|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2012 Alexander Block.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/bsearch.h> | 
|  | #include <linux/falloc.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/xattr.h> | 
|  | #include <linux/posix_acl_xattr.h> | 
|  | #include <linux/radix-tree.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/crc32c.h> | 
|  | #include <linux/fsverity.h> | 
|  | #include "send.h" | 
|  | #include "ctree.h" | 
|  | #include "backref.h" | 
|  | #include "locking.h" | 
|  | #include "disk-io.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "transaction.h" | 
|  | #include "compression.h" | 
|  | #include "print-tree.h" | 
|  | #include "accessors.h" | 
|  | #include "dir-item.h" | 
|  | #include "file-item.h" | 
|  | #include "ioctl.h" | 
|  | #include "verity.h" | 
|  | #include "lru_cache.h" | 
|  |  | 
|  | /* | 
|  | * Maximum number of references an extent can have in order for us to attempt to | 
|  | * issue clone operations instead of write operations. This currently exists to | 
|  | * avoid hitting limitations of the backreference walking code (taking a lot of | 
|  | * time and using too much memory for extents with large number of references). | 
|  | */ | 
|  | #define SEND_MAX_EXTENT_REFS	1024 | 
|  |  | 
|  | /* | 
|  | * A fs_path is a helper to dynamically build path names with unknown size. | 
|  | * It reallocates the internal buffer on demand. | 
|  | * It allows fast adding of path elements on the right side (normal path) and | 
|  | * fast adding to the left side (reversed path). A reversed path can also be | 
|  | * unreversed if needed. | 
|  | */ | 
|  | struct fs_path { | 
|  | union { | 
|  | struct { | 
|  | char *start; | 
|  | char *end; | 
|  |  | 
|  | char *buf; | 
|  | unsigned short buf_len:15; | 
|  | unsigned short reversed:1; | 
|  | char inline_buf[]; | 
|  | }; | 
|  | /* | 
|  | * Average path length does not exceed 200 bytes, we'll have | 
|  | * better packing in the slab and higher chance to satisfy | 
|  | * an allocation later during send. | 
|  | */ | 
|  | char pad[256]; | 
|  | }; | 
|  | }; | 
|  | #define FS_PATH_INLINE_SIZE \ | 
|  | (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) | 
|  |  | 
|  |  | 
|  | /* reused for each extent */ | 
|  | struct clone_root { | 
|  | struct btrfs_root *root; | 
|  | u64 ino; | 
|  | u64 offset; | 
|  | u64 num_bytes; | 
|  | bool found_ref; | 
|  | }; | 
|  |  | 
|  | #define SEND_MAX_NAME_CACHE_SIZE			256 | 
|  |  | 
|  | /* | 
|  | * Limit the root_ids array of struct backref_cache_entry to 17 elements. | 
|  | * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which | 
|  | * can be satisfied from the kmalloc-192 slab, without wasting any space. | 
|  | * The most common case is to have a single root for cloning, which corresponds | 
|  | * to the send root. Having the user specify more than 16 clone roots is not | 
|  | * common, and in such rare cases we simply don't use caching if the number of | 
|  | * cloning roots that lead down to a leaf is more than 17. | 
|  | */ | 
|  | #define SEND_MAX_BACKREF_CACHE_ROOTS			17 | 
|  |  | 
|  | /* | 
|  | * Max number of entries in the cache. | 
|  | * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding | 
|  | * maple tree's internal nodes, is 24K. | 
|  | */ | 
|  | #define SEND_MAX_BACKREF_CACHE_SIZE 128 | 
|  |  | 
|  | /* | 
|  | * A backref cache entry maps a leaf to a list of IDs of roots from which the | 
|  | * leaf is accessible and we can use for clone operations. | 
|  | * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on | 
|  | * x86_64). | 
|  | */ | 
|  | struct backref_cache_entry { | 
|  | struct btrfs_lru_cache_entry entry; | 
|  | u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; | 
|  | /* Number of valid elements in the root_ids array. */ | 
|  | int num_roots; | 
|  | }; | 
|  |  | 
|  | /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ | 
|  | static_assert(offsetof(struct backref_cache_entry, entry) == 0); | 
|  |  | 
|  | /* | 
|  | * Max number of entries in the cache that stores directories that were already | 
|  | * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses | 
|  | * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but | 
|  | * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). | 
|  | */ | 
|  | #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64 | 
|  |  | 
|  | /* | 
|  | * Max number of entries in the cache that stores directories that were already | 
|  | * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses | 
|  | * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but | 
|  | * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). | 
|  | */ | 
|  | #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64 | 
|  |  | 
|  | struct send_ctx { | 
|  | struct file *send_filp; | 
|  | loff_t send_off; | 
|  | char *send_buf; | 
|  | u32 send_size; | 
|  | u32 send_max_size; | 
|  | /* | 
|  | * Whether BTRFS_SEND_A_DATA attribute was already added to current | 
|  | * command (since protocol v2, data must be the last attribute). | 
|  | */ | 
|  | bool put_data; | 
|  | struct page **send_buf_pages; | 
|  | u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */ | 
|  | /* Protocol version compatibility requested */ | 
|  | u32 proto; | 
|  |  | 
|  | struct btrfs_root *send_root; | 
|  | struct btrfs_root *parent_root; | 
|  | struct clone_root *clone_roots; | 
|  | int clone_roots_cnt; | 
|  |  | 
|  | /* current state of the compare_tree call */ | 
|  | struct btrfs_path *left_path; | 
|  | struct btrfs_path *right_path; | 
|  | struct btrfs_key *cmp_key; | 
|  |  | 
|  | /* | 
|  | * Keep track of the generation of the last transaction that was used | 
|  | * for relocating a block group. This is periodically checked in order | 
|  | * to detect if a relocation happened since the last check, so that we | 
|  | * don't operate on stale extent buffers for nodes (level >= 1) or on | 
|  | * stale disk_bytenr values of file extent items. | 
|  | */ | 
|  | u64 last_reloc_trans; | 
|  |  | 
|  | /* | 
|  | * infos of the currently processed inode. In case of deleted inodes, | 
|  | * these are the values from the deleted inode. | 
|  | */ | 
|  | u64 cur_ino; | 
|  | u64 cur_inode_gen; | 
|  | u64 cur_inode_size; | 
|  | u64 cur_inode_mode; | 
|  | u64 cur_inode_rdev; | 
|  | u64 cur_inode_last_extent; | 
|  | u64 cur_inode_next_write_offset; | 
|  | struct fs_path cur_inode_path; | 
|  | bool cur_inode_new; | 
|  | bool cur_inode_new_gen; | 
|  | bool cur_inode_deleted; | 
|  | bool ignore_cur_inode; | 
|  | bool cur_inode_needs_verity; | 
|  | void *verity_descriptor; | 
|  |  | 
|  | u64 send_progress; | 
|  |  | 
|  | struct list_head new_refs; | 
|  | struct list_head deleted_refs; | 
|  |  | 
|  | struct btrfs_lru_cache name_cache; | 
|  |  | 
|  | /* | 
|  | * The inode we are currently processing. It's not NULL only when we | 
|  | * need to issue write commands for data extents from this inode. | 
|  | */ | 
|  | struct inode *cur_inode; | 
|  | struct file_ra_state ra; | 
|  | u64 page_cache_clear_start; | 
|  | bool clean_page_cache; | 
|  |  | 
|  | /* | 
|  | * We process inodes by their increasing order, so if before an | 
|  | * incremental send we reverse the parent/child relationship of | 
|  | * directories such that a directory with a lower inode number was | 
|  | * the parent of a directory with a higher inode number, and the one | 
|  | * becoming the new parent got renamed too, we can't rename/move the | 
|  | * directory with lower inode number when we finish processing it - we | 
|  | * must process the directory with higher inode number first, then | 
|  | * rename/move it and then rename/move the directory with lower inode | 
|  | * number. Example follows. | 
|  | * | 
|  | * Tree state when the first send was performed: | 
|  | * | 
|  | * . | 
|  | * |-- a                   (ino 257) | 
|  | *     |-- b               (ino 258) | 
|  | *         | | 
|  | *         | | 
|  | *         |-- c           (ino 259) | 
|  | *         |   |-- d       (ino 260) | 
|  | *         | | 
|  | *         |-- c2          (ino 261) | 
|  | * | 
|  | * Tree state when the second (incremental) send is performed: | 
|  | * | 
|  | * . | 
|  | * |-- a                   (ino 257) | 
|  | *     |-- b               (ino 258) | 
|  | *         |-- c2          (ino 261) | 
|  | *             |-- d2      (ino 260) | 
|  | *                 |-- cc  (ino 259) | 
|  | * | 
|  | * The sequence of steps that lead to the second state was: | 
|  | * | 
|  | * mv /a/b/c/d /a/b/c2/d2 | 
|  | * mv /a/b/c /a/b/c2/d2/cc | 
|  | * | 
|  | * "c" has lower inode number, but we can't move it (2nd mv operation) | 
|  | * before we move "d", which has higher inode number. | 
|  | * | 
|  | * So we just memorize which move/rename operations must be performed | 
|  | * later when their respective parent is processed and moved/renamed. | 
|  | */ | 
|  |  | 
|  | /* Indexed by parent directory inode number. */ | 
|  | struct rb_root pending_dir_moves; | 
|  |  | 
|  | /* | 
|  | * Reverse index, indexed by the inode number of a directory that | 
|  | * is waiting for the move/rename of its immediate parent before its | 
|  | * own move/rename can be performed. | 
|  | */ | 
|  | struct rb_root waiting_dir_moves; | 
|  |  | 
|  | /* | 
|  | * A directory that is going to be rm'ed might have a child directory | 
|  | * which is in the pending directory moves index above. In this case, | 
|  | * the directory can only be removed after the move/rename of its child | 
|  | * is performed. Example: | 
|  | * | 
|  | * Parent snapshot: | 
|  | * | 
|  | * .                        (ino 256) | 
|  | * |-- a/                   (ino 257) | 
|  | *     |-- b/               (ino 258) | 
|  | *         |-- c/           (ino 259) | 
|  | *         |   |-- x/       (ino 260) | 
|  | *         | | 
|  | *         |-- y/           (ino 261) | 
|  | * | 
|  | * Send snapshot: | 
|  | * | 
|  | * .                        (ino 256) | 
|  | * |-- a/                   (ino 257) | 
|  | *     |-- b/               (ino 258) | 
|  | *         |-- YY/          (ino 261) | 
|  | *              |-- x/      (ino 260) | 
|  | * | 
|  | * Sequence of steps that lead to the send snapshot: | 
|  | * rm -f /a/b/c/foo.txt | 
|  | * mv /a/b/y /a/b/YY | 
|  | * mv /a/b/c/x /a/b/YY | 
|  | * rmdir /a/b/c | 
|  | * | 
|  | * When the child is processed, its move/rename is delayed until its | 
|  | * parent is processed (as explained above), but all other operations | 
|  | * like update utimes, chown, chgrp, etc, are performed and the paths | 
|  | * that it uses for those operations must use the orphanized name of | 
|  | * its parent (the directory we're going to rm later), so we need to | 
|  | * memorize that name. | 
|  | * | 
|  | * Indexed by the inode number of the directory to be deleted. | 
|  | */ | 
|  | struct rb_root orphan_dirs; | 
|  |  | 
|  | struct rb_root rbtree_new_refs; | 
|  | struct rb_root rbtree_deleted_refs; | 
|  |  | 
|  | struct btrfs_lru_cache backref_cache; | 
|  | u64 backref_cache_last_reloc_trans; | 
|  |  | 
|  | struct btrfs_lru_cache dir_created_cache; | 
|  | struct btrfs_lru_cache dir_utimes_cache; | 
|  | }; | 
|  |  | 
|  | struct pending_dir_move { | 
|  | struct rb_node node; | 
|  | struct list_head list; | 
|  | u64 parent_ino; | 
|  | u64 ino; | 
|  | u64 gen; | 
|  | struct list_head update_refs; | 
|  | }; | 
|  |  | 
|  | struct waiting_dir_move { | 
|  | struct rb_node node; | 
|  | u64 ino; | 
|  | /* | 
|  | * There might be some directory that could not be removed because it | 
|  | * was waiting for this directory inode to be moved first. Therefore | 
|  | * after this directory is moved, we can try to rmdir the ino rmdir_ino. | 
|  | */ | 
|  | u64 rmdir_ino; | 
|  | u64 rmdir_gen; | 
|  | bool orphanized; | 
|  | }; | 
|  |  | 
|  | struct orphan_dir_info { | 
|  | struct rb_node node; | 
|  | u64 ino; | 
|  | u64 gen; | 
|  | u64 last_dir_index_offset; | 
|  | u64 dir_high_seq_ino; | 
|  | }; | 
|  |  | 
|  | struct name_cache_entry { | 
|  | /* | 
|  | * The key in the entry is an inode number, and the generation matches | 
|  | * the inode's generation. | 
|  | */ | 
|  | struct btrfs_lru_cache_entry entry; | 
|  | u64 parent_ino; | 
|  | u64 parent_gen; | 
|  | int ret; | 
|  | int need_later_update; | 
|  | /* Name length without NUL terminator. */ | 
|  | int name_len; | 
|  | /* Not NUL terminated. */ | 
|  | char name[] __counted_by(name_len) __nonstring; | 
|  | }; | 
|  |  | 
|  | /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ | 
|  | static_assert(offsetof(struct name_cache_entry, entry) == 0); | 
|  |  | 
|  | #define ADVANCE							1 | 
|  | #define ADVANCE_ONLY_NEXT					-1 | 
|  |  | 
|  | enum btrfs_compare_tree_result { | 
|  | BTRFS_COMPARE_TREE_NEW, | 
|  | BTRFS_COMPARE_TREE_DELETED, | 
|  | BTRFS_COMPARE_TREE_CHANGED, | 
|  | BTRFS_COMPARE_TREE_SAME, | 
|  | }; | 
|  |  | 
|  | __cold | 
|  | static void inconsistent_snapshot_error(struct send_ctx *sctx, | 
|  | enum btrfs_compare_tree_result result, | 
|  | const char *what) | 
|  | { | 
|  | const char *result_string; | 
|  |  | 
|  | switch (result) { | 
|  | case BTRFS_COMPARE_TREE_NEW: | 
|  | result_string = "new"; | 
|  | break; | 
|  | case BTRFS_COMPARE_TREE_DELETED: | 
|  | result_string = "deleted"; | 
|  | break; | 
|  | case BTRFS_COMPARE_TREE_CHANGED: | 
|  | result_string = "updated"; | 
|  | break; | 
|  | case BTRFS_COMPARE_TREE_SAME: | 
|  | DEBUG_WARN("no change between trees"); | 
|  | result_string = "unchanged"; | 
|  | break; | 
|  | default: | 
|  | DEBUG_WARN("unexpected comparison result %d", result); | 
|  | result_string = "unexpected"; | 
|  | } | 
|  |  | 
|  | btrfs_err(sctx->send_root->fs_info, | 
|  | "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", | 
|  | result_string, what, sctx->cmp_key->objectid, | 
|  | btrfs_root_id(sctx->send_root), | 
|  | (sctx->parent_root ?  btrfs_root_id(sctx->parent_root) : 0)); | 
|  | } | 
|  |  | 
|  | __maybe_unused | 
|  | static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) | 
|  | { | 
|  | switch (sctx->proto) { | 
|  | case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1; | 
|  | case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2; | 
|  | case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3; | 
|  | default: return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); | 
|  |  | 
|  | static struct waiting_dir_move * | 
|  | get_waiting_dir_move(struct send_ctx *sctx, u64 ino); | 
|  |  | 
|  | static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); | 
|  |  | 
|  | static int need_send_hole(struct send_ctx *sctx) | 
|  | { | 
|  | return (sctx->parent_root && !sctx->cur_inode_new && | 
|  | !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && | 
|  | S_ISREG(sctx->cur_inode_mode)); | 
|  | } | 
|  |  | 
|  | static void fs_path_reset(struct fs_path *p) | 
|  | { | 
|  | if (p->reversed) | 
|  | p->start = p->buf + p->buf_len - 1; | 
|  | else | 
|  | p->start = p->buf; | 
|  |  | 
|  | p->end = p->start; | 
|  | *p->start = 0; | 
|  | } | 
|  |  | 
|  | static void init_path(struct fs_path *p) | 
|  | { | 
|  | p->reversed = 0; | 
|  | p->buf = p->inline_buf; | 
|  | p->buf_len = FS_PATH_INLINE_SIZE; | 
|  | fs_path_reset(p); | 
|  | } | 
|  |  | 
|  | static struct fs_path *fs_path_alloc(void) | 
|  | { | 
|  | struct fs_path *p; | 
|  |  | 
|  | p = kmalloc(sizeof(*p), GFP_KERNEL); | 
|  | if (!p) | 
|  | return NULL; | 
|  | init_path(p); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct fs_path *fs_path_alloc_reversed(void) | 
|  | { | 
|  | struct fs_path *p; | 
|  |  | 
|  | p = fs_path_alloc(); | 
|  | if (!p) | 
|  | return NULL; | 
|  | p->reversed = 1; | 
|  | fs_path_reset(p); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static void fs_path_free(struct fs_path *p) | 
|  | { | 
|  | if (!p) | 
|  | return; | 
|  | if (p->buf != p->inline_buf) | 
|  | kfree(p->buf); | 
|  | kfree(p); | 
|  | } | 
|  |  | 
|  | static inline int fs_path_len(const struct fs_path *p) | 
|  | { | 
|  | return p->end - p->start; | 
|  | } | 
|  |  | 
|  | static int fs_path_ensure_buf(struct fs_path *p, int len) | 
|  | { | 
|  | char *tmp_buf; | 
|  | int path_len; | 
|  | int old_buf_len; | 
|  |  | 
|  | len++; | 
|  |  | 
|  | if (p->buf_len >= len) | 
|  | return 0; | 
|  |  | 
|  | if (WARN_ON(len > PATH_MAX)) | 
|  | return -ENAMETOOLONG; | 
|  |  | 
|  | path_len = fs_path_len(p); | 
|  | old_buf_len = p->buf_len; | 
|  |  | 
|  | /* | 
|  | * Allocate to the next largest kmalloc bucket size, to let | 
|  | * the fast path happen most of the time. | 
|  | */ | 
|  | len = kmalloc_size_roundup(len); | 
|  | /* | 
|  | * First time the inline_buf does not suffice | 
|  | */ | 
|  | if (p->buf == p->inline_buf) { | 
|  | tmp_buf = kmalloc(len, GFP_KERNEL); | 
|  | if (tmp_buf) | 
|  | memcpy(tmp_buf, p->buf, old_buf_len); | 
|  | } else { | 
|  | tmp_buf = krealloc(p->buf, len, GFP_KERNEL); | 
|  | } | 
|  | if (!tmp_buf) | 
|  | return -ENOMEM; | 
|  | p->buf = tmp_buf; | 
|  | p->buf_len = len; | 
|  |  | 
|  | if (p->reversed) { | 
|  | tmp_buf = p->buf + old_buf_len - path_len - 1; | 
|  | p->end = p->buf + p->buf_len - 1; | 
|  | p->start = p->end - path_len; | 
|  | memmove(p->start, tmp_buf, path_len + 1); | 
|  | } else { | 
|  | p->start = p->buf; | 
|  | p->end = p->start + path_len; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fs_path_prepare_for_add(struct fs_path *p, int name_len, | 
|  | char **prepared) | 
|  | { | 
|  | int ret; | 
|  | int new_len; | 
|  |  | 
|  | new_len = fs_path_len(p) + name_len; | 
|  | if (p->start != p->end) | 
|  | new_len++; | 
|  | ret = fs_path_ensure_buf(p, new_len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (p->reversed) { | 
|  | if (p->start != p->end) | 
|  | *--p->start = '/'; | 
|  | p->start -= name_len; | 
|  | *prepared = p->start; | 
|  | } else { | 
|  | if (p->start != p->end) | 
|  | *p->end++ = '/'; | 
|  | *prepared = p->end; | 
|  | p->end += name_len; | 
|  | *p->end = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fs_path_add(struct fs_path *p, const char *name, int name_len) | 
|  | { | 
|  | int ret; | 
|  | char *prepared; | 
|  |  | 
|  | ret = fs_path_prepare_for_add(p, name_len, &prepared); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | memcpy(prepared, name, name_len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2) | 
|  | { | 
|  | return fs_path_add(p, p2->start, fs_path_len(p2)); | 
|  | } | 
|  |  | 
|  | static int fs_path_add_from_extent_buffer(struct fs_path *p, | 
|  | struct extent_buffer *eb, | 
|  | unsigned long off, int len) | 
|  | { | 
|  | int ret; | 
|  | char *prepared; | 
|  |  | 
|  | ret = fs_path_prepare_for_add(p, len, &prepared); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | read_extent_buffer(eb, prepared, off, len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fs_path_copy(struct fs_path *p, struct fs_path *from) | 
|  | { | 
|  | p->reversed = from->reversed; | 
|  | fs_path_reset(p); | 
|  |  | 
|  | return fs_path_add_path(p, from); | 
|  | } | 
|  |  | 
|  | static void fs_path_unreverse(struct fs_path *p) | 
|  | { | 
|  | char *tmp; | 
|  | int len; | 
|  |  | 
|  | if (!p->reversed) | 
|  | return; | 
|  |  | 
|  | tmp = p->start; | 
|  | len = fs_path_len(p); | 
|  | p->start = p->buf; | 
|  | p->end = p->start + len; | 
|  | memmove(p->start, tmp, len + 1); | 
|  | p->reversed = 0; | 
|  | } | 
|  |  | 
|  | static inline bool is_current_inode_path(const struct send_ctx *sctx, | 
|  | const struct fs_path *path) | 
|  | { | 
|  | const struct fs_path *cur = &sctx->cur_inode_path; | 
|  |  | 
|  | return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0); | 
|  | } | 
|  |  | 
|  | static struct btrfs_path *alloc_path_for_send(void) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return NULL; | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  | path->need_commit_sem = 1; | 
|  | return path; | 
|  | } | 
|  |  | 
|  | static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) | 
|  | { | 
|  | int ret; | 
|  | u32 pos = 0; | 
|  |  | 
|  | while (pos < len) { | 
|  | ret = kernel_write(filp, buf + pos, len - pos, off); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (unlikely(ret == 0)) | 
|  | return -EIO; | 
|  | pos += ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) | 
|  | { | 
|  | struct btrfs_tlv_header *hdr; | 
|  | int total_len = sizeof(*hdr) + len; | 
|  | int left = sctx->send_max_size - sctx->send_size; | 
|  |  | 
|  | if (WARN_ON_ONCE(sctx->put_data)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(left < total_len)) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); | 
|  | put_unaligned_le16(attr, &hdr->tlv_type); | 
|  | put_unaligned_le16(len, &hdr->tlv_len); | 
|  | memcpy(hdr + 1, data, len); | 
|  | sctx->send_size += total_len; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define TLV_PUT_DEFINE_INT(bits) \ | 
|  | static int tlv_put_u##bits(struct send_ctx *sctx,	 	\ | 
|  | u##bits attr, u##bits value)			\ | 
|  | {								\ | 
|  | __le##bits __tmp = cpu_to_le##bits(value);		\ | 
|  | return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\ | 
|  | } | 
|  |  | 
|  | TLV_PUT_DEFINE_INT(8) | 
|  | TLV_PUT_DEFINE_INT(32) | 
|  | TLV_PUT_DEFINE_INT(64) | 
|  |  | 
|  | static int tlv_put_string(struct send_ctx *sctx, u16 attr, | 
|  | const char *str, int len) | 
|  | { | 
|  | if (len == -1) | 
|  | len = strlen(str); | 
|  | return tlv_put(sctx, attr, str, len); | 
|  | } | 
|  |  | 
|  | static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, | 
|  | const u8 *uuid) | 
|  | { | 
|  | return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); | 
|  | } | 
|  |  | 
|  | static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, | 
|  | struct extent_buffer *eb, | 
|  | struct btrfs_timespec *ts) | 
|  | { | 
|  | struct btrfs_timespec bts; | 
|  | read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); | 
|  | return tlv_put(sctx, attr, &bts, sizeof(bts)); | 
|  | } | 
|  |  | 
|  |  | 
|  | #define TLV_PUT(sctx, attrtype, data, attrlen) \ | 
|  | do { \ | 
|  | ret = tlv_put(sctx, attrtype, data, attrlen); \ | 
|  | if (ret < 0) \ | 
|  | goto tlv_put_failure; \ | 
|  | } while (0) | 
|  |  | 
|  | #define TLV_PUT_INT(sctx, attrtype, bits, value) \ | 
|  | do { \ | 
|  | ret = tlv_put_u##bits(sctx, attrtype, value); \ | 
|  | if (ret < 0) \ | 
|  | goto tlv_put_failure; \ | 
|  | } while (0) | 
|  |  | 
|  | #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) | 
|  | #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) | 
|  | #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) | 
|  | #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) | 
|  | #define TLV_PUT_STRING(sctx, attrtype, str, len) \ | 
|  | do { \ | 
|  | ret = tlv_put_string(sctx, attrtype, str, len); \ | 
|  | if (ret < 0) \ | 
|  | goto tlv_put_failure; \ | 
|  | } while (0) | 
|  | #define TLV_PUT_PATH(sctx, attrtype, p) \ | 
|  | do { \ | 
|  | ret = tlv_put_string(sctx, attrtype, p->start, \ | 
|  | fs_path_len((p)));	       \ | 
|  | if (ret < 0) \ | 
|  | goto tlv_put_failure; \ | 
|  | } while(0) | 
|  | #define TLV_PUT_UUID(sctx, attrtype, uuid) \ | 
|  | do { \ | 
|  | ret = tlv_put_uuid(sctx, attrtype, uuid); \ | 
|  | if (ret < 0) \ | 
|  | goto tlv_put_failure; \ | 
|  | } while (0) | 
|  | #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ | 
|  | do { \ | 
|  | ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ | 
|  | if (ret < 0) \ | 
|  | goto tlv_put_failure; \ | 
|  | } while (0) | 
|  |  | 
|  | static int send_header(struct send_ctx *sctx) | 
|  | { | 
|  | struct btrfs_stream_header hdr; | 
|  |  | 
|  | strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); | 
|  | hdr.version = cpu_to_le32(sctx->proto); | 
|  | return write_buf(sctx->send_filp, &hdr, sizeof(hdr), | 
|  | &sctx->send_off); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For each command/item we want to send to userspace, we call this function. | 
|  | */ | 
|  | static int begin_cmd(struct send_ctx *sctx, int cmd) | 
|  | { | 
|  | struct btrfs_cmd_header *hdr; | 
|  |  | 
|  | if (WARN_ON(!sctx->send_buf)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(sctx->send_size != 0)) { | 
|  | btrfs_err(sctx->send_root->fs_info, | 
|  | "send: command header buffer not empty cmd %d offset %llu", | 
|  | cmd, sctx->send_off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sctx->send_size += sizeof(*hdr); | 
|  | hdr = (struct btrfs_cmd_header *)sctx->send_buf; | 
|  | put_unaligned_le16(cmd, &hdr->cmd); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int send_cmd(struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_cmd_header *hdr; | 
|  | u32 crc; | 
|  |  | 
|  | hdr = (struct btrfs_cmd_header *)sctx->send_buf; | 
|  | put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); | 
|  | put_unaligned_le32(0, &hdr->crc); | 
|  |  | 
|  | crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); | 
|  | put_unaligned_le32(crc, &hdr->crc); | 
|  |  | 
|  | ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, | 
|  | &sctx->send_off); | 
|  |  | 
|  | sctx->send_size = 0; | 
|  | sctx->put_data = false; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sends a move instruction to user space | 
|  | */ | 
|  | static int send_rename(struct send_ctx *sctx, | 
|  | struct fs_path *from, struct fs_path *to) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sends a link instruction to user space | 
|  | */ | 
|  | static int send_link(struct send_ctx *sctx, | 
|  | struct fs_path *path, struct fs_path *lnk) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sends an unlink instruction to user space | 
|  | */ | 
|  | static int send_unlink(struct send_ctx *sctx, struct fs_path *path) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sends a rmdir instruction to user space | 
|  | */ | 
|  | static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btrfs_inode_info { | 
|  | u64 size; | 
|  | u64 gen; | 
|  | u64 mode; | 
|  | u64 uid; | 
|  | u64 gid; | 
|  | u64 rdev; | 
|  | u64 fileattr; | 
|  | u64 nlink; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Helper function to retrieve some fields from an inode item. | 
|  | */ | 
|  | static int get_inode_info(struct btrfs_root *root, u64 ino, | 
|  | struct btrfs_inode_info *info) | 
|  | { | 
|  | int ret; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_inode_item *ii; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!info) | 
|  | return 0; | 
|  |  | 
|  | ii = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | info->size = btrfs_inode_size(path->nodes[0], ii); | 
|  | info->gen = btrfs_inode_generation(path->nodes[0], ii); | 
|  | info->mode = btrfs_inode_mode(path->nodes[0], ii); | 
|  | info->uid = btrfs_inode_uid(path->nodes[0], ii); | 
|  | info->gid = btrfs_inode_gid(path->nodes[0], ii); | 
|  | info->rdev = btrfs_inode_rdev(path->nodes[0], ii); | 
|  | info->nlink = btrfs_inode_nlink(path->nodes[0], ii); | 
|  | /* | 
|  | * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's | 
|  | * otherwise logically split to 32/32 parts. | 
|  | */ | 
|  | info->fileattr = btrfs_inode_flags(path->nodes[0], ii); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_inode_info info = { 0 }; | 
|  |  | 
|  | ASSERT(gen); | 
|  |  | 
|  | ret = get_inode_info(root, ino, &info); | 
|  | *gen = info.gen; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx); | 
|  |  | 
|  | /* | 
|  | * Helper function to iterate the entries in ONE btrfs_inode_ref or | 
|  | * btrfs_inode_extref. | 
|  | * The iterate callback may return a non zero value to stop iteration. This can | 
|  | * be a negative value for error codes or 1 to simply stop it. | 
|  | * | 
|  | * path must point to the INODE_REF or INODE_EXTREF when called. | 
|  | */ | 
|  | static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, | 
|  | struct btrfs_key *found_key, bool resolve, | 
|  | iterate_inode_ref_t iterate, void *ctx) | 
|  | { | 
|  | struct extent_buffer *eb = path->nodes[0]; | 
|  | struct btrfs_inode_ref *iref; | 
|  | struct btrfs_inode_extref *extref; | 
|  | BTRFS_PATH_AUTO_FREE(tmp_path); | 
|  | struct fs_path *p; | 
|  | u32 cur = 0; | 
|  | u32 total; | 
|  | int slot = path->slots[0]; | 
|  | u32 name_len; | 
|  | char *start; | 
|  | int ret = 0; | 
|  | u64 dir; | 
|  | unsigned long name_off; | 
|  | unsigned long elem_size; | 
|  | unsigned long ptr; | 
|  |  | 
|  | p = fs_path_alloc_reversed(); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | tmp_path = alloc_path_for_send(); | 
|  | if (!tmp_path) { | 
|  | fs_path_free(p); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (found_key->type == BTRFS_INODE_REF_KEY) { | 
|  | ptr = (unsigned long)btrfs_item_ptr(eb, slot, | 
|  | struct btrfs_inode_ref); | 
|  | total = btrfs_item_size(eb, slot); | 
|  | elem_size = sizeof(*iref); | 
|  | } else { | 
|  | ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | total = btrfs_item_size(eb, slot); | 
|  | elem_size = sizeof(*extref); | 
|  | } | 
|  |  | 
|  | while (cur < total) { | 
|  | fs_path_reset(p); | 
|  |  | 
|  | if (found_key->type == BTRFS_INODE_REF_KEY) { | 
|  | iref = (struct btrfs_inode_ref *)(ptr + cur); | 
|  | name_len = btrfs_inode_ref_name_len(eb, iref); | 
|  | name_off = (unsigned long)(iref + 1); | 
|  | dir = found_key->offset; | 
|  | } else { | 
|  | extref = (struct btrfs_inode_extref *)(ptr + cur); | 
|  | name_len = btrfs_inode_extref_name_len(eb, extref); | 
|  | name_off = (unsigned long)&extref->name; | 
|  | dir = btrfs_inode_extref_parent(eb, extref); | 
|  | } | 
|  |  | 
|  | if (resolve) { | 
|  | start = btrfs_ref_to_path(root, tmp_path, name_len, | 
|  | name_off, eb, dir, | 
|  | p->buf, p->buf_len); | 
|  | if (IS_ERR(start)) { | 
|  | ret = PTR_ERR(start); | 
|  | goto out; | 
|  | } | 
|  | if (start < p->buf) { | 
|  | /* overflow , try again with larger buffer */ | 
|  | ret = fs_path_ensure_buf(p, | 
|  | p->buf_len + p->buf - start); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | start = btrfs_ref_to_path(root, tmp_path, | 
|  | name_len, name_off, | 
|  | eb, dir, | 
|  | p->buf, p->buf_len); | 
|  | if (IS_ERR(start)) { | 
|  | ret = PTR_ERR(start); | 
|  | goto out; | 
|  | } | 
|  | if (unlikely(start < p->buf)) { | 
|  | btrfs_err(root->fs_info, | 
|  | "send: path ref buffer underflow for key (%llu %u %llu)", | 
|  | found_key->objectid, | 
|  | found_key->type, | 
|  | found_key->offset); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | p->start = start; | 
|  | } else { | 
|  | ret = fs_path_add_from_extent_buffer(p, eb, name_off, | 
|  | name_len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cur += elem_size + name_len; | 
|  | ret = iterate(dir, p, ctx); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | fs_path_free(p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, | 
|  | const char *name, int name_len, | 
|  | const char *data, int data_len, | 
|  | void *ctx); | 
|  |  | 
|  | /* | 
|  | * Helper function to iterate the entries in ONE btrfs_dir_item. | 
|  | * The iterate callback may return a non zero value to stop iteration. This can | 
|  | * be a negative value for error codes or 1 to simply stop it. | 
|  | * | 
|  | * path must point to the dir item when called. | 
|  | */ | 
|  | static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, | 
|  | iterate_dir_item_t iterate, void *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key di_key; | 
|  | char *buf = NULL; | 
|  | int buf_len; | 
|  | u32 name_len; | 
|  | u32 data_len; | 
|  | u32 cur; | 
|  | u32 len; | 
|  | u32 total; | 
|  | int slot; | 
|  | int num; | 
|  |  | 
|  | /* | 
|  | * Start with a small buffer (1 page). If later we end up needing more | 
|  | * space, which can happen for xattrs on a fs with a leaf size greater | 
|  | * than the page size, attempt to increase the buffer. Typically xattr | 
|  | * values are small. | 
|  | */ | 
|  | buf_len = PATH_MAX; | 
|  | buf = kmalloc(buf_len, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); | 
|  | cur = 0; | 
|  | len = 0; | 
|  | total = btrfs_item_size(eb, slot); | 
|  |  | 
|  | num = 0; | 
|  | while (cur < total) { | 
|  | name_len = btrfs_dir_name_len(eb, di); | 
|  | data_len = btrfs_dir_data_len(eb, di); | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &di_key); | 
|  |  | 
|  | if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { | 
|  | if (name_len > XATTR_NAME_MAX) { | 
|  | ret = -ENAMETOOLONG; | 
|  | goto out; | 
|  | } | 
|  | if (name_len + data_len > | 
|  | BTRFS_MAX_XATTR_SIZE(root->fs_info)) { | 
|  | ret = -E2BIG; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Path too long | 
|  | */ | 
|  | if (name_len + data_len > PATH_MAX) { | 
|  | ret = -ENAMETOOLONG; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (name_len + data_len > buf_len) { | 
|  | buf_len = name_len + data_len; | 
|  | if (is_vmalloc_addr(buf)) { | 
|  | vfree(buf); | 
|  | buf = NULL; | 
|  | } else { | 
|  | char *tmp = krealloc(buf, buf_len, | 
|  | GFP_KERNEL | __GFP_NOWARN); | 
|  |  | 
|  | if (!tmp) | 
|  | kfree(buf); | 
|  | buf = tmp; | 
|  | } | 
|  | if (!buf) { | 
|  | buf = kvmalloc(buf_len, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | read_extent_buffer(eb, buf, (unsigned long)(di + 1), | 
|  | name_len + data_len); | 
|  |  | 
|  | len = sizeof(*di) + name_len + data_len; | 
|  | di = (struct btrfs_dir_item *)((char *)di + len); | 
|  | cur += len; | 
|  |  | 
|  | ret = iterate(num, &di_key, buf, name_len, buf + name_len, | 
|  | data_len, ctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | num++; | 
|  | } | 
|  |  | 
|  | out: | 
|  | kvfree(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx) | 
|  | { | 
|  | int ret; | 
|  | struct fs_path *pt = ctx; | 
|  |  | 
|  | ret = fs_path_copy(pt, p); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* we want the first only */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieve the first path of an inode. If an inode has more then one | 
|  | * ref/hardlink, this is ignored. | 
|  | */ | 
|  | static int get_inode_path(struct btrfs_root *root, | 
|  | u64 ino, struct fs_path *path) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key, found_key; | 
|  | BTRFS_PATH_AUTO_FREE(p); | 
|  |  | 
|  | p = alloc_path_for_send(); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fs_path_reset(path); | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret) | 
|  | return 1; | 
|  |  | 
|  | btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); | 
|  | if (found_key.objectid != ino || | 
|  | (found_key.type != BTRFS_INODE_REF_KEY && | 
|  | found_key.type != BTRFS_INODE_EXTREF_KEY)) | 
|  | return -ENOENT; | 
|  |  | 
|  | ret = iterate_inode_ref(root, p, &found_key, true, __copy_first_ref, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct backref_ctx { | 
|  | struct send_ctx *sctx; | 
|  |  | 
|  | /* number of total found references */ | 
|  | u64 found; | 
|  |  | 
|  | /* | 
|  | * used for clones found in send_root. clones found behind cur_objectid | 
|  | * and cur_offset are not considered as allowed clones. | 
|  | */ | 
|  | u64 cur_objectid; | 
|  | u64 cur_offset; | 
|  |  | 
|  | /* may be truncated in case it's the last extent in a file */ | 
|  | u64 extent_len; | 
|  |  | 
|  | /* The bytenr the file extent item we are processing refers to. */ | 
|  | u64 bytenr; | 
|  | /* The owner (root id) of the data backref for the current extent. */ | 
|  | u64 backref_owner; | 
|  | /* The offset of the data backref for the current extent. */ | 
|  | u64 backref_offset; | 
|  | }; | 
|  |  | 
|  | static int __clone_root_cmp_bsearch(const void *key, const void *elt) | 
|  | { | 
|  | u64 root = (u64)(uintptr_t)key; | 
|  | const struct clone_root *cr = elt; | 
|  |  | 
|  | if (root < btrfs_root_id(cr->root)) | 
|  | return -1; | 
|  | if (root > btrfs_root_id(cr->root)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __clone_root_cmp_sort(const void *e1, const void *e2) | 
|  | { | 
|  | const struct clone_root *cr1 = e1; | 
|  | const struct clone_root *cr2 = e2; | 
|  |  | 
|  | if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) | 
|  | return -1; | 
|  | if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called for every backref that is found for the current extent. | 
|  | * Results are collected in sctx->clone_roots->ino/offset. | 
|  | */ | 
|  | static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, | 
|  | void *ctx_) | 
|  | { | 
|  | struct backref_ctx *bctx = ctx_; | 
|  | struct clone_root *clone_root; | 
|  |  | 
|  | /* First check if the root is in the list of accepted clone sources */ | 
|  | clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, | 
|  | bctx->sctx->clone_roots_cnt, | 
|  | sizeof(struct clone_root), | 
|  | __clone_root_cmp_bsearch); | 
|  | if (!clone_root) | 
|  | return 0; | 
|  |  | 
|  | /* This is our own reference, bail out as we can't clone from it. */ | 
|  | if (clone_root->root == bctx->sctx->send_root && | 
|  | ino == bctx->cur_objectid && | 
|  | offset == bctx->cur_offset) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Make sure we don't consider clones from send_root that are | 
|  | * behind the current inode/offset. | 
|  | */ | 
|  | if (clone_root->root == bctx->sctx->send_root) { | 
|  | /* | 
|  | * If the source inode was not yet processed we can't issue a | 
|  | * clone operation, as the source extent does not exist yet at | 
|  | * the destination of the stream. | 
|  | */ | 
|  | if (ino > bctx->cur_objectid) | 
|  | return 0; | 
|  | /* | 
|  | * We clone from the inode currently being sent as long as the | 
|  | * source extent is already processed, otherwise we could try | 
|  | * to clone from an extent that does not exist yet at the | 
|  | * destination of the stream. | 
|  | */ | 
|  | if (ino == bctx->cur_objectid && | 
|  | offset + bctx->extent_len > | 
|  | bctx->sctx->cur_inode_next_write_offset) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bctx->found++; | 
|  | clone_root->found_ref = true; | 
|  |  | 
|  | /* | 
|  | * If the given backref refers to a file extent item with a larger | 
|  | * number of bytes than what we found before, use the new one so that | 
|  | * we clone more optimally and end up doing less writes and getting | 
|  | * less exclusive, non-shared extents at the destination. | 
|  | */ | 
|  | if (num_bytes > clone_root->num_bytes) { | 
|  | clone_root->ino = ino; | 
|  | clone_root->offset = offset; | 
|  | clone_root->num_bytes = num_bytes; | 
|  |  | 
|  | /* | 
|  | * Found a perfect candidate, so there's no need to continue | 
|  | * backref walking. | 
|  | */ | 
|  | if (num_bytes >= bctx->extent_len) | 
|  | return BTRFS_ITERATE_EXTENT_INODES_STOP; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, | 
|  | const u64 **root_ids_ret, int *root_count_ret) | 
|  | { | 
|  | struct backref_ctx *bctx = ctx; | 
|  | struct send_ctx *sctx = bctx->sctx; | 
|  | struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
|  | const u64 key = leaf_bytenr >> fs_info->nodesize_bits; | 
|  | struct btrfs_lru_cache_entry *raw_entry; | 
|  | struct backref_cache_entry *entry; | 
|  |  | 
|  | if (sctx->backref_cache.size == 0) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If relocation happened since we first filled the cache, then we must | 
|  | * empty the cache and can not use it, because even though we operate on | 
|  | * read-only roots, their leaves and nodes may have been reallocated and | 
|  | * now be used for different nodes/leaves of the same tree or some other | 
|  | * tree. | 
|  | * | 
|  | * We are called from iterate_extent_inodes() while either holding a | 
|  | * transaction handle or holding fs_info->commit_root_sem, so no need | 
|  | * to take any lock here. | 
|  | */ | 
|  | if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { | 
|  | btrfs_lru_cache_clear(&sctx->backref_cache); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); | 
|  | if (!raw_entry) | 
|  | return false; | 
|  |  | 
|  | entry = container_of(raw_entry, struct backref_cache_entry, entry); | 
|  | *root_ids_ret = entry->root_ids; | 
|  | *root_count_ret = entry->num_roots; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, | 
|  | void *ctx) | 
|  | { | 
|  | struct backref_ctx *bctx = ctx; | 
|  | struct send_ctx *sctx = bctx->sctx; | 
|  | struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
|  | struct backref_cache_entry *new_entry; | 
|  | struct ulist_iterator uiter; | 
|  | struct ulist_node *node; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We're called while holding a transaction handle or while holding | 
|  | * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a | 
|  | * NOFS allocation. | 
|  | */ | 
|  | new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); | 
|  | /* No worries, cache is optional. */ | 
|  | if (!new_entry) | 
|  | return; | 
|  |  | 
|  | new_entry->entry.key = leaf_bytenr >> fs_info->nodesize_bits; | 
|  | new_entry->entry.gen = 0; | 
|  | new_entry->num_roots = 0; | 
|  | ULIST_ITER_INIT(&uiter); | 
|  | while ((node = ulist_next(root_ids, &uiter)) != NULL) { | 
|  | const u64 root_id = node->val; | 
|  | struct clone_root *root; | 
|  |  | 
|  | root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, | 
|  | sctx->clone_roots_cnt, sizeof(struct clone_root), | 
|  | __clone_root_cmp_bsearch); | 
|  | if (!root) | 
|  | continue; | 
|  |  | 
|  | /* Too many roots, just exit, no worries as caching is optional. */ | 
|  | if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { | 
|  | kfree(new_entry); | 
|  | return; | 
|  | } | 
|  |  | 
|  | new_entry->root_ids[new_entry->num_roots] = root_id; | 
|  | new_entry->num_roots++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We may have not added any roots to the new cache entry, which means | 
|  | * none of the roots is part of the list of roots from which we are | 
|  | * allowed to clone. Cache the new entry as it's still useful to avoid | 
|  | * backref walking to determine which roots have a path to the leaf. | 
|  | * | 
|  | * Also use GFP_NOFS because we're called while holding a transaction | 
|  | * handle or while holding fs_info->commit_root_sem. | 
|  | */ | 
|  | ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, | 
|  | GFP_NOFS); | 
|  | ASSERT(ret == 0 || ret == -ENOMEM); | 
|  | if (ret) { | 
|  | /* Caching is optional, no worries. */ | 
|  | kfree(new_entry); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are called from iterate_extent_inodes() while either holding a | 
|  | * transaction handle or holding fs_info->commit_root_sem, so no need | 
|  | * to take any lock here. | 
|  | */ | 
|  | if (sctx->backref_cache.size == 1) | 
|  | sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; | 
|  | } | 
|  |  | 
|  | static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, | 
|  | const struct extent_buffer *leaf, void *ctx) | 
|  | { | 
|  | const u64 refs = btrfs_extent_refs(leaf, ei); | 
|  | const struct backref_ctx *bctx = ctx; | 
|  | const struct send_ctx *sctx = bctx->sctx; | 
|  |  | 
|  | if (bytenr == bctx->bytenr) { | 
|  | const u64 flags = btrfs_extent_flags(leaf, ei); | 
|  |  | 
|  | if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) | 
|  | return -EUCLEAN; | 
|  |  | 
|  | /* | 
|  | * If we have only one reference and only the send root as a | 
|  | * clone source - meaning no clone roots were given in the | 
|  | * struct btrfs_ioctl_send_args passed to the send ioctl - then | 
|  | * it's our reference and there's no point in doing backref | 
|  | * walking which is expensive, so exit early. | 
|  | */ | 
|  | if (refs == 1 && sctx->clone_roots_cnt == 1) | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Backreference walking (iterate_extent_inodes() below) is currently | 
|  | * too expensive when an extent has a large number of references, both | 
|  | * in time spent and used memory. So for now just fallback to write | 
|  | * operations instead of clone operations when an extent has more than | 
|  | * a certain amount of references. | 
|  | */ | 
|  | if (refs > SEND_MAX_EXTENT_REFS) | 
|  | return -ENOENT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) | 
|  | { | 
|  | const struct backref_ctx *bctx = ctx; | 
|  |  | 
|  | if (ino == bctx->cur_objectid && | 
|  | root == bctx->backref_owner && | 
|  | offset == bctx->backref_offset) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given an inode, offset and extent item, it finds a good clone for a clone | 
|  | * instruction. Returns -ENOENT when none could be found. The function makes | 
|  | * sure that the returned clone is usable at the point where sending is at the | 
|  | * moment. This means, that no clones are accepted which lie behind the current | 
|  | * inode+offset. | 
|  | * | 
|  | * path must point to the extent item when called. | 
|  | */ | 
|  | static int find_extent_clone(struct send_ctx *sctx, | 
|  | struct btrfs_path *path, | 
|  | u64 ino, u64 data_offset, | 
|  | u64 ino_size, | 
|  | struct clone_root **found) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
|  | int ret; | 
|  | int extent_type; | 
|  | u64 disk_byte; | 
|  | u64 num_bytes; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_buffer *eb = path->nodes[0]; | 
|  | struct backref_ctx backref_ctx = { 0 }; | 
|  | struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; | 
|  | struct clone_root *cur_clone_root; | 
|  | int compressed; | 
|  | u32 i; | 
|  |  | 
|  | /* | 
|  | * With fallocate we can get prealloc extents beyond the inode's i_size, | 
|  | * so we don't do anything here because clone operations can not clone | 
|  | * to a range beyond i_size without increasing the i_size of the | 
|  | * destination inode. | 
|  | */ | 
|  | if (data_offset >= ino_size) | 
|  | return 0; | 
|  |  | 
|  | fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); | 
|  | extent_type = btrfs_file_extent_type(eb, fi); | 
|  | if (extent_type == BTRFS_FILE_EXTENT_INLINE) | 
|  | return -ENOENT; | 
|  |  | 
|  | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
|  | if (disk_byte == 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | compressed = btrfs_file_extent_compression(eb, fi); | 
|  | num_bytes = btrfs_file_extent_num_bytes(eb, fi); | 
|  |  | 
|  | /* | 
|  | * Setup the clone roots. | 
|  | */ | 
|  | for (i = 0; i < sctx->clone_roots_cnt; i++) { | 
|  | cur_clone_root = sctx->clone_roots + i; | 
|  | cur_clone_root->ino = (u64)-1; | 
|  | cur_clone_root->offset = 0; | 
|  | cur_clone_root->num_bytes = 0; | 
|  | cur_clone_root->found_ref = false; | 
|  | } | 
|  |  | 
|  | backref_ctx.sctx = sctx; | 
|  | backref_ctx.cur_objectid = ino; | 
|  | backref_ctx.cur_offset = data_offset; | 
|  | backref_ctx.bytenr = disk_byte; | 
|  | /* | 
|  | * Use the header owner and not the send root's id, because in case of a | 
|  | * snapshot we can have shared subtrees. | 
|  | */ | 
|  | backref_ctx.backref_owner = btrfs_header_owner(eb); | 
|  | backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); | 
|  |  | 
|  | /* | 
|  | * The last extent of a file may be too large due to page alignment. | 
|  | * We need to adjust extent_len in this case so that the checks in | 
|  | * iterate_backrefs() work. | 
|  | */ | 
|  | if (data_offset + num_bytes >= ino_size) | 
|  | backref_ctx.extent_len = ino_size - data_offset; | 
|  | else | 
|  | backref_ctx.extent_len = num_bytes; | 
|  |  | 
|  | /* | 
|  | * Now collect all backrefs. | 
|  | */ | 
|  | backref_walk_ctx.bytenr = disk_byte; | 
|  | if (compressed == BTRFS_COMPRESS_NONE) | 
|  | backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); | 
|  | backref_walk_ctx.fs_info = fs_info; | 
|  | backref_walk_ctx.cache_lookup = lookup_backref_cache; | 
|  | backref_walk_ctx.cache_store = store_backref_cache; | 
|  | backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; | 
|  | backref_walk_ctx.check_extent_item = check_extent_item; | 
|  | backref_walk_ctx.user_ctx = &backref_ctx; | 
|  |  | 
|  | /* | 
|  | * If have a single clone root, then it's the send root and we can tell | 
|  | * the backref walking code to skip our own backref and not resolve it, | 
|  | * since we can not use it for cloning - the source and destination | 
|  | * ranges can't overlap and in case the leaf is shared through a subtree | 
|  | * due to snapshots, we can't use those other roots since they are not | 
|  | * in the list of clone roots. | 
|  | */ | 
|  | if (sctx->clone_roots_cnt == 1) | 
|  | backref_walk_ctx.skip_data_ref = skip_self_data_ref; | 
|  |  | 
|  | ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, | 
|  | &backref_ctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { | 
|  | /* | 
|  | * A transaction commit for a transaction in which block group | 
|  | * relocation was done just happened. | 
|  | * The disk_bytenr of the file extent item we processed is | 
|  | * possibly stale, referring to the extent's location before | 
|  | * relocation. So act as if we haven't found any clone sources | 
|  | * and fallback to write commands, which will read the correct | 
|  | * data from the new extent location. Otherwise we will fail | 
|  | * below because we haven't found our own back reference or we | 
|  | * could be getting incorrect sources in case the old extent | 
|  | * was already reallocated after the relocation. | 
|  | */ | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | return -ENOENT; | 
|  | } | 
|  | up_read(&fs_info->commit_root_sem); | 
|  |  | 
|  | if (!backref_ctx.found) | 
|  | return -ENOENT; | 
|  |  | 
|  | cur_clone_root = NULL; | 
|  | for (i = 0; i < sctx->clone_roots_cnt; i++) { | 
|  | struct clone_root *clone_root = &sctx->clone_roots[i]; | 
|  |  | 
|  | if (!clone_root->found_ref) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Choose the root from which we can clone more bytes, to | 
|  | * minimize write operations and therefore have more extent | 
|  | * sharing at the destination (the same as in the source). | 
|  | */ | 
|  | if (!cur_clone_root || | 
|  | clone_root->num_bytes > cur_clone_root->num_bytes) { | 
|  | cur_clone_root = clone_root; | 
|  |  | 
|  | /* | 
|  | * We found an optimal clone candidate (any inode from | 
|  | * any root is fine), so we're done. | 
|  | */ | 
|  | if (clone_root->num_bytes >= backref_ctx.extent_len) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cur_clone_root) { | 
|  | *found = cur_clone_root; | 
|  | ret = 0; | 
|  | } else { | 
|  | ret = -ENOENT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int read_symlink(struct btrfs_root *root, | 
|  | u64 ino, | 
|  | struct fs_path *dest) | 
|  | { | 
|  | int ret; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | u8 type; | 
|  | u8 compression; | 
|  | unsigned long off; | 
|  | int len; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = 0; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (unlikely(ret)) { | 
|  | /* | 
|  | * An empty symlink inode. Can happen in rare error paths when | 
|  | * creating a symlink (transaction committed before the inode | 
|  | * eviction handler removed the symlink inode items and a crash | 
|  | * happened in between or the subvol was snapshotted in between). | 
|  | * Print an informative message to dmesg/syslog so that the user | 
|  | * can delete the symlink. | 
|  | */ | 
|  | btrfs_err(root->fs_info, | 
|  | "Found empty symlink inode %llu at root %llu", | 
|  | ino, btrfs_root_id(root)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | type = btrfs_file_extent_type(path->nodes[0], ei); | 
|  | if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_crit(root->fs_info, | 
|  | "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", | 
|  | ino, btrfs_root_id(root), type); | 
|  | return ret; | 
|  | } | 
|  | compression = btrfs_file_extent_compression(path->nodes[0], ei); | 
|  | if (unlikely(compression != BTRFS_COMPRESS_NONE)) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_crit(root->fs_info, | 
|  | "send: found symlink extent with compression, ino %llu root %llu compression type %d", | 
|  | ino, btrfs_root_id(root), compression); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | off = btrfs_file_extent_inline_start(ei); | 
|  | len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); | 
|  |  | 
|  | return fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to generate a file name that is unique in the root of | 
|  | * send_root and parent_root. This is used to generate names for orphan inodes. | 
|  | */ | 
|  | static int gen_unique_name(struct send_ctx *sctx, | 
|  | u64 ino, u64 gen, | 
|  | struct fs_path *dest) | 
|  | { | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_dir_item *di; | 
|  | char tmp[64]; | 
|  | int len; | 
|  | u64 idx = 0; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | while (1) { | 
|  | struct fscrypt_str tmp_name; | 
|  |  | 
|  | len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", | 
|  | ino, gen, idx); | 
|  | ASSERT(len < sizeof(tmp)); | 
|  | tmp_name.name = tmp; | 
|  | tmp_name.len = len; | 
|  |  | 
|  | di = btrfs_lookup_dir_item(NULL, sctx->send_root, | 
|  | path, BTRFS_FIRST_FREE_OBJECTID, | 
|  | &tmp_name, 0); | 
|  | btrfs_release_path(path); | 
|  | if (IS_ERR(di)) | 
|  | return PTR_ERR(di); | 
|  |  | 
|  | if (di) { | 
|  | /* not unique, try again */ | 
|  | idx++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!sctx->parent_root) { | 
|  | /* unique */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | di = btrfs_lookup_dir_item(NULL, sctx->parent_root, | 
|  | path, BTRFS_FIRST_FREE_OBJECTID, | 
|  | &tmp_name, 0); | 
|  | btrfs_release_path(path); | 
|  | if (IS_ERR(di)) | 
|  | return PTR_ERR(di); | 
|  |  | 
|  | if (di) { | 
|  | /* not unique, try again */ | 
|  | idx++; | 
|  | continue; | 
|  | } | 
|  | /* unique */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return fs_path_add(dest, tmp, len); | 
|  | } | 
|  |  | 
|  | enum inode_state { | 
|  | inode_state_no_change, | 
|  | inode_state_will_create, | 
|  | inode_state_did_create, | 
|  | inode_state_will_delete, | 
|  | inode_state_did_delete, | 
|  | }; | 
|  |  | 
|  | static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, | 
|  | u64 *send_gen, u64 *parent_gen) | 
|  | { | 
|  | int ret; | 
|  | int left_ret; | 
|  | int right_ret; | 
|  | u64 left_gen; | 
|  | u64 right_gen = 0; | 
|  | struct btrfs_inode_info info; | 
|  |  | 
|  | ret = get_inode_info(sctx->send_root, ino, &info); | 
|  | if (ret < 0 && ret != -ENOENT) | 
|  | return ret; | 
|  | left_ret = (info.nlink == 0) ? -ENOENT : ret; | 
|  | left_gen = info.gen; | 
|  | if (send_gen) | 
|  | *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); | 
|  |  | 
|  | if (!sctx->parent_root) { | 
|  | right_ret = -ENOENT; | 
|  | } else { | 
|  | ret = get_inode_info(sctx->parent_root, ino, &info); | 
|  | if (ret < 0 && ret != -ENOENT) | 
|  | return ret; | 
|  | right_ret = (info.nlink == 0) ? -ENOENT : ret; | 
|  | right_gen = info.gen; | 
|  | if (parent_gen) | 
|  | *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); | 
|  | } | 
|  |  | 
|  | if (!left_ret && !right_ret) { | 
|  | if (left_gen == gen && right_gen == gen) { | 
|  | ret = inode_state_no_change; | 
|  | } else if (left_gen == gen) { | 
|  | if (ino < sctx->send_progress) | 
|  | ret = inode_state_did_create; | 
|  | else | 
|  | ret = inode_state_will_create; | 
|  | } else if (right_gen == gen) { | 
|  | if (ino < sctx->send_progress) | 
|  | ret = inode_state_did_delete; | 
|  | else | 
|  | ret = inode_state_will_delete; | 
|  | } else  { | 
|  | ret = -ENOENT; | 
|  | } | 
|  | } else if (!left_ret) { | 
|  | if (left_gen == gen) { | 
|  | if (ino < sctx->send_progress) | 
|  | ret = inode_state_did_create; | 
|  | else | 
|  | ret = inode_state_will_create; | 
|  | } else { | 
|  | ret = -ENOENT; | 
|  | } | 
|  | } else if (!right_ret) { | 
|  | if (right_gen == gen) { | 
|  | if (ino < sctx->send_progress) | 
|  | ret = inode_state_did_delete; | 
|  | else | 
|  | ret = inode_state_will_delete; | 
|  | } else { | 
|  | ret = -ENOENT; | 
|  | } | 
|  | } else { | 
|  | ret = -ENOENT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, | 
|  | u64 *send_gen, u64 *parent_gen) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (ino == BTRFS_FIRST_FREE_OBJECTID) | 
|  | return 1; | 
|  |  | 
|  | ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret == inode_state_no_change || | 
|  | ret == inode_state_did_create || | 
|  | ret == inode_state_will_delete) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to lookup a dir item in a dir. | 
|  | */ | 
|  | static int lookup_dir_item_inode(struct btrfs_root *root, | 
|  | u64 dir, const char *name, int name_len, | 
|  | u64 *found_inode) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key key; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); | 
|  | if (IS_ERR_OR_NULL(di)) | 
|  | return di ? PTR_ERR(di) : -ENOENT; | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); | 
|  | if (key.type == BTRFS_ROOT_ITEM_KEY) | 
|  | return -ENOENT; | 
|  |  | 
|  | *found_inode = key.objectid; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, | 
|  | * generation of the parent dir and the name of the dir entry. | 
|  | */ | 
|  | static int get_first_ref(struct btrfs_root *root, u64 ino, | 
|  | u64 *dir, u64 *dir_gen, struct fs_path *name) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | int len; | 
|  | u64 parent_dir; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (!ret) | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | if (ret || found_key.objectid != ino || | 
|  | (found_key.type != BTRFS_INODE_REF_KEY && | 
|  | found_key.type != BTRFS_INODE_EXTREF_KEY)) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (found_key.type == BTRFS_INODE_REF_KEY) { | 
|  | struct btrfs_inode_ref *iref; | 
|  | iref = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_ref); | 
|  | len = btrfs_inode_ref_name_len(path->nodes[0], iref); | 
|  | ret = fs_path_add_from_extent_buffer(name, path->nodes[0], | 
|  | (unsigned long)(iref + 1), | 
|  | len); | 
|  | parent_dir = found_key.offset; | 
|  | } else { | 
|  | struct btrfs_inode_extref *extref; | 
|  | extref = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_extref); | 
|  | len = btrfs_inode_extref_name_len(path->nodes[0], extref); | 
|  | ret = fs_path_add_from_extent_buffer(name, path->nodes[0], | 
|  | (unsigned long)&extref->name, len); | 
|  | parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); | 
|  | } | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (dir_gen) { | 
|  | ret = get_inode_gen(root, parent_dir, dir_gen); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *dir = parent_dir; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int is_first_ref(struct btrfs_root *root, | 
|  | u64 ino, u64 dir, | 
|  | const char *name, int name_len) | 
|  | { | 
|  | int ret; | 
|  | struct fs_path *tmp_name; | 
|  | u64 tmp_dir; | 
|  |  | 
|  | tmp_name = fs_path_alloc(); | 
|  | if (!tmp_name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = !memcmp(tmp_name->start, name, name_len); | 
|  |  | 
|  | out: | 
|  | fs_path_free(tmp_name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used by process_recorded_refs to determine if a new ref would overwrite an | 
|  | * already existing ref. In case it detects an overwrite, it returns the | 
|  | * inode/gen in who_ino/who_gen. | 
|  | * When an overwrite is detected, process_recorded_refs does proper orphanizing | 
|  | * to make sure later references to the overwritten inode are possible. | 
|  | * Orphanizing is however only required for the first ref of an inode. | 
|  | * process_recorded_refs does an additional is_first_ref check to see if | 
|  | * orphanizing is really required. | 
|  | */ | 
|  | static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, | 
|  | const char *name, int name_len, | 
|  | u64 *who_ino, u64 *who_gen, u64 *who_mode) | 
|  | { | 
|  | int ret; | 
|  | u64 parent_root_dir_gen; | 
|  | u64 other_inode = 0; | 
|  | struct btrfs_inode_info info; | 
|  |  | 
|  | if (!sctx->parent_root) | 
|  | return 0; | 
|  |  | 
|  | ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); | 
|  | if (ret <= 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we have a parent root we need to verify that the parent dir was | 
|  | * not deleted and then re-created, if it was then we have no overwrite | 
|  | * and we can just unlink this entry. | 
|  | * | 
|  | * @parent_root_dir_gen was set to 0 if the inode does not exist in the | 
|  | * parent root. | 
|  | */ | 
|  | if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && | 
|  | parent_root_dir_gen != dir_gen) | 
|  | return 0; | 
|  |  | 
|  | ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, | 
|  | &other_inode); | 
|  | if (ret == -ENOENT) | 
|  | return 0; | 
|  | else if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Check if the overwritten ref was already processed. If yes, the ref | 
|  | * was already unlinked/moved, so we can safely assume that we will not | 
|  | * overwrite anything at this point in time. | 
|  | */ | 
|  | if (other_inode > sctx->send_progress || | 
|  | is_waiting_for_move(sctx, other_inode)) { | 
|  | ret = get_inode_info(sctx->parent_root, other_inode, &info); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | *who_ino = other_inode; | 
|  | *who_gen = info.gen; | 
|  | *who_mode = info.mode; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks if the ref was overwritten by an already processed inode. This is | 
|  | * used by __get_cur_name_and_parent to find out if the ref was orphanized and | 
|  | * thus the orphan name needs be used. | 
|  | * process_recorded_refs also uses it to avoid unlinking of refs that were | 
|  | * overwritten. | 
|  | */ | 
|  | static int did_overwrite_ref(struct send_ctx *sctx, | 
|  | u64 dir, u64 dir_gen, | 
|  | u64 ino, u64 ino_gen, | 
|  | const char *name, int name_len) | 
|  | { | 
|  | int ret; | 
|  | u64 ow_inode; | 
|  | u64 ow_gen = 0; | 
|  | u64 send_root_dir_gen; | 
|  |  | 
|  | if (!sctx->parent_root) | 
|  | return 0; | 
|  |  | 
|  | ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * @send_root_dir_gen was set to 0 if the inode does not exist in the | 
|  | * send root. | 
|  | */ | 
|  | if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) | 
|  | return 0; | 
|  |  | 
|  | /* check if the ref was overwritten by another ref */ | 
|  | ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, | 
|  | &ow_inode); | 
|  | if (ret == -ENOENT) { | 
|  | /* was never and will never be overwritten */ | 
|  | return 0; | 
|  | } else if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (ow_inode == ino) { | 
|  | ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* It's the same inode, so no overwrite happened. */ | 
|  | if (ow_gen == ino_gen) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We know that it is or will be overwritten. Check this now. | 
|  | * The current inode being processed might have been the one that caused | 
|  | * inode 'ino' to be orphanized, therefore check if ow_inode matches | 
|  | * the current inode being processed. | 
|  | */ | 
|  | if (ow_inode < sctx->send_progress) | 
|  | return 1; | 
|  |  | 
|  | if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { | 
|  | if (ow_gen == 0) { | 
|  | ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | if (ow_gen == sctx->cur_inode_gen) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Same as did_overwrite_ref, but also checks if it is the first ref of an inode | 
|  | * that got overwritten. This is used by process_recorded_refs to determine | 
|  | * if it has to use the path as returned by get_cur_path or the orphan name. | 
|  | */ | 
|  | static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *name = NULL; | 
|  | u64 dir; | 
|  | u64 dir_gen; | 
|  |  | 
|  | if (!sctx->parent_root) | 
|  | goto out; | 
|  |  | 
|  | name = fs_path_alloc(); | 
|  | if (!name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, | 
|  | name->start, fs_path_len(name)); | 
|  |  | 
|  | out: | 
|  | fs_path_free(name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, | 
|  | u64 ino, u64 gen) | 
|  | { | 
|  | struct btrfs_lru_cache_entry *entry; | 
|  |  | 
|  | entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); | 
|  | if (!entry) | 
|  | return NULL; | 
|  |  | 
|  | return container_of(entry, struct name_cache_entry, entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used by get_cur_path for each ref up to the root. | 
|  | * Returns 0 if it succeeded. | 
|  | * Returns 1 if the inode is not existent or got overwritten. In that case, the | 
|  | * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 | 
|  | * is returned, parent_ino/parent_gen are not guaranteed to be valid. | 
|  | * Returns <0 in case of error. | 
|  | */ | 
|  | static int __get_cur_name_and_parent(struct send_ctx *sctx, | 
|  | u64 ino, u64 gen, | 
|  | u64 *parent_ino, | 
|  | u64 *parent_gen, | 
|  | struct fs_path *dest) | 
|  | { | 
|  | int ret; | 
|  | int nce_ret; | 
|  | struct name_cache_entry *nce; | 
|  |  | 
|  | /* | 
|  | * First check if we already did a call to this function with the same | 
|  | * ino/gen. If yes, check if the cache entry is still up-to-date. If yes | 
|  | * return the cached result. | 
|  | */ | 
|  | nce = name_cache_search(sctx, ino, gen); | 
|  | if (nce) { | 
|  | if (ino < sctx->send_progress && nce->need_later_update) { | 
|  | btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); | 
|  | nce = NULL; | 
|  | } else { | 
|  | *parent_ino = nce->parent_ino; | 
|  | *parent_gen = nce->parent_gen; | 
|  | ret = fs_path_add(dest, nce->name, nce->name_len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return nce->ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the inode is not existent yet, add the orphan name and return 1. | 
|  | * This should only happen for the parent dir that we determine in | 
|  | * record_new_ref_if_needed(). | 
|  | */ | 
|  | ret = is_inode_existent(sctx, ino, gen, NULL, NULL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (!ret) { | 
|  | ret = gen_unique_name(sctx, ino, gen, dest); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = 1; | 
|  | goto out_cache; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Depending on whether the inode was already processed or not, use | 
|  | * send_root or parent_root for ref lookup. | 
|  | */ | 
|  | if (ino < sctx->send_progress) | 
|  | ret = get_first_ref(sctx->send_root, ino, | 
|  | parent_ino, parent_gen, dest); | 
|  | else | 
|  | ret = get_first_ref(sctx->parent_root, ino, | 
|  | parent_ino, parent_gen, dest); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Check if the ref was overwritten by an inode's ref that was processed | 
|  | * earlier. If yes, treat as orphan and return 1. | 
|  | */ | 
|  | ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, | 
|  | dest->start, fs_path_len(dest)); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret) { | 
|  | fs_path_reset(dest); | 
|  | ret = gen_unique_name(sctx, ino, gen, dest); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | out_cache: | 
|  | /* | 
|  | * Store the result of the lookup in the name cache. | 
|  | */ | 
|  | nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL); | 
|  | if (!nce) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nce->entry.key = ino; | 
|  | nce->entry.gen = gen; | 
|  | nce->parent_ino = *parent_ino; | 
|  | nce->parent_gen = *parent_gen; | 
|  | nce->name_len = fs_path_len(dest); | 
|  | nce->ret = ret; | 
|  | memcpy(nce->name, dest->start, nce->name_len); | 
|  |  | 
|  | if (ino < sctx->send_progress) | 
|  | nce->need_later_update = 0; | 
|  | else | 
|  | nce->need_later_update = 1; | 
|  |  | 
|  | nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); | 
|  | if (nce_ret < 0) { | 
|  | kfree(nce); | 
|  | return nce_ret; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Magic happens here. This function returns the first ref to an inode as it | 
|  | * would look like while receiving the stream at this point in time. | 
|  | * We walk the path up to the root. For every inode in between, we check if it | 
|  | * was already processed/sent. If yes, we continue with the parent as found | 
|  | * in send_root. If not, we continue with the parent as found in parent_root. | 
|  | * If we encounter an inode that was deleted at this point in time, we use the | 
|  | * inodes "orphan" name instead of the real name and stop. Same with new inodes | 
|  | * that were not created yet and overwritten inodes/refs. | 
|  | * | 
|  | * When do we have orphan inodes: | 
|  | * 1. When an inode is freshly created and thus no valid refs are available yet | 
|  | * 2. When a directory lost all it's refs (deleted) but still has dir items | 
|  | *    inside which were not processed yet (pending for move/delete). If anyone | 
|  | *    tried to get the path to the dir items, it would get a path inside that | 
|  | *    orphan directory. | 
|  | * 3. When an inode is moved around or gets new links, it may overwrite the ref | 
|  | *    of an unprocessed inode. If in that case the first ref would be | 
|  | *    overwritten, the overwritten inode gets "orphanized". Later when we | 
|  | *    process this overwritten inode, it is restored at a new place by moving | 
|  | *    the orphan inode. | 
|  | * | 
|  | * sctx->send_progress tells this function at which point in time receiving | 
|  | * would be. | 
|  | */ | 
|  | static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, | 
|  | struct fs_path *dest) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *name = NULL; | 
|  | u64 parent_inode = 0; | 
|  | u64 parent_gen = 0; | 
|  | int stop = 0; | 
|  | const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen); | 
|  |  | 
|  | if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) { | 
|  | if (dest != &sctx->cur_inode_path) | 
|  | return fs_path_copy(dest, &sctx->cur_inode_path); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | name = fs_path_alloc(); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dest->reversed = 1; | 
|  | fs_path_reset(dest); | 
|  |  | 
|  | while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { | 
|  | struct waiting_dir_move *wdm; | 
|  |  | 
|  | fs_path_reset(name); | 
|  |  | 
|  | if (is_waiting_for_rm(sctx, ino, gen)) { | 
|  | ret = gen_unique_name(sctx, ino, gen, name); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = fs_path_add_path(dest, name); | 
|  | break; | 
|  | } | 
|  |  | 
|  | wdm = get_waiting_dir_move(sctx, ino); | 
|  | if (wdm && wdm->orphanized) { | 
|  | ret = gen_unique_name(sctx, ino, gen, name); | 
|  | stop = 1; | 
|  | } else if (wdm) { | 
|  | ret = get_first_ref(sctx->parent_root, ino, | 
|  | &parent_inode, &parent_gen, name); | 
|  | } else { | 
|  | ret = __get_cur_name_and_parent(sctx, ino, gen, | 
|  | &parent_inode, | 
|  | &parent_gen, name); | 
|  | if (ret) | 
|  | stop = 1; | 
|  | } | 
|  |  | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = fs_path_add_path(dest, name); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ino = parent_inode; | 
|  | gen = parent_gen; | 
|  | } | 
|  |  | 
|  | out: | 
|  | fs_path_free(name); | 
|  | if (!ret) { | 
|  | fs_path_unreverse(dest); | 
|  | if (is_cur_inode && dest != &sctx->cur_inode_path) | 
|  | ret = fs_path_copy(&sctx->cur_inode_path, dest); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace | 
|  | */ | 
|  | static int send_subvol_begin(struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *send_root = sctx->send_root; | 
|  | struct btrfs_root *parent_root = sctx->parent_root; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root_ref *ref; | 
|  | struct extent_buffer *leaf; | 
|  | char *name = NULL; | 
|  | int namelen; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); | 
|  | if (!name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = btrfs_root_id(send_root); | 
|  | key.type = BTRFS_ROOT_BACKREF_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, | 
|  | &key, path, 1, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.type != BTRFS_ROOT_BACKREF_KEY || | 
|  | key.objectid != btrfs_root_id(send_root)) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); | 
|  | namelen = btrfs_root_ref_name_len(leaf, ref); | 
|  | read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (parent_root) { | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } else { | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); | 
|  |  | 
|  | if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) | 
|  | TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, | 
|  | sctx->send_root->root_item.received_uuid); | 
|  | else | 
|  | TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, | 
|  | sctx->send_root->root_item.uuid); | 
|  |  | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, | 
|  | btrfs_root_ctransid(&sctx->send_root->root_item)); | 
|  | if (parent_root) { | 
|  | if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) | 
|  | TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, | 
|  | parent_root->root_item.received_uuid); | 
|  | else | 
|  | TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, | 
|  | parent_root->root_item.uuid); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, | 
|  | btrfs_root_ctransid(&sctx->parent_root->root_item)); | 
|  | } | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | out: | 
|  | kfree(name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct fs_path *get_cur_inode_path(struct send_ctx *sctx) | 
|  | { | 
|  | if (fs_path_len(&sctx->cur_inode_path) == 0) { | 
|  | int ret; | 
|  |  | 
|  | ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, | 
|  | &sctx->cur_inode_path); | 
|  | if (ret < 0) | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | return &sctx->cur_inode_path; | 
|  | } | 
|  |  | 
|  | static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen) | 
|  | { | 
|  | struct fs_path *path; | 
|  | int ret; | 
|  |  | 
|  | if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) | 
|  | return get_cur_inode_path(sctx); | 
|  |  | 
|  | path = fs_path_alloc(); | 
|  | if (!path) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ret = get_cur_path(sctx, ino, gen, path); | 
|  | if (ret < 0) { | 
|  | fs_path_free(path); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | return path; | 
|  | } | 
|  |  | 
|  | static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path) | 
|  | { | 
|  | if (path != &sctx->cur_inode_path) | 
|  | fs_path_free(path); | 
|  | } | 
|  |  | 
|  | static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *p; | 
|  |  | 
|  | p = get_path_for_command(sctx, ino, gen); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | out: | 
|  | free_path_for_command(sctx, p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *p; | 
|  |  | 
|  | p = get_path_for_command(sctx, ino, gen); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | out: | 
|  | free_path_for_command(sctx, p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *p; | 
|  |  | 
|  | if (sctx->proto < 2) | 
|  | return 0; | 
|  |  | 
|  | p = get_path_for_command(sctx, ino, gen); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | out: | 
|  | free_path_for_command(sctx, p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *p; | 
|  |  | 
|  | p = get_path_for_command(sctx, ino, gen); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | out: | 
|  | free_path_for_command(sctx, p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *p = NULL; | 
|  | struct btrfs_inode_item *ii; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_key key; | 
|  | int slot; | 
|  |  | 
|  | p = get_path_for_command(sctx, ino, gen); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  | ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
|  | TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); | 
|  | TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); | 
|  | TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); | 
|  | if (sctx->proto >= 2) | 
|  | TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | out: | 
|  | free_path_for_command(sctx, p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the cache is full, we can't remove entries from it and do a call to | 
|  | * send_utimes() for each respective inode, because we might be finishing | 
|  | * processing an inode that is a directory and it just got renamed, and existing | 
|  | * entries in the cache may refer to inodes that have the directory in their | 
|  | * full path - in which case we would generate outdated paths (pre-rename) | 
|  | * for the inodes that the cache entries point to. Instead of pruning the | 
|  | * cache when inserting, do it after we finish processing each inode at | 
|  | * finish_inode_if_needed(). | 
|  | */ | 
|  | static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) | 
|  | { | 
|  | struct btrfs_lru_cache_entry *entry; | 
|  | int ret; | 
|  |  | 
|  | entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); | 
|  | if (entry != NULL) | 
|  | return 0; | 
|  |  | 
|  | /* Caching is optional, don't fail if we can't allocate memory. */ | 
|  | entry = kmalloc(sizeof(*entry), GFP_KERNEL); | 
|  | if (!entry) | 
|  | return send_utimes(sctx, dir, gen); | 
|  |  | 
|  | entry->key = dir; | 
|  | entry->gen = gen; | 
|  |  | 
|  | ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); | 
|  | ASSERT(ret != -EEXIST); | 
|  | if (ret) { | 
|  | kfree(entry); | 
|  | return send_utimes(sctx, dir, gen); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int trim_dir_utimes_cache(struct send_ctx *sctx) | 
|  | { | 
|  | while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { | 
|  | struct btrfs_lru_cache_entry *lru; | 
|  | int ret; | 
|  |  | 
|  | lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); | 
|  | ASSERT(lru != NULL); | 
|  |  | 
|  | ret = send_utimes(sctx, lru->key, lru->gen); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have | 
|  | * a valid path yet because we did not process the refs yet. So, the inode | 
|  | * is created as orphan. | 
|  | */ | 
|  | static int send_create_inode(struct send_ctx *sctx, u64 ino) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *p; | 
|  | int cmd; | 
|  | struct btrfs_inode_info info; | 
|  | u64 gen; | 
|  | u64 mode; | 
|  | u64 rdev; | 
|  |  | 
|  | p = fs_path_alloc(); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (ino != sctx->cur_ino) { | 
|  | ret = get_inode_info(sctx->send_root, ino, &info); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | gen = info.gen; | 
|  | mode = info.mode; | 
|  | rdev = info.rdev; | 
|  | } else { | 
|  | gen = sctx->cur_inode_gen; | 
|  | mode = sctx->cur_inode_mode; | 
|  | rdev = sctx->cur_inode_rdev; | 
|  | } | 
|  |  | 
|  | if (S_ISREG(mode)) { | 
|  | cmd = BTRFS_SEND_C_MKFILE; | 
|  | } else if (S_ISDIR(mode)) { | 
|  | cmd = BTRFS_SEND_C_MKDIR; | 
|  | } else if (S_ISLNK(mode)) { | 
|  | cmd = BTRFS_SEND_C_SYMLINK; | 
|  | } else if (S_ISCHR(mode) || S_ISBLK(mode)) { | 
|  | cmd = BTRFS_SEND_C_MKNOD; | 
|  | } else if (S_ISFIFO(mode)) { | 
|  | cmd = BTRFS_SEND_C_MKFIFO; | 
|  | } else if (S_ISSOCK(mode)) { | 
|  | cmd = BTRFS_SEND_C_MKSOCK; | 
|  | } else { | 
|  | btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", | 
|  | (int)(mode & S_IFMT)); | 
|  | ret = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = begin_cmd(sctx, cmd); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = gen_unique_name(sctx, ino, gen, p); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); | 
|  |  | 
|  | if (S_ISLNK(mode)) { | 
|  | fs_path_reset(p); | 
|  | ret = read_symlink(sctx->send_root, ino, p); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); | 
|  | } else if (S_ISCHR(mode) || S_ISBLK(mode) || | 
|  | S_ISFIFO(mode) || S_ISSOCK(mode)) { | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); | 
|  | } | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  |  | 
|  | tlv_put_failure: | 
|  | out: | 
|  | fs_path_free(p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cache_dir_created(struct send_ctx *sctx, u64 dir) | 
|  | { | 
|  | struct btrfs_lru_cache_entry *entry; | 
|  | int ret; | 
|  |  | 
|  | /* Caching is optional, ignore any failures. */ | 
|  | entry = kmalloc(sizeof(*entry), GFP_KERNEL); | 
|  | if (!entry) | 
|  | return; | 
|  |  | 
|  | entry->key = dir; | 
|  | entry->gen = 0; | 
|  | ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); | 
|  | if (ret < 0) | 
|  | kfree(entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need some special handling for inodes that get processed before the parent | 
|  | * directory got created. See process_recorded_refs for details. | 
|  | * This function does the check if we already created the dir out of order. | 
|  | */ | 
|  | static int did_create_dir(struct send_ctx *sctx, u64 dir) | 
|  | { | 
|  | int ret = 0; | 
|  | int iter_ret = 0; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_key di_key; | 
|  | struct btrfs_dir_item *di; | 
|  |  | 
|  | if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) | 
|  | return 1; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = dir; | 
|  | key.type = BTRFS_DIR_INDEX_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { | 
|  | struct extent_buffer *eb = path->nodes[0]; | 
|  |  | 
|  | if (found_key.objectid != key.objectid || | 
|  | found_key.type != key.type) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &di_key); | 
|  |  | 
|  | if (di_key.type != BTRFS_ROOT_ITEM_KEY && | 
|  | di_key.objectid < sctx->send_progress) { | 
|  | ret = 1; | 
|  | cache_dir_created(sctx, dir); | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* Catch error found during iteration */ | 
|  | if (iter_ret < 0) | 
|  | ret = iter_ret; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only creates the inode if it is: | 
|  | * 1. Not a directory | 
|  | * 2. Or a directory which was not created already due to out of order | 
|  | *    directories. See did_create_dir and process_recorded_refs for details. | 
|  | */ | 
|  | static int send_create_inode_if_needed(struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (S_ISDIR(sctx->cur_inode_mode)) { | 
|  | ret = did_create_dir(sctx, sctx->cur_ino); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret > 0) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = send_create_inode(sctx, sctx->cur_ino); | 
|  |  | 
|  | if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) | 
|  | cache_dir_created(sctx, sctx->cur_ino); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct recorded_ref { | 
|  | struct list_head list; | 
|  | char *name; | 
|  | struct fs_path *full_path; | 
|  | u64 dir; | 
|  | u64 dir_gen; | 
|  | int name_len; | 
|  | struct rb_node node; | 
|  | struct rb_root *root; | 
|  | }; | 
|  |  | 
|  | static struct recorded_ref *recorded_ref_alloc(void) | 
|  | { | 
|  | struct recorded_ref *ref; | 
|  |  | 
|  | ref = kzalloc(sizeof(*ref), GFP_KERNEL); | 
|  | if (!ref) | 
|  | return NULL; | 
|  | RB_CLEAR_NODE(&ref->node); | 
|  | INIT_LIST_HEAD(&ref->list); | 
|  | return ref; | 
|  | } | 
|  |  | 
|  | static void recorded_ref_free(struct recorded_ref *ref) | 
|  | { | 
|  | if (!ref) | 
|  | return; | 
|  | if (!RB_EMPTY_NODE(&ref->node)) | 
|  | rb_erase(&ref->node, ref->root); | 
|  | list_del(&ref->list); | 
|  | fs_path_free(ref->full_path); | 
|  | kfree(ref); | 
|  | } | 
|  |  | 
|  | static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) | 
|  | { | 
|  | ref->full_path = path; | 
|  | ref->name = (char *)kbasename(ref->full_path->start); | 
|  | ref->name_len = ref->full_path->end - ref->name; | 
|  | } | 
|  |  | 
|  | static int dup_ref(struct recorded_ref *ref, struct list_head *list) | 
|  | { | 
|  | struct recorded_ref *new; | 
|  |  | 
|  | new = recorded_ref_alloc(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | new->dir = ref->dir; | 
|  | new->dir_gen = ref->dir_gen; | 
|  | list_add_tail(&new->list, list); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __free_recorded_refs(struct list_head *head) | 
|  | { | 
|  | struct recorded_ref *cur; | 
|  |  | 
|  | while (!list_empty(head)) { | 
|  | cur = list_first_entry(head, struct recorded_ref, list); | 
|  | recorded_ref_free(cur); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_recorded_refs(struct send_ctx *sctx) | 
|  | { | 
|  | __free_recorded_refs(&sctx->new_refs); | 
|  | __free_recorded_refs(&sctx->deleted_refs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Renames/moves a file/dir to its orphan name. Used when the first | 
|  | * ref of an unprocessed inode gets overwritten and for all non empty | 
|  | * directories. | 
|  | */ | 
|  | static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, | 
|  | struct fs_path *path) | 
|  | { | 
|  | int ret; | 
|  | struct fs_path *orphan; | 
|  |  | 
|  | orphan = fs_path_alloc(); | 
|  | if (!orphan) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = gen_unique_name(sctx, ino, gen, orphan); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = send_rename(sctx, path, orphan); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) | 
|  | ret = fs_path_copy(&sctx->cur_inode_path, orphan); | 
|  |  | 
|  | out: | 
|  | fs_path_free(orphan); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, | 
|  | u64 dir_ino, u64 dir_gen) | 
|  | { | 
|  | struct rb_node **p = &sctx->orphan_dirs.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct orphan_dir_info *entry, *odi; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct orphan_dir_info, node); | 
|  | if (dir_ino < entry->ino) | 
|  | p = &(*p)->rb_left; | 
|  | else if (dir_ino > entry->ino) | 
|  | p = &(*p)->rb_right; | 
|  | else if (dir_gen < entry->gen) | 
|  | p = &(*p)->rb_left; | 
|  | else if (dir_gen > entry->gen) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | odi = kmalloc(sizeof(*odi), GFP_KERNEL); | 
|  | if (!odi) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | odi->ino = dir_ino; | 
|  | odi->gen = dir_gen; | 
|  | odi->last_dir_index_offset = 0; | 
|  | odi->dir_high_seq_ino = 0; | 
|  |  | 
|  | rb_link_node(&odi->node, parent, p); | 
|  | rb_insert_color(&odi->node, &sctx->orphan_dirs); | 
|  | return odi; | 
|  | } | 
|  |  | 
|  | static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, | 
|  | u64 dir_ino, u64 gen) | 
|  | { | 
|  | struct rb_node *n = sctx->orphan_dirs.rb_node; | 
|  | struct orphan_dir_info *entry; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct orphan_dir_info, node); | 
|  | if (dir_ino < entry->ino) | 
|  | n = n->rb_left; | 
|  | else if (dir_ino > entry->ino) | 
|  | n = n->rb_right; | 
|  | else if (gen < entry->gen) | 
|  | n = n->rb_left; | 
|  | else if (gen > entry->gen) | 
|  | n = n->rb_right; | 
|  | else | 
|  | return entry; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) | 
|  | { | 
|  | struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); | 
|  |  | 
|  | return odi != NULL; | 
|  | } | 
|  |  | 
|  | static void free_orphan_dir_info(struct send_ctx *sctx, | 
|  | struct orphan_dir_info *odi) | 
|  | { | 
|  | if (!odi) | 
|  | return; | 
|  | rb_erase(&odi->node, &sctx->orphan_dirs); | 
|  | kfree(odi); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 1 if a directory can be removed at this point in time. | 
|  | * We check this by iterating all dir items and checking if the inode behind | 
|  | * the dir item was already processed. | 
|  | */ | 
|  | static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) | 
|  | { | 
|  | int ret = 0; | 
|  | int iter_ret = 0; | 
|  | struct btrfs_root *root = sctx->parent_root; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_key loc; | 
|  | struct btrfs_dir_item *di; | 
|  | struct orphan_dir_info *odi = NULL; | 
|  | u64 dir_high_seq_ino = 0; | 
|  | u64 last_dir_index_offset = 0; | 
|  |  | 
|  | /* | 
|  | * Don't try to rmdir the top/root subvolume dir. | 
|  | */ | 
|  | if (dir == BTRFS_FIRST_FREE_OBJECTID) | 
|  | return 0; | 
|  |  | 
|  | odi = get_orphan_dir_info(sctx, dir, dir_gen); | 
|  | if (odi && sctx->cur_ino < odi->dir_high_seq_ino) | 
|  | return 0; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!odi) { | 
|  | /* | 
|  | * Find the inode number associated with the last dir index | 
|  | * entry. This is very likely the inode with the highest number | 
|  | * of all inodes that have an entry in the directory. We can | 
|  | * then use it to avoid future calls to can_rmdir(), when | 
|  | * processing inodes with a lower number, from having to search | 
|  | * the parent root b+tree for dir index keys. | 
|  | */ | 
|  | key.objectid = dir; | 
|  | key.type = BTRFS_DIR_INDEX_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret > 0) { | 
|  | /* Can't happen, the root is never empty. */ | 
|  | ASSERT(path->slots[0] > 0); | 
|  | if (WARN_ON(path->slots[0] == 0)) { | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { | 
|  | /* No index keys, dir can be removed. */ | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | di = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_item); | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); | 
|  | dir_high_seq_ino = loc.objectid; | 
|  | if (sctx->cur_ino < dir_high_seq_ino) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | } | 
|  |  | 
|  | key.objectid = dir; | 
|  | key.type = BTRFS_DIR_INDEX_KEY; | 
|  | key.offset = (odi ? odi->last_dir_index_offset : 0); | 
|  |  | 
|  | btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { | 
|  | struct waiting_dir_move *dm; | 
|  |  | 
|  | if (found_key.objectid != key.objectid || | 
|  | found_key.type != key.type) | 
|  | break; | 
|  |  | 
|  | di = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_item); | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); | 
|  |  | 
|  | dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); | 
|  | last_dir_index_offset = found_key.offset; | 
|  |  | 
|  | dm = get_waiting_dir_move(sctx, loc.objectid); | 
|  | if (dm) { | 
|  | dm->rmdir_ino = dir; | 
|  | dm->rmdir_gen = dir_gen; | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (loc.objectid > sctx->cur_ino) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (iter_ret < 0) { | 
|  | ret = iter_ret; | 
|  | goto out; | 
|  | } | 
|  | free_orphan_dir_info(sctx, odi); | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!odi) { | 
|  | odi = add_orphan_dir_info(sctx, dir, dir_gen); | 
|  | if (IS_ERR(odi)) | 
|  | return PTR_ERR(odi); | 
|  |  | 
|  | odi->gen = dir_gen; | 
|  | } | 
|  |  | 
|  | odi->last_dir_index_offset = last_dir_index_offset; | 
|  | odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) | 
|  | { | 
|  | struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); | 
|  |  | 
|  | return entry != NULL; | 
|  | } | 
|  |  | 
|  | static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) | 
|  | { | 
|  | struct rb_node **p = &sctx->waiting_dir_moves.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct waiting_dir_move *entry, *dm; | 
|  |  | 
|  | dm = kmalloc(sizeof(*dm), GFP_KERNEL); | 
|  | if (!dm) | 
|  | return -ENOMEM; | 
|  | dm->ino = ino; | 
|  | dm->rmdir_ino = 0; | 
|  | dm->rmdir_gen = 0; | 
|  | dm->orphanized = orphanized; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct waiting_dir_move, node); | 
|  | if (ino < entry->ino) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (ino > entry->ino) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | kfree(dm); | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(&dm->node, parent, p); | 
|  | rb_insert_color(&dm->node, &sctx->waiting_dir_moves); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct waiting_dir_move * | 
|  | get_waiting_dir_move(struct send_ctx *sctx, u64 ino) | 
|  | { | 
|  | struct rb_node *n = sctx->waiting_dir_moves.rb_node; | 
|  | struct waiting_dir_move *entry; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct waiting_dir_move, node); | 
|  | if (ino < entry->ino) | 
|  | n = n->rb_left; | 
|  | else if (ino > entry->ino) | 
|  | n = n->rb_right; | 
|  | else | 
|  | return entry; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void free_waiting_dir_move(struct send_ctx *sctx, | 
|  | struct waiting_dir_move *dm) | 
|  | { | 
|  | if (!dm) | 
|  | return; | 
|  | rb_erase(&dm->node, &sctx->waiting_dir_moves); | 
|  | kfree(dm); | 
|  | } | 
|  |  | 
|  | static int add_pending_dir_move(struct send_ctx *sctx, | 
|  | u64 ino, | 
|  | u64 ino_gen, | 
|  | u64 parent_ino, | 
|  | struct list_head *new_refs, | 
|  | struct list_head *deleted_refs, | 
|  | const bool is_orphan) | 
|  | { | 
|  | struct rb_node **p = &sctx->pending_dir_moves.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct pending_dir_move *entry = NULL, *pm; | 
|  | struct recorded_ref *cur; | 
|  | int exists = 0; | 
|  | int ret; | 
|  |  | 
|  | pm = kmalloc(sizeof(*pm), GFP_KERNEL); | 
|  | if (!pm) | 
|  | return -ENOMEM; | 
|  | pm->parent_ino = parent_ino; | 
|  | pm->ino = ino; | 
|  | pm->gen = ino_gen; | 
|  | INIT_LIST_HEAD(&pm->list); | 
|  | INIT_LIST_HEAD(&pm->update_refs); | 
|  | RB_CLEAR_NODE(&pm->node); | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct pending_dir_move, node); | 
|  | if (parent_ino < entry->parent_ino) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (parent_ino > entry->parent_ino) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | exists = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(cur, deleted_refs, list) { | 
|  | ret = dup_ref(cur, &pm->update_refs); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | list_for_each_entry(cur, new_refs, list) { | 
|  | ret = dup_ref(cur, &pm->update_refs); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (exists) { | 
|  | list_add_tail(&pm->list, &entry->list); | 
|  | } else { | 
|  | rb_link_node(&pm->node, parent, p); | 
|  | rb_insert_color(&pm->node, &sctx->pending_dir_moves); | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | if (ret) { | 
|  | __free_recorded_refs(&pm->update_refs); | 
|  | kfree(pm); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, | 
|  | u64 parent_ino) | 
|  | { | 
|  | struct rb_node *n = sctx->pending_dir_moves.rb_node; | 
|  | struct pending_dir_move *entry; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct pending_dir_move, node); | 
|  | if (parent_ino < entry->parent_ino) | 
|  | n = n->rb_left; | 
|  | else if (parent_ino > entry->parent_ino) | 
|  | n = n->rb_right; | 
|  | else | 
|  | return entry; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int path_loop(struct send_ctx *sctx, struct fs_path *name, | 
|  | u64 ino, u64 gen, u64 *ancestor_ino) | 
|  | { | 
|  | int ret = 0; | 
|  | u64 parent_inode = 0; | 
|  | u64 parent_gen = 0; | 
|  | u64 start_ino = ino; | 
|  |  | 
|  | *ancestor_ino = 0; | 
|  | while (ino != BTRFS_FIRST_FREE_OBJECTID) { | 
|  | fs_path_reset(name); | 
|  |  | 
|  | if (is_waiting_for_rm(sctx, ino, gen)) | 
|  | break; | 
|  | if (is_waiting_for_move(sctx, ino)) { | 
|  | if (*ancestor_ino == 0) | 
|  | *ancestor_ino = ino; | 
|  | ret = get_first_ref(sctx->parent_root, ino, | 
|  | &parent_inode, &parent_gen, name); | 
|  | } else { | 
|  | ret = __get_cur_name_and_parent(sctx, ino, gen, | 
|  | &parent_inode, | 
|  | &parent_gen, name); | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (parent_inode == start_ino) { | 
|  | ret = 1; | 
|  | if (*ancestor_ino == 0) | 
|  | *ancestor_ino = ino; | 
|  | break; | 
|  | } | 
|  | ino = parent_inode; | 
|  | gen = parent_gen; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) | 
|  | { | 
|  | struct fs_path *from_path = NULL; | 
|  | struct fs_path *to_path = NULL; | 
|  | struct fs_path *name = NULL; | 
|  | u64 orig_progress = sctx->send_progress; | 
|  | struct recorded_ref *cur; | 
|  | u64 parent_ino, parent_gen; | 
|  | struct waiting_dir_move *dm = NULL; | 
|  | u64 rmdir_ino = 0; | 
|  | u64 rmdir_gen; | 
|  | u64 ancestor; | 
|  | bool is_orphan; | 
|  | int ret; | 
|  |  | 
|  | name = fs_path_alloc(); | 
|  | from_path = fs_path_alloc(); | 
|  | if (!name || !from_path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dm = get_waiting_dir_move(sctx, pm->ino); | 
|  | ASSERT(dm); | 
|  | rmdir_ino = dm->rmdir_ino; | 
|  | rmdir_gen = dm->rmdir_gen; | 
|  | is_orphan = dm->orphanized; | 
|  | free_waiting_dir_move(sctx, dm); | 
|  |  | 
|  | if (is_orphan) { | 
|  | ret = gen_unique_name(sctx, pm->ino, | 
|  | pm->gen, from_path); | 
|  | } else { | 
|  | ret = get_first_ref(sctx->parent_root, pm->ino, | 
|  | &parent_ino, &parent_gen, name); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = get_cur_path(sctx, parent_ino, parent_gen, | 
|  | from_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = fs_path_add_path(from_path, name); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | sctx->send_progress = sctx->cur_ino + 1; | 
|  | ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) { | 
|  | LIST_HEAD(deleted_refs); | 
|  | ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); | 
|  | ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, | 
|  | &pm->update_refs, &deleted_refs, | 
|  | is_orphan); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (rmdir_ino) { | 
|  | dm = get_waiting_dir_move(sctx, pm->ino); | 
|  | ASSERT(dm); | 
|  | dm->rmdir_ino = rmdir_ino; | 
|  | dm->rmdir_gen = rmdir_gen; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | fs_path_reset(name); | 
|  | to_path = name; | 
|  | name = NULL; | 
|  | ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = send_rename(sctx, from_path, to_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (rmdir_ino) { | 
|  | struct orphan_dir_info *odi; | 
|  | u64 gen; | 
|  |  | 
|  | odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); | 
|  | if (!odi) { | 
|  | /* already deleted */ | 
|  | goto finish; | 
|  | } | 
|  | gen = odi->gen; | 
|  |  | 
|  | ret = can_rmdir(sctx, rmdir_ino, gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (!ret) | 
|  | goto finish; | 
|  |  | 
|  | name = fs_path_alloc(); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | ret = get_cur_path(sctx, rmdir_ino, gen, name); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = send_rmdir(sctx, name); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | finish: | 
|  | ret = cache_dir_utimes(sctx, pm->ino, pm->gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * After rename/move, need to update the utimes of both new parent(s) | 
|  | * and old parent(s). | 
|  | */ | 
|  | list_for_each_entry(cur, &pm->update_refs, list) { | 
|  | /* | 
|  | * The parent inode might have been deleted in the send snapshot | 
|  | */ | 
|  | ret = get_inode_info(sctx->send_root, cur->dir, NULL); | 
|  | if (ret == -ENOENT) { | 
|  | ret = 0; | 
|  | continue; | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | fs_path_free(name); | 
|  | fs_path_free(from_path); | 
|  | fs_path_free(to_path); | 
|  | sctx->send_progress = orig_progress; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) | 
|  | { | 
|  | if (!list_empty(&m->list)) | 
|  | list_del(&m->list); | 
|  | if (!RB_EMPTY_NODE(&m->node)) | 
|  | rb_erase(&m->node, &sctx->pending_dir_moves); | 
|  | __free_recorded_refs(&m->update_refs); | 
|  | kfree(m); | 
|  | } | 
|  |  | 
|  | static void tail_append_pending_moves(struct send_ctx *sctx, | 
|  | struct pending_dir_move *moves, | 
|  | struct list_head *stack) | 
|  | { | 
|  | if (list_empty(&moves->list)) { | 
|  | list_add_tail(&moves->list, stack); | 
|  | } else { | 
|  | LIST_HEAD(list); | 
|  | list_splice_init(&moves->list, &list); | 
|  | list_add_tail(&moves->list, stack); | 
|  | list_splice_tail(&list, stack); | 
|  | } | 
|  | if (!RB_EMPTY_NODE(&moves->node)) { | 
|  | rb_erase(&moves->node, &sctx->pending_dir_moves); | 
|  | RB_CLEAR_NODE(&moves->node); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int apply_children_dir_moves(struct send_ctx *sctx) | 
|  | { | 
|  | struct pending_dir_move *pm; | 
|  | LIST_HEAD(stack); | 
|  | u64 parent_ino = sctx->cur_ino; | 
|  | int ret = 0; | 
|  |  | 
|  | pm = get_pending_dir_moves(sctx, parent_ino); | 
|  | if (!pm) | 
|  | return 0; | 
|  |  | 
|  | tail_append_pending_moves(sctx, pm, &stack); | 
|  |  | 
|  | while (!list_empty(&stack)) { | 
|  | pm = list_first_entry(&stack, struct pending_dir_move, list); | 
|  | parent_ino = pm->ino; | 
|  | ret = apply_dir_move(sctx, pm); | 
|  | free_pending_move(sctx, pm); | 
|  | if (ret) | 
|  | goto out; | 
|  | pm = get_pending_dir_moves(sctx, parent_ino); | 
|  | if (pm) | 
|  | tail_append_pending_moves(sctx, pm, &stack); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | while (!list_empty(&stack)) { | 
|  | pm = list_first_entry(&stack, struct pending_dir_move, list); | 
|  | free_pending_move(sctx, pm); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We might need to delay a directory rename even when no ancestor directory | 
|  | * (in the send root) with a higher inode number than ours (sctx->cur_ino) was | 
|  | * renamed. This happens when we rename a directory to the old name (the name | 
|  | * in the parent root) of some other unrelated directory that got its rename | 
|  | * delayed due to some ancestor with higher number that got renamed. | 
|  | * | 
|  | * Example: | 
|  | * | 
|  | * Parent snapshot: | 
|  | * .                                       (ino 256) | 
|  | * |---- a/                                (ino 257) | 
|  | * |     |---- file                        (ino 260) | 
|  | * | | 
|  | * |---- b/                                (ino 258) | 
|  | * |---- c/                                (ino 259) | 
|  | * | 
|  | * Send snapshot: | 
|  | * .                                       (ino 256) | 
|  | * |---- a/                                (ino 258) | 
|  | * |---- x/                                (ino 259) | 
|  | *       |---- y/                          (ino 257) | 
|  | *             |----- file                 (ino 260) | 
|  | * | 
|  | * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 | 
|  | * from 'a' to 'x/y' happening first, which in turn depends on the rename of | 
|  | * inode 259 from 'c' to 'x'. So the order of rename commands the send stream | 
|  | * must issue is: | 
|  | * | 
|  | * 1 - rename 259 from 'c' to 'x' | 
|  | * 2 - rename 257 from 'a' to 'x/y' | 
|  | * 3 - rename 258 from 'b' to 'a' | 
|  | * | 
|  | * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can | 
|  | * be done right away and < 0 on error. | 
|  | */ | 
|  | static int wait_for_dest_dir_move(struct send_ctx *sctx, | 
|  | struct recorded_ref *parent_ref, | 
|  | const bool is_orphan) | 
|  | { | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key di_key; | 
|  | struct btrfs_dir_item *di; | 
|  | u64 left_gen; | 
|  | u64 right_gen; | 
|  | int ret = 0; | 
|  | struct waiting_dir_move *wdm; | 
|  |  | 
|  | if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) | 
|  | return 0; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = parent_ref->dir; | 
|  | key.type = BTRFS_DIR_ITEM_KEY; | 
|  | key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0) | 
|  | return 0; | 
|  |  | 
|  | di = btrfs_match_dir_item_name(path, parent_ref->name, | 
|  | parent_ref->name_len); | 
|  | if (!di) | 
|  | return 0; | 
|  | /* | 
|  | * di_key.objectid has the number of the inode that has a dentry in the | 
|  | * parent directory with the same name that sctx->cur_ino is being | 
|  | * renamed to. We need to check if that inode is in the send root as | 
|  | * well and if it is currently marked as an inode with a pending rename, | 
|  | * if it is, we need to delay the rename of sctx->cur_ino as well, so | 
|  | * that it happens after that other inode is renamed. | 
|  | */ | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); | 
|  | if (di_key.type != BTRFS_INODE_ITEM_KEY) | 
|  | return 0; | 
|  |  | 
|  | ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); | 
|  | if (ret < 0) { | 
|  | if (ret == -ENOENT) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Different inode, no need to delay the rename of sctx->cur_ino */ | 
|  | if (right_gen != left_gen) | 
|  | return 0; | 
|  |  | 
|  | wdm = get_waiting_dir_move(sctx, di_key.objectid); | 
|  | if (wdm && !wdm->orphanized) { | 
|  | ret = add_pending_dir_move(sctx, | 
|  | sctx->cur_ino, | 
|  | sctx->cur_inode_gen, | 
|  | di_key.objectid, | 
|  | &sctx->new_refs, | 
|  | &sctx->deleted_refs, | 
|  | is_orphan); | 
|  | if (!ret) | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if inode ino2, or any of its ancestors, is inode ino1. | 
|  | * Return 1 if true, 0 if false and < 0 on error. | 
|  | */ | 
|  | static int check_ino_in_path(struct btrfs_root *root, | 
|  | const u64 ino1, | 
|  | const u64 ino1_gen, | 
|  | const u64 ino2, | 
|  | const u64 ino2_gen, | 
|  | struct fs_path *fs_path) | 
|  | { | 
|  | u64 ino = ino2; | 
|  |  | 
|  | if (ino1 == ino2) | 
|  | return ino1_gen == ino2_gen; | 
|  |  | 
|  | while (ino > BTRFS_FIRST_FREE_OBJECTID) { | 
|  | u64 parent; | 
|  | u64 parent_gen; | 
|  | int ret; | 
|  |  | 
|  | fs_path_reset(fs_path); | 
|  | ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (parent == ino1) | 
|  | return parent_gen == ino1_gen; | 
|  | ino = parent; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if inode ino1 is an ancestor of inode ino2 in the given root for any | 
|  | * possible path (in case ino2 is not a directory and has multiple hard links). | 
|  | * Return 1 if true, 0 if false and < 0 on error. | 
|  | */ | 
|  | static int is_ancestor(struct btrfs_root *root, | 
|  | const u64 ino1, | 
|  | const u64 ino1_gen, | 
|  | const u64 ino2, | 
|  | struct fs_path *fs_path) | 
|  | { | 
|  | bool free_fs_path = false; | 
|  | int ret = 0; | 
|  | int iter_ret = 0; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  |  | 
|  | if (!fs_path) { | 
|  | fs_path = fs_path_alloc(); | 
|  | if (!fs_path) | 
|  | return -ENOMEM; | 
|  | free_fs_path = true; | 
|  | } | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | key.objectid = ino2; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | btrfs_for_each_slot(root, &key, &key, path, iter_ret) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | int slot = path->slots[0]; | 
|  | u32 cur_offset = 0; | 
|  | u32 item_size; | 
|  |  | 
|  | if (key.objectid != ino2) | 
|  | break; | 
|  | if (key.type != BTRFS_INODE_REF_KEY && | 
|  | key.type != BTRFS_INODE_EXTREF_KEY) | 
|  | break; | 
|  |  | 
|  | item_size = btrfs_item_size(leaf, slot); | 
|  | while (cur_offset < item_size) { | 
|  | u64 parent; | 
|  | u64 parent_gen; | 
|  |  | 
|  | if (key.type == BTRFS_INODE_EXTREF_KEY) { | 
|  | unsigned long ptr; | 
|  | struct btrfs_inode_extref *extref; | 
|  |  | 
|  | ptr = btrfs_item_ptr_offset(leaf, slot); | 
|  | extref = (struct btrfs_inode_extref *) | 
|  | (ptr + cur_offset); | 
|  | parent = btrfs_inode_extref_parent(leaf, | 
|  | extref); | 
|  | cur_offset += sizeof(*extref); | 
|  | cur_offset += btrfs_inode_extref_name_len(leaf, | 
|  | extref); | 
|  | } else { | 
|  | parent = key.offset; | 
|  | cur_offset = item_size; | 
|  | } | 
|  |  | 
|  | ret = get_inode_gen(root, parent, &parent_gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = check_ino_in_path(root, ino1, ino1_gen, | 
|  | parent, parent_gen, fs_path); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | if (iter_ret < 0) | 
|  | ret = iter_ret; | 
|  |  | 
|  | out: | 
|  | if (free_fs_path) | 
|  | fs_path_free(fs_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int wait_for_parent_move(struct send_ctx *sctx, | 
|  | struct recorded_ref *parent_ref, | 
|  | const bool is_orphan) | 
|  | { | 
|  | int ret = 0; | 
|  | u64 ino = parent_ref->dir; | 
|  | u64 ino_gen = parent_ref->dir_gen; | 
|  | u64 parent_ino_before, parent_ino_after; | 
|  | struct fs_path *path_before = NULL; | 
|  | struct fs_path *path_after = NULL; | 
|  | int len1, len2; | 
|  |  | 
|  | path_after = fs_path_alloc(); | 
|  | path_before = fs_path_alloc(); | 
|  | if (!path_after || !path_before) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Our current directory inode may not yet be renamed/moved because some | 
|  | * ancestor (immediate or not) has to be renamed/moved first. So find if | 
|  | * such ancestor exists and make sure our own rename/move happens after | 
|  | * that ancestor is processed to avoid path build infinite loops (done | 
|  | * at get_cur_path()). | 
|  | */ | 
|  | while (ino > BTRFS_FIRST_FREE_OBJECTID) { | 
|  | u64 parent_ino_after_gen; | 
|  |  | 
|  | if (is_waiting_for_move(sctx, ino)) { | 
|  | /* | 
|  | * If the current inode is an ancestor of ino in the | 
|  | * parent root, we need to delay the rename of the | 
|  | * current inode, otherwise don't delayed the rename | 
|  | * because we can end up with a circular dependency | 
|  | * of renames, resulting in some directories never | 
|  | * getting the respective rename operations issued in | 
|  | * the send stream or getting into infinite path build | 
|  | * loops. | 
|  | */ | 
|  | ret = is_ancestor(sctx->parent_root, | 
|  | sctx->cur_ino, sctx->cur_inode_gen, | 
|  | ino, path_before); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | fs_path_reset(path_before); | 
|  | fs_path_reset(path_after); | 
|  |  | 
|  | ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, | 
|  | &parent_ino_after_gen, path_after); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, | 
|  | NULL, path_before); | 
|  | if (ret < 0 && ret != -ENOENT) { | 
|  | goto out; | 
|  | } else if (ret == -ENOENT) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | len1 = fs_path_len(path_before); | 
|  | len2 = fs_path_len(path_after); | 
|  | if (ino > sctx->cur_ino && | 
|  | (parent_ino_before != parent_ino_after || len1 != len2 || | 
|  | memcmp(path_before->start, path_after->start, len1))) { | 
|  | u64 parent_ino_gen; | 
|  |  | 
|  | ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ino_gen == parent_ino_gen) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ino = parent_ino_after; | 
|  | ino_gen = parent_ino_after_gen; | 
|  | } | 
|  |  | 
|  | out: | 
|  | fs_path_free(path_before); | 
|  | fs_path_free(path_after); | 
|  |  | 
|  | if (ret == 1) { | 
|  | ret = add_pending_dir_move(sctx, | 
|  | sctx->cur_ino, | 
|  | sctx->cur_inode_gen, | 
|  | ino, | 
|  | &sctx->new_refs, | 
|  | &sctx->deleted_refs, | 
|  | is_orphan); | 
|  | if (!ret) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) | 
|  | { | 
|  | int ret; | 
|  | struct fs_path *new_path; | 
|  |  | 
|  | /* | 
|  | * Our reference's name member points to its full_path member string, so | 
|  | * we use here a new path. | 
|  | */ | 
|  | new_path = fs_path_alloc(); | 
|  | if (!new_path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); | 
|  | if (ret < 0) { | 
|  | fs_path_free(new_path); | 
|  | return ret; | 
|  | } | 
|  | ret = fs_path_add(new_path, ref->name, ref->name_len); | 
|  | if (ret < 0) { | 
|  | fs_path_free(new_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | fs_path_free(ref->full_path); | 
|  | set_ref_path(ref, new_path); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When processing the new references for an inode we may orphanize an existing | 
|  | * directory inode because its old name conflicts with one of the new references | 
|  | * of the current inode. Later, when processing another new reference of our | 
|  | * inode, we might need to orphanize another inode, but the path we have in the | 
|  | * reference reflects the pre-orphanization name of the directory we previously | 
|  | * orphanized. For example: | 
|  | * | 
|  | * parent snapshot looks like: | 
|  | * | 
|  | * .                                     (ino 256) | 
|  | * |----- f1                             (ino 257) | 
|  | * |----- f2                             (ino 258) | 
|  | * |----- d1/                            (ino 259) | 
|  | *        |----- d2/                     (ino 260) | 
|  | * | 
|  | * send snapshot looks like: | 
|  | * | 
|  | * .                                     (ino 256) | 
|  | * |----- d1                             (ino 258) | 
|  | * |----- f2/                            (ino 259) | 
|  | *        |----- f2_link/                (ino 260) | 
|  | *        |       |----- f1              (ino 257) | 
|  | *        | | 
|  | *        |----- d2                      (ino 258) | 
|  | * | 
|  | * When processing inode 257 we compute the name for inode 259 as "d1", and we | 
|  | * cache it in the name cache. Later when we start processing inode 258, when | 
|  | * collecting all its new references we set a full path of "d1/d2" for its new | 
|  | * reference with name "d2". When we start processing the new references we | 
|  | * start by processing the new reference with name "d1", and this results in | 
|  | * orphanizing inode 259, since its old reference causes a conflict. Then we | 
|  | * move on the next new reference, with name "d2", and we find out we must | 
|  | * orphanize inode 260, as its old reference conflicts with ours - but for the | 
|  | * orphanization we use a source path corresponding to the path we stored in the | 
|  | * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the | 
|  | * receiver fail since the path component "d1/" no longer exists, it was renamed | 
|  | * to "o259-6-0/" when processing the previous new reference. So in this case we | 
|  | * must recompute the path in the new reference and use it for the new | 
|  | * orphanization operation. | 
|  | */ | 
|  | static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) | 
|  | { | 
|  | char *name; | 
|  | int ret; | 
|  |  | 
|  | name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); | 
|  | if (!name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fs_path_reset(ref->full_path); | 
|  | ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = fs_path_add(ref->full_path, name, ref->name_len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Update the reference's base name pointer. */ | 
|  | set_ref_path(ref, ref->full_path); | 
|  | out: | 
|  | kfree(name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rename_current_inode(struct send_ctx *sctx, | 
|  | struct fs_path *current_path, | 
|  | struct fs_path *new_path) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = send_rename(sctx, current_path, new_path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = fs_path_copy(&sctx->cur_inode_path, new_path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return fs_path_copy(current_path, new_path); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This does all the move/link/unlink/rmdir magic. | 
|  | */ | 
|  | static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
|  | int ret = 0; | 
|  | struct recorded_ref *cur; | 
|  | struct recorded_ref *cur2; | 
|  | LIST_HEAD(check_dirs); | 
|  | struct fs_path *valid_path = NULL; | 
|  | u64 ow_inode = 0; | 
|  | u64 ow_gen; | 
|  | u64 ow_mode; | 
|  | u64 last_dir_ino_rm = 0; | 
|  | bool did_overwrite = false; | 
|  | bool is_orphan = false; | 
|  | bool can_rename = true; | 
|  | bool orphanized_dir = false; | 
|  | bool orphanized_ancestor = false; | 
|  |  | 
|  | /* | 
|  | * This should never happen as the root dir always has the same ref | 
|  | * which is always '..' | 
|  | */ | 
|  | if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { | 
|  | btrfs_err(fs_info, | 
|  | "send: unexpected inode %llu in process_recorded_refs()", | 
|  | sctx->cur_ino); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | valid_path = fs_path_alloc(); | 
|  | if (!valid_path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First, check if the first ref of the current inode was overwritten | 
|  | * before. If yes, we know that the current inode was already orphanized | 
|  | * and thus use the orphan name. If not, we can use get_cur_path to | 
|  | * get the path of the first ref as it would like while receiving at | 
|  | * this point in time. | 
|  | * New inodes are always orphan at the beginning, so force to use the | 
|  | * orphan name in this case. | 
|  | * The first ref is stored in valid_path and will be updated if it | 
|  | * gets moved around. | 
|  | */ | 
|  | if (!sctx->cur_inode_new) { | 
|  | ret = did_overwrite_first_ref(sctx, sctx->cur_ino, | 
|  | sctx->cur_inode_gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) | 
|  | did_overwrite = true; | 
|  | } | 
|  | if (sctx->cur_inode_new || did_overwrite) { | 
|  | ret = gen_unique_name(sctx, sctx->cur_ino, | 
|  | sctx->cur_inode_gen, valid_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | is_orphan = true; | 
|  | } else { | 
|  | ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, | 
|  | valid_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Before doing any rename and link operations, do a first pass on the | 
|  | * new references to orphanize any unprocessed inodes that may have a | 
|  | * reference that conflicts with one of the new references of the current | 
|  | * inode. This needs to happen first because a new reference may conflict | 
|  | * with the old reference of a parent directory, so we must make sure | 
|  | * that the path used for link and rename commands don't use an | 
|  | * orphanized name when an ancestor was not yet orphanized. | 
|  | * | 
|  | * Example: | 
|  | * | 
|  | * Parent snapshot: | 
|  | * | 
|  | * .                                                      (ino 256) | 
|  | * |----- testdir/                                        (ino 259) | 
|  | * |          |----- a                                    (ino 257) | 
|  | * | | 
|  | * |----- b                                               (ino 258) | 
|  | * | 
|  | * Send snapshot: | 
|  | * | 
|  | * .                                                      (ino 256) | 
|  | * |----- testdir_2/                                      (ino 259) | 
|  | * |          |----- a                                    (ino 260) | 
|  | * | | 
|  | * |----- testdir                                         (ino 257) | 
|  | * |----- b                                               (ino 257) | 
|  | * |----- b2                                              (ino 258) | 
|  | * | 
|  | * Processing the new reference for inode 257 with name "b" may happen | 
|  | * before processing the new reference with name "testdir". If so, we | 
|  | * must make sure that by the time we send a link command to create the | 
|  | * hard link "b", inode 259 was already orphanized, since the generated | 
|  | * path in "valid_path" already contains the orphanized name for 259. | 
|  | * We are processing inode 257, so only later when processing 259 we do | 
|  | * the rename operation to change its temporary (orphanized) name to | 
|  | * "testdir_2". | 
|  | */ | 
|  | list_for_each_entry(cur, &sctx->new_refs, list) { | 
|  | ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret == inode_state_will_create) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Check if this new ref would overwrite the first ref of another | 
|  | * unprocessed inode. If yes, orphanize the overwritten inode. | 
|  | * If we find an overwritten ref that is not the first ref, | 
|  | * simply unlink it. | 
|  | */ | 
|  | ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, | 
|  | cur->name, cur->name_len, | 
|  | &ow_inode, &ow_gen, &ow_mode); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) { | 
|  | ret = is_first_ref(sctx->parent_root, | 
|  | ow_inode, cur->dir, cur->name, | 
|  | cur->name_len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) { | 
|  | struct name_cache_entry *nce; | 
|  | struct waiting_dir_move *wdm; | 
|  |  | 
|  | if (orphanized_dir) { | 
|  | ret = refresh_ref_path(sctx, cur); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = orphanize_inode(sctx, ow_inode, ow_gen, | 
|  | cur->full_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (S_ISDIR(ow_mode)) | 
|  | orphanized_dir = true; | 
|  |  | 
|  | /* | 
|  | * If ow_inode has its rename operation delayed | 
|  | * make sure that its orphanized name is used in | 
|  | * the source path when performing its rename | 
|  | * operation. | 
|  | */ | 
|  | wdm = get_waiting_dir_move(sctx, ow_inode); | 
|  | if (wdm) | 
|  | wdm->orphanized = true; | 
|  |  | 
|  | /* | 
|  | * Make sure we clear our orphanized inode's | 
|  | * name from the name cache. This is because the | 
|  | * inode ow_inode might be an ancestor of some | 
|  | * other inode that will be orphanized as well | 
|  | * later and has an inode number greater than | 
|  | * sctx->send_progress. We need to prevent | 
|  | * future name lookups from using the old name | 
|  | * and get instead the orphan name. | 
|  | */ | 
|  | nce = name_cache_search(sctx, ow_inode, ow_gen); | 
|  | if (nce) | 
|  | btrfs_lru_cache_remove(&sctx->name_cache, | 
|  | &nce->entry); | 
|  |  | 
|  | /* | 
|  | * ow_inode might currently be an ancestor of | 
|  | * cur_ino, therefore compute valid_path (the | 
|  | * current path of cur_ino) again because it | 
|  | * might contain the pre-orphanization name of | 
|  | * ow_inode, which is no longer valid. | 
|  | */ | 
|  | ret = is_ancestor(sctx->parent_root, | 
|  | ow_inode, ow_gen, | 
|  | sctx->cur_ino, NULL); | 
|  | if (ret > 0) { | 
|  | orphanized_ancestor = true; | 
|  | fs_path_reset(valid_path); | 
|  | fs_path_reset(&sctx->cur_inode_path); | 
|  | ret = get_cur_path(sctx, sctx->cur_ino, | 
|  | sctx->cur_inode_gen, | 
|  | valid_path); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * If we previously orphanized a directory that | 
|  | * collided with a new reference that we already | 
|  | * processed, recompute the current path because | 
|  | * that directory may be part of the path. | 
|  | */ | 
|  | if (orphanized_dir) { | 
|  | ret = refresh_ref_path(sctx, cur); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | ret = send_unlink(sctx, cur->full_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | list_for_each_entry(cur, &sctx->new_refs, list) { | 
|  | /* | 
|  | * We may have refs where the parent directory does not exist | 
|  | * yet. This happens if the parent directories inum is higher | 
|  | * than the current inum. To handle this case, we create the | 
|  | * parent directory out of order. But we need to check if this | 
|  | * did already happen before due to other refs in the same dir. | 
|  | */ | 
|  | ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret == inode_state_will_create) { | 
|  | ret = 0; | 
|  | /* | 
|  | * First check if any of the current inodes refs did | 
|  | * already create the dir. | 
|  | */ | 
|  | list_for_each_entry(cur2, &sctx->new_refs, list) { | 
|  | if (cur == cur2) | 
|  | break; | 
|  | if (cur2->dir == cur->dir) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If that did not happen, check if a previous inode | 
|  | * did already create the dir. | 
|  | */ | 
|  | if (!ret) | 
|  | ret = did_create_dir(sctx, cur->dir); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (!ret) { | 
|  | ret = send_create_inode(sctx, cur->dir); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | cache_dir_created(sctx, cur->dir); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { | 
|  | ret = wait_for_dest_dir_move(sctx, cur, is_orphan); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret == 1) { | 
|  | can_rename = false; | 
|  | *pending_move = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && | 
|  | can_rename) { | 
|  | ret = wait_for_parent_move(sctx, cur, is_orphan); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret == 1) { | 
|  | can_rename = false; | 
|  | *pending_move = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * link/move the ref to the new place. If we have an orphan | 
|  | * inode, move it and update valid_path. If not, link or move | 
|  | * it depending on the inode mode. | 
|  | */ | 
|  | if (is_orphan && can_rename) { | 
|  | ret = rename_current_inode(sctx, valid_path, cur->full_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | is_orphan = false; | 
|  | } else if (can_rename) { | 
|  | if (S_ISDIR(sctx->cur_inode_mode)) { | 
|  | /* | 
|  | * Dirs can't be linked, so move it. For moved | 
|  | * dirs, we always have one new and one deleted | 
|  | * ref. The deleted ref is ignored later. | 
|  | */ | 
|  | ret = rename_current_inode(sctx, valid_path, | 
|  | cur->full_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * We might have previously orphanized an inode | 
|  | * which is an ancestor of our current inode, | 
|  | * so our reference's full path, which was | 
|  | * computed before any such orphanizations, must | 
|  | * be updated. | 
|  | */ | 
|  | if (orphanized_dir) { | 
|  | ret = update_ref_path(sctx, cur); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | ret = send_link(sctx, cur->full_path, | 
|  | valid_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ret = dup_ref(cur, &check_dirs); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { | 
|  | /* | 
|  | * Check if we can already rmdir the directory. If not, | 
|  | * orphanize it. For every dir item inside that gets deleted | 
|  | * later, we do this check again and rmdir it then if possible. | 
|  | * See the use of check_dirs for more details. | 
|  | */ | 
|  | ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) { | 
|  | ret = send_rmdir(sctx, valid_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } else if (!is_orphan) { | 
|  | ret = orphanize_inode(sctx, sctx->cur_ino, | 
|  | sctx->cur_inode_gen, valid_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | is_orphan = true; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(cur, &sctx->deleted_refs, list) { | 
|  | ret = dup_ref(cur, &check_dirs); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | } else if (S_ISDIR(sctx->cur_inode_mode) && | 
|  | !list_empty(&sctx->deleted_refs)) { | 
|  | /* | 
|  | * We have a moved dir. Add the old parent to check_dirs | 
|  | */ | 
|  | cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list); | 
|  | ret = dup_ref(cur, &check_dirs); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } else if (!S_ISDIR(sctx->cur_inode_mode)) { | 
|  | /* | 
|  | * We have a non dir inode. Go through all deleted refs and | 
|  | * unlink them if they were not already overwritten by other | 
|  | * inodes. | 
|  | */ | 
|  | list_for_each_entry(cur, &sctx->deleted_refs, list) { | 
|  | ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, | 
|  | sctx->cur_ino, sctx->cur_inode_gen, | 
|  | cur->name, cur->name_len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (!ret) { | 
|  | /* | 
|  | * If we orphanized any ancestor before, we need | 
|  | * to recompute the full path for deleted names, | 
|  | * since any such path was computed before we | 
|  | * processed any references and orphanized any | 
|  | * ancestor inode. | 
|  | */ | 
|  | if (orphanized_ancestor) { | 
|  | ret = update_ref_path(sctx, cur); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | ret = send_unlink(sctx, cur->full_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (is_current_inode_path(sctx, cur->full_path)) | 
|  | fs_path_reset(&sctx->cur_inode_path); | 
|  | } | 
|  | ret = dup_ref(cur, &check_dirs); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * If the inode is still orphan, unlink the orphan. This may | 
|  | * happen when a previous inode did overwrite the first ref | 
|  | * of this inode and no new refs were added for the current | 
|  | * inode. Unlinking does not mean that the inode is deleted in | 
|  | * all cases. There may still be links to this inode in other | 
|  | * places. | 
|  | */ | 
|  | if (is_orphan) { | 
|  | ret = send_unlink(sctx, valid_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We did collect all parent dirs where cur_inode was once located. We | 
|  | * now go through all these dirs and check if they are pending for | 
|  | * deletion and if it's finally possible to perform the rmdir now. | 
|  | * We also update the inode stats of the parent dirs here. | 
|  | */ | 
|  | list_for_each_entry(cur, &check_dirs, list) { | 
|  | /* | 
|  | * In case we had refs into dirs that were not processed yet, | 
|  | * we don't need to do the utime and rmdir logic for these dirs. | 
|  | * The dir will be processed later. | 
|  | */ | 
|  | if (cur->dir > sctx->cur_ino) | 
|  | continue; | 
|  |  | 
|  | ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret == inode_state_did_create || | 
|  | ret == inode_state_no_change) { | 
|  | ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } else if (ret == inode_state_did_delete && | 
|  | cur->dir != last_dir_ino_rm) { | 
|  | ret = can_rmdir(sctx, cur->dir, cur->dir_gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) { | 
|  | ret = get_cur_path(sctx, cur->dir, | 
|  | cur->dir_gen, valid_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = send_rmdir(sctx, valid_path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | last_dir_ino_rm = cur->dir; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | __free_recorded_refs(&check_dirs); | 
|  | free_recorded_refs(sctx); | 
|  | fs_path_free(valid_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rbtree_ref_comp(const void *k, const struct rb_node *node) | 
|  | { | 
|  | const struct recorded_ref *data = k; | 
|  | const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); | 
|  |  | 
|  | if (data->dir > ref->dir) | 
|  | return 1; | 
|  | if (data->dir < ref->dir) | 
|  | return -1; | 
|  | if (data->dir_gen > ref->dir_gen) | 
|  | return 1; | 
|  | if (data->dir_gen < ref->dir_gen) | 
|  | return -1; | 
|  | if (data->name_len > ref->name_len) | 
|  | return 1; | 
|  | if (data->name_len < ref->name_len) | 
|  | return -1; | 
|  | return strcmp(data->name, ref->name); | 
|  | } | 
|  |  | 
|  | static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) | 
|  | { | 
|  | const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); | 
|  |  | 
|  | return rbtree_ref_comp(entry, parent) < 0; | 
|  | } | 
|  |  | 
|  | static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, | 
|  | struct fs_path *name, u64 dir, u64 dir_gen, | 
|  | struct send_ctx *sctx) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *path = NULL; | 
|  | struct recorded_ref *ref = NULL; | 
|  |  | 
|  | path = fs_path_alloc(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ref = recorded_ref_alloc(); | 
|  | if (!ref) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = get_cur_path(sctx, dir, dir_gen, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = fs_path_add_path(path, name); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ref->dir = dir; | 
|  | ref->dir_gen = dir_gen; | 
|  | set_ref_path(ref, path); | 
|  | list_add_tail(&ref->list, refs); | 
|  | rb_add(&ref->node, root, rbtree_ref_less); | 
|  | ref->root = root; | 
|  | out: | 
|  | if (ret) { | 
|  | if (path && (!ref || !ref->full_path)) | 
|  | fs_path_free(path); | 
|  | recorded_ref_free(ref); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) | 
|  | { | 
|  | int ret; | 
|  | struct send_ctx *sctx = ctx; | 
|  | struct rb_node *node = NULL; | 
|  | struct recorded_ref data; | 
|  | struct recorded_ref *ref; | 
|  | u64 dir_gen; | 
|  |  | 
|  | ret = get_inode_gen(sctx->send_root, dir, &dir_gen); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | data.dir = dir; | 
|  | data.dir_gen = dir_gen; | 
|  | set_ref_path(&data, name); | 
|  | node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); | 
|  | if (node) { | 
|  | ref = rb_entry(node, struct recorded_ref, node); | 
|  | recorded_ref_free(ref); | 
|  | } else { | 
|  | ret = record_ref_in_tree(&sctx->rbtree_new_refs, | 
|  | &sctx->new_refs, name, dir, dir_gen, | 
|  | sctx); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) | 
|  | { | 
|  | int ret; | 
|  | struct send_ctx *sctx = ctx; | 
|  | struct rb_node *node = NULL; | 
|  | struct recorded_ref data; | 
|  | struct recorded_ref *ref; | 
|  | u64 dir_gen; | 
|  |  | 
|  | ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | data.dir = dir; | 
|  | data.dir_gen = dir_gen; | 
|  | set_ref_path(&data, name); | 
|  | node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); | 
|  | if (node) { | 
|  | ref = rb_entry(node, struct recorded_ref, node); | 
|  | recorded_ref_free(ref); | 
|  | } else { | 
|  | ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, | 
|  | &sctx->deleted_refs, name, dir, | 
|  | dir_gen, sctx); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int record_new_ref(struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, | 
|  | false, record_new_ref_if_needed, sctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int record_deleted_ref(struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, | 
|  | false, record_deleted_ref_if_needed, sctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int record_changed_ref(struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, | 
|  | false, record_new_ref_if_needed, sctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, | 
|  | false, record_deleted_ref_if_needed, sctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record and process all refs at once. Needed when an inode changes the | 
|  | * generation number, which means that it was deleted and recreated. | 
|  | */ | 
|  | static int process_all_refs(struct send_ctx *sctx, | 
|  | enum btrfs_compare_tree_result cmd) | 
|  | { | 
|  | int ret = 0; | 
|  | int iter_ret = 0; | 
|  | struct btrfs_root *root; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | iterate_inode_ref_t cb; | 
|  | int pending_move = 0; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (cmd == BTRFS_COMPARE_TREE_NEW) { | 
|  | root = sctx->send_root; | 
|  | cb = record_new_ref_if_needed; | 
|  | } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { | 
|  | root = sctx->parent_root; | 
|  | cb = record_deleted_ref_if_needed; | 
|  | } else { | 
|  | btrfs_err(sctx->send_root->fs_info, | 
|  | "Wrong command %d in process_all_refs", cmd); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | key.objectid = sctx->cmp_key->objectid; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = 0; | 
|  | btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { | 
|  | if (found_key.objectid != key.objectid || | 
|  | (found_key.type != BTRFS_INODE_REF_KEY && | 
|  | found_key.type != BTRFS_INODE_EXTREF_KEY)) | 
|  | break; | 
|  |  | 
|  | ret = iterate_inode_ref(root, path, &found_key, false, cb, sctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | /* Catch error found during iteration */ | 
|  | if (iter_ret < 0) | 
|  | return iter_ret; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * We don't actually care about pending_move as we are simply | 
|  | * re-creating this inode and will be rename'ing it into place once we | 
|  | * rename the parent directory. | 
|  | */ | 
|  | return process_recorded_refs(sctx, &pending_move); | 
|  | } | 
|  |  | 
|  | static int send_set_xattr(struct send_ctx *sctx, | 
|  | const char *name, int name_len, | 
|  | const char *data, int data_len) | 
|  | { | 
|  | struct fs_path *path; | 
|  | int ret; | 
|  |  | 
|  | path = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(path)) | 
|  | return PTR_ERR(path); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
|  | TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); | 
|  | TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_remove_xattr(struct send_ctx *sctx, | 
|  | struct fs_path *path, | 
|  | const char *name, int name_len) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
|  | TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __process_new_xattr(int num, struct btrfs_key *di_key, | 
|  | const char *name, int name_len, const char *data, | 
|  | int data_len, void *ctx) | 
|  | { | 
|  | struct send_ctx *sctx = ctx; | 
|  | struct posix_acl_xattr_header dummy_acl; | 
|  |  | 
|  | /* Capabilities are emitted by finish_inode_if_needed */ | 
|  | if (!strncmp(name, XATTR_NAME_CAPS, name_len)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * This hack is needed because empty acls are stored as zero byte | 
|  | * data in xattrs. Problem with that is, that receiving these zero byte | 
|  | * acls will fail later. To fix this, we send a dummy acl list that | 
|  | * only contains the version number and no entries. | 
|  | */ | 
|  | if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || | 
|  | !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { | 
|  | if (data_len == 0) { | 
|  | dummy_acl.a_version = | 
|  | cpu_to_le32(POSIX_ACL_XATTR_VERSION); | 
|  | data = (char *)&dummy_acl; | 
|  | data_len = sizeof(dummy_acl); | 
|  | } | 
|  | } | 
|  |  | 
|  | return send_set_xattr(sctx, name, name_len, data, data_len); | 
|  | } | 
|  |  | 
|  | static int __process_deleted_xattr(int num, struct btrfs_key *di_key, | 
|  | const char *name, int name_len, | 
|  | const char *data, int data_len, void *ctx) | 
|  | { | 
|  | struct send_ctx *sctx = ctx; | 
|  | struct fs_path *p; | 
|  |  | 
|  | p = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | return send_remove_xattr(sctx, p, name, name_len); | 
|  | } | 
|  |  | 
|  | static int process_new_xattr(struct send_ctx *sctx) | 
|  | { | 
|  | return iterate_dir_item(sctx->send_root, sctx->left_path, | 
|  | __process_new_xattr, sctx); | 
|  | } | 
|  |  | 
|  | static int process_deleted_xattr(struct send_ctx *sctx) | 
|  | { | 
|  | return iterate_dir_item(sctx->parent_root, sctx->right_path, | 
|  | __process_deleted_xattr, sctx); | 
|  | } | 
|  |  | 
|  | struct find_xattr_ctx { | 
|  | const char *name; | 
|  | int name_len; | 
|  | int found_idx; | 
|  | char *found_data; | 
|  | int found_data_len; | 
|  | }; | 
|  |  | 
|  | static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, | 
|  | int name_len, const char *data, int data_len, void *vctx) | 
|  | { | 
|  | struct find_xattr_ctx *ctx = vctx; | 
|  |  | 
|  | if (name_len == ctx->name_len && | 
|  | strncmp(name, ctx->name, name_len) == 0) { | 
|  | ctx->found_idx = num; | 
|  | ctx->found_data_len = data_len; | 
|  | ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); | 
|  | if (!ctx->found_data) | 
|  | return -ENOMEM; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int find_xattr(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *key, | 
|  | const char *name, int name_len, | 
|  | char **data, int *data_len) | 
|  | { | 
|  | int ret; | 
|  | struct find_xattr_ctx ctx; | 
|  |  | 
|  | ctx.name = name; | 
|  | ctx.name_len = name_len; | 
|  | ctx.found_idx = -1; | 
|  | ctx.found_data = NULL; | 
|  | ctx.found_data_len = 0; | 
|  |  | 
|  | ret = iterate_dir_item(root, path, __find_xattr, &ctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ctx.found_idx == -1) | 
|  | return -ENOENT; | 
|  | if (data) { | 
|  | *data = ctx.found_data; | 
|  | *data_len = ctx.found_data_len; | 
|  | } else { | 
|  | kfree(ctx.found_data); | 
|  | } | 
|  | return ctx.found_idx; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, | 
|  | const char *name, int name_len, | 
|  | const char *data, int data_len, | 
|  | void *ctx) | 
|  | { | 
|  | int ret; | 
|  | struct send_ctx *sctx = ctx; | 
|  | char *found_data = NULL; | 
|  | int found_data_len  = 0; | 
|  |  | 
|  | ret = find_xattr(sctx->parent_root, sctx->right_path, | 
|  | sctx->cmp_key, name, name_len, &found_data, | 
|  | &found_data_len); | 
|  | if (ret == -ENOENT) { | 
|  | ret = __process_new_xattr(num, di_key, name, name_len, data, | 
|  | data_len, ctx); | 
|  | } else if (ret >= 0) { | 
|  | if (data_len != found_data_len || | 
|  | memcmp(data, found_data, data_len)) { | 
|  | ret = __process_new_xattr(num, di_key, name, name_len, | 
|  | data, data_len, ctx); | 
|  | } else { | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(found_data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, | 
|  | const char *name, int name_len, | 
|  | const char *data, int data_len, | 
|  | void *ctx) | 
|  | { | 
|  | int ret; | 
|  | struct send_ctx *sctx = ctx; | 
|  |  | 
|  | ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, | 
|  | name, name_len, NULL, NULL); | 
|  | if (ret == -ENOENT) | 
|  | ret = __process_deleted_xattr(num, di_key, name, name_len, data, | 
|  | data_len, ctx); | 
|  | else if (ret >= 0) | 
|  | ret = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int process_changed_xattr(struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = iterate_dir_item(sctx->send_root, sctx->left_path, | 
|  | __process_changed_new_xattr, sctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return iterate_dir_item(sctx->parent_root, sctx->right_path, | 
|  | __process_changed_deleted_xattr, sctx); | 
|  | } | 
|  |  | 
|  | static int process_all_new_xattrs(struct send_ctx *sctx) | 
|  | { | 
|  | int ret = 0; | 
|  | int iter_ret = 0; | 
|  | struct btrfs_root *root; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | root = sctx->send_root; | 
|  |  | 
|  | key.objectid = sctx->cmp_key->objectid; | 
|  | key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | key.offset = 0; | 
|  | btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { | 
|  | if (found_key.objectid != key.objectid || | 
|  | found_key.type != key.type) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = iterate_dir_item(root, path, __process_new_xattr, sctx); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  | /* Catch error found during iteration */ | 
|  | if (iter_ret < 0) | 
|  | ret = iter_ret; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_verity(struct send_ctx *sctx, struct fs_path *path, | 
|  | struct fsverity_descriptor *desc) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
|  | TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, | 
|  | le8_to_cpu(desc->hash_algorithm)); | 
|  | TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, | 
|  | 1U << le8_to_cpu(desc->log_blocksize)); | 
|  | TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, | 
|  | le8_to_cpu(desc->salt_size)); | 
|  | TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, | 
|  | le32_to_cpu(desc->sig_size)); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int process_verity(struct send_ctx *sctx) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_inode *inode; | 
|  | struct fs_path *p; | 
|  |  | 
|  | inode = btrfs_iget(sctx->cur_ino, sctx->send_root); | 
|  | if (IS_ERR(inode)) | 
|  | return PTR_ERR(inode); | 
|  |  | 
|  | ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0); | 
|  | if (ret < 0) | 
|  | goto iput; | 
|  |  | 
|  | if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { | 
|  | ret = -EMSGSIZE; | 
|  | goto iput; | 
|  | } | 
|  | if (!sctx->verity_descriptor) { | 
|  | sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, | 
|  | GFP_KERNEL); | 
|  | if (!sctx->verity_descriptor) { | 
|  | ret = -ENOMEM; | 
|  | goto iput; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret); | 
|  | if (ret < 0) | 
|  | goto iput; | 
|  |  | 
|  | p = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(p)) { | 
|  | ret = PTR_ERR(p); | 
|  | goto iput; | 
|  | } | 
|  |  | 
|  | ret = send_verity(sctx, p, sctx->verity_descriptor); | 
|  | iput: | 
|  | iput(&inode->vfs_inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline u64 max_send_read_size(const struct send_ctx *sctx) | 
|  | { | 
|  | return sctx->send_max_size - SZ_16K; | 
|  | } | 
|  |  | 
|  | static int put_data_header(struct send_ctx *sctx, u32 len) | 
|  | { | 
|  | if (WARN_ON_ONCE(sctx->put_data)) | 
|  | return -EINVAL; | 
|  | sctx->put_data = true; | 
|  | if (sctx->proto >= 2) { | 
|  | /* | 
|  | * Since v2, the data attribute header doesn't include a length, | 
|  | * it is implicitly to the end of the command. | 
|  | */ | 
|  | if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) | 
|  | return -EOVERFLOW; | 
|  | put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); | 
|  | sctx->send_size += sizeof(__le16); | 
|  | } else { | 
|  | struct btrfs_tlv_header *hdr; | 
|  |  | 
|  | if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) | 
|  | return -EOVERFLOW; | 
|  | hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); | 
|  | put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); | 
|  | put_unaligned_le16(len, &hdr->tlv_len); | 
|  | sctx->send_size += sizeof(*hdr); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) | 
|  | { | 
|  | struct btrfs_root *root = sctx->send_root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 cur = offset; | 
|  | const u64 end = offset + len; | 
|  | const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT); | 
|  | struct address_space *mapping = sctx->cur_inode->i_mapping; | 
|  | int ret; | 
|  |  | 
|  | ret = put_data_header(sctx, len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | while (cur < end) { | 
|  | pgoff_t index = (cur >> PAGE_SHIFT); | 
|  | unsigned int cur_len; | 
|  | unsigned int pg_offset; | 
|  | struct folio *folio; | 
|  |  | 
|  | folio = filemap_lock_folio(mapping, index); | 
|  | if (IS_ERR(folio)) { | 
|  | page_cache_sync_readahead(mapping, | 
|  | &sctx->ra, NULL, index, | 
|  | last_index + 1 - index); | 
|  |  | 
|  | folio = filemap_grab_folio(mapping, index); | 
|  | if (IS_ERR(folio)) { | 
|  | ret = PTR_ERR(folio); | 
|  | break; | 
|  | } | 
|  | } | 
|  | pg_offset = offset_in_folio(folio, cur); | 
|  | cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset); | 
|  |  | 
|  | if (folio_test_readahead(folio)) | 
|  | page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, | 
|  | last_index + 1 - index); | 
|  |  | 
|  | if (!folio_test_uptodate(folio)) { | 
|  | btrfs_read_folio(NULL, folio); | 
|  | folio_lock(folio); | 
|  | if (unlikely(!folio_test_uptodate(folio))) { | 
|  | folio_unlock(folio); | 
|  | btrfs_err(fs_info, | 
|  | "send: IO error at offset %llu for inode %llu root %llu", | 
|  | folio_pos(folio), sctx->cur_ino, | 
|  | btrfs_root_id(sctx->send_root)); | 
|  | folio_put(folio); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | if (folio->mapping != mapping) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, | 
|  | pg_offset, cur_len); | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | cur += cur_len; | 
|  | sctx->send_size += cur_len; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read some bytes from the current inode/file and send a write command to | 
|  | * user space. | 
|  | */ | 
|  | static int send_write(struct send_ctx *sctx, u64 offset, u32 len) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *p; | 
|  |  | 
|  | p = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
|  | ret = put_file_data(sctx, offset, len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send a clone command to user space. | 
|  | */ | 
|  | static int send_clone(struct send_ctx *sctx, | 
|  | u64 offset, u32 len, | 
|  | struct clone_root *clone_root) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *p; | 
|  | struct fs_path *cur_inode_path; | 
|  | u64 gen; | 
|  |  | 
|  | cur_inode_path = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(cur_inode_path)) | 
|  | return PTR_ERR(cur_inode_path); | 
|  |  | 
|  | p = fs_path_alloc(); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path); | 
|  |  | 
|  | if (clone_root->root == sctx->send_root) { | 
|  | ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = get_cur_path(sctx, clone_root->ino, gen, p); | 
|  | } else { | 
|  | ret = get_inode_path(clone_root->root, clone_root->ino, p); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If the parent we're using has a received_uuid set then use that as | 
|  | * our clone source as that is what we will look for when doing a | 
|  | * receive. | 
|  | * | 
|  | * This covers the case that we create a snapshot off of a received | 
|  | * subvolume and then use that as the parent and try to receive on a | 
|  | * different host. | 
|  | */ | 
|  | if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) | 
|  | TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, | 
|  | clone_root->root->root_item.received_uuid); | 
|  | else | 
|  | TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, | 
|  | clone_root->root->root_item.uuid); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, | 
|  | btrfs_root_ctransid(&clone_root->root->root_item)); | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, | 
|  | clone_root->offset); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | out: | 
|  | fs_path_free(p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send an update extent command to user space. | 
|  | */ | 
|  | static int send_update_extent(struct send_ctx *sctx, | 
|  | u64 offset, u32 len) | 
|  | { | 
|  | int ret = 0; | 
|  | struct fs_path *p; | 
|  |  | 
|  | p = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len) | 
|  | { | 
|  | struct fs_path *path; | 
|  | int ret; | 
|  |  | 
|  | path = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(path)) | 
|  | return PTR_ERR(path); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
|  | TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_hole(struct send_ctx *sctx, u64 end) | 
|  | { | 
|  | struct fs_path *p = NULL; | 
|  | u64 read_size = max_send_read_size(sctx); | 
|  | u64 offset = sctx->cur_inode_last_extent; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Starting with send stream v2 we have fallocate and can use it to | 
|  | * punch holes instead of sending writes full of zeroes. | 
|  | */ | 
|  | if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE)) | 
|  | return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | 
|  | offset, end - offset); | 
|  |  | 
|  | /* | 
|  | * A hole that starts at EOF or beyond it. Since we do not yet support | 
|  | * fallocate (for extent preallocation and hole punching), sending a | 
|  | * write of zeroes starting at EOF or beyond would later require issuing | 
|  | * a truncate operation which would undo the write and achieve nothing. | 
|  | */ | 
|  | if (offset >= sctx->cur_inode_size) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Don't go beyond the inode's i_size due to prealloc extents that start | 
|  | * after the i_size. | 
|  | */ | 
|  | end = min_t(u64, end, sctx->cur_inode_size); | 
|  |  | 
|  | if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) | 
|  | return send_update_extent(sctx, offset, end - offset); | 
|  |  | 
|  | p = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | while (offset < end) { | 
|  | u64 len = min(end - offset, read_size); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); | 
|  | if (ret < 0) | 
|  | break; | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
|  | ret = put_data_header(sctx, len); | 
|  | if (ret < 0) | 
|  | break; | 
|  | memset(sctx->send_buf + sctx->send_size, 0, len); | 
|  | sctx->send_size += len; | 
|  | ret = send_cmd(sctx); | 
|  | if (ret < 0) | 
|  | break; | 
|  | offset += len; | 
|  | } | 
|  | sctx->cur_inode_next_write_offset = offset; | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_encoded_inline_extent(struct send_ctx *sctx, | 
|  | struct btrfs_path *path, u64 offset, | 
|  | u64 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
|  | struct fs_path *fspath; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | u64 ram_bytes; | 
|  | size_t inline_size; | 
|  | int ret; | 
|  |  | 
|  | fspath = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(fspath)) | 
|  | return PTR_ERR(fspath); | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); | 
|  | ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); | 
|  | inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, | 
|  | min(key.offset + ram_bytes - offset, len)); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); | 
|  | ret = btrfs_encoded_io_compression_from_extent(fs_info, | 
|  | btrfs_file_extent_compression(leaf, ei)); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); | 
|  |  | 
|  | ret = put_data_header(sctx, inline_size); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, | 
|  | btrfs_file_extent_inline_start(ei), inline_size); | 
|  | sctx->send_size += inline_size; | 
|  |  | 
|  | ret = send_cmd(sctx); | 
|  |  | 
|  | tlv_put_failure: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, | 
|  | u64 offset, u64 len) | 
|  | { | 
|  | struct btrfs_root *root = sctx->send_root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_inode *inode; | 
|  | struct fs_path *fspath; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | u64 disk_bytenr, disk_num_bytes; | 
|  | u32 data_offset; | 
|  | struct btrfs_cmd_header *hdr; | 
|  | u32 crc; | 
|  | int ret; | 
|  |  | 
|  | inode = btrfs_iget(sctx->cur_ino, root); | 
|  | if (IS_ERR(inode)) | 
|  | return PTR_ERR(inode); | 
|  |  | 
|  | fspath = get_cur_inode_path(sctx); | 
|  | if (IS_ERR(fspath)) { | 
|  | ret = PTR_ERR(fspath); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); | 
|  | disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); | 
|  |  | 
|  | TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, | 
|  | min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, | 
|  | len)); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, | 
|  | btrfs_file_extent_ram_bytes(leaf, ei)); | 
|  | TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, | 
|  | offset - key.offset + btrfs_file_extent_offset(leaf, ei)); | 
|  | ret = btrfs_encoded_io_compression_from_extent(fs_info, | 
|  | btrfs_file_extent_compression(leaf, ei)); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); | 
|  | TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); | 
|  |  | 
|  | ret = put_data_header(sctx, disk_num_bytes); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We want to do I/O directly into the send buffer, so get the next page | 
|  | * boundary in the send buffer. This means that there may be a gap | 
|  | * between the beginning of the command and the file data. | 
|  | */ | 
|  | data_offset = PAGE_ALIGN(sctx->send_size); | 
|  | if (data_offset > sctx->send_max_size || | 
|  | sctx->send_max_size - data_offset < disk_num_bytes) { | 
|  | ret = -EOVERFLOW; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that send_buf is a mapping of send_buf_pages, so this is really | 
|  | * reading into send_buf. | 
|  | */ | 
|  | ret = btrfs_encoded_read_regular_fill_pages(inode, | 
|  | disk_bytenr, disk_num_bytes, | 
|  | sctx->send_buf_pages + | 
|  | (data_offset >> PAGE_SHIFT), | 
|  | NULL); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | hdr = (struct btrfs_cmd_header *)sctx->send_buf; | 
|  | hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); | 
|  | hdr->crc = 0; | 
|  | crc = crc32c(0, sctx->send_buf, sctx->send_size); | 
|  | crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); | 
|  | hdr->crc = cpu_to_le32(crc); | 
|  |  | 
|  | ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, | 
|  | &sctx->send_off); | 
|  | if (!ret) { | 
|  | ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, | 
|  | disk_num_bytes, &sctx->send_off); | 
|  | } | 
|  | sctx->send_size = 0; | 
|  | sctx->put_data = false; | 
|  |  | 
|  | tlv_put_failure: | 
|  | out: | 
|  | iput(&inode->vfs_inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, | 
|  | const u64 offset, const u64 len) | 
|  | { | 
|  | const u64 end = offset + len; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | u64 read_size = max_send_read_size(sctx); | 
|  | u64 sent = 0; | 
|  |  | 
|  | if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) | 
|  | return send_update_extent(sctx, offset, len); | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | /* | 
|  | * Do not go through encoded read for bs > ps cases. | 
|  | * | 
|  | * Encoded send is using vmallocated pages as buffer, which we can | 
|  | * not ensure every folio is large enough to contain a block. | 
|  | */ | 
|  | if (sctx->send_root->fs_info->sectorsize <= PAGE_SIZE && | 
|  | (sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && | 
|  | btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { | 
|  | bool is_inline = (btrfs_file_extent_type(leaf, ei) == | 
|  | BTRFS_FILE_EXTENT_INLINE); | 
|  |  | 
|  | /* | 
|  | * Send the compressed extent unless the compressed data is | 
|  | * larger than the decompressed data. This can happen if we're | 
|  | * not sending the entire extent, either because it has been | 
|  | * partially overwritten/truncated or because this is a part of | 
|  | * the extent that we couldn't clone in clone_range(). | 
|  | */ | 
|  | if (is_inline && | 
|  | btrfs_file_extent_inline_item_len(leaf, | 
|  | path->slots[0]) <= len) { | 
|  | return send_encoded_inline_extent(sctx, path, offset, | 
|  | len); | 
|  | } else if (!is_inline && | 
|  | btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { | 
|  | return send_encoded_extent(sctx, path, offset, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sctx->cur_inode == NULL) { | 
|  | struct btrfs_inode *btrfs_inode; | 
|  | struct btrfs_root *root = sctx->send_root; | 
|  |  | 
|  | btrfs_inode = btrfs_iget(sctx->cur_ino, root); | 
|  | if (IS_ERR(btrfs_inode)) | 
|  | return PTR_ERR(btrfs_inode); | 
|  |  | 
|  | sctx->cur_inode = &btrfs_inode->vfs_inode; | 
|  | memset(&sctx->ra, 0, sizeof(struct file_ra_state)); | 
|  | file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); | 
|  |  | 
|  | /* | 
|  | * It's very likely there are no pages from this inode in the page | 
|  | * cache, so after reading extents and sending their data, we clean | 
|  | * the page cache to avoid trashing the page cache (adding pressure | 
|  | * to the page cache and forcing eviction of other data more useful | 
|  | * for applications). | 
|  | * | 
|  | * We decide if we should clean the page cache simply by checking | 
|  | * if the inode's mapping nrpages is 0 when we first open it, and | 
|  | * not by using something like filemap_range_has_page() before | 
|  | * reading an extent because when we ask the readahead code to | 
|  | * read a given file range, it may (and almost always does) read | 
|  | * pages from beyond that range (see the documentation for | 
|  | * page_cache_sync_readahead()), so it would not be reliable, | 
|  | * because after reading the first extent future calls to | 
|  | * filemap_range_has_page() would return true because the readahead | 
|  | * on the previous extent resulted in reading pages of the current | 
|  | * extent as well. | 
|  | */ | 
|  | sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); | 
|  | sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | while (sent < len) { | 
|  | u64 size = min(len - sent, read_size); | 
|  | int ret; | 
|  |  | 
|  | ret = send_write(sctx, offset + sent, size); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | sent += size; | 
|  | } | 
|  |  | 
|  | if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { | 
|  | /* | 
|  | * Always operate only on ranges that are a multiple of the page | 
|  | * size. This is not only to prevent zeroing parts of a page in | 
|  | * the case of subpage sector size, but also to guarantee we evict | 
|  | * pages, as passing a range that is smaller than page size does | 
|  | * not evict the respective page (only zeroes part of its content). | 
|  | * | 
|  | * Always start from the end offset of the last range cleared. | 
|  | * This is because the readahead code may (and very often does) | 
|  | * reads pages beyond the range we request for readahead. So if | 
|  | * we have an extent layout like this: | 
|  | * | 
|  | *            [ extent A ] [ extent B ] [ extent C ] | 
|  | * | 
|  | * When we ask page_cache_sync_readahead() to read extent A, it | 
|  | * may also trigger reads for pages of extent B. If we are doing | 
|  | * an incremental send and extent B has not changed between the | 
|  | * parent and send snapshots, some or all of its pages may end | 
|  | * up being read and placed in the page cache. So when truncating | 
|  | * the page cache we always start from the end offset of the | 
|  | * previously processed extent up to the end of the current | 
|  | * extent. | 
|  | */ | 
|  | truncate_inode_pages_range(&sctx->cur_inode->i_data, | 
|  | sctx->page_cache_clear_start, | 
|  | end - 1); | 
|  | sctx->page_cache_clear_start = end; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for a capability xattr related to sctx->cur_ino. If the capability is | 
|  | * found, call send_set_xattr function to emit it. | 
|  | * | 
|  | * Return 0 if there isn't a capability, or when the capability was emitted | 
|  | * successfully, or < 0 if an error occurred. | 
|  | */ | 
|  | static int send_capabilities(struct send_ctx *sctx) | 
|  | { | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_dir_item *di; | 
|  | struct extent_buffer *leaf; | 
|  | unsigned long data_ptr; | 
|  | char *buf = NULL; | 
|  | int buf_len; | 
|  | int ret = 0; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, | 
|  | XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); | 
|  | if (!di) { | 
|  | /* There is no xattr for this inode */ | 
|  | goto out; | 
|  | } else if (IS_ERR(di)) { | 
|  | ret = PTR_ERR(di); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | buf_len = btrfs_dir_data_len(leaf, di); | 
|  |  | 
|  | buf = kmalloc(buf_len, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); | 
|  | read_extent_buffer(leaf, buf, data_ptr, buf_len); | 
|  |  | 
|  | ret = send_set_xattr(sctx, XATTR_NAME_CAPS, | 
|  | strlen(XATTR_NAME_CAPS), buf, buf_len); | 
|  | out: | 
|  | kfree(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, | 
|  | struct clone_root *clone_root, const u64 disk_byte, | 
|  | u64 data_offset, u64 offset, u64 len) | 
|  | { | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  | struct btrfs_inode_info info; | 
|  | u64 clone_src_i_size = 0; | 
|  |  | 
|  | /* | 
|  | * Prevent cloning from a zero offset with a length matching the sector | 
|  | * size because in some scenarios this will make the receiver fail. | 
|  | * | 
|  | * For example, if in the source filesystem the extent at offset 0 | 
|  | * has a length of sectorsize and it was written using direct IO, then | 
|  | * it can never be an inline extent (even if compression is enabled). | 
|  | * Then this extent can be cloned in the original filesystem to a non | 
|  | * zero file offset, but it may not be possible to clone in the | 
|  | * destination filesystem because it can be inlined due to compression | 
|  | * on the destination filesystem (as the receiver's write operations are | 
|  | * always done using buffered IO). The same happens when the original | 
|  | * filesystem does not have compression enabled but the destination | 
|  | * filesystem has. | 
|  | */ | 
|  | if (clone_root->offset == 0 && | 
|  | len == sctx->send_root->fs_info->sectorsize) | 
|  | return send_extent_data(sctx, dst_path, offset, len); | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * There are inodes that have extents that lie behind its i_size. Don't | 
|  | * accept clones from these extents. | 
|  | */ | 
|  | ret = get_inode_info(clone_root->root, clone_root->ino, &info); | 
|  | btrfs_release_path(path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | clone_src_i_size = info.size; | 
|  |  | 
|  | /* | 
|  | * We can't send a clone operation for the entire range if we find | 
|  | * extent items in the respective range in the source file that | 
|  | * refer to different extents or if we find holes. | 
|  | * So check for that and do a mix of clone and regular write/copy | 
|  | * operations if needed. | 
|  | * | 
|  | * Example: | 
|  | * | 
|  | * mkfs.btrfs -f /dev/sda | 
|  | * mount /dev/sda /mnt | 
|  | * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo | 
|  | * cp --reflink=always /mnt/foo /mnt/bar | 
|  | * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo | 
|  | * btrfs subvolume snapshot -r /mnt /mnt/snap | 
|  | * | 
|  | * If when we send the snapshot and we are processing file bar (which | 
|  | * has a higher inode number than foo) we blindly send a clone operation | 
|  | * for the [0, 100K[ range from foo to bar, the receiver ends up getting | 
|  | * a file bar that matches the content of file foo - iow, doesn't match | 
|  | * the content from bar in the original filesystem. | 
|  | */ | 
|  | key.objectid = clone_root->ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = clone_root->offset; | 
|  | ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0 && path->slots[0] > 0) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); | 
|  | if (key.objectid == clone_root->ino && | 
|  | key.type == BTRFS_EXTENT_DATA_KEY) | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | while (true) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | int slot = path->slots[0]; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | u8 type; | 
|  | u64 ext_len; | 
|  | u64 clone_len; | 
|  | u64 clone_data_offset; | 
|  | bool crossed_src_i_size = false; | 
|  |  | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(clone_root->root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret > 0) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  |  | 
|  | /* | 
|  | * We might have an implicit trailing hole (NO_HOLES feature | 
|  | * enabled). We deal with it after leaving this loop. | 
|  | */ | 
|  | if (key.objectid != clone_root->ino || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | break; | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  | type = btrfs_file_extent_type(leaf, ei); | 
|  | if (type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | ext_len = btrfs_file_extent_ram_bytes(leaf, ei); | 
|  | ext_len = PAGE_ALIGN(ext_len); | 
|  | } else { | 
|  | ext_len = btrfs_file_extent_num_bytes(leaf, ei); | 
|  | } | 
|  |  | 
|  | if (key.offset + ext_len <= clone_root->offset) | 
|  | goto next; | 
|  |  | 
|  | if (key.offset > clone_root->offset) { | 
|  | /* Implicit hole, NO_HOLES feature enabled. */ | 
|  | u64 hole_len = key.offset - clone_root->offset; | 
|  |  | 
|  | if (hole_len > len) | 
|  | hole_len = len; | 
|  | ret = send_extent_data(sctx, dst_path, offset, | 
|  | hole_len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | len -= hole_len; | 
|  | if (len == 0) | 
|  | break; | 
|  | offset += hole_len; | 
|  | clone_root->offset += hole_len; | 
|  | data_offset += hole_len; | 
|  | } | 
|  |  | 
|  | if (key.offset >= clone_root->offset + len) | 
|  | break; | 
|  |  | 
|  | if (key.offset >= clone_src_i_size) | 
|  | break; | 
|  |  | 
|  | if (key.offset + ext_len > clone_src_i_size) { | 
|  | ext_len = clone_src_i_size - key.offset; | 
|  | crossed_src_i_size = true; | 
|  | } | 
|  |  | 
|  | clone_data_offset = btrfs_file_extent_offset(leaf, ei); | 
|  | if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { | 
|  | clone_root->offset = key.offset; | 
|  | if (clone_data_offset < data_offset && | 
|  | clone_data_offset + ext_len > data_offset) { | 
|  | u64 extent_offset; | 
|  |  | 
|  | extent_offset = data_offset - clone_data_offset; | 
|  | ext_len -= extent_offset; | 
|  | clone_data_offset += extent_offset; | 
|  | clone_root->offset += extent_offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | clone_len = min_t(u64, ext_len, len); | 
|  |  | 
|  | if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && | 
|  | clone_data_offset == data_offset) { | 
|  | const u64 src_end = clone_root->offset + clone_len; | 
|  | const u64 sectorsize = SZ_64K; | 
|  |  | 
|  | /* | 
|  | * We can't clone the last block, when its size is not | 
|  | * sector size aligned, into the middle of a file. If we | 
|  | * do so, the receiver will get a failure (-EINVAL) when | 
|  | * trying to clone or will silently corrupt the data in | 
|  | * the destination file if it's on a kernel without the | 
|  | * fix introduced by commit ac765f83f1397646 | 
|  | * ("Btrfs: fix data corruption due to cloning of eof | 
|  | * block). | 
|  | * | 
|  | * So issue a clone of the aligned down range plus a | 
|  | * regular write for the eof block, if we hit that case. | 
|  | * | 
|  | * Also, we use the maximum possible sector size, 64K, | 
|  | * because we don't know what's the sector size of the | 
|  | * filesystem that receives the stream, so we have to | 
|  | * assume the largest possible sector size. | 
|  | */ | 
|  | if (src_end == clone_src_i_size && | 
|  | !IS_ALIGNED(src_end, sectorsize) && | 
|  | offset + clone_len < sctx->cur_inode_size) { | 
|  | u64 slen; | 
|  |  | 
|  | slen = ALIGN_DOWN(src_end - clone_root->offset, | 
|  | sectorsize); | 
|  | if (slen > 0) { | 
|  | ret = send_clone(sctx, offset, slen, | 
|  | clone_root); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | ret = send_extent_data(sctx, dst_path, | 
|  | offset + slen, | 
|  | clone_len - slen); | 
|  | } else { | 
|  | ret = send_clone(sctx, offset, clone_len, | 
|  | clone_root); | 
|  | } | 
|  | } else if (crossed_src_i_size && clone_len < len) { | 
|  | /* | 
|  | * If we are at i_size of the clone source inode and we | 
|  | * can not clone from it, terminate the loop. This is | 
|  | * to avoid sending two write operations, one with a | 
|  | * length matching clone_len and the final one after | 
|  | * this loop with a length of len - clone_len. | 
|  | * | 
|  | * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED | 
|  | * was passed to the send ioctl), this helps avoid | 
|  | * sending an encoded write for an offset that is not | 
|  | * sector size aligned, in case the i_size of the source | 
|  | * inode is not sector size aligned. That will make the | 
|  | * receiver fallback to decompression of the data and | 
|  | * writing it using regular buffered IO, therefore while | 
|  | * not incorrect, it's not optimal due decompression and | 
|  | * possible re-compression at the receiver. | 
|  | */ | 
|  | break; | 
|  | } else { | 
|  | ret = send_extent_data(sctx, dst_path, offset, | 
|  | clone_len); | 
|  | } | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | len -= clone_len; | 
|  | if (len == 0) | 
|  | break; | 
|  | offset += clone_len; | 
|  | clone_root->offset += clone_len; | 
|  |  | 
|  | /* | 
|  | * If we are cloning from the file we are currently processing, | 
|  | * and using the send root as the clone root, we must stop once | 
|  | * the current clone offset reaches the current eof of the file | 
|  | * at the receiver, otherwise we would issue an invalid clone | 
|  | * operation (source range going beyond eof) and cause the | 
|  | * receiver to fail. So if we reach the current eof, bail out | 
|  | * and fallback to a regular write. | 
|  | */ | 
|  | if (clone_root->root == sctx->send_root && | 
|  | clone_root->ino == sctx->cur_ino && | 
|  | clone_root->offset >= sctx->cur_inode_next_write_offset) | 
|  | break; | 
|  |  | 
|  | data_offset += clone_len; | 
|  | next: | 
|  | path->slots[0]++; | 
|  | } | 
|  |  | 
|  | if (len > 0) | 
|  | ret = send_extent_data(sctx, dst_path, offset, len); | 
|  | else | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_write_or_clone(struct send_ctx *sctx, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *key, | 
|  | struct clone_root *clone_root) | 
|  | { | 
|  | int ret = 0; | 
|  | u64 offset = key->offset; | 
|  | u64 end; | 
|  | u64 bs = sctx->send_root->fs_info->sectorsize; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | u64 disk_byte; | 
|  | u64 data_offset; | 
|  | u64 num_bytes; | 
|  | struct btrfs_inode_info info = { 0 }; | 
|  |  | 
|  | end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); | 
|  | if (offset >= end) | 
|  | return 0; | 
|  |  | 
|  | num_bytes = end - offset; | 
|  |  | 
|  | if (!clone_root) | 
|  | goto write_data; | 
|  |  | 
|  | if (IS_ALIGNED(end, bs)) | 
|  | goto clone_data; | 
|  |  | 
|  | /* | 
|  | * If the extent end is not aligned, we can clone if the extent ends at | 
|  | * the i_size of the inode and the clone range ends at the i_size of the | 
|  | * source inode, otherwise the clone operation fails with -EINVAL. | 
|  | */ | 
|  | if (end != sctx->cur_inode_size) | 
|  | goto write_data; | 
|  |  | 
|  | ret = get_inode_info(clone_root->root, clone_root->ino, &info); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (clone_root->offset + num_bytes == info.size) { | 
|  | /* | 
|  | * The final size of our file matches the end offset, but it may | 
|  | * be that its current size is larger, so we have to truncate it | 
|  | * to any value between the start offset of the range and the | 
|  | * final i_size, otherwise the clone operation is invalid | 
|  | * because it's unaligned and it ends before the current EOF. | 
|  | * We do this truncate to the final i_size when we finish | 
|  | * processing the inode, but it's too late by then. And here we | 
|  | * truncate to the start offset of the range because it's always | 
|  | * sector size aligned while if it were the final i_size it | 
|  | * would result in dirtying part of a page, filling part of a | 
|  | * page with zeroes and then having the clone operation at the | 
|  | * receiver trigger IO and wait for it due to the dirty page. | 
|  | */ | 
|  | if (sctx->parent_root != NULL) { | 
|  | ret = send_truncate(sctx, sctx->cur_ino, | 
|  | sctx->cur_inode_gen, offset); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | goto clone_data; | 
|  | } | 
|  |  | 
|  | write_data: | 
|  | ret = send_extent_data(sctx, path, offset, num_bytes); | 
|  | sctx->cur_inode_next_write_offset = end; | 
|  | return ret; | 
|  |  | 
|  | clone_data: | 
|  | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); | 
|  | data_offset = btrfs_file_extent_offset(path->nodes[0], ei); | 
|  | ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, | 
|  | num_bytes); | 
|  | sctx->cur_inode_next_write_offset = end; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int is_extent_unchanged(struct send_ctx *sctx, | 
|  | struct btrfs_path *left_path, | 
|  | struct btrfs_key *ekey) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_key key; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct extent_buffer *eb; | 
|  | int slot; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | u64 left_disknr; | 
|  | u64 right_disknr; | 
|  | u64 left_offset; | 
|  | u64 right_offset; | 
|  | u64 left_offset_fixed; | 
|  | u64 left_len; | 
|  | u64 right_len; | 
|  | u64 left_gen; | 
|  | u64 right_gen; | 
|  | u8 left_type; | 
|  | u8 right_type; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | eb = left_path->nodes[0]; | 
|  | slot = left_path->slots[0]; | 
|  | ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | left_type = btrfs_file_extent_type(eb, ei); | 
|  |  | 
|  | if (left_type != BTRFS_FILE_EXTENT_REG) | 
|  | return 0; | 
|  |  | 
|  | left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); | 
|  | left_len = btrfs_file_extent_num_bytes(eb, ei); | 
|  | left_offset = btrfs_file_extent_offset(eb, ei); | 
|  | left_gen = btrfs_file_extent_generation(eb, ei); | 
|  |  | 
|  | /* | 
|  | * Following comments will refer to these graphics. L is the left | 
|  | * extents which we are checking at the moment. 1-8 are the right | 
|  | * extents that we iterate. | 
|  | * | 
|  | *       |-----L-----| | 
|  | * |-1-|-2a-|-3-|-4-|-5-|-6-| | 
|  | * | 
|  | *       |-----L-----| | 
|  | * |--1--|-2b-|...(same as above) | 
|  | * | 
|  | * Alternative situation. Happens on files where extents got split. | 
|  | *       |-----L-----| | 
|  | * |-----------7-----------|-6-| | 
|  | * | 
|  | * Alternative situation. Happens on files which got larger. | 
|  | *       |-----L-----| | 
|  | * |-8-| | 
|  | * Nothing follows after 8. | 
|  | */ | 
|  |  | 
|  | key.objectid = ekey->objectid; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = ekey->offset; | 
|  | ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Handle special case where the right side has no extents at all. | 
|  | */ | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | btrfs_item_key_to_cpu(eb, &found_key, slot); | 
|  | if (found_key.objectid != key.objectid || | 
|  | found_key.type != key.type) | 
|  | /* If we're a hole then just pretend nothing changed */ | 
|  | return (left_disknr ? 0 : 1); | 
|  |  | 
|  | /* | 
|  | * We're now on 2a, 2b or 7. | 
|  | */ | 
|  | key = found_key; | 
|  | while (key.offset < ekey->offset + left_len) { | 
|  | ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | right_type = btrfs_file_extent_type(eb, ei); | 
|  | if (right_type != BTRFS_FILE_EXTENT_REG && | 
|  | right_type != BTRFS_FILE_EXTENT_INLINE) | 
|  | return 0; | 
|  |  | 
|  | if (right_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | right_len = btrfs_file_extent_ram_bytes(eb, ei); | 
|  | right_len = PAGE_ALIGN(right_len); | 
|  | } else { | 
|  | right_len = btrfs_file_extent_num_bytes(eb, ei); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Are we at extent 8? If yes, we know the extent is changed. | 
|  | * This may only happen on the first iteration. | 
|  | */ | 
|  | if (found_key.offset + right_len <= ekey->offset) | 
|  | /* If we're a hole just pretend nothing changed */ | 
|  | return (left_disknr ? 0 : 1); | 
|  |  | 
|  | /* | 
|  | * We just wanted to see if when we have an inline extent, what | 
|  | * follows it is a regular extent (wanted to check the above | 
|  | * condition for inline extents too). This should normally not | 
|  | * happen but it's possible for example when we have an inline | 
|  | * compressed extent representing data with a size matching | 
|  | * the page size (currently the same as sector size). | 
|  | */ | 
|  | if (right_type == BTRFS_FILE_EXTENT_INLINE) | 
|  | return 0; | 
|  |  | 
|  | right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); | 
|  | right_offset = btrfs_file_extent_offset(eb, ei); | 
|  | right_gen = btrfs_file_extent_generation(eb, ei); | 
|  |  | 
|  | left_offset_fixed = left_offset; | 
|  | if (key.offset < ekey->offset) { | 
|  | /* Fix the right offset for 2a and 7. */ | 
|  | right_offset += ekey->offset - key.offset; | 
|  | } else { | 
|  | /* Fix the left offset for all behind 2a and 2b */ | 
|  | left_offset_fixed += key.offset - ekey->offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we have the same extent. | 
|  | */ | 
|  | if (left_disknr != right_disknr || | 
|  | left_offset_fixed != right_offset || | 
|  | left_gen != right_gen) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Go to the next extent. | 
|  | */ | 
|  | ret = btrfs_next_item(sctx->parent_root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (!ret) { | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | btrfs_item_key_to_cpu(eb, &found_key, slot); | 
|  | } | 
|  | if (ret || found_key.objectid != key.objectid || | 
|  | found_key.type != key.type) { | 
|  | key.offset += right_len; | 
|  | break; | 
|  | } | 
|  | if (found_key.offset != key.offset + right_len) | 
|  | return 0; | 
|  |  | 
|  | key = found_key; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're now behind the left extent (treat as unchanged) or at the end | 
|  | * of the right side (treat as changed). | 
|  | */ | 
|  | if (key.offset >= ekey->offset + left_len) | 
|  | ret = 1; | 
|  | else | 
|  | ret = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int get_last_extent(struct send_ctx *sctx, u64 offset) | 
|  | { | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_root *root = sctx->send_root; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sctx->cur_inode_last_extent = 0; | 
|  |  | 
|  | key.objectid = sctx->cur_ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = offset; | 
|  | ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = 0; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | return ret; | 
|  |  | 
|  | sctx->cur_inode_last_extent = btrfs_file_extent_end(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int range_is_hole_in_parent(struct send_ctx *sctx, | 
|  | const u64 start, | 
|  | const u64 end) | 
|  | { | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root *root = sctx->parent_root; | 
|  | u64 search_start = start; | 
|  | int ret; | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = sctx->cur_ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = search_start; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0 && path->slots[0] > 0) | 
|  | path->slots[0]--; | 
|  |  | 
|  | while (search_start < end) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | int slot = path->slots[0]; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | u64 extent_end; | 
|  |  | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid < sctx->cur_ino || | 
|  | key.type < BTRFS_EXTENT_DATA_KEY) | 
|  | goto next; | 
|  | if (key.objectid > sctx->cur_ino || | 
|  | key.type > BTRFS_EXTENT_DATA_KEY || | 
|  | key.offset >= end) | 
|  | break; | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  | extent_end = btrfs_file_extent_end(path); | 
|  | if (extent_end <= start) | 
|  | goto next; | 
|  | if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { | 
|  | search_start = extent_end; | 
|  | goto next; | 
|  | } | 
|  | return 0; | 
|  | next: | 
|  | path->slots[0]++; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Get last extent's end offset (exclusive) if we haven't determined it | 
|  | * yet (we're processing the first file extent item that is new), or if | 
|  | * we're at the first slot of a leaf and the last extent's end is less | 
|  | * than the current extent's offset, because we might have skipped | 
|  | * entire leaves that contained only file extent items for our current | 
|  | * inode. These leaves have a generation number smaller (older) than the | 
|  | * one in the current leaf and the leaf our last extent came from, and | 
|  | * are located between these 2 leaves. | 
|  | */ | 
|  | if ((sctx->cur_inode_last_extent == (u64)-1) || | 
|  | (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { | 
|  | ret = get_last_extent(sctx, key->offset - 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (sctx->cur_inode_last_extent < key->offset) { | 
|  | ret = range_is_hole_in_parent(sctx, | 
|  | sctx->cur_inode_last_extent, | 
|  | key->offset); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret == 0) | 
|  | ret = send_hole(sctx, key->offset); | 
|  | else | 
|  | ret = 0; | 
|  | } | 
|  | sctx->cur_inode_last_extent = btrfs_file_extent_end(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int process_extent(struct send_ctx *sctx, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct clone_root *found_clone = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (S_ISLNK(sctx->cur_inode_mode)) | 
|  | return 0; | 
|  |  | 
|  | if (sctx->parent_root && !sctx->cur_inode_new) { | 
|  | ret = is_extent_unchanged(sctx, path, key); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) { | 
|  | ret = 0; | 
|  | goto out_hole; | 
|  | } | 
|  | } else { | 
|  | struct btrfs_file_extent_item *ei; | 
|  | u8 type; | 
|  |  | 
|  | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | type = btrfs_file_extent_type(path->nodes[0], ei); | 
|  | if (type == BTRFS_FILE_EXTENT_PREALLOC || | 
|  | type == BTRFS_FILE_EXTENT_REG) { | 
|  | /* | 
|  | * The send spec does not have a prealloc command yet, | 
|  | * so just leave a hole for prealloc'ed extents until | 
|  | * we have enough commands queued up to justify rev'ing | 
|  | * the send spec. | 
|  | */ | 
|  | if (type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Have a hole, just skip it. */ | 
|  | if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = find_extent_clone(sctx, path, key->objectid, key->offset, | 
|  | sctx->cur_inode_size, &found_clone); | 
|  | if (ret != -ENOENT && ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = send_write_or_clone(sctx, path, key, found_clone); | 
|  | if (ret) | 
|  | goto out; | 
|  | out_hole: | 
|  | ret = maybe_send_hole(sctx, path, key); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int process_all_extents(struct send_ctx *sctx) | 
|  | { | 
|  | int ret = 0; | 
|  | int iter_ret = 0; | 
|  | struct btrfs_root *root; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | root = sctx->send_root; | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = sctx->cmp_key->objectid; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = 0; | 
|  | btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { | 
|  | if (found_key.objectid != key.objectid || | 
|  | found_key.type != key.type) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = process_extent(sctx, path, &found_key); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  | /* Catch error found during iteration */ | 
|  | if (iter_ret < 0) | 
|  | ret = iter_ret; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int process_recorded_refs_if_needed(struct send_ctx *sctx, bool at_end, | 
|  | int *pending_move, | 
|  | int *refs_processed) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (sctx->cur_ino == 0) | 
|  | goto out; | 
|  | if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && | 
|  | sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) | 
|  | goto out; | 
|  | if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) | 
|  | goto out; | 
|  |  | 
|  | ret = process_recorded_refs(sctx, pending_move); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | *refs_processed = 1; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int finish_inode_if_needed(struct send_ctx *sctx, bool at_end) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_inode_info info; | 
|  | u64 left_mode; | 
|  | u64 left_uid; | 
|  | u64 left_gid; | 
|  | u64 left_fileattr; | 
|  | u64 right_mode; | 
|  | u64 right_uid; | 
|  | u64 right_gid; | 
|  | u64 right_fileattr; | 
|  | int need_chmod = 0; | 
|  | int need_chown = 0; | 
|  | bool need_fileattr = false; | 
|  | int need_truncate = 1; | 
|  | int pending_move = 0; | 
|  | int refs_processed = 0; | 
|  |  | 
|  | if (sctx->ignore_cur_inode) | 
|  | return 0; | 
|  |  | 
|  | ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, | 
|  | &refs_processed); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We have processed the refs and thus need to advance send_progress. | 
|  | * Now, calls to get_cur_xxx will take the updated refs of the current | 
|  | * inode into account. | 
|  | * | 
|  | * On the other hand, if our current inode is a directory and couldn't | 
|  | * be moved/renamed because its parent was renamed/moved too and it has | 
|  | * a higher inode number, we can only move/rename our current inode | 
|  | * after we moved/renamed its parent. Therefore in this case operate on | 
|  | * the old path (pre move/rename) of our current inode, and the | 
|  | * move/rename will be performed later. | 
|  | */ | 
|  | if (refs_processed && !pending_move) | 
|  | sctx->send_progress = sctx->cur_ino + 1; | 
|  |  | 
|  | if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) | 
|  | goto out; | 
|  | if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) | 
|  | goto out; | 
|  | ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | left_mode = info.mode; | 
|  | left_uid = info.uid; | 
|  | left_gid = info.gid; | 
|  | left_fileattr = info.fileattr; | 
|  |  | 
|  | if (!sctx->parent_root || sctx->cur_inode_new) { | 
|  | need_chown = 1; | 
|  | if (!S_ISLNK(sctx->cur_inode_mode)) | 
|  | need_chmod = 1; | 
|  | if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) | 
|  | need_truncate = 0; | 
|  | } else { | 
|  | u64 old_size; | 
|  |  | 
|  | ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | old_size = info.size; | 
|  | right_mode = info.mode; | 
|  | right_uid = info.uid; | 
|  | right_gid = info.gid; | 
|  | right_fileattr = info.fileattr; | 
|  |  | 
|  | if (left_uid != right_uid || left_gid != right_gid) | 
|  | need_chown = 1; | 
|  | if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) | 
|  | need_chmod = 1; | 
|  | if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) | 
|  | need_fileattr = true; | 
|  | if ((old_size == sctx->cur_inode_size) || | 
|  | (sctx->cur_inode_size > old_size && | 
|  | sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) | 
|  | need_truncate = 0; | 
|  | } | 
|  |  | 
|  | if (S_ISREG(sctx->cur_inode_mode)) { | 
|  | if (need_send_hole(sctx)) { | 
|  | if (sctx->cur_inode_last_extent == (u64)-1 || | 
|  | sctx->cur_inode_last_extent < | 
|  | sctx->cur_inode_size) { | 
|  | ret = get_last_extent(sctx, (u64)-1); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { | 
|  | ret = range_is_hole_in_parent(sctx, | 
|  | sctx->cur_inode_last_extent, | 
|  | sctx->cur_inode_size); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret == 0) { | 
|  | ret = send_hole(sctx, sctx->cur_inode_size); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } else { | 
|  | /* Range is already a hole, skip. */ | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (need_truncate) { | 
|  | ret = send_truncate(sctx, sctx->cur_ino, | 
|  | sctx->cur_inode_gen, | 
|  | sctx->cur_inode_size); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (need_chown) { | 
|  | ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, | 
|  | left_uid, left_gid); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | if (need_chmod) { | 
|  | ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, | 
|  | left_mode); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | if (need_fileattr) { | 
|  | ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, | 
|  | left_fileattr); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) | 
|  | && sctx->cur_inode_needs_verity) { | 
|  | ret = process_verity(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = send_capabilities(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If other directory inodes depended on our current directory | 
|  | * inode's move/rename, now do their move/rename operations. | 
|  | */ | 
|  | if (!is_waiting_for_move(sctx, sctx->cur_ino)) { | 
|  | ret = apply_children_dir_moves(sctx); | 
|  | if (ret) | 
|  | goto out; | 
|  | /* | 
|  | * Need to send that every time, no matter if it actually | 
|  | * changed between the two trees as we have done changes to | 
|  | * the inode before. If our inode is a directory and it's | 
|  | * waiting to be moved/renamed, we will send its utimes when | 
|  | * it's moved/renamed, therefore we don't need to do it here. | 
|  | */ | 
|  | sctx->send_progress = sctx->cur_ino + 1; | 
|  |  | 
|  | /* | 
|  | * If the current inode is a non-empty directory, delay issuing | 
|  | * the utimes command for it, as it's very likely we have inodes | 
|  | * with an higher number inside it. We want to issue the utimes | 
|  | * command only after adding all dentries to it. | 
|  | */ | 
|  | if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) | 
|  | ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); | 
|  | else | 
|  | ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); | 
|  |  | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (!ret) | 
|  | ret = trim_dir_utimes_cache(sctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void close_current_inode(struct send_ctx *sctx) | 
|  | { | 
|  | u64 i_size; | 
|  |  | 
|  | if (sctx->cur_inode == NULL) | 
|  | return; | 
|  |  | 
|  | i_size = i_size_read(sctx->cur_inode); | 
|  |  | 
|  | /* | 
|  | * If we are doing an incremental send, we may have extents between the | 
|  | * last processed extent and the i_size that have not been processed | 
|  | * because they haven't changed but we may have read some of their pages | 
|  | * through readahead, see the comments at send_extent_data(). | 
|  | */ | 
|  | if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) | 
|  | truncate_inode_pages_range(&sctx->cur_inode->i_data, | 
|  | sctx->page_cache_clear_start, | 
|  | round_up(i_size, PAGE_SIZE) - 1); | 
|  |  | 
|  | iput(sctx->cur_inode); | 
|  | sctx->cur_inode = NULL; | 
|  | } | 
|  |  | 
|  | static int changed_inode(struct send_ctx *sctx, | 
|  | enum btrfs_compare_tree_result result) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_key *key = sctx->cmp_key; | 
|  | struct btrfs_inode_item *left_ii = NULL; | 
|  | struct btrfs_inode_item *right_ii = NULL; | 
|  | u64 left_gen = 0; | 
|  | u64 right_gen = 0; | 
|  |  | 
|  | close_current_inode(sctx); | 
|  |  | 
|  | sctx->cur_ino = key->objectid; | 
|  | sctx->cur_inode_new_gen = false; | 
|  | sctx->cur_inode_last_extent = (u64)-1; | 
|  | sctx->cur_inode_next_write_offset = 0; | 
|  | sctx->ignore_cur_inode = false; | 
|  | fs_path_reset(&sctx->cur_inode_path); | 
|  |  | 
|  | /* | 
|  | * Set send_progress to current inode. This will tell all get_cur_xxx | 
|  | * functions that the current inode's refs are not updated yet. Later, | 
|  | * when process_recorded_refs is finished, it is set to cur_ino + 1. | 
|  | */ | 
|  | sctx->send_progress = sctx->cur_ino; | 
|  |  | 
|  | if (result == BTRFS_COMPARE_TREE_NEW || | 
|  | result == BTRFS_COMPARE_TREE_CHANGED) { | 
|  | left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], | 
|  | sctx->left_path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], | 
|  | left_ii); | 
|  | } else { | 
|  | right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], | 
|  | sctx->right_path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], | 
|  | right_ii); | 
|  | } | 
|  | if (result == BTRFS_COMPARE_TREE_CHANGED) { | 
|  | right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], | 
|  | sctx->right_path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  |  | 
|  | right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], | 
|  | right_ii); | 
|  |  | 
|  | /* | 
|  | * The cur_ino = root dir case is special here. We can't treat | 
|  | * the inode as deleted+reused because it would generate a | 
|  | * stream that tries to delete/mkdir the root dir. | 
|  | */ | 
|  | if (left_gen != right_gen && | 
|  | sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) | 
|  | sctx->cur_inode_new_gen = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Normally we do not find inodes with a link count of zero (orphans) | 
|  | * because the most common case is to create a snapshot and use it | 
|  | * for a send operation. However other less common use cases involve | 
|  | * using a subvolume and send it after turning it to RO mode just | 
|  | * after deleting all hard links of a file while holding an open | 
|  | * file descriptor against it or turning a RO snapshot into RW mode, | 
|  | * keep an open file descriptor against a file, delete it and then | 
|  | * turn the snapshot back to RO mode before using it for a send | 
|  | * operation. The former is what the receiver operation does. | 
|  | * Therefore, if we want to send these snapshots soon after they're | 
|  | * received, we need to handle orphan inodes as well. Moreover, orphans | 
|  | * can appear not only in the send snapshot but also in the parent | 
|  | * snapshot. Here are several cases: | 
|  | * | 
|  | * Case 1: BTRFS_COMPARE_TREE_NEW | 
|  | *       |  send snapshot  | action | 
|  | * -------------------------------- | 
|  | * nlink |        0        | ignore | 
|  | * | 
|  | * Case 2: BTRFS_COMPARE_TREE_DELETED | 
|  | *       | parent snapshot | action | 
|  | * ---------------------------------- | 
|  | * nlink |        0        | as usual | 
|  | * Note: No unlinks will be sent because there're no paths for it. | 
|  | * | 
|  | * Case 3: BTRFS_COMPARE_TREE_CHANGED | 
|  | *           |       | parent snapshot | send snapshot | action | 
|  | * ----------------------------------------------------------------------- | 
|  | * subcase 1 | nlink |        0        |       0       | ignore | 
|  | * subcase 2 | nlink |       >0        |       0       | new_gen(deletion) | 
|  | * subcase 3 | nlink |        0        |      >0       | new_gen(creation) | 
|  | * | 
|  | */ | 
|  | if (result == BTRFS_COMPARE_TREE_NEW) { | 
|  | if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { | 
|  | sctx->ignore_cur_inode = true; | 
|  | goto out; | 
|  | } | 
|  | sctx->cur_inode_gen = left_gen; | 
|  | sctx->cur_inode_new = true; | 
|  | sctx->cur_inode_deleted = false; | 
|  | sctx->cur_inode_size = btrfs_inode_size( | 
|  | sctx->left_path->nodes[0], left_ii); | 
|  | sctx->cur_inode_mode = btrfs_inode_mode( | 
|  | sctx->left_path->nodes[0], left_ii); | 
|  | sctx->cur_inode_rdev = btrfs_inode_rdev( | 
|  | sctx->left_path->nodes[0], left_ii); | 
|  | if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) | 
|  | ret = send_create_inode_if_needed(sctx); | 
|  | } else if (result == BTRFS_COMPARE_TREE_DELETED) { | 
|  | sctx->cur_inode_gen = right_gen; | 
|  | sctx->cur_inode_new = false; | 
|  | sctx->cur_inode_deleted = true; | 
|  | sctx->cur_inode_size = btrfs_inode_size( | 
|  | sctx->right_path->nodes[0], right_ii); | 
|  | sctx->cur_inode_mode = btrfs_inode_mode( | 
|  | sctx->right_path->nodes[0], right_ii); | 
|  | } else if (result == BTRFS_COMPARE_TREE_CHANGED) { | 
|  | u32 new_nlinks, old_nlinks; | 
|  |  | 
|  | new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); | 
|  | old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); | 
|  | if (new_nlinks == 0 && old_nlinks == 0) { | 
|  | sctx->ignore_cur_inode = true; | 
|  | goto out; | 
|  | } else if (new_nlinks == 0 || old_nlinks == 0) { | 
|  | sctx->cur_inode_new_gen = 1; | 
|  | } | 
|  | /* | 
|  | * We need to do some special handling in case the inode was | 
|  | * reported as changed with a changed generation number. This | 
|  | * means that the original inode was deleted and new inode | 
|  | * reused the same inum. So we have to treat the old inode as | 
|  | * deleted and the new one as new. | 
|  | */ | 
|  | if (sctx->cur_inode_new_gen) { | 
|  | /* | 
|  | * First, process the inode as if it was deleted. | 
|  | */ | 
|  | if (old_nlinks > 0) { | 
|  | sctx->cur_inode_gen = right_gen; | 
|  | sctx->cur_inode_new = false; | 
|  | sctx->cur_inode_deleted = true; | 
|  | sctx->cur_inode_size = btrfs_inode_size( | 
|  | sctx->right_path->nodes[0], right_ii); | 
|  | sctx->cur_inode_mode = btrfs_inode_mode( | 
|  | sctx->right_path->nodes[0], right_ii); | 
|  | ret = process_all_refs(sctx, | 
|  | BTRFS_COMPARE_TREE_DELETED); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now process the inode as if it was new. | 
|  | */ | 
|  | if (new_nlinks > 0) { | 
|  | sctx->cur_inode_gen = left_gen; | 
|  | sctx->cur_inode_new = true; | 
|  | sctx->cur_inode_deleted = false; | 
|  | sctx->cur_inode_size = btrfs_inode_size( | 
|  | sctx->left_path->nodes[0], | 
|  | left_ii); | 
|  | sctx->cur_inode_mode = btrfs_inode_mode( | 
|  | sctx->left_path->nodes[0], | 
|  | left_ii); | 
|  | sctx->cur_inode_rdev = btrfs_inode_rdev( | 
|  | sctx->left_path->nodes[0], | 
|  | left_ii); | 
|  | ret = send_create_inode_if_needed(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | /* | 
|  | * Advance send_progress now as we did not get | 
|  | * into process_recorded_refs_if_needed in the | 
|  | * new_gen case. | 
|  | */ | 
|  | sctx->send_progress = sctx->cur_ino + 1; | 
|  |  | 
|  | /* | 
|  | * Now process all extents and xattrs of the | 
|  | * inode as if they were all new. | 
|  | */ | 
|  | ret = process_all_extents(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = process_all_new_xattrs(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | sctx->cur_inode_gen = left_gen; | 
|  | sctx->cur_inode_new = false; | 
|  | sctx->cur_inode_new_gen = false; | 
|  | sctx->cur_inode_deleted = false; | 
|  | sctx->cur_inode_size = btrfs_inode_size( | 
|  | sctx->left_path->nodes[0], left_ii); | 
|  | sctx->cur_inode_mode = btrfs_inode_mode( | 
|  | sctx->left_path->nodes[0], left_ii); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to process new refs before deleted refs, but compare_trees gives us | 
|  | * the new and deleted refs mixed. To fix this, we record the new/deleted refs | 
|  | * first and later process them in process_recorded_refs. | 
|  | * For the cur_inode_new_gen case, we skip recording completely because | 
|  | * changed_inode did already initiate processing of refs. The reason for this is | 
|  | * that in this case, compare_tree actually compares the refs of 2 different | 
|  | * inodes. To fix this, process_all_refs is used in changed_inode to handle all | 
|  | * refs of the right tree as deleted and all refs of the left tree as new. | 
|  | */ | 
|  | static int changed_ref(struct send_ctx *sctx, | 
|  | enum btrfs_compare_tree_result result) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { | 
|  | inconsistent_snapshot_error(sctx, result, "reference"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (!sctx->cur_inode_new_gen && | 
|  | sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { | 
|  | if (result == BTRFS_COMPARE_TREE_NEW) | 
|  | ret = record_new_ref(sctx); | 
|  | else if (result == BTRFS_COMPARE_TREE_DELETED) | 
|  | ret = record_deleted_ref(sctx); | 
|  | else if (result == BTRFS_COMPARE_TREE_CHANGED) | 
|  | ret = record_changed_ref(sctx); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process new/deleted/changed xattrs. We skip processing in the | 
|  | * cur_inode_new_gen case because changed_inode did already initiate processing | 
|  | * of xattrs. The reason is the same as in changed_ref | 
|  | */ | 
|  | static int changed_xattr(struct send_ctx *sctx, | 
|  | enum btrfs_compare_tree_result result) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { | 
|  | inconsistent_snapshot_error(sctx, result, "xattr"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { | 
|  | if (result == BTRFS_COMPARE_TREE_NEW) | 
|  | ret = process_new_xattr(sctx); | 
|  | else if (result == BTRFS_COMPARE_TREE_DELETED) | 
|  | ret = process_deleted_xattr(sctx); | 
|  | else if (result == BTRFS_COMPARE_TREE_CHANGED) | 
|  | ret = process_changed_xattr(sctx); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process new/deleted/changed extents. We skip processing in the | 
|  | * cur_inode_new_gen case because changed_inode did already initiate processing | 
|  | * of extents. The reason is the same as in changed_ref | 
|  | */ | 
|  | static int changed_extent(struct send_ctx *sctx, | 
|  | enum btrfs_compare_tree_result result) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * We have found an extent item that changed without the inode item | 
|  | * having changed. This can happen either after relocation (where the | 
|  | * disk_bytenr of an extent item is replaced at | 
|  | * relocation.c:replace_file_extents()) or after deduplication into a | 
|  | * file in both the parent and send snapshots (where an extent item can | 
|  | * get modified or replaced with a new one). Note that deduplication | 
|  | * updates the inode item, but it only changes the iversion (sequence | 
|  | * field in the inode item) of the inode, so if a file is deduplicated | 
|  | * the same amount of times in both the parent and send snapshots, its | 
|  | * iversion becomes the same in both snapshots, whence the inode item is | 
|  | * the same on both snapshots. | 
|  | */ | 
|  | if (sctx->cur_ino != sctx->cmp_key->objectid) | 
|  | return 0; | 
|  |  | 
|  | if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { | 
|  | if (result != BTRFS_COMPARE_TREE_DELETED) | 
|  | ret = process_extent(sctx, sctx->left_path, | 
|  | sctx->cmp_key); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) | 
|  | { | 
|  | if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { | 
|  | if (result == BTRFS_COMPARE_TREE_NEW) | 
|  | sctx->cur_inode_needs_verity = true; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dir_changed(struct send_ctx *sctx, u64 dir) | 
|  | { | 
|  | u64 orig_gen, new_gen; | 
|  | int ret; | 
|  |  | 
|  | ret = get_inode_gen(sctx->send_root, dir, &new_gen); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return (orig_gen != new_gen) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_inode_extref *extref; | 
|  | struct extent_buffer *leaf; | 
|  | u64 dirid = 0, last_dirid = 0; | 
|  | unsigned long ptr; | 
|  | u32 item_size; | 
|  | u32 cur_offset = 0; | 
|  | int ref_name_len; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Easy case, just check this one dirid */ | 
|  | if (key->type == BTRFS_INODE_REF_KEY) { | 
|  | dirid = key->offset; | 
|  |  | 
|  | ret = dir_changed(sctx, dirid); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size(leaf, path->slots[0]); | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | while (cur_offset < item_size) { | 
|  | extref = (struct btrfs_inode_extref *)(ptr + | 
|  | cur_offset); | 
|  | dirid = btrfs_inode_extref_parent(leaf, extref); | 
|  | ref_name_len = btrfs_inode_extref_name_len(leaf, extref); | 
|  | cur_offset += ref_name_len + sizeof(*extref); | 
|  | if (dirid == last_dirid) | 
|  | continue; | 
|  | ret = dir_changed(sctx, dirid); | 
|  | if (ret) | 
|  | break; | 
|  | last_dirid = dirid; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Updates compare related fields in sctx and simply forwards to the actual | 
|  | * changed_xxx functions. | 
|  | */ | 
|  | static int changed_cb(struct btrfs_path *left_path, | 
|  | struct btrfs_path *right_path, | 
|  | struct btrfs_key *key, | 
|  | enum btrfs_compare_tree_result result, | 
|  | struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We can not hold the commit root semaphore here. This is because in | 
|  | * the case of sending and receiving to the same filesystem, using a | 
|  | * pipe, could result in a deadlock: | 
|  | * | 
|  | * 1) The task running send blocks on the pipe because it's full; | 
|  | * | 
|  | * 2) The task running receive, which is the only consumer of the pipe, | 
|  | *    is waiting for a transaction commit (for example due to a space | 
|  | *    reservation when doing a write or triggering a transaction commit | 
|  | *    when creating a subvolume); | 
|  | * | 
|  | * 3) The transaction is waiting to write lock the commit root semaphore, | 
|  | *    but can not acquire it since it's being held at 1). | 
|  | * | 
|  | * Down this call chain we write to the pipe through kernel_write(). | 
|  | * The same type of problem can also happen when sending to a file that | 
|  | * is stored in the same filesystem - when reserving space for a write | 
|  | * into the file, we can trigger a transaction commit. | 
|  | * | 
|  | * Our caller has supplied us with clones of leaves from the send and | 
|  | * parent roots, so we're safe here from a concurrent relocation and | 
|  | * further reallocation of metadata extents while we are here. Below we | 
|  | * also assert that the leaves are clones. | 
|  | */ | 
|  | lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); | 
|  |  | 
|  | /* | 
|  | * We always have a send root, so left_path is never NULL. We will not | 
|  | * have a leaf when we have reached the end of the send root but have | 
|  | * not yet reached the end of the parent root. | 
|  | */ | 
|  | if (left_path->nodes[0]) | 
|  | ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, | 
|  | &left_path->nodes[0]->bflags)); | 
|  | /* | 
|  | * When doing a full send we don't have a parent root, so right_path is | 
|  | * NULL. When doing an incremental send, we may have reached the end of | 
|  | * the parent root already, so we don't have a leaf at right_path. | 
|  | */ | 
|  | if (right_path && right_path->nodes[0]) | 
|  | ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, | 
|  | &right_path->nodes[0]->bflags)); | 
|  |  | 
|  | if (result == BTRFS_COMPARE_TREE_SAME) { | 
|  | if (key->type == BTRFS_INODE_REF_KEY || | 
|  | key->type == BTRFS_INODE_EXTREF_KEY) { | 
|  | ret = compare_refs(sctx, left_path, key); | 
|  | if (!ret) | 
|  | return 0; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } else if (key->type == BTRFS_EXTENT_DATA_KEY) { | 
|  | return maybe_send_hole(sctx, left_path, key); | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | result = BTRFS_COMPARE_TREE_CHANGED; | 
|  | } | 
|  |  | 
|  | sctx->left_path = left_path; | 
|  | sctx->right_path = right_path; | 
|  | sctx->cmp_key = key; | 
|  |  | 
|  | ret = finish_inode_if_needed(sctx, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Ignore non-FS objects */ | 
|  | if (key->objectid == BTRFS_FREE_INO_OBJECTID || | 
|  | key->objectid == BTRFS_FREE_SPACE_OBJECTID) | 
|  | goto out; | 
|  |  | 
|  | if (key->type == BTRFS_INODE_ITEM_KEY) { | 
|  | ret = changed_inode(sctx, result); | 
|  | } else if (!sctx->ignore_cur_inode) { | 
|  | if (key->type == BTRFS_INODE_REF_KEY || | 
|  | key->type == BTRFS_INODE_EXTREF_KEY) | 
|  | ret = changed_ref(sctx, result); | 
|  | else if (key->type == BTRFS_XATTR_ITEM_KEY) | 
|  | ret = changed_xattr(sctx, result); | 
|  | else if (key->type == BTRFS_EXTENT_DATA_KEY) | 
|  | ret = changed_extent(sctx, result); | 
|  | else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && | 
|  | key->offset == 0) | 
|  | ret = changed_verity(sctx, result); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int search_key_again(const struct send_ctx *sctx, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | const struct btrfs_key *key) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!path->need_commit_sem) | 
|  | lockdep_assert_held_read(&root->fs_info->commit_root_sem); | 
|  |  | 
|  | /* | 
|  | * Roots used for send operations are readonly and no one can add, | 
|  | * update or remove keys from them, so we should be able to find our | 
|  | * key again. The only exception is deduplication, which can operate on | 
|  | * readonly roots and add, update or remove keys to/from them - but at | 
|  | * the moment we don't allow it to run in parallel with send. | 
|  | */ | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | ASSERT(ret <= 0); | 
|  | if (unlikely(ret > 0)) { | 
|  | btrfs_print_tree(path->nodes[path->lowest_level], false); | 
|  | btrfs_err(root->fs_info, | 
|  | "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", | 
|  | key->objectid, key->type, key->offset, | 
|  | (root == sctx->parent_root ? "parent" : "send"), | 
|  | btrfs_root_id(root), path->lowest_level, | 
|  | path->slots[path->lowest_level]); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int full_send_tree(struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *send_root = sctx->send_root; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_fs_info *fs_info = send_root->fs_info; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  |  | 
|  | path = alloc_path_for_send(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->reada = READA_FORWARD_ALWAYS; | 
|  |  | 
|  | key.objectid = BTRFS_FIRST_FREE_OBJECTID; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | sctx->last_reloc_trans = fs_info->last_reloc_trans; | 
|  | up_read(&fs_info->commit_root_sem); | 
|  |  | 
|  | ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret) | 
|  | goto out_finish; | 
|  |  | 
|  | while (1) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  |  | 
|  | ret = changed_cb(path, NULL, &key, | 
|  | BTRFS_COMPARE_TREE_NEW, sctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { | 
|  | sctx->last_reloc_trans = fs_info->last_reloc_trans; | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | /* | 
|  | * A transaction used for relocating a block group was | 
|  | * committed or is about to finish its commit. Release | 
|  | * our path (leaf) and restart the search, so that we | 
|  | * avoid operating on any file extent items that are | 
|  | * stale, with a disk_bytenr that reflects a pre | 
|  | * relocation value. This way we avoid as much as | 
|  | * possible to fallback to regular writes when checking | 
|  | * if we can clone file ranges. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  | ret = search_key_again(sctx, send_root, path, &key); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } else { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | } | 
|  |  | 
|  | ret = btrfs_next_item(send_root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret) { | 
|  | ret  = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out_finish: | 
|  | return finish_inode_if_needed(sctx, 1); | 
|  | } | 
|  |  | 
|  | static int replace_node_with_clone(struct btrfs_path *path, int level) | 
|  | { | 
|  | struct extent_buffer *clone; | 
|  |  | 
|  | clone = btrfs_clone_extent_buffer(path->nodes[level]); | 
|  | if (!clone) | 
|  | return -ENOMEM; | 
|  |  | 
|  | free_extent_buffer(path->nodes[level]); | 
|  | path->nodes[level] = clone; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | struct extent_buffer *parent = path->nodes[*level]; | 
|  | int slot = path->slots[*level]; | 
|  | const int nritems = btrfs_header_nritems(parent); | 
|  | u64 reada_max; | 
|  | u64 reada_done = 0; | 
|  |  | 
|  | lockdep_assert_held_read(&parent->fs_info->commit_root_sem); | 
|  | ASSERT(*level != 0); | 
|  |  | 
|  | eb = btrfs_read_node_slot(parent, slot); | 
|  | if (IS_ERR(eb)) | 
|  | return PTR_ERR(eb); | 
|  |  | 
|  | /* | 
|  | * Trigger readahead for the next leaves we will process, so that it is | 
|  | * very likely that when we need them they are already in memory and we | 
|  | * will not block on disk IO. For nodes we only do readahead for one, | 
|  | * since the time window between processing nodes is typically larger. | 
|  | */ | 
|  | reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); | 
|  |  | 
|  | for (slot++; slot < nritems && reada_done < reada_max; slot++) { | 
|  | if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { | 
|  | btrfs_readahead_node_child(parent, slot); | 
|  | reada_done += eb->fs_info->nodesize; | 
|  | } | 
|  | } | 
|  |  | 
|  | path->nodes[*level - 1] = eb; | 
|  | path->slots[*level - 1] = 0; | 
|  | (*level)--; | 
|  |  | 
|  | if (*level == 0) | 
|  | return replace_node_with_clone(path, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tree_move_next_or_upnext(struct btrfs_path *path, | 
|  | int *level, int root_level) | 
|  | { | 
|  | int ret = 0; | 
|  | int nritems; | 
|  | nritems = btrfs_header_nritems(path->nodes[*level]); | 
|  |  | 
|  | path->slots[*level]++; | 
|  |  | 
|  | while (path->slots[*level] >= nritems) { | 
|  | if (*level == root_level) { | 
|  | path->slots[*level] = nritems - 1; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* move upnext */ | 
|  | path->slots[*level] = 0; | 
|  | free_extent_buffer(path->nodes[*level]); | 
|  | path->nodes[*level] = NULL; | 
|  | (*level)++; | 
|  | path->slots[*level]++; | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[*level]); | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 1 if it had to move up and next. 0 is returned if it moved only next | 
|  | * or down. | 
|  | */ | 
|  | static int tree_advance(struct btrfs_path *path, | 
|  | int *level, int root_level, | 
|  | int allow_down, | 
|  | struct btrfs_key *key, | 
|  | u64 reada_min_gen) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (*level == 0 || !allow_down) { | 
|  | ret = tree_move_next_or_upnext(path, level, root_level); | 
|  | } else { | 
|  | ret = tree_move_down(path, level, reada_min_gen); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Even if we have reached the end of a tree, ret is -1, update the key | 
|  | * anyway, so that in case we need to restart due to a block group | 
|  | * relocation, we can assert that the last key of the root node still | 
|  | * exists in the tree. | 
|  | */ | 
|  | if (*level == 0) | 
|  | btrfs_item_key_to_cpu(path->nodes[*level], key, | 
|  | path->slots[*level]); | 
|  | else | 
|  | btrfs_node_key_to_cpu(path->nodes[*level], key, | 
|  | path->slots[*level]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int tree_compare_item(struct btrfs_path *left_path, | 
|  | struct btrfs_path *right_path, | 
|  | char *tmp_buf) | 
|  | { | 
|  | int cmp; | 
|  | int len1, len2; | 
|  | unsigned long off1, off2; | 
|  |  | 
|  | len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); | 
|  | len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); | 
|  | if (len1 != len2) | 
|  | return 1; | 
|  |  | 
|  | off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); | 
|  | off2 = btrfs_item_ptr_offset(right_path->nodes[0], | 
|  | right_path->slots[0]); | 
|  |  | 
|  | read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); | 
|  |  | 
|  | cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); | 
|  | if (cmp) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A transaction used for relocating a block group was committed or is about to | 
|  | * finish its commit. Release our paths and restart the search, so that we are | 
|  | * not using stale extent buffers: | 
|  | * | 
|  | * 1) For levels > 0, we are only holding references of extent buffers, without | 
|  | *    any locks on them, which does not prevent them from having been relocated | 
|  | *    and reallocated after the last time we released the commit root semaphore. | 
|  | *    The exception are the root nodes, for which we always have a clone, see | 
|  | *    the comment at btrfs_compare_trees(); | 
|  | * | 
|  | * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so | 
|  | *    we are safe from the concurrent relocation and reallocation. However they | 
|  | *    can have file extent items with a pre relocation disk_bytenr value, so we | 
|  | *    restart the start from the current commit roots and clone the new leaves so | 
|  | *    that we get the post relocation disk_bytenr values. Not doing so, could | 
|  | *    make us clone the wrong data in case there are new extents using the old | 
|  | *    disk_bytenr that happen to be shared. | 
|  | */ | 
|  | static int restart_after_relocation(struct btrfs_path *left_path, | 
|  | struct btrfs_path *right_path, | 
|  | const struct btrfs_key *left_key, | 
|  | const struct btrfs_key *right_key, | 
|  | int left_level, | 
|  | int right_level, | 
|  | const struct send_ctx *sctx) | 
|  | { | 
|  | int root_level; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); | 
|  |  | 
|  | btrfs_release_path(left_path); | 
|  | btrfs_release_path(right_path); | 
|  |  | 
|  | /* | 
|  | * Since keys can not be added or removed to/from our roots because they | 
|  | * are readonly and we do not allow deduplication to run in parallel | 
|  | * (which can add, remove or change keys), the layout of the trees should | 
|  | * not change. | 
|  | */ | 
|  | left_path->lowest_level = left_level; | 
|  | ret = search_key_again(sctx, sctx->send_root, left_path, left_key); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | right_path->lowest_level = right_level; | 
|  | ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If the lowest level nodes are leaves, clone them so that they can be | 
|  | * safely used by changed_cb() while not under the protection of the | 
|  | * commit root semaphore, even if relocation and reallocation happens in | 
|  | * parallel. | 
|  | */ | 
|  | if (left_level == 0) { | 
|  | ret = replace_node_with_clone(left_path, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (right_level == 0) { | 
|  | ret = replace_node_with_clone(right_path, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now clone the root nodes (unless they happen to be the leaves we have | 
|  | * already cloned). This is to protect against concurrent snapshotting of | 
|  | * the send and parent roots (see the comment at btrfs_compare_trees()). | 
|  | */ | 
|  | root_level = btrfs_header_level(sctx->send_root->commit_root); | 
|  | if (root_level > 0) { | 
|  | ret = replace_node_with_clone(left_path, root_level); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | root_level = btrfs_header_level(sctx->parent_root->commit_root); | 
|  | if (root_level > 0) { | 
|  | ret = replace_node_with_clone(right_path, root_level); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function compares two trees and calls the provided callback for | 
|  | * every changed/new/deleted item it finds. | 
|  | * If shared tree blocks are encountered, whole subtrees are skipped, making | 
|  | * the compare pretty fast on snapshotted subvolumes. | 
|  | * | 
|  | * This currently works on commit roots only. As commit roots are read only, | 
|  | * we don't do any locking. The commit roots are protected with transactions. | 
|  | * Transactions are ended and rejoined when a commit is tried in between. | 
|  | * | 
|  | * This function checks for modifications done to the trees while comparing. | 
|  | * If it detects a change, it aborts immediately. | 
|  | */ | 
|  | static int btrfs_compare_trees(struct btrfs_root *left_root, | 
|  | struct btrfs_root *right_root, struct send_ctx *sctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = left_root->fs_info; | 
|  | int ret; | 
|  | int cmp; | 
|  | BTRFS_PATH_AUTO_FREE(left_path); | 
|  | BTRFS_PATH_AUTO_FREE(right_path); | 
|  | struct btrfs_key left_key; | 
|  | struct btrfs_key right_key; | 
|  | char *tmp_buf = NULL; | 
|  | int left_root_level; | 
|  | int right_root_level; | 
|  | int left_level; | 
|  | int right_level; | 
|  | int left_end_reached = 0; | 
|  | int right_end_reached = 0; | 
|  | int advance_left = 0; | 
|  | int advance_right = 0; | 
|  | u64 left_blockptr; | 
|  | u64 right_blockptr; | 
|  | u64 left_gen; | 
|  | u64 right_gen; | 
|  | u64 reada_min_gen; | 
|  |  | 
|  | left_path = btrfs_alloc_path(); | 
|  | if (!left_path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | right_path = btrfs_alloc_path(); | 
|  | if (!right_path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); | 
|  | if (!tmp_buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | left_path->search_commit_root = 1; | 
|  | left_path->skip_locking = 1; | 
|  | right_path->search_commit_root = 1; | 
|  | right_path->skip_locking = 1; | 
|  |  | 
|  | /* | 
|  | * Strategy: Go to the first items of both trees. Then do | 
|  | * | 
|  | * If both trees are at level 0 | 
|  | *   Compare keys of current items | 
|  | *     If left < right treat left item as new, advance left tree | 
|  | *       and repeat | 
|  | *     If left > right treat right item as deleted, advance right tree | 
|  | *       and repeat | 
|  | *     If left == right do deep compare of items, treat as changed if | 
|  | *       needed, advance both trees and repeat | 
|  | * If both trees are at the same level but not at level 0 | 
|  | *   Compare keys of current nodes/leafs | 
|  | *     If left < right advance left tree and repeat | 
|  | *     If left > right advance right tree and repeat | 
|  | *     If left == right compare blockptrs of the next nodes/leafs | 
|  | *       If they match advance both trees but stay at the same level | 
|  | *         and repeat | 
|  | *       If they don't match advance both trees while allowing to go | 
|  | *         deeper and repeat | 
|  | * If tree levels are different | 
|  | *   Advance the tree that needs it and repeat | 
|  | * | 
|  | * Advancing a tree means: | 
|  | *   If we are at level 0, try to go to the next slot. If that's not | 
|  | *   possible, go one level up and repeat. Stop when we found a level | 
|  | *   where we could go to the next slot. We may at this point be on a | 
|  | *   node or a leaf. | 
|  | * | 
|  | *   If we are not at level 0 and not on shared tree blocks, go one | 
|  | *   level deeper. | 
|  | * | 
|  | *   If we are not at level 0 and on shared tree blocks, go one slot to | 
|  | *   the right if possible or go up and right. | 
|  | */ | 
|  |  | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | left_level = btrfs_header_level(left_root->commit_root); | 
|  | left_root_level = left_level; | 
|  | /* | 
|  | * We clone the root node of the send and parent roots to prevent races | 
|  | * with snapshot creation of these roots. Snapshot creation COWs the | 
|  | * root node of a tree, so after the transaction is committed the old | 
|  | * extent can be reallocated while this send operation is still ongoing. | 
|  | * So we clone them, under the commit root semaphore, to be race free. | 
|  | */ | 
|  | left_path->nodes[left_level] = | 
|  | btrfs_clone_extent_buffer(left_root->commit_root); | 
|  | if (!left_path->nodes[left_level]) { | 
|  | ret = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | right_level = btrfs_header_level(right_root->commit_root); | 
|  | right_root_level = right_level; | 
|  | right_path->nodes[right_level] = | 
|  | btrfs_clone_extent_buffer(right_root->commit_root); | 
|  | if (!right_path->nodes[right_level]) { | 
|  | ret = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* | 
|  | * Our right root is the parent root, while the left root is the "send" | 
|  | * root. We know that all new nodes/leaves in the left root must have | 
|  | * a generation greater than the right root's generation, so we trigger | 
|  | * readahead for those nodes and leaves of the left root, as we know we | 
|  | * will need to read them at some point. | 
|  | */ | 
|  | reada_min_gen = btrfs_header_generation(right_root->commit_root); | 
|  |  | 
|  | if (left_level == 0) | 
|  | btrfs_item_key_to_cpu(left_path->nodes[left_level], | 
|  | &left_key, left_path->slots[left_level]); | 
|  | else | 
|  | btrfs_node_key_to_cpu(left_path->nodes[left_level], | 
|  | &left_key, left_path->slots[left_level]); | 
|  | if (right_level == 0) | 
|  | btrfs_item_key_to_cpu(right_path->nodes[right_level], | 
|  | &right_key, right_path->slots[right_level]); | 
|  | else | 
|  | btrfs_node_key_to_cpu(right_path->nodes[right_level], | 
|  | &right_key, right_path->slots[right_level]); | 
|  |  | 
|  | sctx->last_reloc_trans = fs_info->last_reloc_trans; | 
|  |  | 
|  | while (1) { | 
|  | if (need_resched() || | 
|  | rwsem_is_contended(&fs_info->commit_root_sem)) { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | cond_resched(); | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | } | 
|  |  | 
|  | if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { | 
|  | ret = restart_after_relocation(left_path, right_path, | 
|  | &left_key, &right_key, | 
|  | left_level, right_level, | 
|  | sctx); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  | sctx->last_reloc_trans = fs_info->last_reloc_trans; | 
|  | } | 
|  |  | 
|  | if (advance_left && !left_end_reached) { | 
|  | ret = tree_advance(left_path, &left_level, | 
|  | left_root_level, | 
|  | advance_left != ADVANCE_ONLY_NEXT, | 
|  | &left_key, reada_min_gen); | 
|  | if (ret == -1) | 
|  | left_end_reached = ADVANCE; | 
|  | else if (ret < 0) | 
|  | goto out_unlock; | 
|  | advance_left = 0; | 
|  | } | 
|  | if (advance_right && !right_end_reached) { | 
|  | ret = tree_advance(right_path, &right_level, | 
|  | right_root_level, | 
|  | advance_right != ADVANCE_ONLY_NEXT, | 
|  | &right_key, reada_min_gen); | 
|  | if (ret == -1) | 
|  | right_end_reached = ADVANCE; | 
|  | else if (ret < 0) | 
|  | goto out_unlock; | 
|  | advance_right = 0; | 
|  | } | 
|  |  | 
|  | if (left_end_reached && right_end_reached) { | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } else if (left_end_reached) { | 
|  | if (right_level == 0) { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &right_key, | 
|  | BTRFS_COMPARE_TREE_DELETED, | 
|  | sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | } | 
|  | advance_right = ADVANCE; | 
|  | continue; | 
|  | } else if (right_end_reached) { | 
|  | if (left_level == 0) { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &left_key, | 
|  | BTRFS_COMPARE_TREE_NEW, | 
|  | sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | } | 
|  | advance_left = ADVANCE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (left_level == 0 && right_level == 0) { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | cmp = btrfs_comp_cpu_keys(&left_key, &right_key); | 
|  | if (cmp < 0) { | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &left_key, | 
|  | BTRFS_COMPARE_TREE_NEW, | 
|  | sctx); | 
|  | advance_left = ADVANCE; | 
|  | } else if (cmp > 0) { | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &right_key, | 
|  | BTRFS_COMPARE_TREE_DELETED, | 
|  | sctx); | 
|  | advance_right = ADVANCE; | 
|  | } else { | 
|  | enum btrfs_compare_tree_result result; | 
|  |  | 
|  | WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); | 
|  | ret = tree_compare_item(left_path, right_path, | 
|  | tmp_buf); | 
|  | if (ret) | 
|  | result = BTRFS_COMPARE_TREE_CHANGED; | 
|  | else | 
|  | result = BTRFS_COMPARE_TREE_SAME; | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &left_key, result, sctx); | 
|  | advance_left = ADVANCE; | 
|  | advance_right = ADVANCE; | 
|  | } | 
|  |  | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | } else if (left_level == right_level) { | 
|  | cmp = btrfs_comp_cpu_keys(&left_key, &right_key); | 
|  | if (cmp < 0) { | 
|  | advance_left = ADVANCE; | 
|  | } else if (cmp > 0) { | 
|  | advance_right = ADVANCE; | 
|  | } else { | 
|  | left_blockptr = btrfs_node_blockptr( | 
|  | left_path->nodes[left_level], | 
|  | left_path->slots[left_level]); | 
|  | right_blockptr = btrfs_node_blockptr( | 
|  | right_path->nodes[right_level], | 
|  | right_path->slots[right_level]); | 
|  | left_gen = btrfs_node_ptr_generation( | 
|  | left_path->nodes[left_level], | 
|  | left_path->slots[left_level]); | 
|  | right_gen = btrfs_node_ptr_generation( | 
|  | right_path->nodes[right_level], | 
|  | right_path->slots[right_level]); | 
|  | if (left_blockptr == right_blockptr && | 
|  | left_gen == right_gen) { | 
|  | /* | 
|  | * As we're on a shared block, don't | 
|  | * allow to go deeper. | 
|  | */ | 
|  | advance_left = ADVANCE_ONLY_NEXT; | 
|  | advance_right = ADVANCE_ONLY_NEXT; | 
|  | } else { | 
|  | advance_left = ADVANCE; | 
|  | advance_right = ADVANCE; | 
|  | } | 
|  | } | 
|  | } else if (left_level < right_level) { | 
|  | advance_right = ADVANCE; | 
|  | } else { | 
|  | advance_left = ADVANCE; | 
|  | } | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | out: | 
|  | kvfree(tmp_buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_subvol(struct send_ctx *sctx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { | 
|  | ret = send_header(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = send_subvol_begin(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (sctx->parent_root) { | 
|  | ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = finish_inode_if_needed(sctx, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } else { | 
|  | ret = full_send_tree(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | free_recorded_refs(sctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If orphan cleanup did remove any orphans from a root, it means the tree | 
|  | * was modified and therefore the commit root is not the same as the current | 
|  | * root anymore. This is a problem, because send uses the commit root and | 
|  | * therefore can see inode items that don't exist in the current root anymore, | 
|  | * and for example make calls to btrfs_iget, which will do tree lookups based | 
|  | * on the current root and not on the commit root. Those lookups will fail, | 
|  | * returning a -ESTALE error, and making send fail with that error. So make | 
|  | * sure a send does not see any orphans we have just removed, and that it will | 
|  | * see the same inodes regardless of whether a transaction commit happened | 
|  | * before it started (meaning that the commit root will be the same as the | 
|  | * current root) or not. | 
|  | */ | 
|  | static int ensure_commit_roots_uptodate(struct send_ctx *sctx) | 
|  | { | 
|  | struct btrfs_root *root = sctx->parent_root; | 
|  |  | 
|  | if (root && root->node != root->commit_root) | 
|  | return btrfs_commit_current_transaction(root); | 
|  |  | 
|  | for (int i = 0; i < sctx->clone_roots_cnt; i++) { | 
|  | root = sctx->clone_roots[i].root; | 
|  | if (root->node != root->commit_root) | 
|  | return btrfs_commit_current_transaction(root); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure any existing delalloc is flushed for any root used by a send | 
|  | * operation so that we do not miss any data and we do not race with writeback | 
|  | * finishing and changing a tree while send is using the tree. This could | 
|  | * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and | 
|  | * a send operation then uses the subvolume. | 
|  | * After flushing delalloc ensure_commit_roots_uptodate() must be called. | 
|  | */ | 
|  | static int flush_delalloc_roots(struct send_ctx *sctx) | 
|  | { | 
|  | struct btrfs_root *root = sctx->parent_root; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | if (root) { | 
|  | ret = btrfs_start_delalloc_snapshot(root, false); | 
|  | if (ret) | 
|  | return ret; | 
|  | btrfs_wait_ordered_extents(root, U64_MAX, NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < sctx->clone_roots_cnt; i++) { | 
|  | root = sctx->clone_roots[i].root; | 
|  | ret = btrfs_start_delalloc_snapshot(root, false); | 
|  | if (ret) | 
|  | return ret; | 
|  | btrfs_wait_ordered_extents(root, U64_MAX, NULL); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) | 
|  | { | 
|  | spin_lock(&root->root_item_lock); | 
|  | root->send_in_progress--; | 
|  | /* | 
|  | * Not much left to do, we don't know why it's unbalanced and | 
|  | * can't blindly reset it to 0. | 
|  | */ | 
|  | if (root->send_in_progress < 0) | 
|  | btrfs_err(root->fs_info, | 
|  | "send_in_progress unbalanced %d root %llu", | 
|  | root->send_in_progress, btrfs_root_id(root)); | 
|  | spin_unlock(&root->root_item_lock); | 
|  | } | 
|  |  | 
|  | static void dedupe_in_progress_warn(const struct btrfs_root *root) | 
|  | { | 
|  | btrfs_warn_rl(root->fs_info, | 
|  | "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", | 
|  | btrfs_root_id(root), root->dedupe_in_progress); | 
|  | } | 
|  |  | 
|  | long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_fs_info *fs_info = send_root->fs_info; | 
|  | struct btrfs_root *clone_root; | 
|  | struct send_ctx *sctx = NULL; | 
|  | u32 i; | 
|  | u64 *clone_sources_tmp = NULL; | 
|  | int clone_sources_to_rollback = 0; | 
|  | size_t alloc_size; | 
|  | int sort_clone_roots = 0; | 
|  | struct btrfs_lru_cache_entry *entry; | 
|  | struct btrfs_lru_cache_entry *tmp; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * The subvolume must remain read-only during send, protect against | 
|  | * making it RW. This also protects against deletion. | 
|  | */ | 
|  | spin_lock(&send_root->root_item_lock); | 
|  | /* | 
|  | * Unlikely but possible, if the subvolume is marked for deletion but | 
|  | * is slow to remove the directory entry, send can still be started. | 
|  | */ | 
|  | if (btrfs_root_dead(send_root)) { | 
|  | spin_unlock(&send_root->root_item_lock); | 
|  | return -EPERM; | 
|  | } | 
|  | /* Userspace tools do the checks and warn the user if it's not RO. */ | 
|  | if (!btrfs_root_readonly(send_root)) { | 
|  | spin_unlock(&send_root->root_item_lock); | 
|  | return -EPERM; | 
|  | } | 
|  | if (send_root->dedupe_in_progress) { | 
|  | dedupe_in_progress_warn(send_root); | 
|  | spin_unlock(&send_root->root_item_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  | send_root->send_in_progress++; | 
|  | spin_unlock(&send_root->root_item_lock); | 
|  |  | 
|  | /* | 
|  | * Check that we don't overflow at later allocations, we request | 
|  | * clone_sources_count + 1 items, and compare to unsigned long inside | 
|  | * access_ok. Also set an upper limit for allocation size so this can't | 
|  | * easily exhaust memory. Max number of clone sources is about 200K. | 
|  | */ | 
|  | if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { | 
|  | ret = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); | 
|  | if (!sctx) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | init_path(&sctx->cur_inode_path); | 
|  | INIT_LIST_HEAD(&sctx->new_refs); | 
|  | INIT_LIST_HEAD(&sctx->deleted_refs); | 
|  |  | 
|  | btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); | 
|  | btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); | 
|  | btrfs_lru_cache_init(&sctx->dir_created_cache, | 
|  | SEND_MAX_DIR_CREATED_CACHE_SIZE); | 
|  | /* | 
|  | * This cache is periodically trimmed to a fixed size elsewhere, see | 
|  | * cache_dir_utimes() and trim_dir_utimes_cache(). | 
|  | */ | 
|  | btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); | 
|  |  | 
|  | sctx->pending_dir_moves = RB_ROOT; | 
|  | sctx->waiting_dir_moves = RB_ROOT; | 
|  | sctx->orphan_dirs = RB_ROOT; | 
|  | sctx->rbtree_new_refs = RB_ROOT; | 
|  | sctx->rbtree_deleted_refs = RB_ROOT; | 
|  |  | 
|  | sctx->flags = arg->flags; | 
|  |  | 
|  | if (arg->flags & BTRFS_SEND_FLAG_VERSION) { | 
|  | if (arg->version > BTRFS_SEND_STREAM_VERSION) { | 
|  | ret = -EPROTO; | 
|  | goto out; | 
|  | } | 
|  | /* Zero means "use the highest version" */ | 
|  | sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; | 
|  | } else { | 
|  | sctx->proto = 1; | 
|  | } | 
|  | if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sctx->send_filp = fget(arg->send_fd); | 
|  | if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { | 
|  | ret = -EBADF; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sctx->send_root = send_root; | 
|  | sctx->clone_roots_cnt = arg->clone_sources_count; | 
|  |  | 
|  | if (sctx->proto >= 2) { | 
|  | u32 send_buf_num_pages; | 
|  |  | 
|  | sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; | 
|  | sctx->send_buf = vmalloc(sctx->send_max_size); | 
|  | if (!sctx->send_buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; | 
|  | sctx->send_buf_pages = kcalloc(send_buf_num_pages, | 
|  | sizeof(*sctx->send_buf_pages), | 
|  | GFP_KERNEL); | 
|  | if (!sctx->send_buf_pages) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | for (i = 0; i < send_buf_num_pages; i++) { | 
|  | sctx->send_buf_pages[i] = | 
|  | vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); | 
|  | } | 
|  | } else { | 
|  | sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; | 
|  | sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); | 
|  | } | 
|  | if (!sctx->send_buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, | 
|  | sizeof(*sctx->clone_roots), | 
|  | GFP_KERNEL); | 
|  | if (!sctx->clone_roots) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | alloc_size = array_size(sizeof(*arg->clone_sources), | 
|  | arg->clone_sources_count); | 
|  |  | 
|  | if (arg->clone_sources_count) { | 
|  | clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); | 
|  | if (!clone_sources_tmp) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = copy_from_user(clone_sources_tmp, arg->clone_sources, | 
|  | alloc_size); | 
|  | if (ret) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < arg->clone_sources_count; i++) { | 
|  | clone_root = btrfs_get_fs_root(fs_info, | 
|  | clone_sources_tmp[i], true); | 
|  | if (IS_ERR(clone_root)) { | 
|  | ret = PTR_ERR(clone_root); | 
|  | goto out; | 
|  | } | 
|  | spin_lock(&clone_root->root_item_lock); | 
|  | if (!btrfs_root_readonly(clone_root) || | 
|  | btrfs_root_dead(clone_root)) { | 
|  | spin_unlock(&clone_root->root_item_lock); | 
|  | btrfs_put_root(clone_root); | 
|  | ret = -EPERM; | 
|  | goto out; | 
|  | } | 
|  | if (clone_root->dedupe_in_progress) { | 
|  | dedupe_in_progress_warn(clone_root); | 
|  | spin_unlock(&clone_root->root_item_lock); | 
|  | btrfs_put_root(clone_root); | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | clone_root->send_in_progress++; | 
|  | spin_unlock(&clone_root->root_item_lock); | 
|  |  | 
|  | sctx->clone_roots[i].root = clone_root; | 
|  | clone_sources_to_rollback = i + 1; | 
|  | } | 
|  | kvfree(clone_sources_tmp); | 
|  | clone_sources_tmp = NULL; | 
|  | } | 
|  |  | 
|  | if (arg->parent_root) { | 
|  | sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, | 
|  | true); | 
|  | if (IS_ERR(sctx->parent_root)) { | 
|  | ret = PTR_ERR(sctx->parent_root); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | spin_lock(&sctx->parent_root->root_item_lock); | 
|  | sctx->parent_root->send_in_progress++; | 
|  | if (!btrfs_root_readonly(sctx->parent_root) || | 
|  | btrfs_root_dead(sctx->parent_root)) { | 
|  | spin_unlock(&sctx->parent_root->root_item_lock); | 
|  | ret = -EPERM; | 
|  | goto out; | 
|  | } | 
|  | if (sctx->parent_root->dedupe_in_progress) { | 
|  | dedupe_in_progress_warn(sctx->parent_root); | 
|  | spin_unlock(&sctx->parent_root->root_item_lock); | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | spin_unlock(&sctx->parent_root->root_item_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clones from send_root are allowed, but only if the clone source | 
|  | * is behind the current send position. This is checked while searching | 
|  | * for possible clone sources. | 
|  | */ | 
|  | sctx->clone_roots[sctx->clone_roots_cnt++].root = | 
|  | btrfs_grab_root(sctx->send_root); | 
|  |  | 
|  | /* We do a bsearch later */ | 
|  | sort(sctx->clone_roots, sctx->clone_roots_cnt, | 
|  | sizeof(*sctx->clone_roots), __clone_root_cmp_sort, | 
|  | NULL); | 
|  | sort_clone_roots = 1; | 
|  |  | 
|  | ret = flush_delalloc_roots(sctx); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = ensure_commit_roots_uptodate(sctx); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = send_subvol(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { | 
|  | ret = send_utimes(sctx, entry->key, entry->gen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); | 
|  | } | 
|  |  | 
|  | if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { | 
|  | ret = begin_cmd(sctx, BTRFS_SEND_C_END); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = send_cmd(sctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); | 
|  | while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { | 
|  | struct rb_node *n; | 
|  | struct pending_dir_move *pm; | 
|  |  | 
|  | n = rb_first(&sctx->pending_dir_moves); | 
|  | pm = rb_entry(n, struct pending_dir_move, node); | 
|  | while (!list_empty(&pm->list)) { | 
|  | struct pending_dir_move *pm2; | 
|  |  | 
|  | pm2 = list_first_entry(&pm->list, | 
|  | struct pending_dir_move, list); | 
|  | free_pending_move(sctx, pm2); | 
|  | } | 
|  | free_pending_move(sctx, pm); | 
|  | } | 
|  |  | 
|  | WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); | 
|  | while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { | 
|  | struct rb_node *n; | 
|  | struct waiting_dir_move *dm; | 
|  |  | 
|  | n = rb_first(&sctx->waiting_dir_moves); | 
|  | dm = rb_entry(n, struct waiting_dir_move, node); | 
|  | rb_erase(&dm->node, &sctx->waiting_dir_moves); | 
|  | kfree(dm); | 
|  | } | 
|  |  | 
|  | WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); | 
|  | while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { | 
|  | struct rb_node *n; | 
|  | struct orphan_dir_info *odi; | 
|  |  | 
|  | n = rb_first(&sctx->orphan_dirs); | 
|  | odi = rb_entry(n, struct orphan_dir_info, node); | 
|  | free_orphan_dir_info(sctx, odi); | 
|  | } | 
|  |  | 
|  | if (sort_clone_roots) { | 
|  | for (i = 0; i < sctx->clone_roots_cnt; i++) { | 
|  | btrfs_root_dec_send_in_progress( | 
|  | sctx->clone_roots[i].root); | 
|  | btrfs_put_root(sctx->clone_roots[i].root); | 
|  | } | 
|  | } else { | 
|  | for (i = 0; sctx && i < clone_sources_to_rollback; i++) { | 
|  | btrfs_root_dec_send_in_progress( | 
|  | sctx->clone_roots[i].root); | 
|  | btrfs_put_root(sctx->clone_roots[i].root); | 
|  | } | 
|  |  | 
|  | btrfs_root_dec_send_in_progress(send_root); | 
|  | } | 
|  | if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { | 
|  | btrfs_root_dec_send_in_progress(sctx->parent_root); | 
|  | btrfs_put_root(sctx->parent_root); | 
|  | } | 
|  |  | 
|  | kvfree(clone_sources_tmp); | 
|  |  | 
|  | if (sctx) { | 
|  | if (sctx->send_filp) | 
|  | fput(sctx->send_filp); | 
|  |  | 
|  | kvfree(sctx->clone_roots); | 
|  | kfree(sctx->send_buf_pages); | 
|  | kvfree(sctx->send_buf); | 
|  | kvfree(sctx->verity_descriptor); | 
|  |  | 
|  | close_current_inode(sctx); | 
|  |  | 
|  | btrfs_lru_cache_clear(&sctx->name_cache); | 
|  | btrfs_lru_cache_clear(&sctx->backref_cache); | 
|  | btrfs_lru_cache_clear(&sctx->dir_created_cache); | 
|  | btrfs_lru_cache_clear(&sctx->dir_utimes_cache); | 
|  |  | 
|  | if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf) | 
|  | kfree(sctx->cur_inode_path.buf); | 
|  |  | 
|  | kfree(sctx); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } |