|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  |  | 
|  | #ifndef BTRFS_MISC_H | 
|  | #define BTRFS_MISC_H | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/bio.h> | 
|  |  | 
|  | /* | 
|  | * Enumerate bits using enum autoincrement. Define the @name as the n-th bit. | 
|  | */ | 
|  | #define ENUM_BIT(name)                                  \ | 
|  | __ ## name ## _BIT,                             \ | 
|  | name = (1U << __ ## name ## _BIT),              \ | 
|  | __ ## name ## _SEQ = __ ## name ## _BIT | 
|  |  | 
|  | static inline phys_addr_t bio_iter_phys(struct bio *bio, struct bvec_iter *iter) | 
|  | { | 
|  | struct bio_vec bv = bio_iter_iovec(bio, *iter); | 
|  |  | 
|  | return bvec_phys(&bv); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate bio using btrfs block size. | 
|  | * | 
|  | * This will handle large folio and highmem. | 
|  | * | 
|  | * @paddr:	Physical memory address of each iteration | 
|  | * @bio:	The bio to iterate | 
|  | * @iter:	The bvec_iter (pointer) to use. | 
|  | * @blocksize:	The blocksize to iterate. | 
|  | * | 
|  | * This requires all folios in the bio to cover at least one block. | 
|  | */ | 
|  | #define btrfs_bio_for_each_block(paddr, bio, iter, blocksize)		\ | 
|  | for (; (iter)->bi_size &&					\ | 
|  | (paddr = bio_iter_phys((bio), (iter)), 1);			\ | 
|  | bio_advance_iter_single((bio), (iter), (blocksize))) | 
|  |  | 
|  | /* Initialize a bvec_iter to the size of the specified bio. */ | 
|  | static inline struct bvec_iter init_bvec_iter_for_bio(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | u32 bio_size = 0; | 
|  | int i; | 
|  |  | 
|  | bio_for_each_bvec_all(bvec, bio, i) | 
|  | bio_size += bvec->bv_len; | 
|  |  | 
|  | return (struct bvec_iter) { | 
|  | .bi_sector = 0, | 
|  | .bi_size = bio_size, | 
|  | .bi_idx = 0, | 
|  | .bi_bvec_done = 0, | 
|  | }; | 
|  | } | 
|  |  | 
|  | #define btrfs_bio_for_each_block_all(paddr, bio, blocksize)		\ | 
|  | for (struct bvec_iter iter = init_bvec_iter_for_bio(bio);	\ | 
|  | (iter).bi_size &&						\ | 
|  | (paddr = bio_iter_phys((bio), &(iter)), 1);		\ | 
|  | bio_advance_iter_single((bio), &(iter), (blocksize))) | 
|  |  | 
|  | static inline void cond_wake_up(struct wait_queue_head *wq) | 
|  | { | 
|  | /* | 
|  | * This implies a full smp_mb barrier, see comments for | 
|  | * waitqueue_active why. | 
|  | */ | 
|  | if (wq_has_sleeper(wq)) | 
|  | wake_up(wq); | 
|  | } | 
|  |  | 
|  | static inline void cond_wake_up_nomb(struct wait_queue_head *wq) | 
|  | { | 
|  | /* | 
|  | * Special case for conditional wakeup where the barrier required for | 
|  | * waitqueue_active is implied by some of the preceding code. Eg. one | 
|  | * of such atomic operations (atomic_dec_and_return, ...), or a | 
|  | * unlock/lock sequence, etc. | 
|  | */ | 
|  | if (waitqueue_active(wq)) | 
|  | wake_up(wq); | 
|  | } | 
|  |  | 
|  | static inline u64 mult_perc(u64 num, u32 percent) | 
|  | { | 
|  | return div_u64(num * percent, 100); | 
|  | } | 
|  | /* Copy of is_power_of_two that is 64bit safe */ | 
|  | static inline bool is_power_of_two_u64(u64 n) | 
|  | { | 
|  | return n != 0 && (n & (n - 1)) == 0; | 
|  | } | 
|  |  | 
|  | static inline bool has_single_bit_set(u64 n) | 
|  | { | 
|  | return is_power_of_two_u64(n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Simple bytenr based rb_tree relate structures | 
|  | * | 
|  | * Any structure wants to use bytenr as single search index should have their | 
|  | * structure start with these members. | 
|  | */ | 
|  | struct rb_simple_node { | 
|  | struct rb_node rb_node; | 
|  | u64 bytenr; | 
|  | }; | 
|  |  | 
|  | static inline struct rb_node *rb_simple_search(const struct rb_root *root, u64 bytenr) | 
|  | { | 
|  | struct rb_node *node = root->rb_node; | 
|  | struct rb_simple_node *entry; | 
|  |  | 
|  | while (node) { | 
|  | entry = rb_entry(node, struct rb_simple_node, rb_node); | 
|  |  | 
|  | if (bytenr < entry->bytenr) | 
|  | node = node->rb_left; | 
|  | else if (bytenr > entry->bytenr) | 
|  | node = node->rb_right; | 
|  | else | 
|  | return node; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search @root from an entry that starts or comes after @bytenr. | 
|  | * | 
|  | * @root:	the root to search. | 
|  | * @bytenr:	bytenr to search from. | 
|  | * | 
|  | * Return the rb_node that start at or after @bytenr.  If there is no entry at | 
|  | * or after @bytner return NULL. | 
|  | */ | 
|  | static inline struct rb_node *rb_simple_search_first(const struct rb_root *root, | 
|  | u64 bytenr) | 
|  | { | 
|  | struct rb_node *node = root->rb_node, *ret = NULL; | 
|  | struct rb_simple_node *entry, *ret_entry = NULL; | 
|  |  | 
|  | while (node) { | 
|  | entry = rb_entry(node, struct rb_simple_node, rb_node); | 
|  |  | 
|  | if (bytenr < entry->bytenr) { | 
|  | if (!ret || entry->bytenr < ret_entry->bytenr) { | 
|  | ret = node; | 
|  | ret_entry = entry; | 
|  | } | 
|  |  | 
|  | node = node->rb_left; | 
|  | } else if (bytenr > entry->bytenr) { | 
|  | node = node->rb_right; | 
|  | } else { | 
|  | return node; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rb_simple_node_bytenr_cmp(struct rb_node *new, const struct rb_node *existing) | 
|  | { | 
|  | struct rb_simple_node *new_entry = rb_entry(new, struct rb_simple_node, rb_node); | 
|  | struct rb_simple_node *existing_entry = rb_entry(existing, struct rb_simple_node, rb_node); | 
|  |  | 
|  | if (new_entry->bytenr < existing_entry->bytenr) | 
|  | return -1; | 
|  | else if (new_entry->bytenr > existing_entry->bytenr) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct rb_node *rb_simple_insert(struct rb_root *root, | 
|  | struct rb_simple_node *simple_node) | 
|  | { | 
|  | return rb_find_add(&simple_node->rb_node, root, rb_simple_node_bytenr_cmp); | 
|  | } | 
|  |  | 
|  | static inline bool bitmap_test_range_all_set(const unsigned long *addr, | 
|  | unsigned long start, | 
|  | unsigned long nbits) | 
|  | { | 
|  | unsigned long found_zero; | 
|  |  | 
|  | found_zero = find_next_zero_bit(addr, start + nbits, start); | 
|  | return (found_zero == start + nbits); | 
|  | } | 
|  |  | 
|  | static inline bool bitmap_test_range_all_zero(const unsigned long *addr, | 
|  | unsigned long start, | 
|  | unsigned long nbits) | 
|  | { | 
|  | unsigned long found_set; | 
|  |  | 
|  | found_set = find_next_bit(addr, start + nbits, start); | 
|  | return (found_set == start + nbits); | 
|  | } | 
|  |  | 
|  | static inline u64 folio_end(struct folio *folio) | 
|  | { | 
|  | return folio_pos(folio) + folio_size(folio); | 
|  | } | 
|  |  | 
|  | #endif |