up each packet */ | 
|  | urb->actual_length = 0; | 
|  | for (i = 0; i < urb->number_of_packets; i++) { | 
|  | if (iso_packet[i].status == CVMX_USB_STATUS_OK) { | 
|  | urb->iso_frame_desc[i].status = 0; | 
|  | urb->iso_frame_desc[i].actual_length = | 
|  | iso_packet[i].length; | 
|  | urb->actual_length += | 
|  | urb->iso_frame_desc[i].actual_length; | 
|  | } else { | 
|  | dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n", | 
|  | i, urb->number_of_packets, | 
|  | iso_packet[i].status, pipe, | 
|  | transaction, iso_packet[i].length); | 
|  | urb->iso_frame_desc[i].status = -EREMOTEIO; | 
|  | } | 
|  | } | 
|  | /* Free the private list now that we don't need it anymore */ | 
|  | kfree(iso_packet); | 
|  | urb->setup_packet = NULL; | 
|  | } | 
|  |  | 
|  | switch (status) { | 
|  | case CVMX_USB_STATUS_OK: | 
|  | urb->status = 0; | 
|  | break; | 
|  | case CVMX_USB_STATUS_CANCEL: | 
|  | if (urb->status == 0) | 
|  | urb->status = -ENOENT; | 
|  | break; | 
|  | case CVMX_USB_STATUS_STALL: | 
|  | dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n", | 
|  | pipe, transaction, bytes_transferred); | 
|  | urb->status = -EPIPE; | 
|  | break; | 
|  | case CVMX_USB_STATUS_BABBLEERR: | 
|  | dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n", | 
|  | pipe, transaction, bytes_transferred); | 
|  | urb->status = -EPIPE; | 
|  | break; | 
|  | case CVMX_USB_STATUS_SHORT: | 
|  | dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n", | 
|  | pipe, transaction, bytes_transferred); | 
|  | urb->status = -EREMOTEIO; | 
|  | break; | 
|  | case CVMX_USB_STATUS_ERROR: | 
|  | case CVMX_USB_STATUS_XACTERR: | 
|  | case CVMX_USB_STATUS_DATATGLERR: | 
|  | case CVMX_USB_STATUS_FRAMEERR: | 
|  | dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n", | 
|  | status, pipe, transaction, bytes_transferred); | 
|  | urb->status = -EPROTO; | 
|  | break; | 
|  | } | 
|  | usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb); | 
|  | spin_unlock(&usb->lock); | 
|  | usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status); | 
|  | spin_lock(&usb->lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Signal the completion of a transaction and free it. The | 
|  | * transaction will be removed from the pipe transaction list. | 
|  | * | 
|  | * @usb:	 USB device state populated by cvmx_usb_initialize(). | 
|  | * @pipe:	 Pipe the transaction is on | 
|  | * @transaction: | 
|  | *		 Transaction that completed | 
|  | * @complete_code: | 
|  | *		 Completion code | 
|  | */ | 
|  | static void cvmx_usb_complete(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct cvmx_usb_transaction *transaction, | 
|  | enum cvmx_usb_status complete_code) | 
|  | { | 
|  | /* If this was a split then clear our split in progress marker */ | 
|  | if (usb->active_split == transaction) | 
|  | usb->active_split = NULL; | 
|  |  | 
|  | /* | 
|  | * Isochronous transactions need extra processing as they might not be | 
|  | * done after a single data transfer | 
|  | */ | 
|  | if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) { | 
|  | /* Update the number of bytes transferred in this ISO packet */ | 
|  | transaction->iso_packets[0].length = transaction->actual_bytes; | 
|  | transaction->iso_packets[0].status = complete_code; | 
|  |  | 
|  | /* | 
|  | * If there are more ISOs pending and we succeeded, schedule the | 
|  | * next one | 
|  | */ | 
|  | if ((transaction->iso_number_packets > 1) && | 
|  | (complete_code == CVMX_USB_STATUS_OK)) { | 
|  | /* No bytes transferred for this packet as of yet */ | 
|  | transaction->actual_bytes = 0; | 
|  | /* One less ISO waiting to transfer */ | 
|  | transaction->iso_number_packets--; | 
|  | /* Increment to the next location in our packet array */ | 
|  | transaction->iso_packets++; | 
|  | transaction->stage = CVMX_USB_STAGE_NON_CONTROL; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Remove the transaction from the pipe list */ | 
|  | list_del(&transaction->node); | 
|  | if (list_empty(&pipe->transactions)) | 
|  | list_move_tail(&pipe->node, &usb->idle_pipes); | 
|  | octeon_usb_urb_complete_callback(usb, complete_code, pipe, | 
|  | transaction, | 
|  | transaction->actual_bytes, | 
|  | transaction->urb); | 
|  | kfree(transaction); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Submit a usb transaction to a pipe. Called for all types | 
|  | * of transactions. | 
|  | * | 
|  | * @usb: | 
|  | * @pipe:	    Which pipe to submit to. | 
|  | * @type:	    Transaction type | 
|  | * @buffer:	    User buffer for the transaction | 
|  | * @buffer_length: | 
|  | *		    User buffer's length in bytes | 
|  | * @control_header: | 
|  | *		    For control transactions, the 8 byte standard header | 
|  | * @iso_start_frame: | 
|  | *		    For ISO transactions, the start frame | 
|  | * @iso_number_packets: | 
|  | *		    For ISO, the number of packet in the transaction. | 
|  | * @iso_packets: | 
|  | *		    A description of each ISO packet | 
|  | * @urb:	    URB for the callback | 
|  | * | 
|  | * Returns: Transaction or NULL on failure. | 
|  | */ | 
|  | static struct cvmx_usb_transaction *cvmx_usb_submit_transaction( | 
|  | struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | enum cvmx_usb_transfer type, | 
|  | u64 buffer, | 
|  | int buffer_length, | 
|  | u64 control_header, | 
|  | int iso_start_frame, | 
|  | int iso_number_packets, | 
|  | struct cvmx_usb_iso_packet *iso_packets, | 
|  | struct urb *urb) | 
|  | { | 
|  | struct cvmx_usb_transaction *transaction; | 
|  |  | 
|  | if (unlikely(pipe->transfer_type != type)) | 
|  | return NULL; | 
|  |  | 
|  | transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC); | 
|  | if (unlikely(!transaction)) | 
|  | return NULL; | 
|  |  | 
|  | transaction->type = type; | 
|  | transaction->buffer = buffer; | 
|  | transaction->buffer_length = buffer_length; | 
|  | transaction->control_header = control_header; | 
|  | /* FIXME: This is not used, implement it. */ | 
|  | transaction->iso_start_frame = iso_start_frame; | 
|  | transaction->iso_number_packets = iso_number_packets; | 
|  | transaction->iso_packets = iso_packets; | 
|  | transaction->urb = urb; | 
|  | if (transaction->type == CVMX_USB_TRANSFER_CONTROL) | 
|  | transaction->stage = CVMX_USB_STAGE_SETUP; | 
|  | else | 
|  | transaction->stage = CVMX_USB_STAGE_NON_CONTROL; | 
|  |  | 
|  | if (!list_empty(&pipe->transactions)) { | 
|  | list_add_tail(&transaction->node, &pipe->transactions); | 
|  | } else { | 
|  | list_add_tail(&transaction->node, &pipe->transactions); | 
|  | list_move_tail(&pipe->node, | 
|  | &usb->active_pipes[pipe->transfer_type]); | 
|  |  | 
|  | /* | 
|  | * We may need to schedule the pipe if this was the head of the | 
|  | * pipe. | 
|  | */ | 
|  | cvmx_usb_schedule(usb, 0); | 
|  | } | 
|  |  | 
|  | return transaction; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Call to submit a USB Bulk transfer to a pipe. | 
|  | * | 
|  | * @usb:	    USB device state populated by cvmx_usb_initialize(). | 
|  | * @pipe:	    Handle to the pipe for the transfer. | 
|  | * @urb:	    URB. | 
|  | * | 
|  | * Returns: A submitted transaction or NULL on failure. | 
|  | */ | 
|  | static struct cvmx_usb_transaction *cvmx_usb_submit_bulk( | 
|  | struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct urb *urb) | 
|  | { | 
|  | return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK, | 
|  | urb->transfer_dma, | 
|  | urb->transfer_buffer_length, | 
|  | 0, /* control_header */ | 
|  | 0, /* iso_start_frame */ | 
|  | 0, /* iso_number_packets */ | 
|  | NULL, /* iso_packets */ | 
|  | urb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Call to submit a USB Interrupt transfer to a pipe. | 
|  | * | 
|  | * @usb:	    USB device state populated by cvmx_usb_initialize(). | 
|  | * @pipe:	    Handle to the pipe for the transfer. | 
|  | * @urb:	    URB returned when the callback is called. | 
|  | * | 
|  | * Returns: A submitted transaction or NULL on failure. | 
|  | */ | 
|  | static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt( | 
|  | struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct urb *urb) | 
|  | { | 
|  | return cvmx_usb_submit_transaction(usb, pipe, | 
|  | CVMX_USB_TRANSFER_INTERRUPT, | 
|  | urb->transfer_dma, | 
|  | urb->transfer_buffer_length, | 
|  | 0, /* control_header */ | 
|  | 0, /* iso_start_frame */ | 
|  | 0, /* iso_number_packets */ | 
|  | NULL, /* iso_packets */ | 
|  | urb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Call to submit a USB Control transfer to a pipe. | 
|  | * | 
|  | * @usb:	    USB device state populated by cvmx_usb_initialize(). | 
|  | * @pipe:	    Handle to the pipe for the transfer. | 
|  | * @urb:	    URB. | 
|  | * | 
|  | * Returns: A submitted transaction or NULL on failure. | 
|  | */ | 
|  | static struct cvmx_usb_transaction *cvmx_usb_submit_control( | 
|  | struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct urb *urb) | 
|  | { | 
|  | int buffer_length = urb->transfer_buffer_length; | 
|  | u64 control_header = urb->setup_dma; | 
|  | struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header); | 
|  |  | 
|  | if ((header->bRequestType & USB_DIR_IN) == 0) | 
|  | buffer_length = le16_to_cpu(header->wLength); | 
|  |  | 
|  | return cvmx_usb_submit_transaction(usb, pipe, | 
|  | CVMX_USB_TRANSFER_CONTROL, | 
|  | urb->transfer_dma, buffer_length, | 
|  | control_header, | 
|  | 0, /* iso_start_frame */ | 
|  | 0, /* iso_number_packets */ | 
|  | NULL, /* iso_packets */ | 
|  | urb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Call to submit a USB Isochronous transfer to a pipe. | 
|  | * | 
|  | * @usb:	    USB device state populated by cvmx_usb_initialize(). | 
|  | * @pipe:	    Handle to the pipe for the transfer. | 
|  | * @urb:	    URB returned when the callback is called. | 
|  | * | 
|  | * Returns: A submitted transaction or NULL on failure. | 
|  | */ | 
|  | static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous( | 
|  | struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct urb *urb) | 
|  | { | 
|  | struct cvmx_usb_iso_packet *packets; | 
|  |  | 
|  | packets = (struct cvmx_usb_iso_packet *)urb->setup_packet; | 
|  | return cvmx_usb_submit_transaction(usb, pipe, | 
|  | CVMX_USB_TRANSFER_ISOCHRONOUS, | 
|  | urb->transfer_dma, | 
|  | urb->transfer_buffer_length, | 
|  | 0, /* control_header */ | 
|  | urb->start_frame, | 
|  | urb->number_of_packets, | 
|  | packets, urb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Cancel one outstanding request in a pipe. Canceling a request | 
|  | * can fail if the transaction has already completed before cancel | 
|  | * is called. Even after a successful cancel call, it may take | 
|  | * a frame or two for the cvmx_usb_poll() function to call the | 
|  | * associated callback. | 
|  | * | 
|  | * @usb:	 USB device state populated by cvmx_usb_initialize(). | 
|  | * @pipe:	 Pipe to cancel requests in. | 
|  | * @transaction: Transaction to cancel, returned by the submit function. | 
|  | * | 
|  | * Returns: 0 or a negative error code. | 
|  | */ | 
|  | static int cvmx_usb_cancel(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct cvmx_usb_transaction *transaction) | 
|  | { | 
|  | /* | 
|  | * If the transaction is the HEAD of the queue and scheduled. We need to | 
|  | * treat it special | 
|  | */ | 
|  | if (list_first_entry(&pipe->transactions, typeof(*transaction), node) == | 
|  | transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) { | 
|  | union cvmx_usbcx_hccharx usbc_hcchar; | 
|  |  | 
|  | usb->pipe_for_channel[pipe->channel] = NULL; | 
|  | pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED; | 
|  |  | 
|  | CVMX_SYNCW; | 
|  |  | 
|  | usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCCHARX(pipe->channel, | 
|  | usb->index)); | 
|  | /* | 
|  | * If the channel isn't enabled then the transaction already | 
|  | * completed. | 
|  | */ | 
|  | if (usbc_hcchar.s.chena) { | 
|  | usbc_hcchar.s.chdis = 1; | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCCHARX(pipe->channel, | 
|  | usb->index), | 
|  | usbc_hcchar.u32); | 
|  | } | 
|  | } | 
|  | cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Cancel all outstanding requests in a pipe. Logically all this | 
|  | * does is call cvmx_usb_cancel() in a loop. | 
|  | * | 
|  | * @usb:	 USB device state populated by cvmx_usb_initialize(). | 
|  | * @pipe:	 Pipe to cancel requests in. | 
|  | * | 
|  | * Returns: 0 or a negative error code. | 
|  | */ | 
|  | static int cvmx_usb_cancel_all(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe) | 
|  | { | 
|  | struct cvmx_usb_transaction *transaction, *next; | 
|  |  | 
|  | /* Simply loop through and attempt to cancel each transaction */ | 
|  | list_for_each_entry_safe(transaction, next, &pipe->transactions, node) { | 
|  | int result = cvmx_usb_cancel(usb, pipe, transaction); | 
|  |  | 
|  | if (unlikely(result != 0)) | 
|  | return result; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Close a pipe created with cvmx_usb_open_pipe(). | 
|  | * | 
|  | * @usb:	 USB device state populated by cvmx_usb_initialize(). | 
|  | * @pipe:	 Pipe to close. | 
|  | * | 
|  | * Returns: 0 or a negative error code. EBUSY is returned if the pipe has | 
|  | *	    outstanding transfers. | 
|  | */ | 
|  | static int cvmx_usb_close_pipe(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe) | 
|  | { | 
|  | /* Fail if the pipe has pending transactions */ | 
|  | if (!list_empty(&pipe->transactions)) | 
|  | return -EBUSY; | 
|  |  | 
|  | list_del(&pipe->node); | 
|  | kfree(pipe); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the current USB protocol level frame number. The frame | 
|  | * number is always in the range of 0-0x7ff. | 
|  | * | 
|  | * @usb: USB device state populated by cvmx_usb_initialize(). | 
|  | * | 
|  | * Returns: USB frame number | 
|  | */ | 
|  | static int cvmx_usb_get_frame_number(struct octeon_hcd *usb) | 
|  | { | 
|  | union cvmx_usbcx_hfnum usbc_hfnum; | 
|  |  | 
|  | usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index)); | 
|  |  | 
|  | return usbc_hfnum.s.frnum; | 
|  | } | 
|  |  | 
|  | static void cvmx_usb_transfer_control(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct cvmx_usb_transaction *transaction, | 
|  | union cvmx_usbcx_hccharx usbc_hcchar, | 
|  | int buffer_space_left, | 
|  | int bytes_in_last_packet) | 
|  | { | 
|  | switch (transaction->stage) { | 
|  | case CVMX_USB_STAGE_NON_CONTROL: | 
|  | case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE: | 
|  | /* This should be impossible */ | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_ERROR); | 
|  | break; | 
|  | case CVMX_USB_STAGE_SETUP: | 
|  | pipe->pid_toggle = 1; | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | transaction->stage = | 
|  | CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE; | 
|  | } else { | 
|  | struct usb_ctrlrequest *header = | 
|  | cvmx_phys_to_ptr(transaction->control_header); | 
|  | if (header->wLength) | 
|  | transaction->stage = CVMX_USB_STAGE_DATA; | 
|  | else | 
|  | transaction->stage = CVMX_USB_STAGE_STATUS; | 
|  | } | 
|  | break; | 
|  | case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE: | 
|  | { | 
|  | struct usb_ctrlrequest *header = | 
|  | cvmx_phys_to_ptr(transaction->control_header); | 
|  | if (header->wLength) | 
|  | transaction->stage = CVMX_USB_STAGE_DATA; | 
|  | else | 
|  | transaction->stage = CVMX_USB_STAGE_STATUS; | 
|  | } | 
|  | break; | 
|  | case CVMX_USB_STAGE_DATA: | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE; | 
|  | /* | 
|  | * For setup OUT data that are splits, | 
|  | * the hardware doesn't appear to count | 
|  | * transferred data. Here we manually | 
|  | * update the data transferred | 
|  | */ | 
|  | if (!usbc_hcchar.s.epdir) { | 
|  | if (buffer_space_left < pipe->max_packet) | 
|  | transaction->actual_bytes += | 
|  | buffer_space_left; | 
|  | else | 
|  | transaction->actual_bytes += | 
|  | pipe->max_packet; | 
|  | } | 
|  | } else if ((buffer_space_left == 0) || | 
|  | (bytes_in_last_packet < pipe->max_packet)) { | 
|  | pipe->pid_toggle = 1; | 
|  | transaction->stage = CVMX_USB_STAGE_STATUS; | 
|  | } | 
|  | break; | 
|  | case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE: | 
|  | if ((buffer_space_left == 0) || | 
|  | (bytes_in_last_packet < pipe->max_packet)) { | 
|  | pipe->pid_toggle = 1; | 
|  | transaction->stage = CVMX_USB_STAGE_STATUS; | 
|  | } else { | 
|  | transaction->stage = CVMX_USB_STAGE_DATA; | 
|  | } | 
|  | break; | 
|  | case CVMX_USB_STAGE_STATUS: | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) | 
|  | transaction->stage = | 
|  | CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE; | 
|  | else | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_OK); | 
|  | break; | 
|  | case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE: | 
|  | cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct cvmx_usb_transaction *transaction, | 
|  | union cvmx_usbcx_hcintx usbc_hcint, | 
|  | int buffer_space_left, | 
|  | int bytes_in_last_packet) | 
|  | { | 
|  | /* | 
|  | * The only time a bulk transfer isn't complete when it finishes with | 
|  | * an ACK is during a split transaction. For splits we need to continue | 
|  | * the transfer if more data is needed. | 
|  | */ | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) | 
|  | transaction->stage = | 
|  | CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; | 
|  | else if (buffer_space_left && | 
|  | (bytes_in_last_packet == pipe->max_packet)) | 
|  | transaction->stage = CVMX_USB_STAGE_NON_CONTROL; | 
|  | else | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_OK); | 
|  | } else { | 
|  | if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) && | 
|  | (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) && | 
|  | (usbc_hcint.s.nak)) | 
|  | pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; | 
|  | if (!buffer_space_left || | 
|  | (bytes_in_last_packet < pipe->max_packet)) | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_OK); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cvmx_usb_transfer_intr(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct cvmx_usb_transaction *transaction, | 
|  | int buffer_space_left, | 
|  | int bytes_in_last_packet) | 
|  | { | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) { | 
|  | transaction->stage = | 
|  | CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; | 
|  | } else if (buffer_space_left && | 
|  | (bytes_in_last_packet == pipe->max_packet)) { | 
|  | transaction->stage = CVMX_USB_STAGE_NON_CONTROL; | 
|  | } else { | 
|  | pipe->next_tx_frame += pipe->interval; | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_OK); | 
|  | } | 
|  | } else if (!buffer_space_left || | 
|  | (bytes_in_last_packet < pipe->max_packet)) { | 
|  | pipe->next_tx_frame += pipe->interval; | 
|  | cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb, | 
|  | struct cvmx_usb_pipe *pipe, | 
|  | struct cvmx_usb_transaction *transaction, | 
|  | int buffer_space_left, | 
|  | int bytes_in_last_packet, | 
|  | int bytes_this_transfer) | 
|  | { | 
|  | if (cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | /* | 
|  | * ISOCHRONOUS OUT splits don't require a complete split stage. | 
|  | * Instead they use a sequence of begin OUT splits to transfer | 
|  | * the data 188 bytes at a time. Once the transfer is complete, | 
|  | * the pipe sleeps until the next schedule interval. | 
|  | */ | 
|  | if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) { | 
|  | /* | 
|  | * If no space left or this wasn't a max size packet | 
|  | * then this transfer is complete. Otherwise start it | 
|  | * again to send the next 188 bytes | 
|  | */ | 
|  | if (!buffer_space_left || (bytes_this_transfer < 188)) { | 
|  | pipe->next_tx_frame += pipe->interval; | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_OK); | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (transaction->stage == | 
|  | CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) { | 
|  | /* | 
|  | * We are in the incoming data phase. Keep getting data | 
|  | * until we run out of space or get a small packet | 
|  | */ | 
|  | if ((buffer_space_left == 0) || | 
|  | (bytes_in_last_packet < pipe->max_packet)) { | 
|  | pipe->next_tx_frame += pipe->interval; | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_OK); | 
|  | } | 
|  | } else { | 
|  | transaction->stage = | 
|  | CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; | 
|  | } | 
|  | } else { | 
|  | pipe->next_tx_frame += pipe->interval; | 
|  | cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Poll a channel for status | 
|  | * | 
|  | * @usb:     USB device | 
|  | * @channel: Channel to poll | 
|  | * | 
|  | * Returns: Zero on success | 
|  | */ | 
|  | static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel) | 
|  | { | 
|  | struct usb_hcd *hcd = octeon_to_hcd(usb); | 
|  | struct device *dev = hcd->self.controller; | 
|  | union cvmx_usbcx_hcintx usbc_hcint; | 
|  | union cvmx_usbcx_hctsizx usbc_hctsiz; | 
|  | union cvmx_usbcx_hccharx usbc_hcchar; | 
|  | struct cvmx_usb_pipe *pipe; | 
|  | struct cvmx_usb_transaction *transaction; | 
|  | int bytes_this_transfer; | 
|  | int bytes_in_last_packet; | 
|  | int packets_processed; | 
|  | int buffer_space_left; | 
|  |  | 
|  | /* Read the interrupt status bits for the channel */ | 
|  | usbc_hcint.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCINTX(channel, usb->index)); | 
|  |  | 
|  | if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { | 
|  | usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCCHARX(channel, | 
|  | usb->index)); | 
|  |  | 
|  | if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) { | 
|  | /* | 
|  | * There seems to be a bug in CN31XX which can cause | 
|  | * interrupt IN transfers to get stuck until we do a | 
|  | * write of HCCHARX without changing things | 
|  | */ | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCCHARX(channel, | 
|  | usb->index), | 
|  | usbc_hcchar.u32); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In non DMA mode the channels don't halt themselves. We need | 
|  | * to manually disable channels that are left running | 
|  | */ | 
|  | if (!usbc_hcint.s.chhltd) { | 
|  | if (usbc_hcchar.s.chena) { | 
|  | union cvmx_usbcx_hcintmskx hcintmsk; | 
|  | /* Disable all interrupts except CHHLTD */ | 
|  | hcintmsk.u32 = 0; | 
|  | hcintmsk.s.chhltdmsk = 1; | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCINTMSKX(channel, usb->index), | 
|  | hcintmsk.u32); | 
|  | usbc_hcchar.s.chdis = 1; | 
|  | cvmx_usb_write_csr32(usb, | 
|  | CVMX_USBCX_HCCHARX(channel, usb->index), | 
|  | usbc_hcchar.u32); | 
|  | return 0; | 
|  | } else if (usbc_hcint.s.xfercompl) { | 
|  | /* | 
|  | * Successful IN/OUT with transfer complete. | 
|  | * Channel halt isn't needed. | 
|  | */ | 
|  | } else { | 
|  | dev_err(dev, "USB%d: Channel %d interrupt without halt\n", | 
|  | usb->index, channel); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * There is are no interrupts that we need to process when the | 
|  | * channel is still running | 
|  | */ | 
|  | if (!usbc_hcint.s.chhltd) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Disable the channel interrupts now that it is done */ | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0); | 
|  | usb->idle_hardware_channels |= (1 << channel); | 
|  |  | 
|  | /* Make sure this channel is tied to a valid pipe */ | 
|  | pipe = usb->pipe_for_channel[channel]; | 
|  | prefetch(pipe); | 
|  | if (!pipe) | 
|  | return 0; | 
|  | transaction = list_first_entry(&pipe->transactions, | 
|  | typeof(*transaction), | 
|  | node); | 
|  | prefetch(transaction); | 
|  |  | 
|  | /* | 
|  | * Disconnect this pipe from the HW channel. Later the schedule | 
|  | * function will figure out which pipe needs to go | 
|  | */ | 
|  | usb->pipe_for_channel[channel] = NULL; | 
|  | pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED; | 
|  |  | 
|  | /* | 
|  | * Read the channel config info so we can figure out how much data | 
|  | * transferred | 
|  | */ | 
|  | usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCCHARX(channel, usb->index)); | 
|  | usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HCTSIZX(channel, usb->index)); | 
|  |  | 
|  | /* | 
|  | * Calculating the number of bytes successfully transferred is dependent | 
|  | * on the transfer direction | 
|  | */ | 
|  | packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt; | 
|  | if (usbc_hcchar.s.epdir) { | 
|  | /* | 
|  | * IN transactions are easy. For every byte received the | 
|  | * hardware decrements xfersize. All we need to do is subtract | 
|  | * the current value of xfersize from its starting value and we | 
|  | * know how many bytes were written to the buffer | 
|  | */ | 
|  | bytes_this_transfer = transaction->xfersize - | 
|  | usbc_hctsiz.s.xfersize; | 
|  | } else { | 
|  | /* | 
|  | * OUT transaction don't decrement xfersize. Instead pktcnt is | 
|  | * decremented on every successful packet send. The hardware | 
|  | * does this when it receives an ACK, or NYET. If it doesn't | 
|  | * receive one of these responses pktcnt doesn't change | 
|  | */ | 
|  | bytes_this_transfer = packets_processed * usbc_hcchar.s.mps; | 
|  | /* | 
|  | * The last packet may not be a full transfer if we didn't have | 
|  | * enough data | 
|  | */ | 
|  | if (bytes_this_transfer > transaction->xfersize) | 
|  | bytes_this_transfer = transaction->xfersize; | 
|  | } | 
|  | /* Figure out how many bytes were in the last packet of the transfer */ | 
|  | if (packets_processed) | 
|  | bytes_in_last_packet = bytes_this_transfer - | 
|  | (packets_processed - 1) * usbc_hcchar.s.mps; | 
|  | else | 
|  | bytes_in_last_packet = bytes_this_transfer; | 
|  |  | 
|  | /* | 
|  | * As a special case, setup transactions output the setup header, not | 
|  | * the user's data. For this reason we don't count setup data as bytes | 
|  | * transferred | 
|  | */ | 
|  | if ((transaction->stage == CVMX_USB_STAGE_SETUP) || | 
|  | (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE)) | 
|  | bytes_this_transfer = 0; | 
|  |  | 
|  | /* | 
|  | * Add the bytes transferred to the running total. It is important that | 
|  | * bytes_this_transfer doesn't count any data that needs to be | 
|  | * retransmitted | 
|  | */ | 
|  | transaction->actual_bytes += bytes_this_transfer; | 
|  | if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) | 
|  | buffer_space_left = transaction->iso_packets[0].length - | 
|  | transaction->actual_bytes; | 
|  | else | 
|  | buffer_space_left = transaction->buffer_length - | 
|  | transaction->actual_bytes; | 
|  |  | 
|  | /* | 
|  | * We need to remember the PID toggle state for the next transaction. | 
|  | * The hardware already updated it for the next transaction | 
|  | */ | 
|  | pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0); | 
|  |  | 
|  | /* | 
|  | * For high speed bulk out, assume the next transaction will need to do | 
|  | * a ping before proceeding. If this isn't true the ACK processing below | 
|  | * will clear this flag | 
|  | */ | 
|  | if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) && | 
|  | (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) && | 
|  | (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)) | 
|  | pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; | 
|  |  | 
|  | if (WARN_ON_ONCE(bytes_this_transfer < 0)) { | 
|  | /* | 
|  | * In some rare cases the DMA engine seems to get stuck and | 
|  | * keeps substracting same byte count over and over again. In | 
|  | * such case we just need to fail every transaction. | 
|  | */ | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (usbc_hcint.s.stall) { | 
|  | /* | 
|  | * STALL as a response means this transaction cannot be | 
|  | * completed because the device can't process transactions. Tell | 
|  | * the user. Any data that was transferred will be counted on | 
|  | * the actual bytes transferred | 
|  | */ | 
|  | pipe->pid_toggle = 0; | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_STALL); | 
|  | } else if (usbc_hcint.s.xacterr) { | 
|  | /* | 
|  | * XactErr as a response means the device signaled | 
|  | * something wrong with the transfer. For example, PID | 
|  | * toggle errors cause these. | 
|  | */ | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_XACTERR); | 
|  | } else if (usbc_hcint.s.bblerr) { | 
|  | /* Babble Error (BblErr) */ | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_BABBLEERR); | 
|  | } else if (usbc_hcint.s.datatglerr) { | 
|  | /* Data toggle error */ | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_DATATGLERR); | 
|  | } else if (usbc_hcint.s.nyet) { | 
|  | /* | 
|  | * NYET as a response is only allowed in three cases: as a | 
|  | * response to a ping, as a response to a split transaction, and | 
|  | * as a response to a bulk out. The ping case is handled by | 
|  | * hardware, so we only have splits and bulk out | 
|  | */ | 
|  | if (!cvmx_usb_pipe_needs_split(usb, pipe)) { | 
|  | transaction->retries = 0; | 
|  | /* | 
|  | * If there is more data to go then we need to try | 
|  | * again. Otherwise this transaction is complete | 
|  | */ | 
|  | if ((buffer_space_left == 0) || | 
|  | (bytes_in_last_packet < pipe->max_packet)) | 
|  | cvmx_usb_complete(usb, pipe, | 
|  | transaction, | 
|  | CVMX_USB_STATUS_OK); | 
|  | } else { | 
|  | /* | 
|  | * Split transactions retry the split complete 4 times | 
|  | * then rewind to the start split and do the entire | 
|  | * transactions again | 
|  | */ | 
|  | transaction->retries++; | 
|  | if ((transaction->retries & 0x3) == 0) { | 
|  | /* | 
|  | * Rewind to the beginning of the transaction by | 
|  | * anding off the split complete bit | 
|  | */ | 
|  | transaction->stage &= ~1; | 
|  | pipe->split_sc_frame = -1; | 
|  | } | 
|  | } | 
|  | } else if (usbc_hcint.s.ack) { | 
|  | transaction->retries = 0; | 
|  | /* | 
|  | * The ACK bit can only be checked after the other error bits. | 
|  | * This is because a multi packet transfer may succeed in a | 
|  | * number of packets and then get a different response on the | 
|  | * last packet. In this case both ACK and the last response bit | 
|  | * will be set. If none of the other response bits is set, then | 
|  | * the last packet must have been an ACK | 
|  | * | 
|  | * Since we got an ACK, we know we don't need to do a ping on | 
|  | * this pipe | 
|  | */ | 
|  | pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING; | 
|  |  | 
|  | switch (transaction->type) { | 
|  | case CVMX_USB_TRANSFER_CONTROL: | 
|  | cvmx_usb_transfer_control(usb, pipe, transaction, | 
|  | usbc_hcchar, | 
|  | buffer_space_left, | 
|  | bytes_in_last_packet); | 
|  | break; | 
|  | case CVMX_USB_TRANSFER_BULK: | 
|  | cvmx_usb_transfer_bulk(usb, pipe, transaction, | 
|  | usbc_hcint, buffer_space_left, | 
|  | bytes_in_last_packet); | 
|  | break; | 
|  | case CVMX_USB_TRANSFER_INTERRUPT: | 
|  | cvmx_usb_transfer_intr(usb, pipe, transaction, | 
|  | buffer_space_left, | 
|  | bytes_in_last_packet); | 
|  | break; | 
|  | case CVMX_USB_TRANSFER_ISOCHRONOUS: | 
|  | cvmx_usb_transfer_isoc(usb, pipe, transaction, | 
|  | buffer_space_left, | 
|  | bytes_in_last_packet, | 
|  | bytes_this_transfer); | 
|  | break; | 
|  | } | 
|  | } else if (usbc_hcint.s.nak) { | 
|  | /* | 
|  | * If this was a split then clear our split in progress marker. | 
|  | */ | 
|  | if (usb->active_split == transaction) | 
|  | usb->active_split = NULL; | 
|  | /* | 
|  | * NAK as a response means the device couldn't accept the | 
|  | * transaction, but it should be retried in the future. Rewind | 
|  | * to the beginning of the transaction by anding off the split | 
|  | * complete bit. Retry in the next interval | 
|  | */ | 
|  | transaction->retries = 0; | 
|  | transaction->stage &= ~1; | 
|  | pipe->next_tx_frame += pipe->interval; | 
|  | if (pipe->next_tx_frame < usb->frame_number) | 
|  | pipe->next_tx_frame = usb->frame_number + | 
|  | pipe->interval - | 
|  | (usb->frame_number - pipe->next_tx_frame) % | 
|  | pipe->interval; | 
|  | } else { | 
|  | struct cvmx_usb_port_status port; | 
|  |  | 
|  | port = cvmx_usb_get_status(usb); | 
|  | if (port.port_enabled) { | 
|  | /* We'll retry the exact same transaction again */ | 
|  | transaction->retries++; | 
|  | } else { | 
|  | /* | 
|  | * We get channel halted interrupts with no result bits | 
|  | * sets when the cable is unplugged | 
|  | */ | 
|  | cvmx_usb_complete(usb, pipe, transaction, | 
|  | CVMX_USB_STATUS_ERROR); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void octeon_usb_port_callback(struct octeon_hcd *usb) | 
|  | { | 
|  | spin_unlock(&usb->lock); | 
|  | usb_hcd_poll_rh_status(octeon_to_hcd(usb)); | 
|  | spin_lock(&usb->lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Poll the USB block for status and call all needed callback | 
|  | * handlers. This function is meant to be called in the interrupt | 
|  | * handler for the USB controller. It can also be called | 
|  | * periodically in a loop for non-interrupt based operation. | 
|  | * | 
|  | * @usb: USB device state populated by cvmx_usb_initialize(). | 
|  | * | 
|  | * Returns: 0 or a negative error code. | 
|  | */ | 
|  | static int cvmx_usb_poll(struct octeon_hcd *usb) | 
|  | { | 
|  | union cvmx_usbcx_hfnum usbc_hfnum; | 
|  | union cvmx_usbcx_gintsts usbc_gintsts; | 
|  |  | 
|  | prefetch_range(usb, sizeof(*usb)); | 
|  |  | 
|  | /* Update the frame counter */ | 
|  | usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index)); | 
|  | if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum) | 
|  | usb->frame_number += 0x4000; | 
|  | usb->frame_number &= ~0x3fffull; | 
|  | usb->frame_number |= usbc_hfnum.s.frnum; | 
|  |  | 
|  | /* Read the pending interrupts */ | 
|  | usbc_gintsts.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_GINTSTS(usb->index)); | 
|  |  | 
|  | /* Clear the interrupts now that we know about them */ | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), | 
|  | usbc_gintsts.u32); | 
|  |  | 
|  | if (usbc_gintsts.s.rxflvl) { | 
|  | /* | 
|  | * RxFIFO Non-Empty (RxFLvl) | 
|  | * Indicates that there is at least one packet pending to be | 
|  | * read from the RxFIFO. | 
|  | * | 
|  | * In DMA mode this is handled by hardware | 
|  | */ | 
|  | if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) | 
|  | cvmx_usb_poll_rx_fifo(usb); | 
|  | } | 
|  | if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) { | 
|  | /* Fill the Tx FIFOs when not in DMA mode */ | 
|  | if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) | 
|  | cvmx_usb_poll_tx_fifo(usb); | 
|  | } | 
|  | if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) { | 
|  | union cvmx_usbcx_hprt usbc_hprt; | 
|  | /* | 
|  | * Disconnect Detected Interrupt (DisconnInt) | 
|  | * Asserted when a device disconnect is detected. | 
|  | * | 
|  | * Host Port Interrupt (PrtInt) | 
|  | * The core sets this bit to indicate a change in port status of | 
|  | * one of the O2P USB core ports in Host mode. The application | 
|  | * must read the Host Port Control and Status (HPRT) register to | 
|  | * determine the exact event that caused this interrupt. The | 
|  | * application must clear the appropriate status bit in the Host | 
|  | * Port Control and Status register to clear this bit. | 
|  | * | 
|  | * Call the user's port callback | 
|  | */ | 
|  | octeon_usb_port_callback(usb); | 
|  | /* Clear the port change bits */ | 
|  | usbc_hprt.u32 = | 
|  | cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); | 
|  | usbc_hprt.s.prtena = 0; | 
|  | cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index), | 
|  | usbc_hprt.u32); | 
|  | } | 
|  | if (usbc_gintsts.s.hchint) { | 
|  | /* | 
|  | * Host Channels Interrupt (HChInt) | 
|  | * The core sets this bit to indicate that an interrupt is | 
|  | * pending on one of the channels of the core (in Host mode). | 
|  | * The application must read the Host All Channels Interrupt | 
|  | * (HAINT) register to determine the exact number of the channel | 
|  | * on which the interrupt occurred, and then read the | 
|  | * corresponding Host Channel-n Interrupt (HCINTn) register to | 
|  | * determine the exact cause of the interrupt. The application | 
|  | * must clear the appropriate status bit in the HCINTn register | 
|  | * to clear this bit. | 
|  | */ | 
|  | union cvmx_usbcx_haint usbc_haint; | 
|  |  | 
|  | usbc_haint.u32 = cvmx_usb_read_csr32(usb, | 
|  | CVMX_USBCX_HAINT(usb->index)); | 
|  | while (usbc_haint.u32) { | 
|  | int channel; | 
|  |  | 
|  | channel = __fls(usbc_haint.u32); | 
|  | cvmx_usb_poll_channel(usb, channel); | 
|  | usbc_haint.u32 ^= 1 << channel; | 
|  | } | 
|  | } | 
|  |  | 
|  | cvmx_usb_schedule(usb, usbc_gintsts.s.sof); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* convert between an HCD pointer and the corresponding struct octeon_hcd */ | 
|  | static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd) | 
|  | { | 
|  | return (struct octeon_hcd *)(hcd->hcd_priv); | 
|  | } | 
|  |  | 
|  | static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd) | 
|  | { | 
|  | struct octeon_hcd *usb = hcd_to_octeon(hcd); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | cvmx_usb_poll(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int octeon_usb_start(struct usb_hcd *hcd) | 
|  | { | 
|  | hcd->state = HC_STATE_RUNNING; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void octeon_usb_stop(struct usb_hcd *hcd) | 
|  | { | 
|  | hcd->state = HC_STATE_HALT; | 
|  | } | 
|  |  | 
|  | static int octeon_usb_get_frame_number(struct usb_hcd *hcd) | 
|  | { | 
|  | struct octeon_hcd *usb = hcd_to_octeon(hcd); | 
|  |  | 
|  | return cvmx_usb_get_frame_number(usb); | 
|  | } | 
|  |  | 
|  | static int octeon_usb_urb_enqueue(struct usb_hcd *hcd, | 
|  | struct urb *urb, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | struct octeon_hcd *usb = hcd_to_octeon(hcd); | 
|  | struct device *dev = hcd->self.controller; | 
|  | struct cvmx_usb_transaction *transaction = NULL; | 
|  | struct cvmx_usb_pipe *pipe; | 
|  | unsigned long flags; | 
|  | struct cvmx_usb_iso_packet *iso_packet; | 
|  | struct usb_host_endpoint *ep = urb->ep; | 
|  | int rc; | 
|  |  | 
|  | urb->status = 0; | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  |  | 
|  | rc = usb_hcd_link_urb_to_ep(hcd, urb); | 
|  | if (rc) { | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | if (!ep->hcpriv) { | 
|  | enum cvmx_usb_transfer transfer_type; | 
|  | enum cvmx_usb_speed speed; | 
|  | int split_device = 0; | 
|  | int split_port = 0; | 
|  |  | 
|  | switch (usb_pipetype(urb->pipe)) { | 
|  | case PIPE_ISOCHRONOUS: | 
|  | transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS; | 
|  | break; | 
|  | case PIPE_INTERRUPT: | 
|  | transfer_type = CVMX_USB_TRANSFER_INTERRUPT; | 
|  | break; | 
|  | case PIPE_CONTROL: | 
|  | transfer_type = CVMX_USB_TRANSFER_CONTROL; | 
|  | break; | 
|  | default: | 
|  | transfer_type = CVMX_USB_TRANSFER_BULK; | 
|  | break; | 
|  | } | 
|  | switch (urb->dev->speed) { | 
|  | case USB_SPEED_LOW: | 
|  | speed = CVMX_USB_SPEED_LOW; | 
|  | break; | 
|  | case USB_SPEED_FULL: | 
|  | speed = CVMX_USB_SPEED_FULL; | 
|  | break; | 
|  | default: | 
|  | speed = CVMX_USB_SPEED_HIGH; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * For slow devices on high speed ports we need to find the hub | 
|  | * that does the speed translation so we know where to send the | 
|  | * split transactions. | 
|  | */ | 
|  | if (speed != CVMX_USB_SPEED_HIGH) { | 
|  | /* | 
|  | * Start at this device and work our way up the usb | 
|  | * tree. | 
|  | */ | 
|  | struct usb_device *dev = urb->dev; | 
|  |  | 
|  | while (dev->parent) { | 
|  | /* | 
|  | * If our parent is high speed then he'll | 
|  | * receive the splits. | 
|  | */ | 
|  | if (dev->parent->speed == USB_SPEED_HIGH) { | 
|  | split_device = dev->parent->devnum; | 
|  | split_port = dev->portnum; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Move up the tree one level. If we make it all | 
|  | * the way up the tree, then the port must not | 
|  | * be in high speed mode and we don't need a | 
|  | * split. | 
|  | */ | 
|  | dev = dev->parent; | 
|  | } | 
|  | } | 
|  | pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe), | 
|  | usb_pipeendpoint(urb->pipe), speed, | 
|  | le16_to_cpu(ep->desc.wMaxPacketSize) | 
|  | & 0x7ff, | 
|  | transfer_type, | 
|  | usb_pipein(urb->pipe) ? | 
|  | CVMX_USB_DIRECTION_IN : | 
|  | CVMX_USB_DIRECTION_OUT, | 
|  | urb->interval, | 
|  | (le16_to_cpu(ep->desc.wMaxPacketSize) | 
|  | >> 11) & 0x3, | 
|  | split_device, split_port); | 
|  | if (!pipe) { | 
|  | usb_hcd_unlink_urb_from_ep(hcd, urb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | dev_dbg(dev, "Failed to create pipe\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | ep->hcpriv = pipe; | 
|  | } else { | 
|  | pipe = ep->hcpriv; | 
|  | } | 
|  |  | 
|  | switch (usb_pipetype(urb->pipe)) { | 
|  | case PIPE_ISOCHRONOUS: | 
|  | dev_dbg(dev, "Submit isochronous to %d.%d\n", | 
|  | usb_pipedevice(urb->pipe), | 
|  | usb_pipeendpoint(urb->pipe)); | 
|  | /* | 
|  | * Allocate a structure to use for our private list of | 
|  | * isochronous packets. | 
|  | */ | 
|  | iso_packet = kmalloc_array(urb->number_of_packets, | 
|  | sizeof(struct cvmx_usb_iso_packet), | 
|  | GFP_ATOMIC); | 
|  | if (iso_packet) { | 
|  | int i; | 
|  | /* Fill the list with the data from the URB */ | 
|  | for (i = 0; i < urb->number_of_packets; i++) { | 
|  | iso_packet[i].offset = | 
|  | urb->iso_frame_desc[i].offset; | 
|  | iso_packet[i].length = | 
|  | urb->iso_frame_desc[i].length; | 
|  | iso_packet[i].status = CVMX_USB_STATUS_ERROR; | 
|  | } | 
|  | /* | 
|  | * Store a pointer to the list in the URB setup_packet | 
|  | * field. We know this currently isn't being used and | 
|  | * this saves us a bunch of logic. | 
|  | */ | 
|  | urb->setup_packet = (char *)iso_packet; | 
|  | transaction = cvmx_usb_submit_isochronous(usb, | 
|  | pipe, urb); | 
|  | /* | 
|  | * If submit failed we need to free our private packet | 
|  | * list. | 
|  | */ | 
|  | if (!transaction) { | 
|  | urb->setup_packet = NULL; | 
|  | kfree(iso_packet); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case PIPE_INTERRUPT: | 
|  | dev_dbg(dev, "Submit interrupt to %d.%d\n", | 
|  | usb_pipedevice(urb->pipe), | 
|  | usb_pipeendpoint(urb->pipe)); | 
|  | transaction = cvmx_usb_submit_interrupt(usb, pipe, urb); | 
|  | break; | 
|  | case PIPE_CONTROL: | 
|  | dev_dbg(dev, "Submit control to %d.%d\n", | 
|  | usb_pipedevice(urb->pipe), | 
|  | usb_pipeendpoint(urb->pipe)); | 
|  | transaction = cvmx_usb_submit_control(usb, pipe, urb); | 
|  | break; | 
|  | case PIPE_BULK: | 
|  | dev_dbg(dev, "Submit bulk to %d.%d\n", | 
|  | usb_pipedevice(urb->pipe), | 
|  | usb_pipeendpoint(urb->pipe)); | 
|  | transaction = cvmx_usb_submit_bulk(usb, pipe, urb); | 
|  | break; | 
|  | } | 
|  | if (!transaction) { | 
|  | usb_hcd_unlink_urb_from_ep(hcd, urb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | dev_dbg(dev, "Failed to submit\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | urb->hcpriv = transaction; | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int octeon_usb_urb_dequeue(struct usb_hcd *hcd, | 
|  | struct urb *urb, | 
|  | int status) | 
|  | { | 
|  | struct octeon_hcd *usb = hcd_to_octeon(hcd); | 
|  | unsigned long flags; | 
|  | int rc; | 
|  |  | 
|  | if (!urb->dev) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  |  | 
|  | rc = usb_hcd_check_unlink_urb(hcd, urb, status); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | urb->status = status; | 
|  | cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void octeon_usb_endpoint_disable(struct usb_hcd *hcd, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct device *dev = hcd->self.controller; | 
|  |  | 
|  | if (ep->hcpriv) { | 
|  | struct octeon_hcd *usb = hcd_to_octeon(hcd); | 
|  | struct cvmx_usb_pipe *pipe = ep->hcpriv; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | cvmx_usb_cancel_all(usb, pipe); | 
|  | if (cvmx_usb_close_pipe(usb, pipe)) | 
|  | dev_dbg(dev, "Closing pipe %p failed\n", pipe); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | ep->hcpriv = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf) | 
|  | { | 
|  | struct octeon_hcd *usb = hcd_to_octeon(hcd); | 
|  | struct cvmx_usb_port_status port_status; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | port_status = cvmx_usb_get_status(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | buf[0] = port_status.connect_change << 1; | 
|  |  | 
|  | return buf[0] != 0; | 
|  | } | 
|  |  | 
|  | static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, | 
|  | u16 wIndex, char *buf, u16 wLength) | 
|  | { | 
|  | struct octeon_hcd *usb = hcd_to_octeon(hcd); | 
|  | struct device *dev = hcd->self.controller; | 
|  | struct cvmx_usb_port_status usb_port_status; | 
|  | int port_status; | 
|  | struct usb_hub_descriptor *desc; | 
|  | unsigned long flags; | 
|  |  | 
|  | switch (typeReq) { | 
|  | case ClearHubFeature: | 
|  | dev_dbg(dev, "ClearHubFeature\n"); | 
|  | switch (wValue) { | 
|  | case C_HUB_LOCAL_POWER: | 
|  | case C_HUB_OVER_CURRENT: | 
|  | /* Nothing required here */ | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case ClearPortFeature: | 
|  | dev_dbg(dev, "ClearPortFeature\n"); | 
|  | if (wIndex != 1) { | 
|  | dev_dbg(dev, " INVALID\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (wValue) { | 
|  | case USB_PORT_FEAT_ENABLE: | 
|  | dev_dbg(dev, " ENABLE\n"); | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | cvmx_usb_disable(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | break; | 
|  | case USB_PORT_FEAT_SUSPEND: | 
|  | dev_dbg(dev, " SUSPEND\n"); | 
|  | /* Not supported on Octeon */ | 
|  | break; | 
|  | case USB_PORT_FEAT_POWER: | 
|  | dev_dbg(dev, " POWER\n"); | 
|  | /* Not supported on Octeon */ | 
|  | break; | 
|  | case USB_PORT_FEAT_INDICATOR: | 
|  | dev_dbg(dev, " INDICATOR\n"); | 
|  | /* Port indicator not supported */ | 
|  | break; | 
|  | case USB_PORT_FEAT_C_CONNECTION: | 
|  | dev_dbg(dev, " C_CONNECTION\n"); | 
|  | /* Clears drivers internal connect status change flag */ | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | usb->port_status = cvmx_usb_get_status(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | break; | 
|  | case USB_PORT_FEAT_C_RESET: | 
|  | dev_dbg(dev, " C_RESET\n"); | 
|  | /* | 
|  | * Clears the driver's internal Port Reset Change flag. | 
|  | */ | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | usb->port_status = cvmx_usb_get_status(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | break; | 
|  | case USB_PORT_FEAT_C_ENABLE: | 
|  | dev_dbg(dev, " C_ENABLE\n"); | 
|  | /* | 
|  | * Clears the driver's internal Port Enable/Disable | 
|  | * Change flag. | 
|  | */ | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | usb->port_status = cvmx_usb_get_status(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | break; | 
|  | case USB_PORT_FEAT_C_SUSPEND: | 
|  | dev_dbg(dev, " C_SUSPEND\n"); | 
|  | /* | 
|  | * Clears the driver's internal Port Suspend Change | 
|  | * flag, which is set when resume signaling on the host | 
|  | * port is complete. | 
|  | */ | 
|  | break; | 
|  | case USB_PORT_FEAT_C_OVER_CURRENT: | 
|  | dev_dbg(dev, " C_OVER_CURRENT\n"); | 
|  | /* Clears the driver's overcurrent Change flag */ | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | usb->port_status = cvmx_usb_get_status(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | break; | 
|  | default: | 
|  | dev_dbg(dev, " UNKNOWN\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case GetHubDescriptor: | 
|  | dev_dbg(dev, "GetHubDescriptor\n"); | 
|  | desc = (struct usb_hub_descriptor *)buf; | 
|  | desc->bDescLength = 9; | 
|  | desc->bDescriptorType = 0x29; | 
|  | desc->bNbrPorts = 1; | 
|  | desc->wHubCharacteristics = cpu_to_le16(0x08); | 
|  | desc->bPwrOn2PwrGood = 1; | 
|  | desc->bHubContrCurrent = 0; | 
|  | desc->u.hs.DeviceRemovable[0] = 0; | 
|  | desc->u.hs.DeviceRemovable[1] = 0xff; | 
|  | break; | 
|  | case GetHubStatus: | 
|  | dev_dbg(dev, "GetHubStatus\n"); | 
|  | *(__le32 *)buf = 0; | 
|  | break; | 
|  | case GetPortStatus: | 
|  | dev_dbg(dev, "GetPortStatus\n"); | 
|  | if (wIndex != 1) { | 
|  | dev_dbg(dev, " INVALID\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | usb_port_status = cvmx_usb_get_status(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | port_status = 0; | 
|  |  | 
|  | if (usb_port_status.connect_change) { | 
|  | port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); | 
|  | dev_dbg(dev, " C_CONNECTION\n"); | 
|  | } | 
|  |  | 
|  | if (usb_port_status.port_enabled) { | 
|  | port_status |= (1 << USB_PORT_FEAT_C_ENABLE); | 
|  | dev_dbg(dev, " C_ENABLE\n"); | 
|  | } | 
|  |  | 
|  | if (usb_port_status.connected) { | 
|  | port_status |= (1 << USB_PORT_FEAT_CONNECTION); | 
|  | dev_dbg(dev, " CONNECTION\n"); | 
|  | } | 
|  |  | 
|  | if (usb_port_status.port_enabled) { | 
|  | port_status |= (1 << USB_PORT_FEAT_ENABLE); | 
|  | dev_dbg(dev, " ENABLE\n"); | 
|  | } | 
|  |  | 
|  | if (usb_port_status.port_over_current) { | 
|  | port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); | 
|  | dev_dbg(dev, " OVER_CURRENT\n"); | 
|  | } | 
|  |  | 
|  | if (usb_port_status.port_powered) { | 
|  | port_status |= (1 << USB_PORT_FEAT_POWER); | 
|  | dev_dbg(dev, " POWER\n"); | 
|  | } | 
|  |  | 
|  | if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) { | 
|  | port_status |= USB_PORT_STAT_HIGH_SPEED; | 
|  | dev_dbg(dev, " HIGHSPEED\n"); | 
|  | } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) { | 
|  | port_status |= (1 << USB_PORT_FEAT_LOWSPEED); | 
|  | dev_dbg(dev, " LOWSPEED\n"); | 
|  | } | 
|  |  | 
|  | *((__le32 *)buf) = cpu_to_le32(port_status); | 
|  | break; | 
|  | case SetHubFeature: | 
|  | dev_dbg(dev, "SetHubFeature\n"); | 
|  | /* No HUB features supported */ | 
|  | break; | 
|  | case SetPortFeature: | 
|  | dev_dbg(dev, "SetPortFeature\n"); | 
|  | if (wIndex != 1) { | 
|  | dev_dbg(dev, " INVALID\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (wValue) { | 
|  | case USB_PORT_FEAT_SUSPEND: | 
|  | dev_dbg(dev, " SUSPEND\n"); | 
|  | return -EINVAL; | 
|  | case USB_PORT_FEAT_POWER: | 
|  | dev_dbg(dev, " POWER\n"); | 
|  | /* | 
|  | * Program the port power bit to drive VBUS on the USB. | 
|  | */ | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), | 
|  | cvmx_usbcx_hprt, prtpwr, 1); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | return 0; | 
|  | case USB_PORT_FEAT_RESET: | 
|  | dev_dbg(dev, " RESET\n"); | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | cvmx_usb_reset_port(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | return 0; | 
|  | case USB_PORT_FEAT_INDICATOR: | 
|  | dev_dbg(dev, " INDICATOR\n"); | 
|  | /* Not supported */ | 
|  | break; | 
|  | default: | 
|  | dev_dbg(dev, " UNKNOWN\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | dev_dbg(dev, "Unknown root hub request\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct hc_driver octeon_hc_driver = { | 
|  | .description		= "Octeon USB", | 
|  | .product_desc		= "Octeon Host Controller", | 
|  | .hcd_priv_size		= sizeof(struct octeon_hcd), | 
|  | .irq			= octeon_usb_irq, | 
|  | .flags			= HCD_MEMORY | HCD_DMA | HCD_USB2, | 
|  | .start			= octeon_usb_start, | 
|  | .stop			= octeon_usb_stop, | 
|  | .urb_enqueue		= octeon_usb_urb_enqueue, | 
|  | .urb_dequeue		= octeon_usb_urb_dequeue, | 
|  | .endpoint_disable	= octeon_usb_endpoint_disable, | 
|  | .get_frame_number	= octeon_usb_get_frame_number, | 
|  | .hub_status_data	= octeon_usb_hub_status_data, | 
|  | .hub_control		= octeon_usb_hub_control, | 
|  | .map_urb_for_dma	= octeon_map_urb_for_dma, | 
|  | .unmap_urb_for_dma	= octeon_unmap_urb_for_dma, | 
|  | }; | 
|  |  | 
|  | static int octeon_usb_probe(struct platform_device *pdev) | 
|  | { | 
|  | int status; | 
|  | int initialize_flags; | 
|  | int usb_num; | 
|  | struct resource *res_mem; | 
|  | struct device_node *usbn_node; | 
|  | int irq = platform_get_irq(pdev, 0); | 
|  | struct device *dev = &pdev->dev; | 
|  | struct octeon_hcd *usb; | 
|  | struct usb_hcd *hcd; | 
|  | u32 clock_rate = 48000000; | 
|  | bool is_crystal_clock = false; | 
|  | const char *clock_type; | 
|  | int i; | 
|  |  | 
|  | if (!dev->of_node) { | 
|  | dev_err(dev, "Error: empty of_node\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  | usbn_node = dev->of_node->parent; | 
|  |  | 
|  | i = of_property_read_u32(usbn_node, | 
|  | "clock-frequency", &clock_rate); | 
|  | if (i) | 
|  | i = of_property_read_u32(usbn_node, | 
|  | "refclk-frequency", &clock_rate); | 
|  | if (i) { | 
|  | dev_err(dev, "No USBN \"clock-frequency\"\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  | switch (clock_rate) { | 
|  | case 12000000: | 
|  | initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ; | 
|  | break; | 
|  | case 24000000: | 
|  | initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ; | 
|  | break; | 
|  | case 48000000: | 
|  | initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ; | 
|  | break; | 
|  | default: | 
|  | dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n", | 
|  | clock_rate); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | i = of_property_read_string(usbn_node, | 
|  | "cavium,refclk-type", &clock_type); | 
|  | if (i) | 
|  | i = of_property_read_string(usbn_node, | 
|  | "refclk-type", &clock_type); | 
|  |  | 
|  | if (!i && strcmp("crystal", clock_type) == 0) | 
|  | is_crystal_clock = true; | 
|  |  | 
|  | if (is_crystal_clock) | 
|  | initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI; | 
|  | else | 
|  | initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND; | 
|  |  | 
|  | res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!res_mem) { | 
|  | dev_err(dev, "found no memory resource\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  | usb_num = (res_mem->start >> 44) & 1; | 
|  |  | 
|  | if (irq < 0) { | 
|  | /* Defective device tree, but we know how to fix it. */ | 
|  | irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56; | 
|  |  | 
|  | irq = irq_create_mapping(NULL, hwirq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the DMA mask to 64bits so we get buffers already translated for | 
|  | * DMA. | 
|  | */ | 
|  | i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64)); | 
|  | if (i) | 
|  | return i; | 
|  |  | 
|  | /* | 
|  | * Only cn52XX and cn56XX have DWC_OTG USB hardware and the | 
|  | * IOB priority registers.  Under heavy network load USB | 
|  | * hardware can be starved by the IOB causing a crash.  Give | 
|  | * it a priority boost if it has been waiting more than 400 | 
|  | * cycles to avoid this situation. | 
|  | * | 
|  | * Testing indicates that a cnt_val of 8192 is not sufficient, | 
|  | * but no failures are seen with 4096.  We choose a value of | 
|  | * 400 to give a safety factor of 10. | 
|  | */ | 
|  | if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) { | 
|  | union cvmx_iob_n2c_l2c_pri_cnt pri_cnt; | 
|  |  | 
|  | pri_cnt.u64 = 0; | 
|  | pri_cnt.s.cnt_enb = 1; | 
|  | pri_cnt.s.cnt_val = 400; | 
|  | cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64); | 
|  | } | 
|  |  | 
|  | hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev)); | 
|  | if (!hcd) { | 
|  | dev_dbg(dev, "Failed to allocate memory for HCD\n"); | 
|  | return -1; | 
|  | } | 
|  | hcd->uses_new_polling = 1; | 
|  | usb = (struct octeon_hcd *)hcd->hcd_priv; | 
|  |  | 
|  | spin_lock_init(&usb->lock); | 
|  |  | 
|  | usb->init_flags = initialize_flags; | 
|  |  | 
|  | /* Initialize the USB state structure */ | 
|  | usb->index = usb_num; | 
|  | INIT_LIST_HEAD(&usb->idle_pipes); | 
|  | for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++) | 
|  | INIT_LIST_HEAD(&usb->active_pipes[i]); | 
|  |  | 
|  | /* Due to an errata, CN31XX doesn't support DMA */ | 
|  | if (OCTEON_IS_MODEL(OCTEON_CN31XX)) { | 
|  | usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA; | 
|  | /* Only use one channel with non DMA */ | 
|  | usb->idle_hardware_channels = 0x1; | 
|  | } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { | 
|  | /* CN5XXX have an errata with channel 3 */ | 
|  | usb->idle_hardware_channels = 0xf7; | 
|  | } else { | 
|  | usb->idle_hardware_channels = 0xff; | 
|  | } | 
|  |  | 
|  | status = cvmx_usb_initialize(dev, usb); | 
|  | if (status) { | 
|  | dev_dbg(dev, "USB initialization failed with %d\n", status); | 
|  | usb_put_hcd(hcd); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | status = usb_add_hcd(hcd, irq, 0); | 
|  | if (status) { | 
|  | dev_dbg(dev, "USB add HCD failed with %d\n", status); | 
|  | usb_put_hcd(hcd); | 
|  | return -1; | 
|  | } | 
|  | device_wakeup_enable(hcd->self.controller); | 
|  |  | 
|  | dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void octeon_usb_remove(struct platform_device *pdev) | 
|  | { | 
|  | int status; | 
|  | struct device *dev = &pdev->dev; | 
|  | struct usb_hcd *hcd = dev_get_drvdata(dev); | 
|  | struct octeon_hcd *usb = hcd_to_octeon(hcd); | 
|  | unsigned long flags; | 
|  |  | 
|  | usb_remove_hcd(hcd); | 
|  | spin_lock_irqsave(&usb->lock, flags); | 
|  | status = cvmx_usb_shutdown(usb); | 
|  | spin_unlock_irqrestore(&usb->lock, flags); | 
|  | if (status) | 
|  | dev_dbg(dev, "USB shutdown failed with %d\n", status); | 
|  |  | 
|  | usb_put_hcd(hcd); | 
|  | } | 
|  |  | 
|  | static const struct of_device_id octeon_usb_match[] = { | 
|  | { | 
|  | .compatible = "cavium,octeon-5750-usbc", | 
|  | }, | 
|  | {}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, octeon_usb_match); | 
|  |  | 
|  | static struct platform_driver octeon_usb_driver = { | 
|  | .driver = { | 
|  | .name		= "octeon-hcd", | 
|  | .of_match_table = octeon_usb_match, | 
|  | }, | 
|  | .probe = octeon_usb_probe, | 
|  | .remove = octeon_usb_remove, | 
|  | }; | 
|  |  | 
|  | static int __init octeon_usb_driver_init(void) | 
|  | { | 
|  | if (usb_disabled()) | 
|  | return 0; | 
|  |  | 
|  | return platform_driver_register(&octeon_usb_driver); | 
|  | } | 
|  | module_init(octeon_usb_driver_init); | 
|  |  | 
|  | static void __exit octeon_usb_driver_exit(void) | 
|  | { | 
|  | if (usb_disabled()) | 
|  | return; | 
|  |  | 
|  | platform_driver_unregister(&octeon_usb_driver); | 
|  | } | 
|  | module_exit(octeon_usb_driver_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>"); | 
|  | MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver."); |