|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *  linux/fs/ext4/file.c | 
|  | * | 
|  | * Copyright (C) 1992, 1993, 1994, 1995 | 
|  | * Remy Card (card@masi.ibp.fr) | 
|  | * Laboratoire MASI - Institut Blaise Pascal | 
|  | * Universite Pierre et Marie Curie (Paris VI) | 
|  | * | 
|  | *  from | 
|  | * | 
|  | *  linux/fs/minix/file.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  ext4 fs regular file handling primitives | 
|  | * | 
|  | *  64-bit file support on 64-bit platforms by Jakub Jelinek | 
|  | *	(jj@sunsite.ms.mff.cuni.cz) | 
|  | */ | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/iomap.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/path.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include "ext4.h" | 
|  | #include "ext4_jbd2.h" | 
|  | #include "xattr.h" | 
|  | #include "acl.h" | 
|  | #include "truncate.h" | 
|  |  | 
|  | /* | 
|  | * Returns %true if the given DIO request should be attempted with DIO, or | 
|  | * %false if it should fall back to buffered I/O. | 
|  | * | 
|  | * DIO isn't well specified; when it's unsupported (either due to the request | 
|  | * being misaligned, or due to the file not supporting DIO at all), filesystems | 
|  | * either fall back to buffered I/O or return EINVAL.  For files that don't use | 
|  | * any special features like encryption or verity, ext4 has traditionally | 
|  | * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too. | 
|  | * In this case, we should attempt the DIO, *not* fall back to buffered I/O. | 
|  | * | 
|  | * In contrast, in cases where DIO is unsupported due to ext4 features, ext4 | 
|  | * traditionally falls back to buffered I/O. | 
|  | * | 
|  | * This function implements the traditional ext4 behavior in all these cases. | 
|  | */ | 
|  | static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter) | 
|  | { | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  | u32 dio_align = ext4_dio_alignment(inode); | 
|  |  | 
|  | if (dio_align == 0) | 
|  | return false; | 
|  |  | 
|  | if (dio_align == 1) | 
|  | return true; | 
|  |  | 
|  | return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align); | 
|  | } | 
|  |  | 
|  | static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | ssize_t ret; | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | if (!inode_trylock_shared(inode)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | inode_lock_shared(inode); | 
|  | } | 
|  |  | 
|  | if (!ext4_should_use_dio(iocb, to)) { | 
|  | inode_unlock_shared(inode); | 
|  | /* | 
|  | * Fallback to buffered I/O if the operation being performed on | 
|  | * the inode is not supported by direct I/O. The IOCB_DIRECT | 
|  | * flag needs to be cleared here in order to ensure that the | 
|  | * direct I/O path within generic_file_read_iter() is not | 
|  | * taken. | 
|  | */ | 
|  | iocb->ki_flags &= ~IOCB_DIRECT; | 
|  | return generic_file_read_iter(iocb, to); | 
|  | } | 
|  |  | 
|  | ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0); | 
|  | inode_unlock_shared(inode); | 
|  |  | 
|  | file_accessed(iocb->ki_filp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FS_DAX | 
|  | static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  | ssize_t ret; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | if (!inode_trylock_shared(inode)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | inode_lock_shared(inode); | 
|  | } | 
|  | /* | 
|  | * Recheck under inode lock - at this point we are sure it cannot | 
|  | * change anymore | 
|  | */ | 
|  | if (!IS_DAX(inode)) { | 
|  | inode_unlock_shared(inode); | 
|  | /* Fallback to buffered IO in case we cannot support DAX */ | 
|  | return generic_file_read_iter(iocb, to); | 
|  | } | 
|  | ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops); | 
|  | inode_unlock_shared(inode); | 
|  |  | 
|  | file_accessed(iocb->ki_filp); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  |  | 
|  | if (unlikely(ext4_forced_shutdown(inode->i_sb))) | 
|  | return -EIO; | 
|  |  | 
|  | if (!iov_iter_count(to)) | 
|  | return 0; /* skip atime */ | 
|  |  | 
|  | #ifdef CONFIG_FS_DAX | 
|  | if (IS_DAX(inode)) | 
|  | return ext4_dax_read_iter(iocb, to); | 
|  | #endif | 
|  | if (iocb->ki_flags & IOCB_DIRECT) | 
|  | return ext4_dio_read_iter(iocb, to); | 
|  |  | 
|  | return generic_file_read_iter(iocb, to); | 
|  | } | 
|  |  | 
|  | static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos, | 
|  | struct pipe_inode_info *pipe, | 
|  | size_t len, unsigned int flags) | 
|  | { | 
|  | struct inode *inode = file_inode(in); | 
|  |  | 
|  | if (unlikely(ext4_forced_shutdown(inode->i_sb))) | 
|  | return -EIO; | 
|  | return filemap_splice_read(in, ppos, pipe, len, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when an inode is released. Note that this is different | 
|  | * from ext4_file_open: open gets called at every open, but release | 
|  | * gets called only when /all/ the files are closed. | 
|  | */ | 
|  | static int ext4_release_file(struct inode *inode, struct file *filp) | 
|  | { | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { | 
|  | ext4_alloc_da_blocks(inode); | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); | 
|  | } | 
|  | /* if we are the last writer on the inode, drop the block reservation */ | 
|  | if ((filp->f_mode & FMODE_WRITE) && | 
|  | (atomic_read(&inode->i_writecount) == 1) && | 
|  | !EXT4_I(inode)->i_reserved_data_blocks) { | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | ext4_discard_preallocations(inode); | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | } | 
|  | if (is_dx(inode) && filp->private_data) | 
|  | ext4_htree_free_dir_info(filp->private_data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This tests whether the IO in question is block-aligned or not. | 
|  | * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they | 
|  | * are converted to written only after the IO is complete.  Until they are | 
|  | * mapped, these blocks appear as holes, so dio_zero_block() will assume that | 
|  | * it needs to zero out portions of the start and/or end block.  If 2 AIO | 
|  | * threads are at work on the same unwritten block, they must be synchronized | 
|  | * or one thread will zero the other's data, causing corruption. | 
|  | */ | 
|  | static bool | 
|  | ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | unsigned long blockmask = sb->s_blocksize - 1; | 
|  |  | 
|  | if ((pos | iov_iter_alignment(from)) & blockmask) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | ext4_extending_io(struct inode *inode, loff_t offset, size_t len) | 
|  | { | 
|  | if (offset + len > i_size_read(inode) || | 
|  | offset + len > EXT4_I(inode)->i_disksize) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Is IO overwriting allocated or initialized blocks? */ | 
|  | static bool ext4_overwrite_io(struct inode *inode, | 
|  | loff_t pos, loff_t len, bool *unwritten) | 
|  | { | 
|  | struct ext4_map_blocks map; | 
|  | unsigned int blkbits = inode->i_blkbits; | 
|  | int err, blklen; | 
|  |  | 
|  | if (pos + len > i_size_read(inode)) | 
|  | return false; | 
|  |  | 
|  | map.m_lblk = pos >> blkbits; | 
|  | map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); | 
|  | blklen = map.m_len; | 
|  |  | 
|  | err = ext4_map_blocks(NULL, inode, &map, 0); | 
|  | if (err != blklen) | 
|  | return false; | 
|  | /* | 
|  | * 'err==len' means that all of the blocks have been preallocated, | 
|  | * regardless of whether they have been initialized or not. We need to | 
|  | * check m_flags to distinguish the unwritten extents. | 
|  | */ | 
|  | *unwritten = !(map.m_flags & EXT4_MAP_MAPPED); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ssize_t ext4_generic_write_checks(struct kiocb *iocb, | 
|  | struct iov_iter *from) | 
|  | { | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  | ssize_t ret; | 
|  |  | 
|  | if (unlikely(IS_IMMUTABLE(inode))) | 
|  | return -EPERM; | 
|  |  | 
|  | ret = generic_write_checks(iocb, from); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If we have encountered a bitmap-format file, the size limit | 
|  | * is smaller than s_maxbytes, which is for extent-mapped files. | 
|  | */ | 
|  | if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  |  | 
|  | if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) | 
|  | return -EFBIG; | 
|  | iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); | 
|  | } | 
|  |  | 
|  | return iov_iter_count(from); | 
|  | } | 
|  |  | 
|  | static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | ssize_t ret, count; | 
|  |  | 
|  | count = ext4_generic_write_checks(iocb, from); | 
|  | if (count <= 0) | 
|  | return count; | 
|  |  | 
|  | ret = file_modified(iocb->ki_filp); | 
|  | if (ret) | 
|  | return ret; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t ext4_buffered_write_iter(struct kiocb *iocb, | 
|  | struct iov_iter *from) | 
|  | { | 
|  | ssize_t ret; | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | inode_lock(inode); | 
|  | ret = ext4_write_checks(iocb, from); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  |  | 
|  | ret = generic_perform_write(iocb, from); | 
|  |  | 
|  | out: | 
|  | inode_unlock(inode); | 
|  | if (unlikely(ret <= 0)) | 
|  | return ret; | 
|  | return generic_write_sync(iocb, ret); | 
|  | } | 
|  |  | 
|  | static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset, | 
|  | ssize_t written, ssize_t count) | 
|  | { | 
|  | handle_t *handle; | 
|  |  | 
|  | lockdep_assert_held_write(&inode->i_rwsem); | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); | 
|  | if (IS_ERR(handle)) | 
|  | return PTR_ERR(handle); | 
|  |  | 
|  | if (ext4_update_inode_size(inode, offset + written)) { | 
|  | int ret = ext4_mark_inode_dirty(handle, inode); | 
|  | if (unlikely(ret)) { | 
|  | ext4_journal_stop(handle); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((written == count) && inode->i_nlink) | 
|  | ext4_orphan_del(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  |  | 
|  | return written; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up the inode after DIO or DAX extending write has completed and the | 
|  | * inode size has been updated using ext4_handle_inode_extension(). | 
|  | */ | 
|  | static void ext4_inode_extension_cleanup(struct inode *inode, bool need_trunc) | 
|  | { | 
|  | lockdep_assert_held_write(&inode->i_rwsem); | 
|  | if (need_trunc) { | 
|  | ext4_truncate_failed_write(inode); | 
|  | /* | 
|  | * If the truncate operation failed early, then the inode may | 
|  | * still be on the orphan list. In that case, we need to try | 
|  | * remove the inode from the in-memory linked list. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(NULL, inode); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * If i_disksize got extended either due to writeback of delalloc | 
|  | * blocks or extending truncate while the DIO was running we could fail | 
|  | * to cleanup the orphan list in ext4_handle_inode_extension(). Do it | 
|  | * now. | 
|  | */ | 
|  | if (ext4_inode_orphan_tracked(inode) && inode->i_nlink) { | 
|  | handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); | 
|  |  | 
|  | if (IS_ERR(handle)) { | 
|  | /* | 
|  | * The write has successfully completed. Not much to | 
|  | * do with the error here so just cleanup the orphan | 
|  | * list and hope for the best. | 
|  | */ | 
|  | ext4_orphan_del(NULL, inode); | 
|  | return; | 
|  | } | 
|  | ext4_orphan_del(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size, | 
|  | int error, unsigned int flags) | 
|  | { | 
|  | loff_t pos = iocb->ki_pos; | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  |  | 
|  |  | 
|  | if (!error && size && (flags & IOMAP_DIO_UNWRITTEN) && | 
|  | (iocb->ki_flags & IOCB_ATOMIC)) | 
|  | error = ext4_convert_unwritten_extents_atomic(NULL, inode, pos, | 
|  | size); | 
|  | else if (!error && size && flags & IOMAP_DIO_UNWRITTEN) | 
|  | error = ext4_convert_unwritten_extents(NULL, inode, pos, size); | 
|  | if (error) | 
|  | return error; | 
|  | /* | 
|  | * Note that EXT4_I(inode)->i_disksize can get extended up to | 
|  | * inode->i_size while the I/O was running due to writeback of delalloc | 
|  | * blocks. But the code in ext4_iomap_alloc() is careful to use | 
|  | * zeroed/unwritten extents if this is possible; thus we won't leave | 
|  | * uninitialized blocks in a file even if we didn't succeed in writing | 
|  | * as much as we intended. Also we can race with truncate or write | 
|  | * expanding the file so we have to be a bit careful here. | 
|  | */ | 
|  | if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) && | 
|  | pos + size <= i_size_read(inode)) | 
|  | return 0; | 
|  | error = ext4_handle_inode_extension(inode, pos, size, size); | 
|  | return error < 0 ? error : 0; | 
|  | } | 
|  |  | 
|  | static const struct iomap_dio_ops ext4_dio_write_ops = { | 
|  | .end_io = ext4_dio_write_end_io, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The intention here is to start with shared lock acquired then see if any | 
|  | * condition requires an exclusive inode lock. If yes, then we restart the | 
|  | * whole operation by releasing the shared lock and acquiring exclusive lock. | 
|  | * | 
|  | * - For unaligned_io we never take shared lock as it may cause data corruption | 
|  | *   when two unaligned IO tries to modify the same block e.g. while zeroing. | 
|  | * | 
|  | * - For extending writes case we don't take the shared lock, since it requires | 
|  | *   updating inode i_disksize and/or orphan handling with exclusive lock. | 
|  | * | 
|  | * - shared locking will only be true mostly with overwrites, including | 
|  | *   initialized blocks and unwritten blocks. For overwrite unwritten blocks | 
|  | *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can | 
|  | *   also release exclusive i_rwsem lock. | 
|  | * | 
|  | * - Otherwise we will switch to exclusive i_rwsem lock. | 
|  | */ | 
|  | static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from, | 
|  | bool *ilock_shared, bool *extend, | 
|  | bool *unwritten, int *dio_flags) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file_inode(file); | 
|  | loff_t offset; | 
|  | size_t count; | 
|  | ssize_t ret; | 
|  | bool overwrite, unaligned_io; | 
|  |  | 
|  | restart: | 
|  | ret = ext4_generic_write_checks(iocb, from); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  |  | 
|  | offset = iocb->ki_pos; | 
|  | count = ret; | 
|  |  | 
|  | unaligned_io = ext4_unaligned_io(inode, from, offset); | 
|  | *extend = ext4_extending_io(inode, offset, count); | 
|  | overwrite = ext4_overwrite_io(inode, offset, count, unwritten); | 
|  |  | 
|  | /* | 
|  | * Determine whether we need to upgrade to an exclusive lock. This is | 
|  | * required to change security info in file_modified(), for extending | 
|  | * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten | 
|  | * extents (as partial block zeroing may be required). | 
|  | * | 
|  | * Note that unaligned writes are allowed under shared lock so long as | 
|  | * they are pure overwrites. Otherwise, concurrent unaligned writes risk | 
|  | * data corruption due to partial block zeroing in the dio layer, and so | 
|  | * the I/O must occur exclusively. | 
|  | */ | 
|  | if (*ilock_shared && | 
|  | ((!IS_NOSEC(inode) || *extend || !overwrite || | 
|  | (unaligned_io && *unwritten)))) { | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | inode_unlock_shared(inode); | 
|  | *ilock_shared = false; | 
|  | inode_lock(inode); | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that locking is settled, determine dio flags and exclusivity | 
|  | * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce | 
|  | * behavior already. The inode lock is already held exclusive if the | 
|  | * write is non-overwrite or extending, so drain all outstanding dio and | 
|  | * set the force wait dio flag. | 
|  | */ | 
|  | if (!*ilock_shared && (unaligned_io || *extend)) { | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | ret = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | if (unaligned_io && (!overwrite || *unwritten)) | 
|  | inode_dio_wait(inode); | 
|  | *dio_flags = IOMAP_DIO_FORCE_WAIT; | 
|  | } | 
|  |  | 
|  | ret = file_modified(file); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | return count; | 
|  | out: | 
|  | if (*ilock_shared) | 
|  | inode_unlock_shared(inode); | 
|  | else | 
|  | inode_unlock(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | ssize_t ret; | 
|  | handle_t *handle; | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  | loff_t offset = iocb->ki_pos; | 
|  | size_t count = iov_iter_count(from); | 
|  | const struct iomap_ops *iomap_ops = &ext4_iomap_ops; | 
|  | bool extend = false, unwritten = false; | 
|  | bool ilock_shared = true; | 
|  | int dio_flags = 0; | 
|  |  | 
|  | /* | 
|  | * Quick check here without any i_rwsem lock to see if it is extending | 
|  | * IO. A more reliable check is done in ext4_dio_write_checks() with | 
|  | * proper locking in place. | 
|  | */ | 
|  | if (offset + count > i_size_read(inode)) | 
|  | ilock_shared = false; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | if (ilock_shared) { | 
|  | if (!inode_trylock_shared(inode)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | if (!inode_trylock(inode)) | 
|  | return -EAGAIN; | 
|  | } | 
|  | } else { | 
|  | if (ilock_shared) | 
|  | inode_lock_shared(inode); | 
|  | else | 
|  | inode_lock(inode); | 
|  | } | 
|  |  | 
|  | /* Fallback to buffered I/O if the inode does not support direct I/O. */ | 
|  | if (!ext4_should_use_dio(iocb, from)) { | 
|  | if (ilock_shared) | 
|  | inode_unlock_shared(inode); | 
|  | else | 
|  | inode_unlock(inode); | 
|  | return ext4_buffered_write_iter(iocb, from); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevent inline data from being created since we are going to allocate | 
|  | * blocks for DIO. We know the inode does not currently have inline data | 
|  | * because ext4_should_use_dio() checked for it, but we have to clear | 
|  | * the state flag before the write checks because a lock cycle could | 
|  | * introduce races with other writers. | 
|  | */ | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); | 
|  |  | 
|  | ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend, | 
|  | &unwritten, &dio_flags); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  |  | 
|  | offset = iocb->ki_pos; | 
|  | count = ret; | 
|  |  | 
|  | if (extend) { | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = ext4_orphan_add(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ilock_shared && !unwritten) | 
|  | iomap_ops = &ext4_iomap_overwrite_ops; | 
|  | ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops, | 
|  | dio_flags, NULL, 0); | 
|  | if (ret == -ENOTBLK) | 
|  | ret = 0; | 
|  | if (extend) { | 
|  | /* | 
|  | * We always perform extending DIO write synchronously so by | 
|  | * now the IO is completed and ext4_handle_inode_extension() | 
|  | * was called. Cleanup the inode in case of error or race with | 
|  | * writeback of delalloc blocks. | 
|  | */ | 
|  | WARN_ON_ONCE(ret == -EIOCBQUEUED); | 
|  | ext4_inode_extension_cleanup(inode, ret < 0); | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (ilock_shared) | 
|  | inode_unlock_shared(inode); | 
|  | else | 
|  | inode_unlock(inode); | 
|  |  | 
|  | if (ret >= 0 && iov_iter_count(from)) { | 
|  | ssize_t err; | 
|  | loff_t endbyte; | 
|  |  | 
|  | /* | 
|  | * There is no support for atomic writes on buffered-io yet, | 
|  | * we should never fallback to buffered-io for DIO atomic | 
|  | * writes. | 
|  | */ | 
|  | WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC); | 
|  |  | 
|  | offset = iocb->ki_pos; | 
|  | err = ext4_buffered_write_iter(iocb, from); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * We need to ensure that the pages within the page cache for | 
|  | * the range covered by this I/O are written to disk and | 
|  | * invalidated. This is in attempt to preserve the expected | 
|  | * direct I/O semantics in the case we fallback to buffered I/O | 
|  | * to complete off the I/O request. | 
|  | */ | 
|  | ret += err; | 
|  | endbyte = offset + err - 1; | 
|  | err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping, | 
|  | offset, endbyte); | 
|  | if (!err) | 
|  | invalidate_mapping_pages(iocb->ki_filp->f_mapping, | 
|  | offset >> PAGE_SHIFT, | 
|  | endbyte >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FS_DAX | 
|  | static ssize_t | 
|  | ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | ssize_t ret; | 
|  | size_t count; | 
|  | loff_t offset; | 
|  | handle_t *handle; | 
|  | bool extend = false; | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | if (!inode_trylock(inode)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | inode_lock(inode); | 
|  | } | 
|  |  | 
|  | ret = ext4_write_checks(iocb, from); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  |  | 
|  | offset = iocb->ki_pos; | 
|  | count = iov_iter_count(from); | 
|  |  | 
|  | if (offset + count > EXT4_I(inode)->i_disksize) { | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = ext4_orphan_add(handle, inode); | 
|  | if (ret) { | 
|  | ext4_journal_stop(handle); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | extend = true; | 
|  | ext4_journal_stop(handle); | 
|  | } | 
|  |  | 
|  | ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops); | 
|  |  | 
|  | if (extend) { | 
|  | ret = ext4_handle_inode_extension(inode, offset, ret, count); | 
|  | ext4_inode_extension_cleanup(inode, ret < (ssize_t)count); | 
|  | } | 
|  | out: | 
|  | inode_unlock(inode); | 
|  | if (ret > 0) | 
|  | ret = generic_write_sync(iocb, ret); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static ssize_t | 
|  | ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | int ret; | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  |  | 
|  | ret = ext4_emergency_state(inode->i_sb); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | #ifdef CONFIG_FS_DAX | 
|  | if (IS_DAX(inode)) | 
|  | return ext4_dax_write_iter(iocb, from); | 
|  | #endif | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_ATOMIC) { | 
|  | size_t len = iov_iter_count(from); | 
|  |  | 
|  | if (len < EXT4_SB(inode->i_sb)->s_awu_min || | 
|  | len > EXT4_SB(inode->i_sb)->s_awu_max) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = generic_atomic_write_valid(iocb, from); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_DIRECT) | 
|  | return ext4_dio_write_iter(iocb, from); | 
|  | else | 
|  | return ext4_buffered_write_iter(iocb, from); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FS_DAX | 
|  | static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order) | 
|  | { | 
|  | int error = 0; | 
|  | vm_fault_t result; | 
|  | int retries = 0; | 
|  | handle_t *handle = NULL; | 
|  | struct inode *inode = file_inode(vmf->vma->vm_file); | 
|  | struct super_block *sb = inode->i_sb; | 
|  |  | 
|  | /* | 
|  | * We have to distinguish real writes from writes which will result in a | 
|  | * COW page; COW writes should *not* poke the journal (the file will not | 
|  | * be changed). Doing so would cause unintended failures when mounted | 
|  | * read-only. | 
|  | * | 
|  | * We check for VM_SHARED rather than vmf->cow_page since the latter is | 
|  | * unset for order != 0 (i.e. only in do_cow_fault); for | 
|  | * other sizes, dax_iomap_fault will handle splitting / fallback so that | 
|  | * we eventually come back with a COW page. | 
|  | */ | 
|  | bool write = (vmf->flags & FAULT_FLAG_WRITE) && | 
|  | (vmf->vma->vm_flags & VM_SHARED); | 
|  | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
|  | unsigned long pfn; | 
|  |  | 
|  | if (write) { | 
|  | sb_start_pagefault(sb); | 
|  | file_update_time(vmf->vma->vm_file); | 
|  | filemap_invalidate_lock_shared(mapping); | 
|  | retry: | 
|  | handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, | 
|  | EXT4_DATA_TRANS_BLOCKS(sb)); | 
|  | if (IS_ERR(handle)) { | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | sb_end_pagefault(sb); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  | } else { | 
|  | filemap_invalidate_lock_shared(mapping); | 
|  | } | 
|  | result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops); | 
|  | if (write) { | 
|  | ext4_journal_stop(handle); | 
|  |  | 
|  | if ((result & VM_FAULT_ERROR) && error == -ENOSPC && | 
|  | ext4_should_retry_alloc(sb, &retries)) | 
|  | goto retry; | 
|  | /* Handling synchronous page fault? */ | 
|  | if (result & VM_FAULT_NEEDDSYNC) | 
|  | result = dax_finish_sync_fault(vmf, order, pfn); | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | sb_end_pagefault(sb); | 
|  | } else { | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) | 
|  | { | 
|  | return ext4_dax_huge_fault(vmf, 0); | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct ext4_dax_vm_ops = { | 
|  | .fault		= ext4_dax_fault, | 
|  | .huge_fault	= ext4_dax_huge_fault, | 
|  | .page_mkwrite	= ext4_dax_fault, | 
|  | .pfn_mkwrite	= ext4_dax_fault, | 
|  | }; | 
|  | #else | 
|  | #define ext4_dax_vm_ops	ext4_file_vm_ops | 
|  | #endif | 
|  |  | 
|  | static const struct vm_operations_struct ext4_file_vm_ops = { | 
|  | .fault		= filemap_fault, | 
|  | .map_pages	= filemap_map_pages, | 
|  | .page_mkwrite   = ext4_page_mkwrite, | 
|  | }; | 
|  |  | 
|  | static int ext4_file_mmap_prepare(struct vm_area_desc *desc) | 
|  | { | 
|  | int ret; | 
|  | struct file *file = desc->file; | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; | 
|  |  | 
|  | if (file->f_mode & FMODE_WRITE) | 
|  | ret = ext4_emergency_state(inode->i_sb); | 
|  | else | 
|  | ret = ext4_forced_shutdown(inode->i_sb) ? -EIO : 0; | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * We don't support synchronous mappings for non-DAX files and | 
|  | * for DAX files if underneath dax_device is not synchronous. | 
|  | */ | 
|  | if (!daxdev_mapping_supported(desc->vm_flags, file_inode(file), dax_dev)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | file_accessed(file); | 
|  | if (IS_DAX(file_inode(file))) { | 
|  | desc->vm_ops = &ext4_dax_vm_ops; | 
|  | desc->vm_flags |= VM_HUGEPAGE; | 
|  | } else { | 
|  | desc->vm_ops = &ext4_file_vm_ops; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_sample_last_mounted(struct super_block *sb, | 
|  | struct vfsmount *mnt) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct path path; | 
|  | char buf[64], *cp; | 
|  | handle_t *handle; | 
|  | int err; | 
|  |  | 
|  | if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED))) | 
|  | return 0; | 
|  |  | 
|  | if (ext4_emergency_state(sb) || sb_rdonly(sb) || | 
|  | !sb_start_intwrite_trylock(sb)) | 
|  | return 0; | 
|  |  | 
|  | ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED); | 
|  | /* | 
|  | * Sample where the filesystem has been mounted and | 
|  | * store it in the superblock for sysadmin convenience | 
|  | * when trying to sort through large numbers of block | 
|  | * devices or filesystem images. | 
|  | */ | 
|  | memset(buf, 0, sizeof(buf)); | 
|  | path.mnt = mnt; | 
|  | path.dentry = mnt->mnt_root; | 
|  | cp = d_path(&path, buf, sizeof(buf)); | 
|  | err = 0; | 
|  | if (IS_ERR(cp)) | 
|  | goto out; | 
|  |  | 
|  | handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); | 
|  | err = PTR_ERR(handle); | 
|  | if (IS_ERR(handle)) | 
|  | goto out; | 
|  | BUFFER_TRACE(sbi->s_sbh, "get_write_access"); | 
|  | err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh, | 
|  | EXT4_JTR_NONE); | 
|  | if (err) | 
|  | goto out_journal; | 
|  | lock_buffer(sbi->s_sbh); | 
|  | strtomem_pad(sbi->s_es->s_last_mounted, cp, 0); | 
|  | ext4_superblock_csum_set(sb); | 
|  | unlock_buffer(sbi->s_sbh); | 
|  | ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh); | 
|  | out_journal: | 
|  | ext4_journal_stop(handle); | 
|  | out: | 
|  | sb_end_intwrite(sb); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ext4_file_open(struct inode *inode, struct file *filp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (filp->f_mode & FMODE_WRITE) | 
|  | ret = ext4_emergency_state(inode->i_sb); | 
|  | else | 
|  | ret = ext4_forced_shutdown(inode->i_sb) ? -EIO : 0; | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = fscrypt_file_open(inode, filp); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = fsverity_file_open(inode, filp); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Set up the jbd2_inode if we are opening the inode for | 
|  | * writing and the journal is present | 
|  | */ | 
|  | if (filp->f_mode & FMODE_WRITE) { | 
|  | ret = ext4_inode_attach_jinode(inode); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (ext4_inode_can_atomic_write(inode)) | 
|  | filp->f_mode |= FMODE_CAN_ATOMIC_WRITE; | 
|  |  | 
|  | filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; | 
|  | return dquot_file_open(inode, filp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values | 
|  | * by calling generic_file_llseek_size() with the appropriate maxbytes | 
|  | * value for each. | 
|  | */ | 
|  | loff_t ext4_llseek(struct file *file, loff_t offset, int whence) | 
|  | { | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | loff_t maxbytes = ext4_get_maxbytes(inode); | 
|  |  | 
|  | switch (whence) { | 
|  | default: | 
|  | return generic_file_llseek_size(file, offset, whence, | 
|  | maxbytes, i_size_read(inode)); | 
|  | case SEEK_HOLE: | 
|  | inode_lock_shared(inode); | 
|  | offset = iomap_seek_hole(inode, offset, | 
|  | &ext4_iomap_report_ops); | 
|  | inode_unlock_shared(inode); | 
|  | break; | 
|  | case SEEK_DATA: | 
|  | inode_lock_shared(inode); | 
|  | offset = iomap_seek_data(inode, offset, | 
|  | &ext4_iomap_report_ops); | 
|  | inode_unlock_shared(inode); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (offset < 0) | 
|  | return offset; | 
|  | return vfs_setpos(file, offset, maxbytes); | 
|  | } | 
|  |  | 
|  | const struct file_operations ext4_file_operations = { | 
|  | .llseek		= ext4_llseek, | 
|  | .read_iter	= ext4_file_read_iter, | 
|  | .write_iter	= ext4_file_write_iter, | 
|  | .iopoll		= iocb_bio_iopoll, | 
|  | .unlocked_ioctl = ext4_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl	= ext4_compat_ioctl, | 
|  | #endif | 
|  | .mmap_prepare	= ext4_file_mmap_prepare, | 
|  | .open		= ext4_file_open, | 
|  | .release	= ext4_release_file, | 
|  | .fsync		= ext4_sync_file, | 
|  | .get_unmapped_area = thp_get_unmapped_area, | 
|  | .splice_read	= ext4_file_splice_read, | 
|  | .splice_write	= iter_file_splice_write, | 
|  | .fallocate	= ext4_fallocate, | 
|  | .fop_flags	= FOP_MMAP_SYNC | FOP_BUFFER_RASYNC | | 
|  | FOP_DIO_PARALLEL_WRITE | | 
|  | FOP_DONTCACHE, | 
|  | }; | 
|  |  | 
|  | const struct inode_operations ext4_file_inode_operations = { | 
|  | .setattr	= ext4_setattr, | 
|  | .getattr	= ext4_file_getattr, | 
|  | .listxattr	= ext4_listxattr, | 
|  | .get_inode_acl	= ext4_get_acl, | 
|  | .set_acl	= ext4_set_acl, | 
|  | .fiemap		= ext4_fiemap, | 
|  | .fileattr_get	= ext4_fileattr_get, | 
|  | .fileattr_set	= ext4_fileattr_set, | 
|  | }; | 
|  |  |