| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "locking.h" | 
 | #include "accessors.h" | 
 | #include "messages.h" | 
 | #include "delalloc-space.h" | 
 | #include "subpage.h" | 
 | #include "defrag.h" | 
 | #include "file-item.h" | 
 | #include "super.h" | 
 |  | 
 | static struct kmem_cache *btrfs_inode_defrag_cachep; | 
 |  | 
 | /* | 
 |  * When auto defrag is enabled we queue up these defrag structs to remember | 
 |  * which inodes need defragging passes. | 
 |  */ | 
 | struct inode_defrag { | 
 | 	struct rb_node rb_node; | 
 | 	/* Inode number */ | 
 | 	u64 ino; | 
 | 	/* | 
 | 	 * Transid where the defrag was added, we search for extents newer than | 
 | 	 * this. | 
 | 	 */ | 
 | 	u64 transid; | 
 |  | 
 | 	/* Root objectid */ | 
 | 	u64 root; | 
 |  | 
 | 	/* | 
 | 	 * The extent size threshold for autodefrag. | 
 | 	 * | 
 | 	 * This value is different for compressed/non-compressed extents, thus | 
 | 	 * needs to be passed from higher layer. | 
 | 	 * (aka, inode_should_defrag()) | 
 | 	 */ | 
 | 	u32 extent_thresh; | 
 | }; | 
 |  | 
 | static int compare_inode_defrag(const struct inode_defrag *defrag1, | 
 | 				const struct inode_defrag *defrag2) | 
 | { | 
 | 	if (defrag1->root > defrag2->root) | 
 | 		return 1; | 
 | 	else if (defrag1->root < defrag2->root) | 
 | 		return -1; | 
 | 	else if (defrag1->ino > defrag2->ino) | 
 | 		return 1; | 
 | 	else if (defrag1->ino < defrag2->ino) | 
 | 		return -1; | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | static int inode_defrag_cmp(struct rb_node *new, const struct rb_node *existing) | 
 | { | 
 | 	const struct inode_defrag *new_defrag = rb_entry(new, struct inode_defrag, rb_node); | 
 | 	const struct inode_defrag *existing_defrag = rb_entry(existing, struct inode_defrag, rb_node); | 
 |  | 
 | 	return compare_inode_defrag(new_defrag, existing_defrag); | 
 | } | 
 |  | 
 | /* | 
 |  * Insert a record for an inode into the defrag tree.  The lock must be held | 
 |  * already. | 
 |  * | 
 |  * If you're inserting a record for an older transid than an existing record, | 
 |  * the transid already in the tree is lowered. | 
 |  */ | 
 | static int btrfs_insert_inode_defrag(struct btrfs_inode *inode, | 
 | 				     struct inode_defrag *defrag) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	node = rb_find_add(&defrag->rb_node, &fs_info->defrag_inodes, inode_defrag_cmp); | 
 | 	if (node) { | 
 | 		struct inode_defrag *entry; | 
 |  | 
 | 		entry = rb_entry(node, struct inode_defrag, rb_node); | 
 | 		/* | 
 | 		 * If we're reinserting an entry for an old defrag run, make | 
 | 		 * sure to lower the transid of our existing record. | 
 | 		 */ | 
 | 		if (defrag->transid < entry->transid) | 
 | 			entry->transid = defrag->transid; | 
 | 		entry->extent_thresh = min(defrag->extent_thresh, entry->extent_thresh); | 
 | 		return -EEXIST; | 
 | 	} | 
 | 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline bool need_auto_defrag(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) | 
 | 		return false; | 
 |  | 
 | 	if (btrfs_fs_closing(fs_info)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Insert a defrag record for this inode if auto defrag is enabled. No errors | 
 |  * returned as they're not considered fatal. | 
 |  */ | 
 | void btrfs_add_inode_defrag(struct btrfs_inode *inode, u32 extent_thresh) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct inode_defrag *defrag; | 
 | 	int ret; | 
 |  | 
 | 	if (!need_auto_defrag(fs_info)) | 
 | 		return; | 
 |  | 
 | 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) | 
 | 		return; | 
 |  | 
 | 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); | 
 | 	if (!defrag) | 
 | 		return; | 
 |  | 
 | 	defrag->ino = btrfs_ino(inode); | 
 | 	defrag->transid = btrfs_get_root_last_trans(root); | 
 | 	defrag->root = btrfs_root_id(root); | 
 | 	defrag->extent_thresh = extent_thresh; | 
 |  | 
 | 	spin_lock(&fs_info->defrag_inodes_lock); | 
 | 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { | 
 | 		/* | 
 | 		 * If we set IN_DEFRAG flag and evict the inode from memory, | 
 | 		 * and then re-read this inode, this new inode doesn't have | 
 | 		 * IN_DEFRAG flag. At the case, we may find the existed defrag. | 
 | 		 */ | 
 | 		ret = btrfs_insert_inode_defrag(inode, defrag); | 
 | 		if (ret) | 
 | 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
 | 	} else { | 
 | 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
 | 	} | 
 | 	spin_unlock(&fs_info->defrag_inodes_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Pick the defraggable inode that we want, if it doesn't exist, we will get the | 
 |  * next one. | 
 |  */ | 
 | static struct inode_defrag *btrfs_pick_defrag_inode( | 
 | 			struct btrfs_fs_info *fs_info, u64 root, u64 ino) | 
 | { | 
 | 	struct inode_defrag *entry = NULL; | 
 | 	struct inode_defrag tmp; | 
 | 	struct rb_node *p; | 
 | 	struct rb_node *parent = NULL; | 
 | 	int ret; | 
 |  | 
 | 	tmp.ino = ino; | 
 | 	tmp.root = root; | 
 |  | 
 | 	spin_lock(&fs_info->defrag_inodes_lock); | 
 | 	p = fs_info->defrag_inodes.rb_node; | 
 | 	while (p) { | 
 | 		parent = p; | 
 | 		entry = rb_entry(parent, struct inode_defrag, rb_node); | 
 |  | 
 | 		ret = compare_inode_defrag(&tmp, entry); | 
 | 		if (ret < 0) | 
 | 			p = parent->rb_left; | 
 | 		else if (ret > 0) | 
 | 			p = parent->rb_right; | 
 | 		else | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (parent && compare_inode_defrag(&tmp, entry) > 0) { | 
 | 		parent = rb_next(parent); | 
 | 		entry = rb_entry_safe(parent, struct inode_defrag, rb_node); | 
 | 	} | 
 | out: | 
 | 	if (entry) | 
 | 		rb_erase(parent, &fs_info->defrag_inodes); | 
 | 	spin_unlock(&fs_info->defrag_inodes_lock); | 
 | 	return entry; | 
 | } | 
 |  | 
 | void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct inode_defrag *defrag, *next; | 
 |  | 
 | 	spin_lock(&fs_info->defrag_inodes_lock); | 
 |  | 
 | 	rbtree_postorder_for_each_entry_safe(defrag, next, | 
 | 					     &fs_info->defrag_inodes, rb_node) | 
 | 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
 |  | 
 | 	fs_info->defrag_inodes = RB_ROOT; | 
 |  | 
 | 	spin_unlock(&fs_info->defrag_inodes_lock); | 
 | } | 
 |  | 
 | #define BTRFS_DEFRAG_BATCH	1024 | 
 |  | 
 | static int btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, | 
 | 				  struct inode_defrag *defrag, | 
 | 				  struct file_ra_state *ra) | 
 | { | 
 | 	struct btrfs_root *inode_root; | 
 | 	struct btrfs_inode *inode; | 
 | 	struct btrfs_ioctl_defrag_range_args range; | 
 | 	int ret = 0; | 
 | 	u64 cur = 0; | 
 |  | 
 | again: | 
 | 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) | 
 | 		goto cleanup; | 
 | 	if (!need_auto_defrag(fs_info)) | 
 | 		goto cleanup; | 
 |  | 
 | 	/* Get the inode */ | 
 | 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); | 
 | 	if (IS_ERR(inode_root)) { | 
 | 		ret = PTR_ERR(inode_root); | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	inode = btrfs_iget(defrag->ino, inode_root); | 
 | 	btrfs_put_root(inode_root); | 
 | 	if (IS_ERR(inode)) { | 
 | 		ret = PTR_ERR(inode); | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	if (cur >= i_size_read(&inode->vfs_inode)) { | 
 | 		iput(&inode->vfs_inode); | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	/* Do a chunk of defrag */ | 
 | 	clear_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); | 
 | 	memset(&range, 0, sizeof(range)); | 
 | 	range.len = (u64)-1; | 
 | 	range.start = cur; | 
 | 	range.extent_thresh = defrag->extent_thresh; | 
 | 	file_ra_state_init(ra, inode->vfs_inode.i_mapping); | 
 |  | 
 | 	sb_start_write(fs_info->sb); | 
 | 	ret = btrfs_defrag_file(inode, ra, &range, defrag->transid, | 
 | 				BTRFS_DEFRAG_BATCH); | 
 | 	sb_end_write(fs_info->sb); | 
 | 	iput(&inode->vfs_inode); | 
 |  | 
 | 	if (ret < 0) | 
 | 		goto cleanup; | 
 |  | 
 | 	cur = max(cur + fs_info->sectorsize, range.start); | 
 | 	goto again; | 
 |  | 
 | cleanup: | 
 | 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Run through the list of inodes in the FS that need defragging. | 
 |  */ | 
 | int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct inode_defrag *defrag; | 
 | 	u64 first_ino = 0; | 
 | 	u64 root_objectid = 0; | 
 |  | 
 | 	atomic_inc(&fs_info->defrag_running); | 
 | 	while (1) { | 
 | 		struct file_ra_state ra = { 0 }; | 
 |  | 
 | 		/* Pause the auto defragger. */ | 
 | 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) | 
 | 			break; | 
 |  | 
 | 		if (!need_auto_defrag(fs_info)) | 
 | 			break; | 
 |  | 
 | 		/* find an inode to defrag */ | 
 | 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino); | 
 | 		if (!defrag) { | 
 | 			if (root_objectid || first_ino) { | 
 | 				root_objectid = 0; | 
 | 				first_ino = 0; | 
 | 				continue; | 
 | 			} else { | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		first_ino = defrag->ino + 1; | 
 | 		root_objectid = defrag->root; | 
 |  | 
 | 		btrfs_run_defrag_inode(fs_info, defrag, &ra); | 
 | 	} | 
 | 	atomic_dec(&fs_info->defrag_running); | 
 |  | 
 | 	/* | 
 | 	 * During unmount, we use the transaction_wait queue to wait for the | 
 | 	 * defragger to stop. | 
 | 	 */ | 
 | 	wake_up(&fs_info->transaction_wait); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if two blocks addresses are close, used by defrag. | 
 |  */ | 
 | static bool close_blocks(u64 blocknr, u64 other, u32 blocksize) | 
 | { | 
 | 	if (blocknr < other && other - (blocknr + blocksize) < SZ_32K) | 
 | 		return true; | 
 | 	if (blocknr > other && blocknr - (other + blocksize) < SZ_32K) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Go through all the leaves pointed to by a node and reallocate them so that | 
 |  * disk order is close to key order. | 
 |  */ | 
 | static int btrfs_realloc_node(struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_root *root, | 
 | 			      struct extent_buffer *parent, | 
 | 			      int start_slot, u64 *last_ret, | 
 | 			      struct btrfs_key *progress) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	const u32 blocksize = fs_info->nodesize; | 
 | 	const int end_slot = btrfs_header_nritems(parent) - 1; | 
 | 	u64 search_start = *last_ret; | 
 | 	u64 last_block = 0; | 
 | 	int ret = 0; | 
 | 	bool progress_passed = false; | 
 |  | 
 | 	/* | 
 | 	 * COWing must happen through a running transaction, which always | 
 | 	 * matches the current fs generation (it's a transaction with a state | 
 | 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs | 
 | 	 * into error state to prevent the commit of any transaction. | 
 | 	 */ | 
 | 	if (unlikely(trans->transaction != fs_info->running_transaction || | 
 | 		     trans->transid != fs_info->generation)) { | 
 | 		btrfs_abort_transaction(trans, -EUCLEAN); | 
 | 		btrfs_crit(fs_info, | 
 | "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu", | 
 | 			   parent->start, btrfs_root_id(root), trans->transid, | 
 | 			   fs_info->running_transaction->transid, | 
 | 			   fs_info->generation); | 
 | 		return -EUCLEAN; | 
 | 	} | 
 |  | 
 | 	if (btrfs_header_nritems(parent) <= 1) | 
 | 		return 0; | 
 |  | 
 | 	for (int i = start_slot; i <= end_slot; i++) { | 
 | 		struct extent_buffer *cur; | 
 | 		struct btrfs_disk_key disk_key; | 
 | 		u64 blocknr; | 
 | 		u64 other; | 
 | 		bool close = true; | 
 |  | 
 | 		btrfs_node_key(parent, &disk_key, i); | 
 | 		if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0) | 
 | 			continue; | 
 |  | 
 | 		progress_passed = true; | 
 | 		blocknr = btrfs_node_blockptr(parent, i); | 
 | 		if (last_block == 0) | 
 | 			last_block = blocknr; | 
 |  | 
 | 		if (i > 0) { | 
 | 			other = btrfs_node_blockptr(parent, i - 1); | 
 | 			close = close_blocks(blocknr, other, blocksize); | 
 | 		} | 
 | 		if (!close && i < end_slot) { | 
 | 			other = btrfs_node_blockptr(parent, i + 1); | 
 | 			close = close_blocks(blocknr, other, blocksize); | 
 | 		} | 
 | 		if (close) { | 
 | 			last_block = blocknr; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		cur = btrfs_read_node_slot(parent, i); | 
 | 		if (IS_ERR(cur)) | 
 | 			return PTR_ERR(cur); | 
 | 		if (search_start == 0) | 
 | 			search_start = last_block; | 
 |  | 
 | 		btrfs_tree_lock(cur); | 
 | 		ret = btrfs_force_cow_block(trans, root, cur, parent, i, | 
 | 					    &cur, search_start, | 
 | 					    min(16 * blocksize, | 
 | 						(end_slot - i) * blocksize), | 
 | 					    BTRFS_NESTING_COW); | 
 | 		if (ret) { | 
 | 			btrfs_tree_unlock(cur); | 
 | 			free_extent_buffer(cur); | 
 | 			break; | 
 | 		} | 
 | 		search_start = cur->start; | 
 | 		last_block = cur->start; | 
 | 		*last_ret = search_start; | 
 | 		btrfs_tree_unlock(cur); | 
 | 		free_extent_buffer(cur); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Defrag all the leaves in a given btree. | 
 |  * Read all the leaves and try to get key order to | 
 |  * better reflect disk order | 
 |  */ | 
 |  | 
 | static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_path *path = NULL; | 
 | 	struct btrfs_key key; | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	int level; | 
 | 	int next_key_ret = 0; | 
 | 	u64 last_ret = 0; | 
 |  | 
 | 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) | 
 | 		goto out; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	level = btrfs_header_level(root->node); | 
 |  | 
 | 	if (level == 0) | 
 | 		goto out; | 
 |  | 
 | 	if (root->defrag_progress.objectid == 0) { | 
 | 		struct extent_buffer *root_node; | 
 | 		u32 nritems; | 
 |  | 
 | 		root_node = btrfs_lock_root_node(root); | 
 | 		nritems = btrfs_header_nritems(root_node); | 
 | 		root->defrag_max.objectid = 0; | 
 | 		/* from above we know this is not a leaf */ | 
 | 		btrfs_node_key_to_cpu(root_node, &root->defrag_max, | 
 | 				      nritems - 1); | 
 | 		btrfs_tree_unlock(root_node); | 
 | 		free_extent_buffer(root_node); | 
 | 		memset(&key, 0, sizeof(key)); | 
 | 	} else { | 
 | 		memcpy(&key, &root->defrag_progress, sizeof(key)); | 
 | 	} | 
 |  | 
 | 	path->keep_locks = 1; | 
 |  | 
 | 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 | 	/* | 
 | 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all | 
 | 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later | 
 | 	 * a deadlock (attempting to write lock an already write locked leaf). | 
 | 	 */ | 
 | 	path->lowest_level = 1; | 
 | 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
 |  | 
 | 	if (wret < 0) { | 
 | 		ret = wret; | 
 | 		goto out; | 
 | 	} | 
 | 	if (!path->nodes[1]) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * The node at level 1 must always be locked when our path has | 
 | 	 * keep_locks set and lowest_level is 1, regardless of the value of | 
 | 	 * path->slots[1]. | 
 | 	 */ | 
 | 	ASSERT(path->locks[1] != 0); | 
 | 	ret = btrfs_realloc_node(trans, root, | 
 | 				 path->nodes[1], 0, | 
 | 				 &last_ret, | 
 | 				 &root->defrag_progress); | 
 | 	if (ret) { | 
 | 		WARN_ON(ret == -EAGAIN); | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * Now that we reallocated the node we can find the next key. Note that | 
 | 	 * btrfs_find_next_key() can release our path and do another search | 
 | 	 * without COWing, this is because even with path->keep_locks = 1, | 
 | 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a | 
 | 	 * node when path->slots[node_level - 1] does not point to the last | 
 | 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore | 
 | 	 * we search for the next key after reallocating our node. | 
 | 	 */ | 
 | 	path->slots[1] = btrfs_header_nritems(path->nodes[1]); | 
 | 	next_key_ret = btrfs_find_next_key(root, path, &key, 1, | 
 | 					   BTRFS_OLDEST_GENERATION); | 
 | 	if (next_key_ret == 0) { | 
 | 		memcpy(&root->defrag_progress, &key, sizeof(key)); | 
 | 		ret = -EAGAIN; | 
 | 	} | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	if (ret == -EAGAIN) { | 
 | 		if (root->defrag_max.objectid > root->defrag_progress.objectid) | 
 | 			goto done; | 
 | 		if (root->defrag_max.type > root->defrag_progress.type) | 
 | 			goto done; | 
 | 		if (root->defrag_max.offset > root->defrag_progress.offset) | 
 | 			goto done; | 
 | 		ret = 0; | 
 | 	} | 
 | done: | 
 | 	if (ret != -EAGAIN) | 
 | 		memset(&root->defrag_progress, 0, | 
 | 		       sizeof(root->defrag_progress)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Defrag a given btree.  Every leaf in the btree is read and defragmented. | 
 |  */ | 
 | int btrfs_defrag_root(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) | 
 | 		return 0; | 
 |  | 
 | 	while (1) { | 
 | 		struct btrfs_trans_handle *trans; | 
 |  | 
 | 		trans = btrfs_start_transaction(root, 0); | 
 | 		if (IS_ERR(trans)) { | 
 | 			ret = PTR_ERR(trans); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_defrag_leaves(trans, root); | 
 |  | 
 | 		btrfs_end_transaction(trans); | 
 | 		btrfs_btree_balance_dirty(fs_info); | 
 | 		cond_resched(); | 
 |  | 
 | 		if (btrfs_fs_closing(fs_info) || ret != -EAGAIN) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_defrag_cancelled(fs_info)) { | 
 | 			btrfs_debug(fs_info, "defrag_root cancelled"); | 
 | 			ret = -EAGAIN; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Defrag specific helper to get an extent map. | 
 |  * | 
 |  * Differences between this and btrfs_get_extent() are: | 
 |  * | 
 |  * - No extent_map will be added to inode->extent_tree | 
 |  *   To reduce memory usage in the long run. | 
 |  * | 
 |  * - Extra optimization to skip file extents older than @newer_than | 
 |  *   By using btrfs_search_forward() we can skip entire file ranges that | 
 |  *   have extents created in past transactions, because btrfs_search_forward() | 
 |  *   will not visit leaves and nodes with a generation smaller than given | 
 |  *   minimal generation threshold (@newer_than). | 
 |  * | 
 |  * Return valid em if we find a file extent matching the requirement. | 
 |  * Return NULL if we can not find a file extent matching the requirement. | 
 |  * | 
 |  * Return ERR_PTR() for error. | 
 |  */ | 
 | static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, | 
 | 					    u64 start, u64 newer_than) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct btrfs_path path = { 0 }; | 
 | 	struct extent_map *em; | 
 | 	struct btrfs_key key; | 
 | 	u64 ino = btrfs_ino(inode); | 
 | 	int ret; | 
 |  | 
 | 	em = btrfs_alloc_extent_map(); | 
 | 	if (!em) { | 
 | 		ret = -ENOMEM; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = start; | 
 |  | 
 | 	if (newer_than) { | 
 | 		ret = btrfs_search_forward(root, &key, &path, newer_than); | 
 | 		if (ret < 0) | 
 | 			goto err; | 
 | 		/* Can't find anything newer */ | 
 | 		if (ret > 0) | 
 | 			goto not_found; | 
 | 	} else { | 
 | 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto err; | 
 | 	} | 
 | 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { | 
 | 		/* | 
 | 		 * If btrfs_search_slot() makes path to point beyond nritems, | 
 | 		 * we should not have an empty leaf, as this inode must at | 
 | 		 * least have its INODE_ITEM. | 
 | 		 */ | 
 | 		ASSERT(btrfs_header_nritems(path.nodes[0])); | 
 | 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; | 
 | 	} | 
 | 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); | 
 | 	/* Perfect match, no need to go one slot back */ | 
 | 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && | 
 | 	    key.offset == start) | 
 | 		goto iterate; | 
 |  | 
 | 	/* We didn't find a perfect match, needs to go one slot back */ | 
 | 	if (path.slots[0] > 0) { | 
 | 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); | 
 | 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) | 
 | 			path.slots[0]--; | 
 | 	} | 
 |  | 
 | iterate: | 
 | 	/* Iterate through the path to find a file extent covering @start */ | 
 | 	while (true) { | 
 | 		u64 extent_end; | 
 |  | 
 | 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) | 
 | 			goto next; | 
 |  | 
 | 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); | 
 |  | 
 | 		/* | 
 | 		 * We may go one slot back to INODE_REF/XATTR item, then | 
 | 		 * need to go forward until we reach an EXTENT_DATA. | 
 | 		 * But we should still has the correct ino as key.objectid. | 
 | 		 */ | 
 | 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) | 
 | 			goto next; | 
 |  | 
 | 		/* It's beyond our target range, definitely not extent found */ | 
 | 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) | 
 | 			goto not_found; | 
 |  | 
 | 		/* | 
 | 		 *	|	|<- File extent ->| | 
 | 		 *	\- start | 
 | 		 * | 
 | 		 * This means there is a hole between start and key.offset. | 
 | 		 */ | 
 | 		if (key.offset > start) { | 
 | 			em->start = start; | 
 | 			em->disk_bytenr = EXTENT_MAP_HOLE; | 
 | 			em->disk_num_bytes = 0; | 
 | 			em->ram_bytes = 0; | 
 | 			em->offset = 0; | 
 | 			em->len = key.offset - start; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0], | 
 | 				    struct btrfs_file_extent_item); | 
 | 		extent_end = btrfs_file_extent_end(&path); | 
 |  | 
 | 		/* | 
 | 		 *	|<- file extent ->|	| | 
 | 		 *				\- start | 
 | 		 * | 
 | 		 * We haven't reached start, search next slot. | 
 | 		 */ | 
 | 		if (extent_end <= start) | 
 | 			goto next; | 
 |  | 
 | 		/* Now this extent covers @start, convert it to em */ | 
 | 		btrfs_extent_item_to_extent_map(inode, &path, fi, em); | 
 | 		break; | 
 | next: | 
 | 		ret = btrfs_next_item(root, &path); | 
 | 		if (ret < 0) | 
 | 			goto err; | 
 | 		if (ret > 0) | 
 | 			goto not_found; | 
 | 	} | 
 | 	btrfs_release_path(&path); | 
 | 	return em; | 
 |  | 
 | not_found: | 
 | 	btrfs_release_path(&path); | 
 | 	btrfs_free_extent_map(em); | 
 | 	return NULL; | 
 |  | 
 | err: | 
 | 	btrfs_release_path(&path); | 
 | 	btrfs_free_extent_map(em); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, | 
 | 					       u64 newer_than, bool locked) | 
 | { | 
 | 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_map *em; | 
 | 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; | 
 |  | 
 | 	/* | 
 | 	 * Hopefully we have this extent in the tree already, try without the | 
 | 	 * full extent lock. | 
 | 	 */ | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = btrfs_lookup_extent_mapping(em_tree, start, sectorsize); | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	/* | 
 | 	 * We can get a merged extent, in that case, we need to re-search | 
 | 	 * tree to get the original em for defrag. | 
 | 	 * | 
 | 	 * This is because even if we have adjacent extents that are contiguous | 
 | 	 * and compatible (same type and flags), we still want to defrag them | 
 | 	 * so that we use less metadata (extent items in the extent tree and | 
 | 	 * file extent items in the inode's subvolume tree). | 
 | 	 */ | 
 | 	if (em && (em->flags & EXTENT_FLAG_MERGED)) { | 
 | 		btrfs_free_extent_map(em); | 
 | 		em = NULL; | 
 | 	} | 
 |  | 
 | 	if (!em) { | 
 | 		struct extent_state *cached = NULL; | 
 | 		u64 end = start + sectorsize - 1; | 
 |  | 
 | 		/* Get the big lock and read metadata off disk. */ | 
 | 		if (!locked) | 
 | 			btrfs_lock_extent(io_tree, start, end, &cached); | 
 | 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than); | 
 | 		if (!locked) | 
 | 			btrfs_unlock_extent(io_tree, start, end, &cached); | 
 |  | 
 | 		if (IS_ERR(em)) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	return em; | 
 | } | 
 |  | 
 | static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, | 
 | 				   const struct extent_map *em) | 
 | { | 
 | 	if (btrfs_extent_map_is_compressed(em)) | 
 | 		return BTRFS_MAX_COMPRESSED; | 
 | 	return fs_info->max_extent_size; | 
 | } | 
 |  | 
 | static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, | 
 | 				     u32 extent_thresh, u64 newer_than, bool locked) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
 | 	struct extent_map *next; | 
 | 	bool ret = false; | 
 |  | 
 | 	/* This is the last extent */ | 
 | 	if (em->start + em->len >= i_size_read(inode)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Here we need to pass @newer_then when checking the next extent, or | 
 | 	 * we will hit a case we mark current extent for defrag, but the next | 
 | 	 * one will not be a target. | 
 | 	 * This will just cause extra IO without really reducing the fragments. | 
 | 	 */ | 
 | 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); | 
 | 	/* No more em or hole */ | 
 | 	if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE) | 
 | 		goto out; | 
 | 	if (next->flags & EXTENT_FLAG_PREALLOC) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * If the next extent is at its max capacity, defragging current extent | 
 | 	 * makes no sense, as the total number of extents won't change. | 
 | 	 */ | 
 | 	if (next->len >= get_extent_max_capacity(fs_info, em)) | 
 | 		goto out; | 
 | 	/* Skip older extent */ | 
 | 	if (next->generation < newer_than) | 
 | 		goto out; | 
 | 	/* Also check extent size */ | 
 | 	if (next->len >= extent_thresh) | 
 | 		goto out; | 
 |  | 
 | 	ret = true; | 
 | out: | 
 | 	btrfs_free_extent_map(next); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare one page to be defragged. | 
 |  * | 
 |  * This will ensure: | 
 |  * | 
 |  * - Returned page is locked and has been set up properly. | 
 |  * - No ordered extent exists in the page. | 
 |  * - The page is uptodate. | 
 |  * | 
 |  * NOTE: Caller should also wait for page writeback after the cluster is | 
 |  * prepared, here we don't do writeback wait for each page. | 
 |  */ | 
 | static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index) | 
 | { | 
 | 	struct address_space *mapping = inode->vfs_inode.i_mapping; | 
 | 	gfp_t mask = btrfs_alloc_write_mask(mapping); | 
 | 	u64 lock_start; | 
 | 	u64 lock_end; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct folio *folio; | 
 | 	int ret; | 
 |  | 
 | again: | 
 | 	/* TODO: Add order fgp order flags when large folios are fully enabled. */ | 
 | 	folio = __filemap_get_folio(mapping, index, | 
 | 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); | 
 | 	if (IS_ERR(folio)) | 
 | 		return folio; | 
 |  | 
 | 	/* | 
 | 	 * Since we can defragment files opened read-only, we can encounter | 
 | 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). | 
 | 	 * | 
 | 	 * The IO for such large folios is not fully tested, thus return | 
 | 	 * an error to reject such folios unless it's an experimental build. | 
 | 	 * | 
 | 	 * Filesystem transparent huge pages are typically only used for | 
 | 	 * executables that explicitly enable them, so this isn't very | 
 | 	 * restrictive. | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && folio_test_large(folio)) { | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 | 		return ERR_PTR(-ETXTBSY); | 
 | 	} | 
 |  | 
 | 	ret = set_folio_extent_mapped(folio); | 
 | 	if (ret < 0) { | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	lock_start = folio_pos(folio); | 
 | 	lock_end = folio_end(folio) - 1; | 
 | 	/* Wait for any existing ordered extent in the range */ | 
 | 	while (1) { | 
 | 		struct btrfs_ordered_extent *ordered; | 
 |  | 
 | 		btrfs_lock_extent(&inode->io_tree, lock_start, lock_end, &cached_state); | 
 | 		ordered = btrfs_lookup_ordered_range(inode, lock_start, folio_size(folio)); | 
 | 		btrfs_unlock_extent(&inode->io_tree, lock_start, lock_end, &cached_state); | 
 | 		if (!ordered) | 
 | 			break; | 
 |  | 
 | 		folio_unlock(folio); | 
 | 		btrfs_start_ordered_extent(ordered); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 		folio_lock(folio); | 
 | 		/* | 
 | 		 * We unlocked the folio above, so we need check if it was | 
 | 		 * released or not. | 
 | 		 */ | 
 | 		if (folio->mapping != mapping || !folio->private) { | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now the page range has no ordered extent any more.  Read the page to | 
 | 	 * make it uptodate. | 
 | 	 */ | 
 | 	if (!folio_test_uptodate(folio)) { | 
 | 		btrfs_read_folio(NULL, folio); | 
 | 		folio_lock(folio); | 
 | 		if (folio->mapping != mapping || !folio->private) { | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			goto again; | 
 | 		} | 
 | 		if (unlikely(!folio_test_uptodate(folio))) { | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			return ERR_PTR(-EIO); | 
 | 		} | 
 | 	} | 
 | 	return folio; | 
 | } | 
 |  | 
 | struct defrag_target_range { | 
 | 	struct list_head list; | 
 | 	u64 start; | 
 | 	u64 len; | 
 | }; | 
 |  | 
 | /* | 
 |  * Collect all valid target extents. | 
 |  * | 
 |  * @start:	   file offset to lookup | 
 |  * @len:	   length to lookup | 
 |  * @extent_thresh: file extent size threshold, any extent size >= this value | 
 |  *		   will be ignored | 
 |  * @newer_than:    only defrag extents newer than this value | 
 |  * @do_compress:   whether the defrag is doing compression or no-compression | 
 |  *		   if true, @extent_thresh will be ignored and all regular | 
 |  *		   file extents meeting @newer_than will be targets. | 
 |  * @locked:	   if the range has already held extent lock | 
 |  * @target_list:   list of targets file extents | 
 |  */ | 
 | static int defrag_collect_targets(struct btrfs_inode *inode, | 
 | 				  u64 start, u64 len, u32 extent_thresh, | 
 | 				  u64 newer_than, bool do_compress, | 
 | 				  bool locked, struct list_head *target_list, | 
 | 				  u64 *last_scanned_ret) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	bool last_is_target = false; | 
 | 	u64 cur = start; | 
 | 	int ret = 0; | 
 |  | 
 | 	while (cur < start + len) { | 
 | 		struct extent_map *em; | 
 | 		struct defrag_target_range *new; | 
 | 		bool next_mergeable = true; | 
 | 		u64 range_len; | 
 |  | 
 | 		last_is_target = false; | 
 | 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked); | 
 | 		if (!em) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * If the file extent is an inlined one, we may still want to | 
 | 		 * defrag it (fallthrough) if it will cause a regular extent. | 
 | 		 * This is for users who want to convert inline extents to | 
 | 		 * regular ones through max_inline= mount option. | 
 | 		 */ | 
 | 		if (em->disk_bytenr == EXTENT_MAP_INLINE && | 
 | 		    em->len <= inode->root->fs_info->max_inline) | 
 | 			goto next; | 
 |  | 
 | 		/* Skip holes and preallocated extents. */ | 
 | 		if (em->disk_bytenr == EXTENT_MAP_HOLE || | 
 | 		    (em->flags & EXTENT_FLAG_PREALLOC)) | 
 | 			goto next; | 
 |  | 
 | 		/* Skip older extent */ | 
 | 		if (em->generation < newer_than) | 
 | 			goto next; | 
 |  | 
 | 		/* This em is under writeback, no need to defrag */ | 
 | 		if (em->generation == (u64)-1) | 
 | 			goto next; | 
 |  | 
 | 		/* | 
 | 		 * Our start offset might be in the middle of an existing extent | 
 | 		 * map, so take that into account. | 
 | 		 */ | 
 | 		range_len = em->len - (cur - em->start); | 
 | 		/* | 
 | 		 * If this range of the extent map is already flagged for delalloc, | 
 | 		 * skip it, because: | 
 | 		 * | 
 | 		 * 1) We could deadlock later, when trying to reserve space for | 
 | 		 *    delalloc, because in case we can't immediately reserve space | 
 | 		 *    the flusher can start delalloc and wait for the respective | 
 | 		 *    ordered extents to complete. The deadlock would happen | 
 | 		 *    because we do the space reservation while holding the range | 
 | 		 *    locked, and starting writeback, or finishing an ordered | 
 | 		 *    extent, requires locking the range; | 
 | 		 * | 
 | 		 * 2) If there's delalloc there, it means there's dirty pages for | 
 | 		 *    which writeback has not started yet (we clean the delalloc | 
 | 		 *    flag when starting writeback and after creating an ordered | 
 | 		 *    extent). If we mark pages in an adjacent range for defrag, | 
 | 		 *    then we will have a larger contiguous range for delalloc, | 
 | 		 *    very likely resulting in a larger extent after writeback is | 
 | 		 *    triggered (except in a case of free space fragmentation). | 
 | 		 */ | 
 | 		if (btrfs_test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1, | 
 | 						EXTENT_DELALLOC)) | 
 | 			goto next; | 
 |  | 
 | 		/* | 
 | 		 * For do_compress case, we want to compress all valid file | 
 | 		 * extents, thus no @extent_thresh or mergeable check. | 
 | 		 */ | 
 | 		if (do_compress) | 
 | 			goto add; | 
 |  | 
 | 		/* Skip too large extent */ | 
 | 		if (em->len >= extent_thresh) | 
 | 			goto next; | 
 |  | 
 | 		/* | 
 | 		 * Skip extents already at its max capacity, this is mostly for | 
 | 		 * compressed extents, which max cap is only 128K. | 
 | 		 */ | 
 | 		if (em->len >= get_extent_max_capacity(fs_info, em)) | 
 | 			goto next; | 
 |  | 
 | 		/* | 
 | 		 * Normally there are no more extents after an inline one, thus | 
 | 		 * @next_mergeable will normally be false and not defragged. | 
 | 		 * So if an inline extent passed all above checks, just add it | 
 | 		 * for defrag, and be converted to regular extents. | 
 | 		 */ | 
 | 		if (em->disk_bytenr == EXTENT_MAP_INLINE) | 
 | 			goto add; | 
 |  | 
 | 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, | 
 | 						extent_thresh, newer_than, locked); | 
 | 		if (!next_mergeable) { | 
 | 			struct defrag_target_range *last; | 
 |  | 
 | 			/* Empty target list, no way to merge with last entry */ | 
 | 			if (list_empty(target_list)) | 
 | 				goto next; | 
 | 			last = list_last_entry(target_list, | 
 | 					       struct defrag_target_range, list); | 
 | 			/* Not mergeable with last entry */ | 
 | 			if (last->start + last->len != cur) | 
 | 				goto next; | 
 |  | 
 | 			/* Mergeable, fall through to add it to @target_list. */ | 
 | 		} | 
 |  | 
 | add: | 
 | 		last_is_target = true; | 
 | 		range_len = min(btrfs_extent_map_end(em), start + len) - cur; | 
 | 		/* | 
 | 		 * This one is a good target, check if it can be merged into | 
 | 		 * last range of the target list. | 
 | 		 */ | 
 | 		if (!list_empty(target_list)) { | 
 | 			struct defrag_target_range *last; | 
 |  | 
 | 			last = list_last_entry(target_list, | 
 | 					       struct defrag_target_range, list); | 
 | 			ASSERT(last->start + last->len <= cur); | 
 | 			if (last->start + last->len == cur) { | 
 | 				/* Mergeable, enlarge the last entry */ | 
 | 				last->len += range_len; | 
 | 				goto next; | 
 | 			} | 
 | 			/* Fall through to allocate a new entry */ | 
 | 		} | 
 |  | 
 | 		/* Allocate new defrag_target_range */ | 
 | 		new = kmalloc(sizeof(*new), GFP_NOFS); | 
 | 		if (!new) { | 
 | 			btrfs_free_extent_map(em); | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 		new->start = cur; | 
 | 		new->len = range_len; | 
 | 		list_add_tail(&new->list, target_list); | 
 |  | 
 | next: | 
 | 		cur = btrfs_extent_map_end(em); | 
 | 		btrfs_free_extent_map(em); | 
 | 	} | 
 | 	if (ret < 0) { | 
 | 		struct defrag_target_range *entry; | 
 | 		struct defrag_target_range *tmp; | 
 |  | 
 | 		list_for_each_entry_safe(entry, tmp, target_list, list) { | 
 | 			list_del_init(&entry->list); | 
 | 			kfree(entry); | 
 | 		} | 
 | 	} | 
 | 	if (!ret && last_scanned_ret) { | 
 | 		/* | 
 | 		 * If the last extent is not a target, the caller can skip to | 
 | 		 * the end of that extent. | 
 | 		 * Otherwise, we can only go the end of the specified range. | 
 | 		 */ | 
 | 		if (!last_is_target) | 
 | 			*last_scanned_ret = max(cur, *last_scanned_ret); | 
 | 		else | 
 | 			*last_scanned_ret = max(start + len, *last_scanned_ret); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define CLUSTER_SIZE	(SZ_256K) | 
 | static_assert(PAGE_ALIGNED(CLUSTER_SIZE)); | 
 |  | 
 | /* | 
 |  * Defrag one contiguous target range. | 
 |  * | 
 |  * @inode:	target inode | 
 |  * @target:	target range to defrag | 
 |  * @pages:	locked pages covering the defrag range | 
 |  * @nr_pages:	number of locked pages | 
 |  * | 
 |  * Caller should ensure: | 
 |  * | 
 |  * - Pages are prepared | 
 |  *   Pages should be locked, no ordered extent in the pages range, | 
 |  *   no writeback. | 
 |  * | 
 |  * - Extent bits are locked | 
 |  */ | 
 | static int defrag_one_locked_target(struct btrfs_inode *inode, | 
 | 				    struct defrag_target_range *target, | 
 | 				    struct folio **folios, int nr_pages, | 
 | 				    struct extent_state **cached_state) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct extent_changeset *data_reserved = NULL; | 
 | 	const u64 start = target->start; | 
 | 	const u64 len = target->len; | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	btrfs_clear_extent_bit(&inode->io_tree, start, start + len - 1, | 
 | 			       EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | | 
 | 			       EXTENT_DEFRAG, cached_state); | 
 | 	btrfs_set_extent_bit(&inode->io_tree, start, start + len - 1, | 
 | 			     EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state); | 
 |  | 
 | 	/* | 
 | 	 * Update the page status. | 
 | 	 * Due to possible large folios, we have to check all folios one by one. | 
 | 	 */ | 
 | 	for (int i = 0; i < nr_pages && folios[i]; i++) { | 
 | 		struct folio *folio = folios[i]; | 
 |  | 
 | 		if (!folio) | 
 | 			break; | 
 | 		if (start >= folio_end(folio) || start + len <= folio_pos(folio)) | 
 | 			continue; | 
 | 		btrfs_folio_clamp_clear_checked(fs_info, folio, start, len); | 
 | 		btrfs_folio_clamp_set_dirty(fs_info, folio, start, len); | 
 | 	} | 
 | 	btrfs_delalloc_release_extents(inode, len); | 
 | 	extent_changeset_free(data_reserved); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, | 
 | 			    u32 extent_thresh, u64 newer_than, bool do_compress, | 
 | 			    u64 *last_scanned_ret) | 
 | { | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct defrag_target_range *entry; | 
 | 	struct defrag_target_range *tmp; | 
 | 	LIST_HEAD(target_list); | 
 | 	struct folio **folios; | 
 | 	const u32 sectorsize = inode->root->fs_info->sectorsize; | 
 | 	u64 cur = start; | 
 | 	const unsigned int nr_pages = ((start + len - 1) >> PAGE_SHIFT) - | 
 | 				      (start >> PAGE_SHIFT) + 1; | 
 | 	int ret = 0; | 
 |  | 
 | 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); | 
 | 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); | 
 |  | 
 | 	folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS); | 
 | 	if (!folios) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Prepare all pages */ | 
 | 	for (int i = 0; cur < start + len && i < nr_pages; i++) { | 
 | 		folios[i] = defrag_prepare_one_folio(inode, cur >> PAGE_SHIFT); | 
 | 		if (IS_ERR(folios[i])) { | 
 | 			ret = PTR_ERR(folios[i]); | 
 | 			folios[i] = NULL; | 
 | 			goto free_folios; | 
 | 		} | 
 | 		cur = folio_end(folios[i]); | 
 | 	} | 
 | 	for (int i = 0; i < nr_pages; i++) { | 
 | 		if (!folios[i]) | 
 | 			break; | 
 | 		folio_wait_writeback(folios[i]); | 
 | 	} | 
 |  | 
 | 	/* We should get at least one folio. */ | 
 | 	ASSERT(folios[0]); | 
 | 	/* Lock the pages range */ | 
 | 	btrfs_lock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state); | 
 | 	/* | 
 | 	 * Now we have a consistent view about the extent map, re-check | 
 | 	 * which range really needs to be defragged. | 
 | 	 * | 
 | 	 * And this time we have extent locked already, pass @locked = true | 
 | 	 * so that we won't relock the extent range and cause deadlock. | 
 | 	 */ | 
 | 	ret = defrag_collect_targets(inode, start, len, extent_thresh, | 
 | 				     newer_than, do_compress, true, | 
 | 				     &target_list, last_scanned_ret); | 
 | 	if (ret < 0) | 
 | 		goto unlock_extent; | 
 |  | 
 | 	list_for_each_entry(entry, &target_list, list) { | 
 | 		ret = defrag_one_locked_target(inode, entry, folios, nr_pages, | 
 | 					       &cached_state); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(entry, tmp, &target_list, list) { | 
 | 		list_del_init(&entry->list); | 
 | 		kfree(entry); | 
 | 	} | 
 | unlock_extent: | 
 | 	btrfs_unlock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state); | 
 | free_folios: | 
 | 	for (int i = 0; i < nr_pages; i++) { | 
 | 		if (!folios[i]) | 
 | 			break; | 
 | 		folio_unlock(folios[i]); | 
 | 		folio_put(folios[i]); | 
 | 	} | 
 | 	kfree(folios); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int defrag_one_cluster(struct btrfs_inode *inode, | 
 | 			      struct file_ra_state *ra, | 
 | 			      u64 start, u32 len, u32 extent_thresh, | 
 | 			      u64 newer_than, bool do_compress, | 
 | 			      unsigned long *sectors_defragged, | 
 | 			      unsigned long max_sectors, | 
 | 			      u64 *last_scanned_ret) | 
 | { | 
 | 	const u32 sectorsize = inode->root->fs_info->sectorsize; | 
 | 	struct defrag_target_range *entry; | 
 | 	struct defrag_target_range *tmp; | 
 | 	LIST_HEAD(target_list); | 
 | 	int ret; | 
 |  | 
 | 	ret = defrag_collect_targets(inode, start, len, extent_thresh, | 
 | 				     newer_than, do_compress, false, | 
 | 				     &target_list, NULL); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry(entry, &target_list, list) { | 
 | 		u32 range_len = entry->len; | 
 |  | 
 | 		/* Reached or beyond the limit */ | 
 | 		if (max_sectors && *sectors_defragged >= max_sectors) { | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (max_sectors) | 
 | 			range_len = min_t(u32, range_len, | 
 | 				(max_sectors - *sectors_defragged) * sectorsize); | 
 |  | 
 | 		/* | 
 | 		 * If defrag_one_range() has updated last_scanned_ret, | 
 | 		 * our range may already be invalid (e.g. hole punched). | 
 | 		 * Skip if our range is before last_scanned_ret, as there is | 
 | 		 * no need to defrag the range anymore. | 
 | 		 */ | 
 | 		if (entry->start + range_len <= *last_scanned_ret) | 
 | 			continue; | 
 |  | 
 | 		page_cache_sync_readahead(inode->vfs_inode.i_mapping, | 
 | 				ra, NULL, entry->start >> PAGE_SHIFT, | 
 | 				((entry->start + range_len - 1) >> PAGE_SHIFT) - | 
 | 				(entry->start >> PAGE_SHIFT) + 1); | 
 | 		/* | 
 | 		 * Here we may not defrag any range if holes are punched before | 
 | 		 * we locked the pages. | 
 | 		 * But that's fine, it only affects the @sectors_defragged | 
 | 		 * accounting. | 
 | 		 */ | 
 | 		ret = defrag_one_range(inode, entry->start, range_len, | 
 | 				       extent_thresh, newer_than, do_compress, | 
 | 				       last_scanned_ret); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		*sectors_defragged += range_len >> | 
 | 				      inode->root->fs_info->sectorsize_bits; | 
 | 	} | 
 | out: | 
 | 	list_for_each_entry_safe(entry, tmp, &target_list, list) { | 
 | 		list_del_init(&entry->list); | 
 | 		kfree(entry); | 
 | 	} | 
 | 	if (ret >= 0) | 
 | 		*last_scanned_ret = max(*last_scanned_ret, start + len); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Entry point to file defragmentation. | 
 |  * | 
 |  * @inode:	   inode to be defragged | 
 |  * @ra:		   readahead state | 
 |  * @range:	   defrag options including range and flags | 
 |  * @newer_than:	   minimum transid to defrag | 
 |  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode | 
 |  *		   will be defragged. | 
 |  * | 
 |  * Return <0 for error. | 
 |  * Return >=0 for the number of sectors defragged, and range->start will be updated | 
 |  * to indicate the file offset where next defrag should be started at. | 
 |  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without | 
 |  *  defragging all the range). | 
 |  */ | 
 | int btrfs_defrag_file(struct btrfs_inode *inode, struct file_ra_state *ra, | 
 | 		      struct btrfs_ioctl_defrag_range_args *range, | 
 | 		      u64 newer_than, unsigned long max_to_defrag) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	unsigned long sectors_defragged = 0; | 
 | 	u64 isize = i_size_read(&inode->vfs_inode); | 
 | 	u64 cur; | 
 | 	u64 last_byte; | 
 | 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS); | 
 | 	bool no_compress = (range->flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS); | 
 | 	int compress_type = BTRFS_COMPRESS_ZLIB; | 
 | 	int compress_level = 0; | 
 | 	int ret = 0; | 
 | 	u32 extent_thresh = range->extent_thresh; | 
 | 	pgoff_t start_index; | 
 |  | 
 | 	ASSERT(ra); | 
 |  | 
 | 	if (isize == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (range->start >= isize) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (do_compress) { | 
 | 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS_LEVEL) { | 
 | 			if (range->compress.type >= BTRFS_NR_COMPRESS_TYPES) | 
 | 				return -EINVAL; | 
 | 			if (range->compress.type) { | 
 | 				compress_type  = range->compress.type; | 
 | 				compress_level = range->compress.level; | 
 | 				if (!btrfs_compress_level_valid(compress_type, compress_level)) | 
 | 					return -EINVAL; | 
 | 			} | 
 | 		} else { | 
 | 			if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) | 
 | 				return -EINVAL; | 
 | 			if (range->compress_type) | 
 | 				compress_type = range->compress_type; | 
 | 		} | 
 | 	} else if (range->flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS) { | 
 | 		compress_type = BTRFS_DEFRAG_DONT_COMPRESS; | 
 | 		compress_level = 1; | 
 | 	} | 
 |  | 
 | 	if (extent_thresh == 0) | 
 | 		extent_thresh = SZ_256K; | 
 |  | 
 | 	if (range->start + range->len > range->start) { | 
 | 		/* Got a specific range */ | 
 | 		last_byte = min(isize, range->start + range->len); | 
 | 	} else { | 
 | 		/* Defrag until file end */ | 
 | 		last_byte = isize; | 
 | 	} | 
 |  | 
 | 	/* Align the range */ | 
 | 	cur = round_down(range->start, fs_info->sectorsize); | 
 | 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1; | 
 |  | 
 | 	/* | 
 | 	 * Make writeback start from the beginning of the range, so that the | 
 | 	 * defrag range can be written sequentially. | 
 | 	 */ | 
 | 	start_index = cur >> PAGE_SHIFT; | 
 | 	if (start_index < inode->vfs_inode.i_mapping->writeback_index) | 
 | 		inode->vfs_inode.i_mapping->writeback_index = start_index; | 
 |  | 
 | 	while (cur < last_byte) { | 
 | 		const unsigned long prev_sectors_defragged = sectors_defragged; | 
 | 		u64 last_scanned = cur; | 
 | 		u64 cluster_end; | 
 |  | 
 | 		if (btrfs_defrag_cancelled(fs_info)) { | 
 | 			ret = -EAGAIN; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* We want the cluster end at page boundary when possible */ | 
 | 		cluster_end = (((cur >> PAGE_SHIFT) + | 
 | 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; | 
 | 		cluster_end = min(cluster_end, last_byte); | 
 |  | 
 | 		btrfs_inode_lock(inode, 0); | 
 | 		if (IS_SWAPFILE(&inode->vfs_inode)) { | 
 | 			ret = -ETXTBSY; | 
 | 			btrfs_inode_unlock(inode, 0); | 
 | 			break; | 
 | 		} | 
 | 		if (!(inode->vfs_inode.i_sb->s_flags & SB_ACTIVE)) { | 
 | 			btrfs_inode_unlock(inode, 0); | 
 | 			break; | 
 | 		} | 
 | 		if (do_compress || no_compress) { | 
 | 			inode->defrag_compress = compress_type; | 
 | 			inode->defrag_compress_level = compress_level; | 
 | 		} | 
 | 		ret = defrag_one_cluster(inode, ra, cur, | 
 | 				cluster_end + 1 - cur, extent_thresh, | 
 | 				newer_than, do_compress || no_compress, | 
 | 				§ors_defragged, | 
 | 				max_to_defrag, &last_scanned); | 
 |  | 
 | 		if (sectors_defragged > prev_sectors_defragged) | 
 | 			balance_dirty_pages_ratelimited(inode->vfs_inode.i_mapping); | 
 |  | 
 | 		btrfs_inode_unlock(inode, 0); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		cur = max(cluster_end + 1, last_scanned); | 
 | 		if (ret > 0) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Update range.start for autodefrag, this will indicate where to start | 
 | 	 * in next run. | 
 | 	 */ | 
 | 	range->start = cur; | 
 | 	if (sectors_defragged) { | 
 | 		/* | 
 | 		 * We have defragged some sectors, for compression case they | 
 | 		 * need to be written back immediately. | 
 | 		 */ | 
 | 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { | 
 | 			filemap_flush(inode->vfs_inode.i_mapping); | 
 | 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, | 
 | 				     &inode->runtime_flags)) | 
 | 				filemap_flush(inode->vfs_inode.i_mapping); | 
 | 		} | 
 | 		if (range->compress_type == BTRFS_COMPRESS_LZO) | 
 | 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); | 
 | 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD) | 
 | 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); | 
 | 		ret = sectors_defragged; | 
 | 	} | 
 | 	if (do_compress || no_compress) { | 
 | 		btrfs_inode_lock(inode, 0); | 
 | 		inode->defrag_compress = BTRFS_COMPRESS_NONE; | 
 | 		btrfs_inode_unlock(inode, 0); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | void __cold btrfs_auto_defrag_exit(void) | 
 | { | 
 | 	kmem_cache_destroy(btrfs_inode_defrag_cachep); | 
 | } | 
 |  | 
 | int __init btrfs_auto_defrag_init(void) | 
 | { | 
 | 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", | 
 | 					sizeof(struct inode_defrag), 0, 0, NULL); | 
 | 	if (!btrfs_inode_defrag_cachep) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } |