| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2012 Fusion-io  All rights reserved. | 
 |  * Copyright (C) 2012 Intel Corp. All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/raid/pq.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/list_sort.h> | 
 | #include <linux/raid/xor.h> | 
 | #include <linux/mm.h> | 
 | #include "messages.h" | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "volumes.h" | 
 | #include "raid56.h" | 
 | #include "async-thread.h" | 
 | #include "file-item.h" | 
 | #include "btrfs_inode.h" | 
 |  | 
 | /* set when additional merges to this rbio are not allowed */ | 
 | #define RBIO_RMW_LOCKED_BIT	1 | 
 |  | 
 | /* | 
 |  * set when this rbio is sitting in the hash, but it is just a cache | 
 |  * of past RMW | 
 |  */ | 
 | #define RBIO_CACHE_BIT		2 | 
 |  | 
 | /* | 
 |  * set when it is safe to trust the stripe_pages for caching | 
 |  */ | 
 | #define RBIO_CACHE_READY_BIT	3 | 
 |  | 
 | #define RBIO_CACHE_SIZE 1024 | 
 |  | 
 | #define BTRFS_STRIPE_HASH_TABLE_BITS				11 | 
 |  | 
 | static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc) | 
 | { | 
 | 	if (unlikely(!bioc)) { | 
 | 		btrfs_crit(fs_info, "bioc=NULL"); | 
 | 		return; | 
 | 	} | 
 | 	btrfs_crit(fs_info, | 
 | "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u", | 
 | 		bioc->logical, bioc->full_stripe_logical, bioc->size, | 
 | 		bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes, | 
 | 		bioc->replace_stripe_src, bioc->num_stripes); | 
 | 	for (int i = 0; i < bioc->num_stripes; i++) { | 
 | 		btrfs_crit(fs_info, "    nr=%d devid=%llu physical=%llu", | 
 | 			   i, bioc->stripes[i].dev->devid, | 
 | 			   bioc->stripes[i].physical); | 
 | 	} | 
 | } | 
 |  | 
 | static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info, | 
 | 			    const struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) | 
 | 		return; | 
 |  | 
 | 	dump_bioc(fs_info, rbio->bioc); | 
 | 	btrfs_crit(fs_info, | 
 | "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx", | 
 | 		rbio->flags, rbio->nr_sectors, rbio->nr_data, | 
 | 		rbio->real_stripes, rbio->stripe_nsectors, | 
 | 		rbio->scrubp, rbio->dbitmap); | 
 | } | 
 |  | 
 | #define ASSERT_RBIO(expr, rbio)						\ | 
 | ({									\ | 
 | 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\ | 
 | 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\ | 
 | 					(rbio)->bioc->fs_info : NULL;	\ | 
 | 									\ | 
 | 		btrfs_dump_rbio(__fs_info, (rbio));			\ | 
 | 	}								\ | 
 | 	ASSERT((expr));							\ | 
 | }) | 
 |  | 
 | #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr)			\ | 
 | ({									\ | 
 | 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\ | 
 | 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\ | 
 | 					(rbio)->bioc->fs_info : NULL;	\ | 
 | 									\ | 
 | 		btrfs_dump_rbio(__fs_info, (rbio));			\ | 
 | 		btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr));	\ | 
 | 	}								\ | 
 | 	ASSERT((expr));							\ | 
 | }) | 
 |  | 
 | #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr)			\ | 
 | ({									\ | 
 | 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\ | 
 | 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\ | 
 | 					(rbio)->bioc->fs_info : NULL;	\ | 
 | 									\ | 
 | 		btrfs_dump_rbio(__fs_info, (rbio));			\ | 
 | 		btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr));	\ | 
 | 	}								\ | 
 | 	ASSERT((expr));							\ | 
 | }) | 
 |  | 
 | #define ASSERT_RBIO_LOGICAL(expr, rbio, logical)			\ | 
 | ({									\ | 
 | 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\ | 
 | 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\ | 
 | 					(rbio)->bioc->fs_info : NULL;	\ | 
 | 									\ | 
 | 		btrfs_dump_rbio(__fs_info, (rbio));			\ | 
 | 		btrfs_crit(__fs_info, "logical=%llu", (logical));		\ | 
 | 	}								\ | 
 | 	ASSERT((expr));							\ | 
 | }) | 
 |  | 
 | /* Used by the raid56 code to lock stripes for read/modify/write */ | 
 | struct btrfs_stripe_hash { | 
 | 	struct list_head hash_list; | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | /* Used by the raid56 code to lock stripes for read/modify/write */ | 
 | struct btrfs_stripe_hash_table { | 
 | 	struct list_head stripe_cache; | 
 | 	spinlock_t cache_lock; | 
 | 	int cache_size; | 
 | 	struct btrfs_stripe_hash table[]; | 
 | }; | 
 |  | 
 | /* | 
 |  * A structure to present a sector inside a page, the length is fixed to | 
 |  * sectorsize; | 
 |  */ | 
 | struct sector_ptr { | 
 | 	/* | 
 | 	 * Blocks from the bio list can still be highmem. | 
 | 	 * So here we use physical address to present a page and the offset inside it. | 
 | 	 */ | 
 | 	phys_addr_t paddr; | 
 | 	bool has_paddr; | 
 | 	bool uptodate; | 
 | }; | 
 |  | 
 | static void rmw_rbio_work(struct work_struct *work); | 
 | static void rmw_rbio_work_locked(struct work_struct *work); | 
 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | 
 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | 
 |  | 
 | static int finish_parity_scrub(struct btrfs_raid_bio *rbio); | 
 | static void scrub_rbio_work_locked(struct work_struct *work); | 
 |  | 
 | static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	bitmap_free(rbio->error_bitmap); | 
 | 	kfree(rbio->stripe_pages); | 
 | 	kfree(rbio->bio_sectors); | 
 | 	kfree(rbio->stripe_sectors); | 
 | 	kfree(rbio->finish_pointers); | 
 | } | 
 |  | 
 | static void free_raid_bio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!refcount_dec_and_test(&rbio->refs)) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(!list_empty(&rbio->stripe_cache)); | 
 | 	WARN_ON(!list_empty(&rbio->hash_list)); | 
 | 	WARN_ON(!bio_list_empty(&rbio->bio_list)); | 
 |  | 
 | 	for (i = 0; i < rbio->nr_pages; i++) { | 
 | 		if (rbio->stripe_pages[i]) { | 
 | 			__free_page(rbio->stripe_pages[i]); | 
 | 			rbio->stripe_pages[i] = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btrfs_put_bioc(rbio->bioc); | 
 | 	free_raid_bio_pointers(rbio); | 
 | 	kfree(rbio); | 
 | } | 
 |  | 
 | static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) | 
 | { | 
 | 	INIT_WORK(&rbio->work, work_func); | 
 | 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); | 
 | } | 
 |  | 
 | /* | 
 |  * the stripe hash table is used for locking, and to collect | 
 |  * bios in hopes of making a full stripe | 
 |  */ | 
 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_stripe_hash_table *table; | 
 | 	struct btrfs_stripe_hash_table *x; | 
 | 	struct btrfs_stripe_hash *cur; | 
 | 	struct btrfs_stripe_hash *h; | 
 | 	unsigned int num_entries = 1U << BTRFS_STRIPE_HASH_TABLE_BITS; | 
 |  | 
 | 	if (info->stripe_hash_table) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The table is large, starting with order 4 and can go as high as | 
 | 	 * order 7 in case lock debugging is turned on. | 
 | 	 * | 
 | 	 * Try harder to allocate and fallback to vmalloc to lower the chance | 
 | 	 * of a failing mount. | 
 | 	 */ | 
 | 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); | 
 | 	if (!table) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock_init(&table->cache_lock); | 
 | 	INIT_LIST_HEAD(&table->stripe_cache); | 
 |  | 
 | 	h = table->table; | 
 |  | 
 | 	for (unsigned int i = 0; i < num_entries; i++) { | 
 | 		cur = h + i; | 
 | 		INIT_LIST_HEAD(&cur->hash_list); | 
 | 		spin_lock_init(&cur->lock); | 
 | 	} | 
 |  | 
 | 	x = cmpxchg(&info->stripe_hash_table, NULL, table); | 
 | 	kvfree(x); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void memcpy_sectors(const struct sector_ptr *dst, | 
 | 			   const struct sector_ptr *src, u32 blocksize) | 
 | { | 
 | 	memcpy_page(phys_to_page(dst->paddr), offset_in_page(dst->paddr), | 
 | 		    phys_to_page(src->paddr), offset_in_page(src->paddr), | 
 | 		    blocksize); | 
 | } | 
 |  | 
 | /* | 
 |  * caching an rbio means to copy anything from the | 
 |  * bio_sectors array into the stripe_pages array.  We | 
 |  * use the page uptodate bit in the stripe cache array | 
 |  * to indicate if it has valid data | 
 |  * | 
 |  * once the caching is done, we set the cache ready | 
 |  * bit. | 
 |  */ | 
 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	ret = alloc_rbio_pages(rbio); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < rbio->nr_sectors; i++) { | 
 | 		/* Some range not covered by bio (partial write), skip it */ | 
 | 		if (!rbio->bio_sectors[i].has_paddr) { | 
 | 			/* | 
 | 			 * Even if the sector is not covered by bio, if it is | 
 | 			 * a data sector it should still be uptodate as it is | 
 | 			 * read from disk. | 
 | 			 */ | 
 | 			if (i < rbio->nr_data * rbio->stripe_nsectors) | 
 | 				ASSERT(rbio->stripe_sectors[i].uptodate); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		memcpy_sectors(&rbio->stripe_sectors[i], &rbio->bio_sectors[i], | 
 | 				rbio->bioc->fs_info->sectorsize); | 
 | 		rbio->stripe_sectors[i].uptodate = 1; | 
 | 	} | 
 | 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * we hash on the first logical address of the stripe | 
 |  */ | 
 | static int rbio_bucket(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	u64 num = rbio->bioc->full_stripe_logical; | 
 |  | 
 | 	/* | 
 | 	 * we shift down quite a bit.  We're using byte | 
 | 	 * addressing, and most of the lower bits are zeros. | 
 | 	 * This tends to upset hash_64, and it consistently | 
 | 	 * returns just one or two different values. | 
 | 	 * | 
 | 	 * shifting off the lower bits fixes things. | 
 | 	 */ | 
 | 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | 
 | } | 
 |  | 
 | static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, | 
 | 				       unsigned int page_nr) | 
 | { | 
 | 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
 | 	const u32 sectors_per_page = PAGE_SIZE / sectorsize; | 
 | 	int i; | 
 |  | 
 | 	ASSERT(page_nr < rbio->nr_pages); | 
 |  | 
 | 	for (i = sectors_per_page * page_nr; | 
 | 	     i < sectors_per_page * page_nr + sectors_per_page; | 
 | 	     i++) { | 
 | 		if (!rbio->stripe_sectors[i].uptodate) | 
 | 			return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the stripe_sectors[] array to use correct page and pgoff | 
 |  * | 
 |  * Should be called every time any page pointer in stripes_pages[] got modified. | 
 |  */ | 
 | static void index_stripe_sectors(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
 | 	u32 offset; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { | 
 | 		int page_index = offset >> PAGE_SHIFT; | 
 |  | 
 | 		ASSERT(page_index < rbio->nr_pages); | 
 | 		if (!rbio->stripe_pages[page_index]) | 
 | 			continue; | 
 |  | 
 | 		rbio->stripe_sectors[i].has_paddr = true; | 
 | 		rbio->stripe_sectors[i].paddr = | 
 | 			page_to_phys(rbio->stripe_pages[page_index]) + | 
 | 			offset_in_page(offset); | 
 | 	} | 
 | } | 
 |  | 
 | static void steal_rbio_page(struct btrfs_raid_bio *src, | 
 | 			    struct btrfs_raid_bio *dest, int page_nr) | 
 | { | 
 | 	const u32 sectorsize = src->bioc->fs_info->sectorsize; | 
 | 	const u32 sectors_per_page = PAGE_SIZE / sectorsize; | 
 | 	int i; | 
 |  | 
 | 	if (dest->stripe_pages[page_nr]) | 
 | 		__free_page(dest->stripe_pages[page_nr]); | 
 | 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; | 
 | 	src->stripe_pages[page_nr] = NULL; | 
 |  | 
 | 	/* Also update the sector->uptodate bits. */ | 
 | 	for (i = sectors_per_page * page_nr; | 
 | 	     i < sectors_per_page * page_nr + sectors_per_page; i++) | 
 | 		dest->stripe_sectors[i].uptodate = true; | 
 | } | 
 |  | 
 | static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) | 
 | { | 
 | 	const int sector_nr = (page_nr << PAGE_SHIFT) >> | 
 | 			      rbio->bioc->fs_info->sectorsize_bits; | 
 |  | 
 | 	/* | 
 | 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus | 
 | 	 * we won't have a page which is half data half parity. | 
 | 	 * | 
 | 	 * Thus if the first sector of the page belongs to data stripes, then | 
 | 	 * the full page belongs to data stripes. | 
 | 	 */ | 
 | 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); | 
 | } | 
 |  | 
 | /* | 
 |  * Stealing an rbio means taking all the uptodate pages from the stripe array | 
 |  * in the source rbio and putting them into the destination rbio. | 
 |  * | 
 |  * This will also update the involved stripe_sectors[] which are referring to | 
 |  * the old pages. | 
 |  */ | 
 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < dest->nr_pages; i++) { | 
 | 		struct page *p = src->stripe_pages[i]; | 
 |  | 
 | 		/* | 
 | 		 * We don't need to steal P/Q pages as they will always be | 
 | 		 * regenerated for RMW or full write anyway. | 
 | 		 */ | 
 | 		if (!is_data_stripe_page(src, i)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If @src already has RBIO_CACHE_READY_BIT, it should have | 
 | 		 * all data stripe pages present and uptodate. | 
 | 		 */ | 
 | 		ASSERT(p); | 
 | 		ASSERT(full_page_sectors_uptodate(src, i)); | 
 | 		steal_rbio_page(src, dest, i); | 
 | 	} | 
 | 	index_stripe_sectors(dest); | 
 | 	index_stripe_sectors(src); | 
 | } | 
 |  | 
 | /* | 
 |  * merging means we take the bio_list from the victim and | 
 |  * splice it into the destination.  The victim should | 
 |  * be discarded afterwards. | 
 |  * | 
 |  * must be called with dest->rbio_list_lock held | 
 |  */ | 
 | static void merge_rbio(struct btrfs_raid_bio *dest, | 
 | 		       struct btrfs_raid_bio *victim) | 
 | { | 
 | 	bio_list_merge_init(&dest->bio_list, &victim->bio_list); | 
 | 	dest->bio_list_bytes += victim->bio_list_bytes; | 
 | 	/* Also inherit the bitmaps from @victim. */ | 
 | 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, | 
 | 		  dest->stripe_nsectors); | 
 | } | 
 |  | 
 | /* | 
 |  * used to prune items that are in the cache.  The caller | 
 |  * must hold the hash table lock. | 
 |  */ | 
 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int bucket = rbio_bucket(rbio); | 
 | 	struct btrfs_stripe_hash_table *table; | 
 | 	struct btrfs_stripe_hash *h; | 
 | 	int freeit = 0; | 
 |  | 
 | 	/* | 
 | 	 * check the bit again under the hash table lock. | 
 | 	 */ | 
 | 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
 | 		return; | 
 |  | 
 | 	table = rbio->bioc->fs_info->stripe_hash_table; | 
 | 	h = table->table + bucket; | 
 |  | 
 | 	/* hold the lock for the bucket because we may be | 
 | 	 * removing it from the hash table | 
 | 	 */ | 
 | 	spin_lock(&h->lock); | 
 |  | 
 | 	/* | 
 | 	 * hold the lock for the bio list because we need | 
 | 	 * to make sure the bio list is empty | 
 | 	 */ | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 |  | 
 | 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
 | 		list_del_init(&rbio->stripe_cache); | 
 | 		table->cache_size -= 1; | 
 | 		freeit = 1; | 
 |  | 
 | 		/* if the bio list isn't empty, this rbio is | 
 | 		 * still involved in an IO.  We take it out | 
 | 		 * of the cache list, and drop the ref that | 
 | 		 * was held for the list. | 
 | 		 * | 
 | 		 * If the bio_list was empty, we also remove | 
 | 		 * the rbio from the hash_table, and drop | 
 | 		 * the corresponding ref | 
 | 		 */ | 
 | 		if (bio_list_empty(&rbio->bio_list)) { | 
 | 			if (!list_empty(&rbio->hash_list)) { | 
 | 				list_del_init(&rbio->hash_list); | 
 | 				refcount_dec(&rbio->refs); | 
 | 				BUG_ON(!list_empty(&rbio->plug_list)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 | 	spin_unlock(&h->lock); | 
 |  | 
 | 	if (freeit) | 
 | 		free_raid_bio(rbio); | 
 | } | 
 |  | 
 | /* | 
 |  * prune a given rbio from the cache | 
 |  */ | 
 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct btrfs_stripe_hash_table *table; | 
 |  | 
 | 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
 | 		return; | 
 |  | 
 | 	table = rbio->bioc->fs_info->stripe_hash_table; | 
 |  | 
 | 	spin_lock(&table->cache_lock); | 
 | 	__remove_rbio_from_cache(rbio); | 
 | 	spin_unlock(&table->cache_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * remove everything in the cache | 
 |  */ | 
 | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_stripe_hash_table *table; | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	table = info->stripe_hash_table; | 
 |  | 
 | 	spin_lock(&table->cache_lock); | 
 | 	while (!list_empty(&table->stripe_cache)) { | 
 | 		rbio = list_first_entry(&table->stripe_cache, | 
 | 					struct btrfs_raid_bio, stripe_cache); | 
 | 		__remove_rbio_from_cache(rbio); | 
 | 	} | 
 | 	spin_unlock(&table->cache_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * remove all cached entries and free the hash table | 
 |  * used by unmount | 
 |  */ | 
 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | 
 | { | 
 | 	if (!info->stripe_hash_table) | 
 | 		return; | 
 | 	btrfs_clear_rbio_cache(info); | 
 | 	kvfree(info->stripe_hash_table); | 
 | 	info->stripe_hash_table = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * insert an rbio into the stripe cache.  It | 
 |  * must have already been prepared by calling | 
 |  * cache_rbio_pages | 
 |  * | 
 |  * If this rbio was already cached, it gets | 
 |  * moved to the front of the lru. | 
 |  * | 
 |  * If the size of the rbio cache is too big, we | 
 |  * prune an item. | 
 |  */ | 
 | static void cache_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct btrfs_stripe_hash_table *table; | 
 |  | 
 | 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | 
 | 		return; | 
 |  | 
 | 	table = rbio->bioc->fs_info->stripe_hash_table; | 
 |  | 
 | 	spin_lock(&table->cache_lock); | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 |  | 
 | 	/* bump our ref if we were not in the list before */ | 
 | 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
 | 		refcount_inc(&rbio->refs); | 
 |  | 
 | 	if (!list_empty(&rbio->stripe_cache)){ | 
 | 		list_move(&rbio->stripe_cache, &table->stripe_cache); | 
 | 	} else { | 
 | 		list_add(&rbio->stripe_cache, &table->stripe_cache); | 
 | 		table->cache_size += 1; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 |  | 
 | 	if (table->cache_size > RBIO_CACHE_SIZE) { | 
 | 		struct btrfs_raid_bio *found; | 
 |  | 
 | 		found = list_last_entry(&table->stripe_cache, | 
 | 					struct btrfs_raid_bio, | 
 | 					stripe_cache); | 
 |  | 
 | 		if (found != rbio) | 
 | 			__remove_rbio_from_cache(found); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&table->cache_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to run the xor_blocks api.  It is only | 
 |  * able to do MAX_XOR_BLOCKS at a time, so we need to | 
 |  * loop through. | 
 |  */ | 
 | static void run_xor(void **pages, int src_cnt, ssize_t len) | 
 | { | 
 | 	int src_off = 0; | 
 | 	int xor_src_cnt = 0; | 
 | 	void *dest = pages[src_cnt]; | 
 |  | 
 | 	while(src_cnt > 0) { | 
 | 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | 
 | 		xor_blocks(xor_src_cnt, len, dest, pages + src_off); | 
 |  | 
 | 		src_cnt -= xor_src_cnt; | 
 | 		src_off += xor_src_cnt; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if the bio list inside this rbio covers an entire stripe (no | 
 |  * rmw required). | 
 |  */ | 
 | static int rbio_is_full(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	unsigned long size = rbio->bio_list_bytes; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 | 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN) | 
 | 		ret = 0; | 
 | 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * returns 1 if it is safe to merge two rbios together. | 
 |  * The merging is safe if the two rbios correspond to | 
 |  * the same stripe and if they are both going in the same | 
 |  * direction (read vs write), and if neither one is | 
 |  * locked for final IO | 
 |  * | 
 |  * The caller is responsible for locking such that | 
 |  * rmw_locked is safe to test | 
 |  */ | 
 | static int rbio_can_merge(struct btrfs_raid_bio *last, | 
 | 			  struct btrfs_raid_bio *cur) | 
 | { | 
 | 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | 
 | 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * we can't merge with cached rbios, since the | 
 | 	 * idea is that when we merge the destination | 
 | 	 * rbio is going to run our IO for us.  We can | 
 | 	 * steal from cached rbios though, other functions | 
 | 	 * handle that. | 
 | 	 */ | 
 | 	if (test_bit(RBIO_CACHE_BIT, &last->flags) || | 
 | 	    test_bit(RBIO_CACHE_BIT, &cur->flags)) | 
 | 		return 0; | 
 |  | 
 | 	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical) | 
 | 		return 0; | 
 |  | 
 | 	/* we can't merge with different operations */ | 
 | 	if (last->operation != cur->operation) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * We've need read the full stripe from the drive. | 
 | 	 * check and repair the parity and write the new results. | 
 | 	 * | 
 | 	 * We're not allowed to add any new bios to the | 
 | 	 * bio list here, anyone else that wants to | 
 | 	 * change this stripe needs to do their own rmw. | 
 | 	 */ | 
 | 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB) | 
 | 		return 0; | 
 |  | 
 | 	if (last->operation == BTRFS_RBIO_READ_REBUILD) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, | 
 | 					     unsigned int stripe_nr, | 
 | 					     unsigned int sector_nr) | 
 | { | 
 | 	ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr); | 
 | 	ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr); | 
 |  | 
 | 	return stripe_nr * rbio->stripe_nsectors + sector_nr; | 
 | } | 
 |  | 
 | /* Return a sector from rbio->stripe_sectors, not from the bio list */ | 
 | static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, | 
 | 					     unsigned int stripe_nr, | 
 | 					     unsigned int sector_nr) | 
 | { | 
 | 	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, | 
 | 							      sector_nr)]; | 
 | } | 
 |  | 
 | /* Grab a sector inside P stripe */ | 
 | static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, | 
 | 					      unsigned int sector_nr) | 
 | { | 
 | 	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); | 
 | } | 
 |  | 
 | /* Grab a sector inside Q stripe, return NULL if not RAID6 */ | 
 | static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, | 
 | 					      unsigned int sector_nr) | 
 | { | 
 | 	if (rbio->nr_data + 1 == rbio->real_stripes) | 
 | 		return NULL; | 
 | 	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); | 
 | } | 
 |  | 
 | /* | 
 |  * The first stripe in the table for a logical address | 
 |  * has the lock.  rbios are added in one of three ways: | 
 |  * | 
 |  * 1) Nobody has the stripe locked yet.  The rbio is given | 
 |  * the lock and 0 is returned.  The caller must start the IO | 
 |  * themselves. | 
 |  * | 
 |  * 2) Someone has the stripe locked, but we're able to merge | 
 |  * with the lock owner.  The rbio is freed and the IO will | 
 |  * start automatically along with the existing rbio.  1 is returned. | 
 |  * | 
 |  * 3) Someone has the stripe locked, but we're not able to merge. | 
 |  * The rbio is added to the lock owner's plug list, or merged into | 
 |  * an rbio already on the plug list.  When the lock owner unlocks, | 
 |  * the next rbio on the list is run and the IO is started automatically. | 
 |  * 1 is returned | 
 |  * | 
 |  * If we return 0, the caller still owns the rbio and must continue with | 
 |  * IO submission.  If we return 1, the caller must assume the rbio has | 
 |  * already been freed. | 
 |  */ | 
 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct btrfs_stripe_hash *h; | 
 | 	struct btrfs_raid_bio *cur; | 
 | 	struct btrfs_raid_bio *pending; | 
 | 	struct btrfs_raid_bio *freeit = NULL; | 
 | 	struct btrfs_raid_bio *cache_drop = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); | 
 |  | 
 | 	spin_lock(&h->lock); | 
 | 	list_for_each_entry(cur, &h->hash_list, hash_list) { | 
 | 		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&cur->bio_list_lock); | 
 |  | 
 | 		/* Can we steal this cached rbio's pages? */ | 
 | 		if (bio_list_empty(&cur->bio_list) && | 
 | 		    list_empty(&cur->plug_list) && | 
 | 		    test_bit(RBIO_CACHE_BIT, &cur->flags) && | 
 | 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | 
 | 			list_del_init(&cur->hash_list); | 
 | 			refcount_dec(&cur->refs); | 
 |  | 
 | 			steal_rbio(cur, rbio); | 
 | 			cache_drop = cur; | 
 | 			spin_unlock(&cur->bio_list_lock); | 
 |  | 
 | 			goto lockit; | 
 | 		} | 
 |  | 
 | 		/* Can we merge into the lock owner? */ | 
 | 		if (rbio_can_merge(cur, rbio)) { | 
 | 			merge_rbio(cur, rbio); | 
 | 			spin_unlock(&cur->bio_list_lock); | 
 | 			freeit = rbio; | 
 | 			ret = 1; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 |  | 
 | 		/* | 
 | 		 * We couldn't merge with the running rbio, see if we can merge | 
 | 		 * with the pending ones.  We don't have to check for rmw_locked | 
 | 		 * because there is no way they are inside finish_rmw right now | 
 | 		 */ | 
 | 		list_for_each_entry(pending, &cur->plug_list, plug_list) { | 
 | 			if (rbio_can_merge(pending, rbio)) { | 
 | 				merge_rbio(pending, rbio); | 
 | 				spin_unlock(&cur->bio_list_lock); | 
 | 				freeit = rbio; | 
 | 				ret = 1; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * No merging, put us on the tail of the plug list, our rbio | 
 | 		 * will be started with the currently running rbio unlocks | 
 | 		 */ | 
 | 		list_add_tail(&rbio->plug_list, &cur->plug_list); | 
 | 		spin_unlock(&cur->bio_list_lock); | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 | lockit: | 
 | 	refcount_inc(&rbio->refs); | 
 | 	list_add(&rbio->hash_list, &h->hash_list); | 
 | out: | 
 | 	spin_unlock(&h->lock); | 
 | 	if (cache_drop) | 
 | 		remove_rbio_from_cache(cache_drop); | 
 | 	if (freeit) | 
 | 		free_raid_bio(freeit); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void recover_rbio_work_locked(struct work_struct *work); | 
 |  | 
 | /* | 
 |  * called as rmw or parity rebuild is completed.  If the plug list has more | 
 |  * rbios waiting for this stripe, the next one on the list will be started | 
 |  */ | 
 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int bucket; | 
 | 	struct btrfs_stripe_hash *h; | 
 | 	int keep_cache = 0; | 
 |  | 
 | 	bucket = rbio_bucket(rbio); | 
 | 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; | 
 |  | 
 | 	if (list_empty(&rbio->plug_list)) | 
 | 		cache_rbio(rbio); | 
 |  | 
 | 	spin_lock(&h->lock); | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 |  | 
 | 	if (!list_empty(&rbio->hash_list)) { | 
 | 		/* | 
 | 		 * if we're still cached and there is no other IO | 
 | 		 * to perform, just leave this rbio here for others | 
 | 		 * to steal from later | 
 | 		 */ | 
 | 		if (list_empty(&rbio->plug_list) && | 
 | 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
 | 			keep_cache = 1; | 
 | 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
 | 			BUG_ON(!bio_list_empty(&rbio->bio_list)); | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		list_del_init(&rbio->hash_list); | 
 | 		refcount_dec(&rbio->refs); | 
 |  | 
 | 		/* | 
 | 		 * we use the plug list to hold all the rbios | 
 | 		 * waiting for the chance to lock this stripe. | 
 | 		 * hand the lock over to one of them. | 
 | 		 */ | 
 | 		if (!list_empty(&rbio->plug_list)) { | 
 | 			struct btrfs_raid_bio *next; | 
 | 			struct list_head *head = rbio->plug_list.next; | 
 |  | 
 | 			next = list_entry(head, struct btrfs_raid_bio, | 
 | 					  plug_list); | 
 |  | 
 | 			list_del_init(&rbio->plug_list); | 
 |  | 
 | 			list_add(&next->hash_list, &h->hash_list); | 
 | 			refcount_inc(&next->refs); | 
 | 			spin_unlock(&rbio->bio_list_lock); | 
 | 			spin_unlock(&h->lock); | 
 |  | 
 | 			if (next->operation == BTRFS_RBIO_READ_REBUILD) { | 
 | 				start_async_work(next, recover_rbio_work_locked); | 
 | 			} else if (next->operation == BTRFS_RBIO_WRITE) { | 
 | 				steal_rbio(rbio, next); | 
 | 				start_async_work(next, rmw_rbio_work_locked); | 
 | 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { | 
 | 				steal_rbio(rbio, next); | 
 | 				start_async_work(next, scrub_rbio_work_locked); | 
 | 			} | 
 |  | 
 | 			goto done_nolock; | 
 | 		} | 
 | 	} | 
 | done: | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 | 	spin_unlock(&h->lock); | 
 |  | 
 | done_nolock: | 
 | 	if (!keep_cache) | 
 | 		remove_rbio_from_cache(rbio); | 
 | } | 
 |  | 
 | static void rbio_endio_bio_list(struct bio *cur, blk_status_t status) | 
 | { | 
 | 	struct bio *next; | 
 |  | 
 | 	while (cur) { | 
 | 		next = cur->bi_next; | 
 | 		cur->bi_next = NULL; | 
 | 		cur->bi_status = status; | 
 | 		bio_endio(cur); | 
 | 		cur = next; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * this frees the rbio and runs through all the bios in the | 
 |  * bio_list and calls end_io on them | 
 |  */ | 
 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t status) | 
 | { | 
 | 	struct bio *cur = bio_list_get(&rbio->bio_list); | 
 | 	struct bio *extra; | 
 |  | 
 | 	kfree(rbio->csum_buf); | 
 | 	bitmap_free(rbio->csum_bitmap); | 
 | 	rbio->csum_buf = NULL; | 
 | 	rbio->csum_bitmap = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Clear the data bitmap, as the rbio may be cached for later usage. | 
 | 	 * do this before before unlock_stripe() so there will be no new bio | 
 | 	 * for this bio. | 
 | 	 */ | 
 | 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); | 
 |  | 
 | 	/* | 
 | 	 * At this moment, rbio->bio_list is empty, however since rbio does not | 
 | 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the | 
 | 	 * hash list, rbio may be merged with others so that rbio->bio_list | 
 | 	 * becomes non-empty. | 
 | 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any | 
 | 	 * more and we can call bio_endio() on all queued bios. | 
 | 	 */ | 
 | 	unlock_stripe(rbio); | 
 | 	extra = bio_list_get(&rbio->bio_list); | 
 | 	free_raid_bio(rbio); | 
 |  | 
 | 	rbio_endio_bio_list(cur, status); | 
 | 	if (extra) | 
 | 		rbio_endio_bio_list(extra, status); | 
 | } | 
 |  | 
 | /* | 
 |  * Get a sector pointer specified by its @stripe_nr and @sector_nr. | 
 |  * | 
 |  * @rbio:               The raid bio | 
 |  * @stripe_nr:          Stripe number, valid range [0, real_stripe) | 
 |  * @sector_nr:		Sector number inside the stripe, | 
 |  *			valid range [0, stripe_nsectors) | 
 |  * @bio_list_only:      Whether to use sectors inside the bio list only. | 
 |  * | 
 |  * The read/modify/write code wants to reuse the original bio page as much | 
 |  * as possible, and only use stripe_sectors as fallback. | 
 |  */ | 
 | static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, | 
 | 					 int stripe_nr, int sector_nr, | 
 | 					 bool bio_list_only) | 
 | { | 
 | 	struct sector_ptr *sector; | 
 | 	int index; | 
 |  | 
 | 	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes, | 
 | 			   rbio, stripe_nr); | 
 | 	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, | 
 | 			   rbio, sector_nr); | 
 |  | 
 | 	index = stripe_nr * rbio->stripe_nsectors + sector_nr; | 
 | 	ASSERT(index >= 0 && index < rbio->nr_sectors); | 
 |  | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 | 	sector = &rbio->bio_sectors[index]; | 
 | 	if (sector->has_paddr || bio_list_only) { | 
 | 		/* Don't return sector without a valid page pointer */ | 
 | 		if (!sector->has_paddr) | 
 | 			sector = NULL; | 
 | 		spin_unlock(&rbio->bio_list_lock); | 
 | 		return sector; | 
 | 	} | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 |  | 
 | 	return &rbio->stripe_sectors[index]; | 
 | } | 
 |  | 
 | /* | 
 |  * allocation and initial setup for the btrfs_raid_bio.  Not | 
 |  * this does not allocate any pages for rbio->pages. | 
 |  */ | 
 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, | 
 | 					 struct btrfs_io_context *bioc) | 
 | { | 
 | 	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes; | 
 | 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; | 
 | 	const unsigned int num_pages = stripe_npages * real_stripes; | 
 | 	const unsigned int stripe_nsectors = | 
 | 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; | 
 | 	const unsigned int num_sectors = stripe_nsectors * real_stripes; | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */ | 
 | 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); | 
 | 	/* | 
 | 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors | 
 | 	 * (at most 16) should be no larger than BITS_PER_LONG. | 
 | 	 */ | 
 | 	ASSERT(stripe_nsectors <= BITS_PER_LONG); | 
 |  | 
 | 	/* | 
 | 	 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256 | 
 | 	 * (limited by u8). | 
 | 	 */ | 
 | 	ASSERT(real_stripes >= 2); | 
 | 	ASSERT(real_stripes <= U8_MAX); | 
 |  | 
 | 	rbio = kzalloc(sizeof(*rbio), GFP_NOFS); | 
 | 	if (!rbio) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), | 
 | 				     GFP_NOFS); | 
 | 	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), | 
 | 				    GFP_NOFS); | 
 | 	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), | 
 | 				       GFP_NOFS); | 
 | 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); | 
 | 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); | 
 |  | 
 | 	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || | 
 | 	    !rbio->finish_pointers || !rbio->error_bitmap) { | 
 | 		free_raid_bio_pointers(rbio); | 
 | 		kfree(rbio); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	bio_list_init(&rbio->bio_list); | 
 | 	init_waitqueue_head(&rbio->io_wait); | 
 | 	INIT_LIST_HEAD(&rbio->plug_list); | 
 | 	spin_lock_init(&rbio->bio_list_lock); | 
 | 	INIT_LIST_HEAD(&rbio->stripe_cache); | 
 | 	INIT_LIST_HEAD(&rbio->hash_list); | 
 | 	btrfs_get_bioc(bioc); | 
 | 	rbio->bioc = bioc; | 
 | 	rbio->nr_pages = num_pages; | 
 | 	rbio->nr_sectors = num_sectors; | 
 | 	rbio->real_stripes = real_stripes; | 
 | 	rbio->stripe_npages = stripe_npages; | 
 | 	rbio->stripe_nsectors = stripe_nsectors; | 
 | 	refcount_set(&rbio->refs, 1); | 
 | 	atomic_set(&rbio->stripes_pending, 0); | 
 |  | 
 | 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); | 
 | 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); | 
 | 	ASSERT(rbio->nr_data > 0); | 
 |  | 
 | 	return rbio; | 
 | } | 
 |  | 
 | /* allocate pages for all the stripes in the bio, including parity */ | 
 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	/* Mapping all sectors */ | 
 | 	index_stripe_sectors(rbio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* only allocate pages for p/q stripes */ | 
 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	const int data_pages = rbio->nr_data * rbio->stripe_npages; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, | 
 | 				     rbio->stripe_pages + data_pages, false); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	index_stripe_sectors(rbio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the total number of errors found in the vertical stripe of @sector_nr. | 
 |  * | 
 |  * @faila and @failb will also be updated to the first and second stripe | 
 |  * number of the errors. | 
 |  */ | 
 | static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, | 
 | 				     int *faila, int *failb) | 
 | { | 
 | 	int stripe_nr; | 
 | 	int found_errors = 0; | 
 |  | 
 | 	if (faila || failb) { | 
 | 		/* | 
 | 		 * Both @faila and @failb should be valid pointers if any of | 
 | 		 * them is specified. | 
 | 		 */ | 
 | 		ASSERT(faila && failb); | 
 | 		*faila = -1; | 
 | 		*failb = -1; | 
 | 	} | 
 |  | 
 | 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { | 
 | 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; | 
 |  | 
 | 		if (test_bit(total_sector_nr, rbio->error_bitmap)) { | 
 | 			found_errors++; | 
 | 			if (faila) { | 
 | 				/* Update faila and failb. */ | 
 | 				if (*faila < 0) | 
 | 					*faila = stripe_nr; | 
 | 				else if (*failb < 0) | 
 | 					*failb = stripe_nr; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return found_errors; | 
 | } | 
 |  | 
 | /* | 
 |  * Add a single sector @sector into our list of bios for IO. | 
 |  * | 
 |  * Return 0 if everything went well. | 
 |  * Return <0 for error. | 
 |  */ | 
 | static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, | 
 | 			      struct bio_list *bio_list, | 
 | 			      struct sector_ptr *sector, | 
 | 			      unsigned int stripe_nr, | 
 | 			      unsigned int sector_nr, | 
 | 			      enum req_op op) | 
 | { | 
 | 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
 | 	struct bio *last = bio_list->tail; | 
 | 	int ret; | 
 | 	struct bio *bio; | 
 | 	struct btrfs_io_stripe *stripe; | 
 | 	u64 disk_start; | 
 |  | 
 | 	/* | 
 | 	 * Note: here stripe_nr has taken device replace into consideration, | 
 | 	 * thus it can be larger than rbio->real_stripe. | 
 | 	 * So here we check against bioc->num_stripes, not rbio->real_stripes. | 
 | 	 */ | 
 | 	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes, | 
 | 			   rbio, stripe_nr); | 
 | 	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, | 
 | 			   rbio, sector_nr); | 
 | 	ASSERT(sector->has_paddr); | 
 |  | 
 | 	stripe = &rbio->bioc->stripes[stripe_nr]; | 
 | 	disk_start = stripe->physical + sector_nr * sectorsize; | 
 |  | 
 | 	/* if the device is missing, just fail this stripe */ | 
 | 	if (!stripe->dev->bdev) { | 
 | 		int found_errors; | 
 |  | 
 | 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, | 
 | 			rbio->error_bitmap); | 
 |  | 
 | 		/* Check if we have reached tolerance early. */ | 
 | 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, | 
 | 							 NULL, NULL); | 
 | 		if (unlikely(found_errors > rbio->bioc->max_errors)) | 
 | 			return -EIO; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* see if we can add this page onto our existing bio */ | 
 | 	if (last) { | 
 | 		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT; | 
 | 		last_end += last->bi_iter.bi_size; | 
 |  | 
 | 		/* | 
 | 		 * we can't merge these if they are from different | 
 | 		 * devices or if they are not contiguous | 
 | 		 */ | 
 | 		if (last_end == disk_start && !last->bi_status && | 
 | 		    last->bi_bdev == stripe->dev->bdev) { | 
 | 			ret = bio_add_page(last, phys_to_page(sector->paddr), | 
 | 					   sectorsize, offset_in_page(sector->paddr)); | 
 | 			if (ret == sectorsize) | 
 | 				return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* put a new bio on the list */ | 
 | 	bio = bio_alloc(stripe->dev->bdev, | 
 | 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), | 
 | 			op, GFP_NOFS); | 
 | 	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT; | 
 | 	bio->bi_private = rbio; | 
 |  | 
 | 	__bio_add_page(bio, phys_to_page(sector->paddr), sectorsize, | 
 | 		       offset_in_page(sector->paddr)); | 
 | 	bio_list_add(bio_list, bio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) | 
 | { | 
 | 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
 | 	const u32 sectorsize_bits = rbio->bioc->fs_info->sectorsize_bits; | 
 | 	struct bvec_iter iter = bio->bi_iter; | 
 | 	phys_addr_t paddr; | 
 | 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | 
 | 		     rbio->bioc->full_stripe_logical; | 
 |  | 
 | 	btrfs_bio_for_each_block(paddr, bio, &iter, sectorsize) { | 
 | 		unsigned int index = (offset >> sectorsize_bits); | 
 | 		struct sector_ptr *sector = &rbio->bio_sectors[index]; | 
 |  | 
 | 		sector->has_paddr = true; | 
 | 		sector->paddr = paddr; | 
 | 		offset += sectorsize; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to walk our bio list and populate the bio_pages array with | 
 |  * the result.  This seems expensive, but it is faster than constantly | 
 |  * searching through the bio list as we setup the IO in finish_rmw or stripe | 
 |  * reconstruction. | 
 |  * | 
 |  * This must be called before you trust the answers from page_in_rbio | 
 |  */ | 
 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 | 	bio_list_for_each(bio, &rbio->bio_list) | 
 | 		index_one_bio(rbio, bio); | 
 |  | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 | } | 
 |  | 
 | static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, | 
 | 			       struct raid56_bio_trace_info *trace_info) | 
 | { | 
 | 	const struct btrfs_io_context *bioc = rbio->bioc; | 
 | 	int i; | 
 |  | 
 | 	ASSERT(bioc); | 
 |  | 
 | 	/* We rely on bio->bi_bdev to find the stripe number. */ | 
 | 	if (!bio->bi_bdev) | 
 | 		goto not_found; | 
 |  | 
 | 	for (i = 0; i < bioc->num_stripes; i++) { | 
 | 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev) | 
 | 			continue; | 
 | 		trace_info->stripe_nr = i; | 
 | 		trace_info->devid = bioc->stripes[i].dev->devid; | 
 | 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | 
 | 				     bioc->stripes[i].physical; | 
 | 		return; | 
 | 	} | 
 |  | 
 | not_found: | 
 | 	trace_info->devid = -1; | 
 | 	trace_info->offset = -1; | 
 | 	trace_info->stripe_nr = -1; | 
 | } | 
 |  | 
 | static inline void bio_list_put(struct bio_list *bio_list) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	while ((bio = bio_list_pop(bio_list))) | 
 | 		bio_put(bio); | 
 | } | 
 |  | 
 | static void assert_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * At least two stripes (2 disks RAID5), and since real_stripes is U8, | 
 | 	 * we won't go beyond 256 disks anyway. | 
 | 	 */ | 
 | 	ASSERT_RBIO(rbio->real_stripes >= 2, rbio); | 
 | 	ASSERT_RBIO(rbio->nr_data > 0, rbio); | 
 |  | 
 | 	/* | 
 | 	 * This is another check to make sure nr data stripes is smaller | 
 | 	 * than total stripes. | 
 | 	 */ | 
 | 	ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio); | 
 | } | 
 |  | 
 | static inline void *kmap_local_sector(const struct sector_ptr *sector) | 
 | { | 
 | 	/* The sector pointer must have a page mapped to it. */ | 
 | 	ASSERT(sector->has_paddr); | 
 |  | 
 | 	return kmap_local_page(phys_to_page(sector->paddr)) + | 
 | 	       offset_in_page(sector->paddr); | 
 | } | 
 |  | 
 | /* Generate PQ for one vertical stripe. */ | 
 | static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) | 
 | { | 
 | 	void **pointers = rbio->finish_pointers; | 
 | 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
 | 	struct sector_ptr *sector; | 
 | 	int stripe; | 
 | 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; | 
 |  | 
 | 	/* First collect one sector from each data stripe */ | 
 | 	for (stripe = 0; stripe < rbio->nr_data; stripe++) { | 
 | 		sector = sector_in_rbio(rbio, stripe, sectornr, 0); | 
 | 		pointers[stripe] = kmap_local_sector(sector); | 
 | 	} | 
 |  | 
 | 	/* Then add the parity stripe */ | 
 | 	sector = rbio_pstripe_sector(rbio, sectornr); | 
 | 	sector->uptodate = 1; | 
 | 	pointers[stripe++] = kmap_local_sector(sector); | 
 |  | 
 | 	if (has_qstripe) { | 
 | 		/* | 
 | 		 * RAID6, add the qstripe and call the library function | 
 | 		 * to fill in our p/q | 
 | 		 */ | 
 | 		sector = rbio_qstripe_sector(rbio, sectornr); | 
 | 		sector->uptodate = 1; | 
 | 		pointers[stripe++] = kmap_local_sector(sector); | 
 |  | 
 | 		assert_rbio(rbio); | 
 | 		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, | 
 | 					pointers); | 
 | 	} else { | 
 | 		/* raid5 */ | 
 | 		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); | 
 | 		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); | 
 | 	} | 
 | 	for (stripe = stripe - 1; stripe >= 0; stripe--) | 
 | 		kunmap_local(pointers[stripe]); | 
 | } | 
 |  | 
 | static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, | 
 | 				   struct bio_list *bio_list) | 
 | { | 
 | 	/* The total sector number inside the full stripe. */ | 
 | 	int total_sector_nr; | 
 | 	int sectornr; | 
 | 	int stripe; | 
 | 	int ret; | 
 |  | 
 | 	ASSERT(bio_list_size(bio_list) == 0); | 
 |  | 
 | 	/* We should have at least one data sector. */ | 
 | 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); | 
 |  | 
 | 	/* | 
 | 	 * Reset errors, as we may have errors inherited from from degraded | 
 | 	 * write. | 
 | 	 */ | 
 | 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); | 
 |  | 
 | 	/* | 
 | 	 * Start assembly.  Make bios for everything from the higher layers (the | 
 | 	 * bio_list in our rbio) and our P/Q.  Ignore everything else. | 
 | 	 */ | 
 | 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
 | 	     total_sector_nr++) { | 
 | 		struct sector_ptr *sector; | 
 |  | 
 | 		stripe = total_sector_nr / rbio->stripe_nsectors; | 
 | 		sectornr = total_sector_nr % rbio->stripe_nsectors; | 
 |  | 
 | 		/* This vertical stripe has no data, skip it. */ | 
 | 		if (!test_bit(sectornr, &rbio->dbitmap)) | 
 | 			continue; | 
 |  | 
 | 		if (stripe < rbio->nr_data) { | 
 | 			sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
 | 			if (!sector) | 
 | 				continue; | 
 | 		} else { | 
 | 			sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
 | 		} | 
 |  | 
 | 		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, | 
 | 					 sectornr, REQ_OP_WRITE); | 
 | 		if (ret) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	if (likely(!rbio->bioc->replace_nr_stripes)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Make a copy for the replace target device. | 
 | 	 * | 
 | 	 * Thus the source stripe number (in replace_stripe_src) should be valid. | 
 | 	 */ | 
 | 	ASSERT(rbio->bioc->replace_stripe_src >= 0); | 
 |  | 
 | 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
 | 	     total_sector_nr++) { | 
 | 		struct sector_ptr *sector; | 
 |  | 
 | 		stripe = total_sector_nr / rbio->stripe_nsectors; | 
 | 		sectornr = total_sector_nr % rbio->stripe_nsectors; | 
 |  | 
 | 		/* | 
 | 		 * For RAID56, there is only one device that can be replaced, | 
 | 		 * and replace_stripe_src[0] indicates the stripe number we | 
 | 		 * need to copy from. | 
 | 		 */ | 
 | 		if (stripe != rbio->bioc->replace_stripe_src) { | 
 | 			/* | 
 | 			 * We can skip the whole stripe completely, note | 
 | 			 * total_sector_nr will be increased by one anyway. | 
 | 			 */ | 
 | 			ASSERT(sectornr == 0); | 
 | 			total_sector_nr += rbio->stripe_nsectors - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* This vertical stripe has no data, skip it. */ | 
 | 		if (!test_bit(sectornr, &rbio->dbitmap)) | 
 | 			continue; | 
 |  | 
 | 		if (stripe < rbio->nr_data) { | 
 | 			sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
 | 			if (!sector) | 
 | 				continue; | 
 | 		} else { | 
 | 			sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
 | 		} | 
 |  | 
 | 		ret = rbio_add_io_sector(rbio, bio_list, sector, | 
 | 					 rbio->real_stripes, | 
 | 					 sectornr, REQ_OP_WRITE); | 
 | 		if (ret) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | error: | 
 | 	bio_list_put(bio_list); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
 | 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | 
 | 		     rbio->bioc->full_stripe_logical; | 
 | 	int total_nr_sector = offset >> fs_info->sectorsize_bits; | 
 |  | 
 | 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); | 
 |  | 
 | 	bitmap_set(rbio->error_bitmap, total_nr_sector, | 
 | 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits); | 
 |  | 
 | 	/* | 
 | 	 * Special handling for raid56_alloc_missing_rbio() used by | 
 | 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they | 
 | 	 * pass an empty bio here.  Thus we have to find out the missing device | 
 | 	 * and mark the stripe error instead. | 
 | 	 */ | 
 | 	if (bio->bi_iter.bi_size == 0) { | 
 | 		bool found_missing = false; | 
 | 		int stripe_nr; | 
 |  | 
 | 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { | 
 | 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { | 
 | 				found_missing = true; | 
 | 				bitmap_set(rbio->error_bitmap, | 
 | 					   stripe_nr * rbio->stripe_nsectors, | 
 | 					   rbio->stripe_nsectors); | 
 | 			} | 
 | 		} | 
 | 		ASSERT(found_missing); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * For subpage case, we can no longer set page Up-to-date directly for | 
 |  * stripe_pages[], thus we need to locate the sector. | 
 |  */ | 
 | static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, | 
 | 					     phys_addr_t paddr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < rbio->nr_sectors; i++) { | 
 | 		struct sector_ptr *sector = &rbio->stripe_sectors[i]; | 
 |  | 
 | 		if (sector->has_paddr && sector->paddr == paddr) | 
 | 			return sector; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * this sets each page in the bio uptodate.  It should only be used on private | 
 |  * rbio pages, nothing that comes in from the higher layers | 
 |  */ | 
 | static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) | 
 | { | 
 | 	const u32 blocksize = rbio->bioc->fs_info->sectorsize; | 
 | 	phys_addr_t paddr; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 |  | 
 | 	btrfs_bio_for_each_block_all(paddr, bio, blocksize) { | 
 | 		struct sector_ptr *sector = find_stripe_sector(rbio, paddr); | 
 |  | 
 | 		ASSERT(sector); | 
 | 		if (sector) | 
 | 			sector->uptodate = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) | 
 | { | 
 | 	phys_addr_t bvec_paddr = bvec_phys(bio_first_bvec_all(bio)); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < rbio->nr_sectors; i++) { | 
 | 		if (rbio->stripe_sectors[i].paddr == bvec_paddr) | 
 | 			break; | 
 | 		if (rbio->bio_sectors[i].has_paddr && | 
 | 		    rbio->bio_sectors[i].paddr == bvec_paddr) | 
 | 			break; | 
 | 	} | 
 | 	ASSERT(i < rbio->nr_sectors); | 
 | 	return i; | 
 | } | 
 |  | 
 | static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) | 
 | { | 
 | 	int total_sector_nr = get_bio_sector_nr(rbio, bio); | 
 | 	u32 bio_size = 0; | 
 | 	struct bio_vec *bvec; | 
 | 	int i; | 
 |  | 
 | 	bio_for_each_bvec_all(bvec, bio, i) | 
 | 		bio_size += bvec->bv_len; | 
 |  | 
 | 	/* | 
 | 	 * Since we can have multiple bios touching the error_bitmap, we cannot | 
 | 	 * call bitmap_set() without protection. | 
 | 	 * | 
 | 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic. | 
 | 	 */ | 
 | 	for (i = total_sector_nr; i < total_sector_nr + | 
 | 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) | 
 | 		set_bit(i, rbio->error_bitmap); | 
 | } | 
 |  | 
 | /* Verify the data sectors at read time. */ | 
 | static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, | 
 | 				    struct bio *bio) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
 | 	int total_sector_nr = get_bio_sector_nr(rbio, bio); | 
 | 	phys_addr_t paddr; | 
 |  | 
 | 	/* No data csum for the whole stripe, no need to verify. */ | 
 | 	if (!rbio->csum_bitmap || !rbio->csum_buf) | 
 | 		return; | 
 |  | 
 | 	/* P/Q stripes, they have no data csum to verify against. */ | 
 | 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) | 
 | 		return; | 
 |  | 
 | 	btrfs_bio_for_each_block_all(paddr, bio, fs_info->sectorsize) { | 
 | 		u8 csum_buf[BTRFS_CSUM_SIZE]; | 
 | 		u8 *expected_csum = rbio->csum_buf + total_sector_nr * fs_info->csum_size; | 
 | 		int ret; | 
 |  | 
 | 		/* No csum for this sector, skip to the next sector. */ | 
 | 		if (!test_bit(total_sector_nr, rbio->csum_bitmap)) | 
 | 			continue; | 
 |  | 
 | 		ret = btrfs_check_block_csum(fs_info, paddr, | 
 | 					     csum_buf, expected_csum); | 
 | 		if (ret < 0) | 
 | 			set_bit(total_sector_nr, rbio->error_bitmap); | 
 | 		total_sector_nr++; | 
 | 	} | 
 | } | 
 |  | 
 | static void raid_wait_read_end_io(struct bio *bio) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio = bio->bi_private; | 
 |  | 
 | 	if (bio->bi_status) { | 
 | 		rbio_update_error_bitmap(rbio, bio); | 
 | 	} else { | 
 | 		set_bio_pages_uptodate(rbio, bio); | 
 | 		verify_bio_data_sectors(rbio, bio); | 
 | 	} | 
 |  | 
 | 	bio_put(bio); | 
 | 	if (atomic_dec_and_test(&rbio->stripes_pending)) | 
 | 		wake_up(&rbio->io_wait); | 
 | } | 
 |  | 
 | static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio, | 
 | 			     struct bio_list *bio_list) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); | 
 | 	while ((bio = bio_list_pop(bio_list))) { | 
 | 		bio->bi_end_io = raid_wait_read_end_io; | 
 |  | 
 | 		if (trace_raid56_read_enabled()) { | 
 | 			struct raid56_bio_trace_info trace_info = { 0 }; | 
 |  | 
 | 			bio_get_trace_info(rbio, bio, &trace_info); | 
 | 			trace_raid56_read(rbio, bio, &trace_info); | 
 | 		} | 
 | 		submit_bio(bio); | 
 | 	} | 
 |  | 
 | 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); | 
 | } | 
 |  | 
 | static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	const int data_pages = rbio->nr_data * rbio->stripe_npages; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	index_stripe_sectors(rbio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * We use plugging call backs to collect full stripes. | 
 |  * Any time we get a partial stripe write while plugged | 
 |  * we collect it into a list.  When the unplug comes down, | 
 |  * we sort the list by logical block number and merge | 
 |  * everything we can into the same rbios | 
 |  */ | 
 | struct btrfs_plug_cb { | 
 | 	struct blk_plug_cb cb; | 
 | 	struct btrfs_fs_info *info; | 
 | 	struct list_head rbio_list; | 
 | }; | 
 |  | 
 | /* | 
 |  * rbios on the plug list are sorted for easier merging. | 
 |  */ | 
 | static int plug_cmp(void *priv, const struct list_head *a, | 
 | 		    const struct list_head *b) | 
 | { | 
 | 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | 
 | 						       plug_list); | 
 | 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | 
 | 						       plug_list); | 
 | 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; | 
 | 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; | 
 |  | 
 | 	if (a_sector < b_sector) | 
 | 		return -1; | 
 | 	if (a_sector > b_sector) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
 | { | 
 | 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); | 
 | 	struct btrfs_raid_bio *cur; | 
 | 	struct btrfs_raid_bio *last = NULL; | 
 |  | 
 | 	list_sort(NULL, &plug->rbio_list, plug_cmp); | 
 |  | 
 | 	while (!list_empty(&plug->rbio_list)) { | 
 | 		cur = list_first_entry(&plug->rbio_list, | 
 | 				       struct btrfs_raid_bio, plug_list); | 
 | 		list_del_init(&cur->plug_list); | 
 |  | 
 | 		if (rbio_is_full(cur)) { | 
 | 			/* We have a full stripe, queue it down. */ | 
 | 			start_async_work(cur, rmw_rbio_work); | 
 | 			continue; | 
 | 		} | 
 | 		if (last) { | 
 | 			if (rbio_can_merge(last, cur)) { | 
 | 				merge_rbio(last, cur); | 
 | 				free_raid_bio(cur); | 
 | 				continue; | 
 | 			} | 
 | 			start_async_work(last, rmw_rbio_work); | 
 | 		} | 
 | 		last = cur; | 
 | 	} | 
 | 	if (last) | 
 | 		start_async_work(last, rmw_rbio_work); | 
 | 	kfree(plug); | 
 | } | 
 |  | 
 | /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ | 
 | static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) | 
 | { | 
 | 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
 | 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; | 
 | 	const u64 full_stripe_start = rbio->bioc->full_stripe_logical; | 
 | 	const u32 orig_len = orig_bio->bi_iter.bi_size; | 
 | 	const u32 sectorsize = fs_info->sectorsize; | 
 | 	u64 cur_logical; | 
 |  | 
 | 	ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start && | 
 | 			    orig_logical + orig_len <= full_stripe_start + | 
 | 			    rbio->nr_data * BTRFS_STRIPE_LEN, | 
 | 			    rbio, orig_logical); | 
 |  | 
 | 	bio_list_add(&rbio->bio_list, orig_bio); | 
 | 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; | 
 |  | 
 | 	/* Update the dbitmap. */ | 
 | 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; | 
 | 	     cur_logical += sectorsize) { | 
 | 		int bit = ((u32)(cur_logical - full_stripe_start) >> | 
 | 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors; | 
 |  | 
 | 		set_bit(bit, &rbio->dbitmap); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * our main entry point for writes from the rest of the FS. | 
 |  */ | 
 | void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = bioc->fs_info; | 
 | 	struct btrfs_raid_bio *rbio; | 
 | 	struct btrfs_plug_cb *plug = NULL; | 
 | 	struct blk_plug_cb *cb; | 
 |  | 
 | 	rbio = alloc_rbio(fs_info, bioc); | 
 | 	if (IS_ERR(rbio)) { | 
 | 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); | 
 | 		bio_endio(bio); | 
 | 		return; | 
 | 	} | 
 | 	rbio->operation = BTRFS_RBIO_WRITE; | 
 | 	rbio_add_bio(rbio, bio); | 
 |  | 
 | 	/* | 
 | 	 * Don't plug on full rbios, just get them out the door | 
 | 	 * as quickly as we can | 
 | 	 */ | 
 | 	if (!rbio_is_full(rbio)) { | 
 | 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); | 
 | 		if (cb) { | 
 | 			plug = container_of(cb, struct btrfs_plug_cb, cb); | 
 | 			if (!plug->info) { | 
 | 				plug->info = fs_info; | 
 | 				INIT_LIST_HEAD(&plug->rbio_list); | 
 | 			} | 
 | 			list_add_tail(&rbio->plug_list, &plug->rbio_list); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Either we don't have any existing plug, or we're doing a full stripe, | 
 | 	 * queue the rmw work now. | 
 | 	 */ | 
 | 	start_async_work(rbio, rmw_rbio_work); | 
 | } | 
 |  | 
 | static int verify_one_sector(struct btrfs_raid_bio *rbio, | 
 | 			     int stripe_nr, int sector_nr) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
 | 	struct sector_ptr *sector; | 
 | 	u8 csum_buf[BTRFS_CSUM_SIZE]; | 
 | 	u8 *csum_expected; | 
 | 	int ret; | 
 |  | 
 | 	if (!rbio->csum_bitmap || !rbio->csum_buf) | 
 | 		return 0; | 
 |  | 
 | 	/* No way to verify P/Q as they are not covered by data csum. */ | 
 | 	if (stripe_nr >= rbio->nr_data) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * If we're rebuilding a read, we have to use pages from the | 
 | 	 * bio list if possible. | 
 | 	 */ | 
 | 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { | 
 | 		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); | 
 | 	} else { | 
 | 		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); | 
 | 	} | 
 |  | 
 | 	csum_expected = rbio->csum_buf + | 
 | 			(stripe_nr * rbio->stripe_nsectors + sector_nr) * | 
 | 			fs_info->csum_size; | 
 | 	ret = btrfs_check_block_csum(fs_info, sector->paddr, csum_buf, csum_expected); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Recover a vertical stripe specified by @sector_nr. | 
 |  * @*pointers are the pre-allocated pointers by the caller, so we don't | 
 |  * need to allocate/free the pointers again and again. | 
 |  */ | 
 | static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, | 
 | 			    void **pointers, void **unmap_array) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
 | 	struct sector_ptr *sector; | 
 | 	const u32 sectorsize = fs_info->sectorsize; | 
 | 	int found_errors; | 
 | 	int faila; | 
 | 	int failb; | 
 | 	int stripe_nr; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Now we just use bitmap to mark the horizontal stripes in | 
 | 	 * which we have data when doing parity scrub. | 
 | 	 */ | 
 | 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && | 
 | 	    !test_bit(sector_nr, &rbio->dbitmap)) | 
 | 		return 0; | 
 |  | 
 | 	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, | 
 | 						 &failb); | 
 | 	/* | 
 | 	 * No errors in the vertical stripe, skip it.  Can happen for recovery | 
 | 	 * which only part of a stripe failed csum check. | 
 | 	 */ | 
 | 	if (!found_errors) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(found_errors > rbio->bioc->max_errors)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* | 
 | 	 * Setup our array of pointers with sectors from each stripe | 
 | 	 * | 
 | 	 * NOTE: store a duplicate array of pointers to preserve the | 
 | 	 * pointer order. | 
 | 	 */ | 
 | 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { | 
 | 		/* | 
 | 		 * If we're rebuilding a read, we have to use pages from the | 
 | 		 * bio list if possible. | 
 | 		 */ | 
 | 		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { | 
 | 			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); | 
 | 		} else { | 
 | 			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); | 
 | 		} | 
 | 		pointers[stripe_nr] = kmap_local_sector(sector); | 
 | 		unmap_array[stripe_nr] = pointers[stripe_nr]; | 
 | 	} | 
 |  | 
 | 	/* All raid6 handling here */ | 
 | 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { | 
 | 		/* Single failure, rebuild from parity raid5 style */ | 
 | 		if (failb < 0) { | 
 | 			if (faila == rbio->nr_data) | 
 | 				/* | 
 | 				 * Just the P stripe has failed, without | 
 | 				 * a bad data or Q stripe. | 
 | 				 * We have nothing to do, just skip the | 
 | 				 * recovery for this stripe. | 
 | 				 */ | 
 | 				goto cleanup; | 
 | 			/* | 
 | 			 * a single failure in raid6 is rebuilt | 
 | 			 * in the pstripe code below | 
 | 			 */ | 
 | 			goto pstripe; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the q stripe is failed, do a pstripe reconstruction from | 
 | 		 * the xors. | 
 | 		 * If both the q stripe and the P stripe are failed, we're | 
 | 		 * here due to a crc mismatch and we can't give them the | 
 | 		 * data they want. | 
 | 		 */ | 
 | 		if (failb == rbio->real_stripes - 1) { | 
 | 			if (faila == rbio->real_stripes - 2) | 
 | 				/* | 
 | 				 * Only P and Q are corrupted. | 
 | 				 * We only care about data stripes recovery, | 
 | 				 * can skip this vertical stripe. | 
 | 				 */ | 
 | 				goto cleanup; | 
 | 			/* | 
 | 			 * Otherwise we have one bad data stripe and | 
 | 			 * a good P stripe.  raid5! | 
 | 			 */ | 
 | 			goto pstripe; | 
 | 		} | 
 |  | 
 | 		if (failb == rbio->real_stripes - 2) { | 
 | 			raid6_datap_recov(rbio->real_stripes, sectorsize, | 
 | 					  faila, pointers); | 
 | 		} else { | 
 | 			raid6_2data_recov(rbio->real_stripes, sectorsize, | 
 | 					  faila, failb, pointers); | 
 | 		} | 
 | 	} else { | 
 | 		void *p; | 
 |  | 
 | 		/* Rebuild from P stripe here (raid5 or raid6). */ | 
 | 		ASSERT(failb == -1); | 
 | pstripe: | 
 | 		/* Copy parity block into failed block to start with */ | 
 | 		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); | 
 |  | 
 | 		/* Rearrange the pointer array */ | 
 | 		p = pointers[faila]; | 
 | 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; | 
 | 		     stripe_nr++) | 
 | 			pointers[stripe_nr] = pointers[stripe_nr + 1]; | 
 | 		pointers[rbio->nr_data - 1] = p; | 
 |  | 
 | 		/* Xor in the rest */ | 
 | 		run_xor(pointers, rbio->nr_data - 1, sectorsize); | 
 |  | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * No matter if this is a RMW or recovery, we should have all | 
 | 	 * failed sectors repaired in the vertical stripe, thus they are now | 
 | 	 * uptodate. | 
 | 	 * Especially if we determine to cache the rbio, we need to | 
 | 	 * have at least all data sectors uptodate. | 
 | 	 * | 
 | 	 * If possible, also check if the repaired sector matches its data | 
 | 	 * checksum. | 
 | 	 */ | 
 | 	if (faila >= 0) { | 
 | 		ret = verify_one_sector(rbio, faila, sector_nr); | 
 | 		if (ret < 0) | 
 | 			goto cleanup; | 
 |  | 
 | 		sector = rbio_stripe_sector(rbio, faila, sector_nr); | 
 | 		sector->uptodate = 1; | 
 | 	} | 
 | 	if (failb >= 0) { | 
 | 		ret = verify_one_sector(rbio, failb, sector_nr); | 
 | 		if (ret < 0) | 
 | 			goto cleanup; | 
 |  | 
 | 		sector = rbio_stripe_sector(rbio, failb, sector_nr); | 
 | 		sector->uptodate = 1; | 
 | 	} | 
 |  | 
 | cleanup: | 
 | 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) | 
 | 		kunmap_local(unmap_array[stripe_nr]); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int recover_sectors(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	void **pointers = NULL; | 
 | 	void **unmap_array = NULL; | 
 | 	int sectornr; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * @pointers array stores the pointer for each sector. | 
 | 	 * | 
 | 	 * @unmap_array stores copy of pointers that does not get reordered | 
 | 	 * during reconstruction so that kunmap_local works. | 
 | 	 */ | 
 | 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
 | 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
 | 	if (!pointers || !unmap_array) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { | 
 | 		spin_lock(&rbio->bio_list_lock); | 
 | 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
 | 		spin_unlock(&rbio->bio_list_lock); | 
 | 	} | 
 |  | 
 | 	index_rbio_pages(rbio); | 
 |  | 
 | 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { | 
 | 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(pointers); | 
 | 	kfree(unmap_array); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void recover_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct bio_list bio_list = BIO_EMPTY_LIST; | 
 | 	int total_sector_nr; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Either we're doing recover for a read failure or degraded write, | 
 | 	 * caller should have set error bitmap correctly. | 
 | 	 */ | 
 | 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); | 
 |  | 
 | 	/* For recovery, we need to read all sectors including P/Q. */ | 
 | 	ret = alloc_rbio_pages(rbio); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	index_rbio_pages(rbio); | 
 |  | 
 | 	/* | 
 | 	 * Read everything that hasn't failed. However this time we will | 
 | 	 * not trust any cached sector. | 
 | 	 * As we may read out some stale data but higher layer is not reading | 
 | 	 * that stale part. | 
 | 	 * | 
 | 	 * So here we always re-read everything in recovery path. | 
 | 	 */ | 
 | 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
 | 	     total_sector_nr++) { | 
 | 		int stripe = total_sector_nr / rbio->stripe_nsectors; | 
 | 		int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
 | 		struct sector_ptr *sector; | 
 |  | 
 | 		/* | 
 | 		 * Skip the range which has error.  It can be a range which is | 
 | 		 * marked error (for csum mismatch), or it can be a missing | 
 | 		 * device. | 
 | 		 */ | 
 | 		if (!rbio->bioc->stripes[stripe].dev->bdev || | 
 | 		    test_bit(total_sector_nr, rbio->error_bitmap)) { | 
 | 			/* | 
 | 			 * Also set the error bit for missing device, which | 
 | 			 * may not yet have its error bit set. | 
 | 			 */ | 
 | 			set_bit(total_sector_nr, rbio->error_bitmap); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
 | 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, | 
 | 					 sectornr, REQ_OP_READ); | 
 | 		if (ret < 0) { | 
 | 			bio_list_put(&bio_list); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	submit_read_wait_bio_list(rbio, &bio_list); | 
 | 	ret = recover_sectors(rbio); | 
 | out: | 
 | 	rbio_orig_end_io(rbio, errno_to_blk_status(ret)); | 
 | } | 
 |  | 
 | static void recover_rbio_work(struct work_struct *work) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	rbio = container_of(work, struct btrfs_raid_bio, work); | 
 | 	if (!lock_stripe_add(rbio)) | 
 | 		recover_rbio(rbio); | 
 | } | 
 |  | 
 | static void recover_rbio_work_locked(struct work_struct *work) | 
 | { | 
 | 	recover_rbio(container_of(work, struct btrfs_raid_bio, work)); | 
 | } | 
 |  | 
 | static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) | 
 | { | 
 | 	bool found = false; | 
 | 	int sector_nr; | 
 |  | 
 | 	/* | 
 | 	 * This is for RAID6 extra recovery tries, thus mirror number should | 
 | 	 * be large than 2. | 
 | 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using | 
 | 	 * RAID5 methods. | 
 | 	 */ | 
 | 	ASSERT(mirror_num > 2); | 
 | 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { | 
 | 		int found_errors; | 
 | 		int faila; | 
 | 		int failb; | 
 |  | 
 | 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, | 
 | 							 &faila, &failb); | 
 | 		/* This vertical stripe doesn't have errors. */ | 
 | 		if (!found_errors) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If we found errors, there should be only one error marked | 
 | 		 * by previous set_rbio_range_error(). | 
 | 		 */ | 
 | 		ASSERT(found_errors == 1); | 
 | 		found = true; | 
 |  | 
 | 		/* Now select another stripe to mark as error. */ | 
 | 		failb = rbio->real_stripes - (mirror_num - 1); | 
 | 		if (failb <= faila) | 
 | 			failb--; | 
 |  | 
 | 		/* Set the extra bit in error bitmap. */ | 
 | 		if (failb >= 0) | 
 | 			set_bit(failb * rbio->stripe_nsectors + sector_nr, | 
 | 				rbio->error_bitmap); | 
 | 	} | 
 |  | 
 | 	/* We should found at least one vertical stripe with error.*/ | 
 | 	ASSERT(found); | 
 | } | 
 |  | 
 | /* | 
 |  * the main entry point for reads from the higher layers.  This | 
 |  * is really only called when the normal read path had a failure, | 
 |  * so we assume the bio they send down corresponds to a failed part | 
 |  * of the drive. | 
 |  */ | 
 | void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, | 
 | 			   int mirror_num) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = bioc->fs_info; | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	rbio = alloc_rbio(fs_info, bioc); | 
 | 	if (IS_ERR(rbio)) { | 
 | 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); | 
 | 		bio_endio(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	rbio->operation = BTRFS_RBIO_READ_REBUILD; | 
 | 	rbio_add_bio(rbio, bio); | 
 |  | 
 | 	set_rbio_range_error(rbio, bio); | 
 |  | 
 | 	/* | 
 | 	 * Loop retry: | 
 | 	 * for 'mirror == 2', reconstruct from all other stripes. | 
 | 	 * for 'mirror_num > 2', select a stripe to fail on every retry. | 
 | 	 */ | 
 | 	if (mirror_num > 2) | 
 | 		set_rbio_raid6_extra_error(rbio, mirror_num); | 
 |  | 
 | 	start_async_work(rbio, recover_rbio_work); | 
 | } | 
 |  | 
 | static void fill_data_csums(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
 | 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, | 
 | 						       rbio->bioc->full_stripe_logical); | 
 | 	const u64 start = rbio->bioc->full_stripe_logical; | 
 | 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << | 
 | 			fs_info->sectorsize_bits; | 
 | 	int ret; | 
 |  | 
 | 	/* The rbio should not have its csum buffer initialized. */ | 
 | 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); | 
 |  | 
 | 	/* | 
 | 	 * Skip the csum search if: | 
 | 	 * | 
 | 	 * - The rbio doesn't belong to data block groups | 
 | 	 *   Then we are doing IO for tree blocks, no need to search csums. | 
 | 	 * | 
 | 	 * - The rbio belongs to mixed block groups | 
 | 	 *   This is to avoid deadlock, as we're already holding the full | 
 | 	 *   stripe lock, if we trigger a metadata read, and it needs to do | 
 | 	 *   raid56 recovery, we will deadlock. | 
 | 	 */ | 
 | 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || | 
 | 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) | 
 | 		return; | 
 |  | 
 | 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * | 
 | 				 fs_info->csum_size, GFP_NOFS); | 
 | 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, | 
 | 					  GFP_NOFS); | 
 | 	if (!rbio->csum_buf || !rbio->csum_bitmap) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1, | 
 | 					rbio->csum_buf, rbio->csum_bitmap); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 | 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) | 
 | 		goto no_csum; | 
 | 	return; | 
 |  | 
 | error: | 
 | 	/* | 
 | 	 * We failed to allocate memory or grab the csum, but it's not fatal, | 
 | 	 * we can still continue.  But better to warn users that RMW is no | 
 | 	 * longer safe for this particular sub-stripe write. | 
 | 	 */ | 
 | 	btrfs_warn_rl(fs_info, | 
 | "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", | 
 | 			rbio->bioc->full_stripe_logical, ret); | 
 | no_csum: | 
 | 	kfree(rbio->csum_buf); | 
 | 	bitmap_free(rbio->csum_bitmap); | 
 | 	rbio->csum_buf = NULL; | 
 | 	rbio->csum_bitmap = NULL; | 
 | } | 
 |  | 
 | static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct bio_list bio_list = BIO_EMPTY_LIST; | 
 | 	int total_sector_nr; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Fill the data csums we need for data verification.  We need to fill | 
 | 	 * the csum_bitmap/csum_buf first, as our endio function will try to | 
 | 	 * verify the data sectors. | 
 | 	 */ | 
 | 	fill_data_csums(rbio); | 
 |  | 
 | 	/* | 
 | 	 * Build a list of bios to read all sectors (including data and P/Q). | 
 | 	 * | 
 | 	 * This behavior is to compensate the later csum verification and recovery. | 
 | 	 */ | 
 | 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
 | 	     total_sector_nr++) { | 
 | 		struct sector_ptr *sector; | 
 | 		int stripe = total_sector_nr / rbio->stripe_nsectors; | 
 | 		int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
 |  | 
 | 		sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
 | 		ret = rbio_add_io_sector(rbio, &bio_list, sector, | 
 | 			       stripe, sectornr, REQ_OP_READ); | 
 | 		if (ret) { | 
 | 			bio_list_put(&bio_list); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We may or may not have any corrupted sectors (including missing dev | 
 | 	 * and csum mismatch), just let recover_sectors() to handle them all. | 
 | 	 */ | 
 | 	submit_read_wait_bio_list(rbio, &bio_list); | 
 | 	return recover_sectors(rbio); | 
 | } | 
 |  | 
 | static void raid_wait_write_end_io(struct bio *bio) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio = bio->bi_private; | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		rbio_update_error_bitmap(rbio, bio); | 
 | 	bio_put(bio); | 
 | 	if (atomic_dec_and_test(&rbio->stripes_pending)) | 
 | 		wake_up(&rbio->io_wait); | 
 | } | 
 |  | 
 | static void submit_write_bios(struct btrfs_raid_bio *rbio, | 
 | 			      struct bio_list *bio_list) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); | 
 | 	while ((bio = bio_list_pop(bio_list))) { | 
 | 		bio->bi_end_io = raid_wait_write_end_io; | 
 |  | 
 | 		if (trace_raid56_write_enabled()) { | 
 | 			struct raid56_bio_trace_info trace_info = { 0 }; | 
 |  | 
 | 			bio_get_trace_info(rbio, bio, &trace_info); | 
 | 			trace_raid56_write(rbio, bio, &trace_info); | 
 | 		} | 
 | 		submit_bio(bio); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * To determine if we need to read any sector from the disk. | 
 |  * Should only be utilized in RMW path, to skip cached rbio. | 
 |  */ | 
 | static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { | 
 | 		struct sector_ptr *sector = &rbio->stripe_sectors[i]; | 
 |  | 
 | 		/* | 
 | 		 * We have a sector which doesn't have page nor uptodate, | 
 | 		 * thus this rbio can not be cached one, as cached one must | 
 | 		 * have all its data sectors present and uptodate. | 
 | 		 */ | 
 | 		if (!sector->has_paddr || !sector->uptodate) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static void rmw_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct bio_list bio_list; | 
 | 	int sectornr; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Allocate the pages for parity first, as P/Q pages will always be | 
 | 	 * needed for both full-stripe and sub-stripe writes. | 
 | 	 */ | 
 | 	ret = alloc_rbio_parity_pages(rbio); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Either full stripe write, or we have every data sector already | 
 | 	 * cached, can go to write path immediately. | 
 | 	 */ | 
 | 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) { | 
 | 		/* | 
 | 		 * Now we're doing sub-stripe write, also need all data stripes | 
 | 		 * to do the full RMW. | 
 | 		 */ | 
 | 		ret = alloc_rbio_data_pages(rbio); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		index_rbio_pages(rbio); | 
 |  | 
 | 		ret = rmw_read_wait_recover(rbio); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At this stage we're not allowed to add any new bios to the | 
 | 	 * bio list any more, anyone else that wants to change this stripe | 
 | 	 * needs to do their own rmw. | 
 | 	 */ | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 | 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 |  | 
 | 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); | 
 |  | 
 | 	index_rbio_pages(rbio); | 
 |  | 
 | 	/* | 
 | 	 * We don't cache full rbios because we're assuming | 
 | 	 * the higher layers are unlikely to use this area of | 
 | 	 * the disk again soon.  If they do use it again, | 
 | 	 * hopefully they will send another full bio. | 
 | 	 */ | 
 | 	if (!rbio_is_full(rbio)) | 
 | 		cache_rbio_pages(rbio); | 
 | 	else | 
 | 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
 |  | 
 | 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) | 
 | 		generate_pq_vertical(rbio, sectornr); | 
 |  | 
 | 	bio_list_init(&bio_list); | 
 | 	ret = rmw_assemble_write_bios(rbio, &bio_list); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* We should have at least one bio assembled. */ | 
 | 	ASSERT(bio_list_size(&bio_list)); | 
 | 	submit_write_bios(rbio, &bio_list); | 
 | 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); | 
 |  | 
 | 	/* We may have more errors than our tolerance during the read. */ | 
 | 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { | 
 | 		int found_errors; | 
 |  | 
 | 		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); | 
 | 		if (unlikely(found_errors > rbio->bioc->max_errors)) { | 
 | 			ret = -EIO; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	rbio_orig_end_io(rbio, errno_to_blk_status(ret)); | 
 | } | 
 |  | 
 | static void rmw_rbio_work(struct work_struct *work) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	rbio = container_of(work, struct btrfs_raid_bio, work); | 
 | 	if (lock_stripe_add(rbio) == 0) | 
 | 		rmw_rbio(rbio); | 
 | } | 
 |  | 
 | static void rmw_rbio_work_locked(struct work_struct *work) | 
 | { | 
 | 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work)); | 
 | } | 
 |  | 
 | /* | 
 |  * The following code is used to scrub/replace the parity stripe | 
 |  * | 
 |  * Caller must have already increased bio_counter for getting @bioc. | 
 |  * | 
 |  * Note: We need make sure all the pages that add into the scrub/replace | 
 |  * raid bio are correct and not be changed during the scrub/replace. That | 
 |  * is those pages just hold metadata or file data with checksum. | 
 |  */ | 
 |  | 
 | struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, | 
 | 				struct btrfs_io_context *bioc, | 
 | 				struct btrfs_device *scrub_dev, | 
 | 				unsigned long *dbitmap, int stripe_nsectors) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = bioc->fs_info; | 
 | 	struct btrfs_raid_bio *rbio; | 
 | 	int i; | 
 |  | 
 | 	rbio = alloc_rbio(fs_info, bioc); | 
 | 	if (IS_ERR(rbio)) | 
 | 		return NULL; | 
 | 	bio_list_add(&rbio->bio_list, bio); | 
 | 	/* | 
 | 	 * This is a special bio which is used to hold the completion handler | 
 | 	 * and make the scrub rbio is similar to the other types | 
 | 	 */ | 
 | 	ASSERT(!bio->bi_iter.bi_size); | 
 | 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB; | 
 |  | 
 | 	/* | 
 | 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted | 
 | 	 * to the end position, so this search can start from the first parity | 
 | 	 * stripe. | 
 | 	 */ | 
 | 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) { | 
 | 		if (bioc->stripes[i].dev == scrub_dev) { | 
 | 			rbio->scrubp = i; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i); | 
 |  | 
 | 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); | 
 | 	return rbio; | 
 | } | 
 |  | 
 | /* | 
 |  * We just scrub the parity that we have correct data on the same horizontal, | 
 |  * so we needn't allocate all pages for all the stripes. | 
 |  */ | 
 | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
 | 	int total_sector_nr; | 
 |  | 
 | 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
 | 	     total_sector_nr++) { | 
 | 		struct page *page; | 
 | 		int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
 | 		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; | 
 |  | 
 | 		if (!test_bit(sectornr, &rbio->dbitmap)) | 
 | 			continue; | 
 | 		if (rbio->stripe_pages[index]) | 
 | 			continue; | 
 | 		page = alloc_page(GFP_NOFS); | 
 | 		if (!page) | 
 | 			return -ENOMEM; | 
 | 		rbio->stripe_pages[index] = page; | 
 | 	} | 
 | 	index_stripe_sectors(rbio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int finish_parity_scrub(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct btrfs_io_context *bioc = rbio->bioc; | 
 | 	const u32 sectorsize = bioc->fs_info->sectorsize; | 
 | 	void **pointers = rbio->finish_pointers; | 
 | 	unsigned long *pbitmap = &rbio->finish_pbitmap; | 
 | 	int nr_data = rbio->nr_data; | 
 | 	int stripe; | 
 | 	int sectornr; | 
 | 	bool has_qstripe; | 
 | 	struct page *page; | 
 | 	struct sector_ptr p_sector = { 0 }; | 
 | 	struct sector_ptr q_sector = { 0 }; | 
 | 	struct bio_list bio_list; | 
 | 	int is_replace = 0; | 
 | 	int ret; | 
 |  | 
 | 	bio_list_init(&bio_list); | 
 |  | 
 | 	if (rbio->real_stripes - rbio->nr_data == 1) | 
 | 		has_qstripe = false; | 
 | 	else if (rbio->real_stripes - rbio->nr_data == 2) | 
 | 		has_qstripe = true; | 
 | 	else | 
 | 		BUG(); | 
 |  | 
 | 	/* | 
 | 	 * Replace is running and our P/Q stripe is being replaced, then we | 
 | 	 * need to duplicate the final write to replace target. | 
 | 	 */ | 
 | 	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) { | 
 | 		is_replace = 1; | 
 | 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Because the higher layers(scrubber) are unlikely to | 
 | 	 * use this area of the disk again soon, so don't cache | 
 | 	 * it. | 
 | 	 */ | 
 | 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
 |  | 
 | 	page = alloc_page(GFP_NOFS); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 | 	p_sector.has_paddr = true; | 
 | 	p_sector.paddr = page_to_phys(page); | 
 | 	p_sector.uptodate = 1; | 
 | 	page = NULL; | 
 |  | 
 | 	if (has_qstripe) { | 
 | 		/* RAID6, allocate and map temp space for the Q stripe */ | 
 | 		page = alloc_page(GFP_NOFS); | 
 | 		if (!page) { | 
 | 			__free_page(phys_to_page(p_sector.paddr)); | 
 | 			p_sector.has_paddr = false; | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		q_sector.has_paddr = true; | 
 | 		q_sector.paddr = page_to_phys(page); | 
 | 		q_sector.uptodate = 1; | 
 | 		page = NULL; | 
 | 		pointers[rbio->real_stripes - 1] = kmap_local_sector(&q_sector); | 
 | 	} | 
 |  | 
 | 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); | 
 |  | 
 | 	/* Map the parity stripe just once */ | 
 | 	pointers[nr_data] = kmap_local_sector(&p_sector); | 
 |  | 
 | 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { | 
 | 		struct sector_ptr *sector; | 
 | 		void *parity; | 
 |  | 
 | 		/* first collect one page from each data stripe */ | 
 | 		for (stripe = 0; stripe < nr_data; stripe++) { | 
 | 			sector = sector_in_rbio(rbio, stripe, sectornr, 0); | 
 | 			pointers[stripe] = kmap_local_sector(sector); | 
 | 		} | 
 |  | 
 | 		if (has_qstripe) { | 
 | 			assert_rbio(rbio); | 
 | 			/* RAID6, call the library function to fill in our P/Q */ | 
 | 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, | 
 | 						pointers); | 
 | 		} else { | 
 | 			/* raid5 */ | 
 | 			memcpy(pointers[nr_data], pointers[0], sectorsize); | 
 | 			run_xor(pointers + 1, nr_data - 1, sectorsize); | 
 | 		} | 
 |  | 
 | 		/* Check scrubbing parity and repair it */ | 
 | 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); | 
 | 		parity = kmap_local_sector(sector); | 
 | 		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) | 
 | 			memcpy(parity, pointers[rbio->scrubp], sectorsize); | 
 | 		else | 
 | 			/* Parity is right, needn't writeback */ | 
 | 			bitmap_clear(&rbio->dbitmap, sectornr, 1); | 
 | 		kunmap_local(parity); | 
 |  | 
 | 		for (stripe = nr_data - 1; stripe >= 0; stripe--) | 
 | 			kunmap_local(pointers[stripe]); | 
 | 	} | 
 |  | 
 | 	kunmap_local(pointers[nr_data]); | 
 | 	__free_page(phys_to_page(p_sector.paddr)); | 
 | 	p_sector.has_paddr = false; | 
 | 	if (q_sector.has_paddr) { | 
 | 		__free_page(phys_to_page(q_sector.paddr)); | 
 | 		q_sector.has_paddr = false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * time to start writing.  Make bios for everything from the | 
 | 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore | 
 | 	 * everything else. | 
 | 	 */ | 
 | 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { | 
 | 		struct sector_ptr *sector; | 
 |  | 
 | 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); | 
 | 		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, | 
 | 					 sectornr, REQ_OP_WRITE); | 
 | 		if (ret) | 
 | 			goto cleanup; | 
 | 	} | 
 |  | 
 | 	if (!is_replace) | 
 | 		goto submit_write; | 
 |  | 
 | 	/* | 
 | 	 * Replace is running and our parity stripe needs to be duplicated to | 
 | 	 * the target device.  Check we have a valid source stripe number. | 
 | 	 */ | 
 | 	ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio); | 
 | 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { | 
 | 		struct sector_ptr *sector; | 
 |  | 
 | 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); | 
 | 		ret = rbio_add_io_sector(rbio, &bio_list, sector, | 
 | 					 rbio->real_stripes, | 
 | 					 sectornr, REQ_OP_WRITE); | 
 | 		if (ret) | 
 | 			goto cleanup; | 
 | 	} | 
 |  | 
 | submit_write: | 
 | 	submit_write_bios(rbio, &bio_list); | 
 | 	return 0; | 
 |  | 
 | cleanup: | 
 | 	bio_list_put(&bio_list); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) | 
 | { | 
 | 	if (stripe >= 0 && stripe < rbio->nr_data) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	void **pointers = NULL; | 
 | 	void **unmap_array = NULL; | 
 | 	int sector_nr; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * @pointers array stores the pointer for each sector. | 
 | 	 * | 
 | 	 * @unmap_array stores copy of pointers that does not get reordered | 
 | 	 * during reconstruction so that kunmap_local works. | 
 | 	 */ | 
 | 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
 | 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
 | 	if (!pointers || !unmap_array) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { | 
 | 		int dfail = 0, failp = -1; | 
 | 		int faila; | 
 | 		int failb; | 
 | 		int found_errors; | 
 |  | 
 | 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, | 
 | 							 &faila, &failb); | 
 | 		if (unlikely(found_errors > rbio->bioc->max_errors)) { | 
 | 			ret = -EIO; | 
 | 			goto out; | 
 | 		} | 
 | 		if (found_errors == 0) | 
 | 			continue; | 
 |  | 
 | 		/* We should have at least one error here. */ | 
 | 		ASSERT(faila >= 0 || failb >= 0); | 
 |  | 
 | 		if (is_data_stripe(rbio, faila)) | 
 | 			dfail++; | 
 | 		else if (is_parity_stripe(faila)) | 
 | 			failp = faila; | 
 |  | 
 | 		if (is_data_stripe(rbio, failb)) | 
 | 			dfail++; | 
 | 		else if (is_parity_stripe(failb)) | 
 | 			failp = failb; | 
 | 		/* | 
 | 		 * Because we can not use a scrubbing parity to repair the | 
 | 		 * data, so the capability of the repair is declined.  (In the | 
 | 		 * case of RAID5, we can not repair anything.) | 
 | 		 */ | 
 | 		if (unlikely(dfail > rbio->bioc->max_errors - 1)) { | 
 | 			ret = -EIO; | 
 | 			goto out; | 
 | 		} | 
 | 		/* | 
 | 		 * If all data is good, only parity is correctly, just repair | 
 | 		 * the parity, no need to recover data stripes. | 
 | 		 */ | 
 | 		if (dfail == 0) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Here means we got one corrupted data stripe and one | 
 | 		 * corrupted parity on RAID6, if the corrupted parity is | 
 | 		 * scrubbing parity, luckily, use the other one to repair the | 
 | 		 * data, or we can not repair the data stripe. | 
 | 		 */ | 
 | 		if (unlikely(failp != rbio->scrubp)) { | 
 | 			ret = -EIO; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 | out: | 
 | 	kfree(pointers); | 
 | 	kfree(unmap_array); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct bio_list bio_list = BIO_EMPTY_LIST; | 
 | 	int total_sector_nr; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Build a list of bios to read all the missing parts. */ | 
 | 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
 | 	     total_sector_nr++) { | 
 | 		int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
 | 		int stripe = total_sector_nr / rbio->stripe_nsectors; | 
 | 		struct sector_ptr *sector; | 
 |  | 
 | 		/* No data in the vertical stripe, no need to read. */ | 
 | 		if (!test_bit(sectornr, &rbio->dbitmap)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We want to find all the sectors missing from the rbio and | 
 | 		 * read them from the disk. If sector_in_rbio() finds a sector | 
 | 		 * in the bio list we don't need to read it off the stripe. | 
 | 		 */ | 
 | 		sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
 | 		if (sector) | 
 | 			continue; | 
 |  | 
 | 		sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
 | 		/* | 
 | 		 * The bio cache may have handed us an uptodate sector.  If so, | 
 | 		 * use it. | 
 | 		 */ | 
 | 		if (sector->uptodate) | 
 | 			continue; | 
 |  | 
 | 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, | 
 | 					 sectornr, REQ_OP_READ); | 
 | 		if (ret) { | 
 | 			bio_list_put(&bio_list); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	submit_read_wait_bio_list(rbio, &bio_list); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int sector_nr; | 
 | 	int ret; | 
 |  | 
 | 	ret = alloc_rbio_essential_pages(rbio); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); | 
 |  | 
 | 	ret = scrub_assemble_read_bios(rbio); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* We may have some failures, recover the failed sectors first. */ | 
 | 	ret = recover_scrub_rbio(rbio); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We have every sector properly prepared. Can finish the scrub | 
 | 	 * and writeback the good content. | 
 | 	 */ | 
 | 	ret = finish_parity_scrub(rbio); | 
 | 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); | 
 | 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { | 
 | 		int found_errors; | 
 |  | 
 | 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); | 
 | 		if (unlikely(found_errors > rbio->bioc->max_errors)) { | 
 | 			ret = -EIO; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	rbio_orig_end_io(rbio, errno_to_blk_status(ret)); | 
 | } | 
 |  | 
 | static void scrub_rbio_work_locked(struct work_struct *work) | 
 | { | 
 | 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work)); | 
 | } | 
 |  | 
 | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	if (!lock_stripe_add(rbio)) | 
 | 		start_async_work(rbio, scrub_rbio_work_locked); | 
 | } | 
 |  | 
 | /* | 
 |  * This is for scrub call sites where we already have correct data contents. | 
 |  * This allows us to avoid reading data stripes again. | 
 |  * | 
 |  * Unfortunately here we have to do folio copy, other than reusing the pages. | 
 |  * This is due to the fact rbio has its own page management for its cache. | 
 |  */ | 
 | void raid56_parity_cache_data_folios(struct btrfs_raid_bio *rbio, | 
 | 				     struct folio **data_folios, u64 data_logical) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
 | 	const u64 offset_in_full_stripe = data_logical - | 
 | 					  rbio->bioc->full_stripe_logical; | 
 | 	unsigned int findex = 0; | 
 | 	unsigned int foffset = 0; | 
 | 	int ret; | 
 |  | 
 | 	/* We shouldn't hit RAID56 for bs > ps cases for now. */ | 
 | 	ASSERT(fs_info->sectorsize <= PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * If we hit ENOMEM temporarily, but later at | 
 | 	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do | 
 | 	 * the extra read, not a big deal. | 
 | 	 * | 
 | 	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time, | 
 | 	 * the bio would got proper error number set. | 
 | 	 */ | 
 | 	ret = alloc_rbio_data_pages(rbio); | 
 | 	if (ret < 0) | 
 | 		return; | 
 |  | 
 | 	/* data_logical must be at stripe boundary and inside the full stripe. */ | 
 | 	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN)); | 
 | 	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT)); | 
 |  | 
 | 	for (unsigned int cur_off = offset_in_full_stripe; | 
 | 	     cur_off < offset_in_full_stripe + BTRFS_STRIPE_LEN; | 
 | 	     cur_off += PAGE_SIZE) { | 
 | 		const unsigned int pindex = cur_off >> PAGE_SHIFT; | 
 | 		void *kaddr; | 
 |  | 
 | 		kaddr = kmap_local_page(rbio->stripe_pages[pindex]); | 
 | 		memcpy_from_folio(kaddr, data_folios[findex], foffset, PAGE_SIZE); | 
 | 		kunmap_local(kaddr); | 
 |  | 
 | 		foffset += PAGE_SIZE; | 
 | 		ASSERT(foffset <= folio_size(data_folios[findex])); | 
 | 		if (foffset == folio_size(data_folios[findex])) { | 
 | 			findex++; | 
 | 			foffset = 0; | 
 | 		} | 
 | 	} | 
 | 	for (unsigned int sector_nr = offset_in_full_stripe >> fs_info->sectorsize_bits; | 
 | 	     sector_nr < (offset_in_full_stripe + BTRFS_STRIPE_LEN) >> fs_info->sectorsize_bits; | 
 | 	     sector_nr++) | 
 | 		rbio->stripe_sectors[sector_nr].uptodate = true; | 
 | } |