|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | *  fs/eventpoll.c (Efficient event retrieval implementation) | 
|  | *  Copyright (C) 2001,...,2009	 Davide Libenzi | 
|  | * | 
|  | *  Davide Libenzi <davidel@xmailserver.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/eventpoll.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/mman.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/capability.h> | 
|  | #include <net/busy_poll.h> | 
|  |  | 
|  | /* | 
|  | * LOCKING: | 
|  | * There are three level of locking required by epoll : | 
|  | * | 
|  | * 1) epnested_mutex (mutex) | 
|  | * 2) ep->mtx (mutex) | 
|  | * 3) ep->lock (spinlock) | 
|  | * | 
|  | * The acquire order is the one listed above, from 1 to 3. | 
|  | * We need a spinlock (ep->lock) because we manipulate objects | 
|  | * from inside the poll callback, that might be triggered from | 
|  | * a wake_up() that in turn might be called from IRQ context. | 
|  | * So we can't sleep inside the poll callback and hence we need | 
|  | * a spinlock. During the event transfer loop (from kernel to | 
|  | * user space) we could end up sleeping due a copy_to_user(), so | 
|  | * we need a lock that will allow us to sleep. This lock is a | 
|  | * mutex (ep->mtx). It is acquired during the event transfer loop, | 
|  | * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). | 
|  | * The epnested_mutex is acquired when inserting an epoll fd onto another | 
|  | * epoll fd. We do this so that we walk the epoll tree and ensure that this | 
|  | * insertion does not create a cycle of epoll file descriptors, which | 
|  | * could lead to deadlock. We need a global mutex to prevent two | 
|  | * simultaneous inserts (A into B and B into A) from racing and | 
|  | * constructing a cycle without either insert observing that it is | 
|  | * going to. | 
|  | * It is necessary to acquire multiple "ep->mtx"es at once in the | 
|  | * case when one epoll fd is added to another. In this case, we | 
|  | * always acquire the locks in the order of nesting (i.e. after | 
|  | * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired | 
|  | * before e2->mtx). Since we disallow cycles of epoll file | 
|  | * descriptors, this ensures that the mutexes are well-ordered. In | 
|  | * order to communicate this nesting to lockdep, when walking a tree | 
|  | * of epoll file descriptors, we use the current recursion depth as | 
|  | * the lockdep subkey. | 
|  | * It is possible to drop the "ep->mtx" and to use the global | 
|  | * mutex "epnested_mutex" (together with "ep->lock") to have it working, | 
|  | * but having "ep->mtx" will make the interface more scalable. | 
|  | * Events that require holding "epnested_mutex" are very rare, while for | 
|  | * normal operations the epoll private "ep->mtx" will guarantee | 
|  | * a better scalability. | 
|  | */ | 
|  |  | 
|  | /* Epoll private bits inside the event mask */ | 
|  | #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) | 
|  |  | 
|  | #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) | 
|  |  | 
|  | #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ | 
|  | EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) | 
|  |  | 
|  | /* Maximum number of nesting allowed inside epoll sets */ | 
|  | #define EP_MAX_NESTS 4 | 
|  |  | 
|  | #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) | 
|  |  | 
|  | #define EP_UNACTIVE_PTR ((void *) -1L) | 
|  |  | 
|  | #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) | 
|  |  | 
|  | struct epoll_filefd { | 
|  | struct file *file; | 
|  | int fd; | 
|  | } __packed; | 
|  |  | 
|  | /* Wait structure used by the poll hooks */ | 
|  | struct eppoll_entry { | 
|  | /* List header used to link this structure to the "struct epitem" */ | 
|  | struct eppoll_entry *next; | 
|  |  | 
|  | /* The "base" pointer is set to the container "struct epitem" */ | 
|  | struct epitem *base; | 
|  |  | 
|  | /* | 
|  | * Wait queue item that will be linked to the target file wait | 
|  | * queue head. | 
|  | */ | 
|  | wait_queue_entry_t wait; | 
|  |  | 
|  | /* The wait queue head that linked the "wait" wait queue item */ | 
|  | wait_queue_head_t *whead; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Each file descriptor added to the eventpoll interface will | 
|  | * have an entry of this type linked to the "rbr" RB tree. | 
|  | * Avoid increasing the size of this struct, there can be many thousands | 
|  | * of these on a server and we do not want this to take another cache line. | 
|  | */ | 
|  | struct epitem { | 
|  | union { | 
|  | /* RB tree node links this structure to the eventpoll RB tree */ | 
|  | struct rb_node rbn; | 
|  | /* Used to free the struct epitem */ | 
|  | struct rcu_head rcu; | 
|  | }; | 
|  |  | 
|  | /* List header used to link this structure to the eventpoll ready list */ | 
|  | struct list_head rdllink; | 
|  |  | 
|  | /* | 
|  | * Works together "struct eventpoll"->ovflist in keeping the | 
|  | * single linked chain of items. | 
|  | */ | 
|  | struct epitem *next; | 
|  |  | 
|  | /* The file descriptor information this item refers to */ | 
|  | struct epoll_filefd ffd; | 
|  |  | 
|  | /* | 
|  | * Protected by file->f_lock, true for to-be-released epitem already | 
|  | * removed from the "struct file" items list; together with | 
|  | * eventpoll->refcount orchestrates "struct eventpoll" disposal | 
|  | */ | 
|  | bool dying; | 
|  |  | 
|  | /* List containing poll wait queues */ | 
|  | struct eppoll_entry *pwqlist; | 
|  |  | 
|  | /* The "container" of this item */ | 
|  | struct eventpoll *ep; | 
|  |  | 
|  | /* List header used to link this item to the "struct file" items list */ | 
|  | struct hlist_node fllink; | 
|  |  | 
|  | /* wakeup_source used when EPOLLWAKEUP is set */ | 
|  | struct wakeup_source __rcu *ws; | 
|  |  | 
|  | /* The structure that describe the interested events and the source fd */ | 
|  | struct epoll_event event; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This structure is stored inside the "private_data" member of the file | 
|  | * structure and represents the main data structure for the eventpoll | 
|  | * interface. | 
|  | */ | 
|  | struct eventpoll { | 
|  | /* | 
|  | * This mutex is used to ensure that files are not removed | 
|  | * while epoll is using them. This is held during the event | 
|  | * collection loop, the file cleanup path, the epoll file exit | 
|  | * code and the ctl operations. | 
|  | */ | 
|  | struct mutex mtx; | 
|  |  | 
|  | /* Wait queue used by sys_epoll_wait() */ | 
|  | wait_queue_head_t wq; | 
|  |  | 
|  | /* Wait queue used by file->poll() */ | 
|  | wait_queue_head_t poll_wait; | 
|  |  | 
|  | /* List of ready file descriptors */ | 
|  | struct list_head rdllist; | 
|  |  | 
|  | /* Lock which protects rdllist and ovflist */ | 
|  | spinlock_t lock; | 
|  |  | 
|  | /* RB tree root used to store monitored fd structs */ | 
|  | struct rb_root_cached rbr; | 
|  |  | 
|  | /* | 
|  | * This is a single linked list that chains all the "struct epitem" that | 
|  | * happened while transferring ready events to userspace w/out | 
|  | * holding ->lock. | 
|  | */ | 
|  | struct epitem *ovflist; | 
|  |  | 
|  | /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ | 
|  | struct wakeup_source *ws; | 
|  |  | 
|  | /* The user that created the eventpoll descriptor */ | 
|  | struct user_struct *user; | 
|  |  | 
|  | struct file *file; | 
|  |  | 
|  | /* used to optimize loop detection check */ | 
|  | u64 gen; | 
|  | struct hlist_head refs; | 
|  | u8 loop_check_depth; | 
|  |  | 
|  | /* | 
|  | * usage count, used together with epitem->dying to | 
|  | * orchestrate the disposal of this struct | 
|  | */ | 
|  | refcount_t refcount; | 
|  |  | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | /* used to track busy poll napi_id */ | 
|  | unsigned int napi_id; | 
|  | /* busy poll timeout */ | 
|  | u32 busy_poll_usecs; | 
|  | /* busy poll packet budget */ | 
|  | u16 busy_poll_budget; | 
|  | bool prefer_busy_poll; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | /* tracks wakeup nests for lockdep validation */ | 
|  | u8 nests; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* Wrapper struct used by poll queueing */ | 
|  | struct ep_pqueue { | 
|  | poll_table pt; | 
|  | struct epitem *epi; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Configuration options available inside /proc/sys/fs/epoll/ | 
|  | */ | 
|  | /* Maximum number of epoll watched descriptors, per user */ | 
|  | static long max_user_watches __read_mostly; | 
|  |  | 
|  | /* Used for cycles detection */ | 
|  | static DEFINE_MUTEX(epnested_mutex); | 
|  |  | 
|  | static u64 loop_check_gen = 0; | 
|  |  | 
|  | /* Used to check for epoll file descriptor inclusion loops */ | 
|  | static struct eventpoll *inserting_into; | 
|  |  | 
|  | /* Slab cache used to allocate "struct epitem" */ | 
|  | static struct kmem_cache *epi_cache __ro_after_init; | 
|  |  | 
|  | /* Slab cache used to allocate "struct eppoll_entry" */ | 
|  | static struct kmem_cache *pwq_cache __ro_after_init; | 
|  |  | 
|  | /* | 
|  | * List of files with newly added links, where we may need to limit the number | 
|  | * of emanating paths. Protected by the epnested_mutex. | 
|  | */ | 
|  | struct epitems_head { | 
|  | struct hlist_head epitems; | 
|  | struct epitems_head *next; | 
|  | }; | 
|  | static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; | 
|  |  | 
|  | static struct kmem_cache *ephead_cache __ro_after_init; | 
|  |  | 
|  | static inline void free_ephead(struct epitems_head *head) | 
|  | { | 
|  | if (head) | 
|  | kmem_cache_free(ephead_cache, head); | 
|  | } | 
|  |  | 
|  | static void list_file(struct file *file) | 
|  | { | 
|  | struct epitems_head *head; | 
|  |  | 
|  | head = container_of(file->f_ep, struct epitems_head, epitems); | 
|  | if (!head->next) { | 
|  | head->next = tfile_check_list; | 
|  | tfile_check_list = head; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void unlist_file(struct epitems_head *head) | 
|  | { | 
|  | struct epitems_head *to_free = head; | 
|  | struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); | 
|  | if (p) { | 
|  | struct epitem *epi= container_of(p, struct epitem, fllink); | 
|  | spin_lock(&epi->ffd.file->f_lock); | 
|  | if (!hlist_empty(&head->epitems)) | 
|  | to_free = NULL; | 
|  | head->next = NULL; | 
|  | spin_unlock(&epi->ffd.file->f_lock); | 
|  | } | 
|  | free_ephead(to_free); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  |  | 
|  | #include <linux/sysctl.h> | 
|  |  | 
|  | static long long_zero; | 
|  | static long long_max = LONG_MAX; | 
|  |  | 
|  | static const struct ctl_table epoll_table[] = { | 
|  | { | 
|  | .procname	= "max_user_watches", | 
|  | .data		= &max_user_watches, | 
|  | .maxlen		= sizeof(max_user_watches), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_doulongvec_minmax, | 
|  | .extra1		= &long_zero, | 
|  | .extra2		= &long_max, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void __init epoll_sysctls_init(void) | 
|  | { | 
|  | register_sysctl("fs/epoll", epoll_table); | 
|  | } | 
|  | #else | 
|  | #define epoll_sysctls_init() do { } while (0) | 
|  | #endif /* CONFIG_SYSCTL */ | 
|  |  | 
|  | static const struct file_operations eventpoll_fops; | 
|  |  | 
|  | static inline int is_file_epoll(struct file *f) | 
|  | { | 
|  | return f->f_op == &eventpoll_fops; | 
|  | } | 
|  |  | 
|  | /* Setup the structure that is used as key for the RB tree */ | 
|  | static inline void ep_set_ffd(struct epoll_filefd *ffd, | 
|  | struct file *file, int fd) | 
|  | { | 
|  | ffd->file = file; | 
|  | ffd->fd = fd; | 
|  | } | 
|  |  | 
|  | /* Compare RB tree keys */ | 
|  | static inline int ep_cmp_ffd(struct epoll_filefd *p1, | 
|  | struct epoll_filefd *p2) | 
|  | { | 
|  | return (p1->file > p2->file ? +1: | 
|  | (p1->file < p2->file ? -1 : p1->fd - p2->fd)); | 
|  | } | 
|  |  | 
|  | /* Tells us if the item is currently linked */ | 
|  | static inline int ep_is_linked(struct epitem *epi) | 
|  | { | 
|  | return !list_empty(&epi->rdllink); | 
|  | } | 
|  |  | 
|  | static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) | 
|  | { | 
|  | return container_of(p, struct eppoll_entry, wait); | 
|  | } | 
|  |  | 
|  | /* Get the "struct epitem" from a wait queue pointer */ | 
|  | static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) | 
|  | { | 
|  | return container_of(p, struct eppoll_entry, wait)->base; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep_events_available - Checks if ready events might be available. | 
|  | * | 
|  | * @ep: Pointer to the eventpoll context. | 
|  | * | 
|  | * Return: a value different than %zero if ready events are available, | 
|  | *          or %zero otherwise. | 
|  | */ | 
|  | static inline int ep_events_available(struct eventpoll *ep) | 
|  | { | 
|  | return !list_empty_careful(&ep->rdllist) || | 
|  | READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | /** | 
|  | * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value | 
|  | * from the epoll instance ep is preferred, but if it is not set fallback to | 
|  | * the system-wide global via busy_loop_timeout. | 
|  | * | 
|  | * @start_time: The start time used to compute the remaining time until timeout. | 
|  | * @ep: Pointer to the eventpoll context. | 
|  | * | 
|  | * Return: true if the timeout has expired, false otherwise. | 
|  | */ | 
|  | static bool busy_loop_ep_timeout(unsigned long start_time, | 
|  | struct eventpoll *ep) | 
|  | { | 
|  | unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); | 
|  |  | 
|  | if (bp_usec) { | 
|  | unsigned long end_time = start_time + bp_usec; | 
|  | unsigned long now = busy_loop_current_time(); | 
|  |  | 
|  | return time_after(now, end_time); | 
|  | } else { | 
|  | return busy_loop_timeout(start_time); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool ep_busy_loop_on(struct eventpoll *ep) | 
|  | { | 
|  | return !!READ_ONCE(ep->busy_poll_usecs) || | 
|  | READ_ONCE(ep->prefer_busy_poll) || | 
|  | net_busy_loop_on(); | 
|  | } | 
|  |  | 
|  | static bool ep_busy_loop_end(void *p, unsigned long start_time) | 
|  | { | 
|  | struct eventpoll *ep = p; | 
|  |  | 
|  | return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Busy poll if globally on and supporting sockets found && no events, | 
|  | * busy loop will return if need_resched or ep_events_available. | 
|  | * | 
|  | * we must do our busy polling with irqs enabled | 
|  | */ | 
|  | static bool ep_busy_loop(struct eventpoll *ep) | 
|  | { | 
|  | unsigned int napi_id = READ_ONCE(ep->napi_id); | 
|  | u16 budget = READ_ONCE(ep->busy_poll_budget); | 
|  | bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); | 
|  |  | 
|  | if (!budget) | 
|  | budget = BUSY_POLL_BUDGET; | 
|  |  | 
|  | if (napi_id_valid(napi_id) && ep_busy_loop_on(ep)) { | 
|  | napi_busy_loop(napi_id, ep_busy_loop_end, | 
|  | ep, prefer_busy_poll, budget); | 
|  | if (ep_events_available(ep)) | 
|  | return true; | 
|  | /* | 
|  | * Busy poll timed out.  Drop NAPI ID for now, we can add | 
|  | * it back in when we have moved a socket with a valid NAPI | 
|  | * ID onto the ready list. | 
|  | */ | 
|  | if (prefer_busy_poll) | 
|  | napi_resume_irqs(napi_id); | 
|  | ep->napi_id = 0; | 
|  | return false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set epoll busy poll NAPI ID from sk. | 
|  | */ | 
|  | static inline void ep_set_busy_poll_napi_id(struct epitem *epi) | 
|  | { | 
|  | struct eventpoll *ep = epi->ep; | 
|  | unsigned int napi_id; | 
|  | struct socket *sock; | 
|  | struct sock *sk; | 
|  |  | 
|  | if (!ep_busy_loop_on(ep)) | 
|  | return; | 
|  |  | 
|  | sock = sock_from_file(epi->ffd.file); | 
|  | if (!sock) | 
|  | return; | 
|  |  | 
|  | sk = sock->sk; | 
|  | if (!sk) | 
|  | return; | 
|  |  | 
|  | napi_id = READ_ONCE(sk->sk_napi_id); | 
|  |  | 
|  | /* Non-NAPI IDs can be rejected | 
|  | *	or | 
|  | * Nothing to do if we already have this ID | 
|  | */ | 
|  | if (!napi_id_valid(napi_id) || napi_id == ep->napi_id) | 
|  | return; | 
|  |  | 
|  | /* record NAPI ID for use in next busy poll */ | 
|  | ep->napi_id = napi_id; | 
|  | } | 
|  |  | 
|  | static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | struct eventpoll *ep = file->private_data; | 
|  | void __user *uarg = (void __user *)arg; | 
|  | struct epoll_params epoll_params; | 
|  |  | 
|  | switch (cmd) { | 
|  | case EPIOCSPARAMS: | 
|  | if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* pad byte must be zero */ | 
|  | if (epoll_params.__pad) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (epoll_params.busy_poll_usecs > S32_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (epoll_params.prefer_busy_poll > 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && | 
|  | !capable(CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); | 
|  | WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); | 
|  | WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); | 
|  | return 0; | 
|  | case EPIOCGPARAMS: | 
|  | memset(&epoll_params, 0, sizeof(epoll_params)); | 
|  | epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); | 
|  | epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); | 
|  | epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); | 
|  | if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | default: | 
|  | return -ENOIOCTLCMD; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ep_suspend_napi_irqs(struct eventpoll *ep) | 
|  | { | 
|  | unsigned int napi_id = READ_ONCE(ep->napi_id); | 
|  |  | 
|  | if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll)) | 
|  | napi_suspend_irqs(napi_id); | 
|  | } | 
|  |  | 
|  | static void ep_resume_napi_irqs(struct eventpoll *ep) | 
|  | { | 
|  | unsigned int napi_id = READ_ONCE(ep->napi_id); | 
|  |  | 
|  | if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll)) | 
|  | napi_resume_irqs(napi_id); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline bool ep_busy_loop(struct eventpoll *ep) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void ep_set_busy_poll_napi_id(struct epitem *epi) | 
|  | { | 
|  | } | 
|  |  | 
|  | static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static void ep_suspend_napi_irqs(struct eventpoll *ep) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void ep_resume_napi_irqs(struct eventpoll *ep) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_NET_RX_BUSY_POLL */ | 
|  |  | 
|  | /* | 
|  | * As described in commit 0ccf831cb lockdep: annotate epoll | 
|  | * the use of wait queues used by epoll is done in a very controlled | 
|  | * manner. Wake ups can nest inside each other, but are never done | 
|  | * with the same locking. For example: | 
|  | * | 
|  | *   dfd = socket(...); | 
|  | *   efd1 = epoll_create(); | 
|  | *   efd2 = epoll_create(); | 
|  | *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); | 
|  | *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); | 
|  | * | 
|  | * When a packet arrives to the device underneath "dfd", the net code will | 
|  | * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a | 
|  | * callback wakeup entry on that queue, and the wake_up() performed by the | 
|  | * "dfd" net code will end up in ep_poll_callback(). At this point epoll | 
|  | * (efd1) notices that it may have some event ready, so it needs to wake up | 
|  | * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() | 
|  | * that ends up in another wake_up(), after having checked about the | 
|  | * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid | 
|  | * stack blasting. | 
|  | * | 
|  | * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle | 
|  | * this special case of epoll. | 
|  | */ | 
|  | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  |  | 
|  | static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, | 
|  | unsigned pollflags) | 
|  | { | 
|  | struct eventpoll *ep_src; | 
|  | unsigned long flags; | 
|  | u8 nests = 0; | 
|  |  | 
|  | /* | 
|  | * To set the subclass or nesting level for spin_lock_irqsave_nested() | 
|  | * it might be natural to create a per-cpu nest count. However, since | 
|  | * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can | 
|  | * schedule() in the -rt kernel, the per-cpu variable are no longer | 
|  | * protected. Thus, we are introducing a per eventpoll nest field. | 
|  | * If we are not being call from ep_poll_callback(), epi is NULL and | 
|  | * we are at the first level of nesting, 0. Otherwise, we are being | 
|  | * called from ep_poll_callback() and if a previous wakeup source is | 
|  | * not an epoll file itself, we are at depth 1 since the wakeup source | 
|  | * is depth 0. If the wakeup source is a previous epoll file in the | 
|  | * wakeup chain then we use its nests value and record ours as | 
|  | * nests + 1. The previous epoll file nests value is stable since its | 
|  | * already holding its own poll_wait.lock. | 
|  | */ | 
|  | if (epi) { | 
|  | if ((is_file_epoll(epi->ffd.file))) { | 
|  | ep_src = epi->ffd.file->private_data; | 
|  | nests = ep_src->nests; | 
|  | } else { | 
|  | nests = 1; | 
|  | } | 
|  | } | 
|  | spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); | 
|  | ep->nests = nests + 1; | 
|  | wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); | 
|  | ep->nests = 0; | 
|  | spin_unlock_irqrestore(&ep->poll_wait.lock, flags); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, | 
|  | __poll_t pollflags) | 
|  | { | 
|  | wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void ep_remove_wait_queue(struct eppoll_entry *pwq) | 
|  | { | 
|  | wait_queue_head_t *whead; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * If it is cleared by POLLFREE, it should be rcu-safe. | 
|  | * If we read NULL we need a barrier paired with | 
|  | * smp_store_release() in ep_poll_callback(), otherwise | 
|  | * we rely on whead->lock. | 
|  | */ | 
|  | whead = smp_load_acquire(&pwq->whead); | 
|  | if (whead) | 
|  | remove_wait_queue(whead, &pwq->wait); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function unregisters poll callbacks from the associated file | 
|  | * descriptor.  Must be called with "mtx" held. | 
|  | */ | 
|  | static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) | 
|  | { | 
|  | struct eppoll_entry **p = &epi->pwqlist; | 
|  | struct eppoll_entry *pwq; | 
|  |  | 
|  | while ((pwq = *p) != NULL) { | 
|  | *p = pwq->next; | 
|  | ep_remove_wait_queue(pwq); | 
|  | kmem_cache_free(pwq_cache, pwq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* call only when ep->mtx is held */ | 
|  | static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) | 
|  | { | 
|  | return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); | 
|  | } | 
|  |  | 
|  | /* call only when ep->mtx is held */ | 
|  | static inline void ep_pm_stay_awake(struct epitem *epi) | 
|  | { | 
|  | struct wakeup_source *ws = ep_wakeup_source(epi); | 
|  |  | 
|  | if (ws) | 
|  | __pm_stay_awake(ws); | 
|  | } | 
|  |  | 
|  | static inline bool ep_has_wakeup_source(struct epitem *epi) | 
|  | { | 
|  | return rcu_access_pointer(epi->ws) ? true : false; | 
|  | } | 
|  |  | 
|  | /* call when ep->mtx cannot be held (ep_poll_callback) */ | 
|  | static inline void ep_pm_stay_awake_rcu(struct epitem *epi) | 
|  | { | 
|  | struct wakeup_source *ws; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ws = rcu_dereference(epi->ws); | 
|  | if (ws) | 
|  | __pm_stay_awake(ws); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * ep->mutex needs to be held because we could be hit by | 
|  | * eventpoll_release_file() and epoll_ctl(). | 
|  | */ | 
|  | static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) | 
|  | { | 
|  | /* | 
|  | * Steal the ready list, and re-init the original one to the | 
|  | * empty list. Also, set ep->ovflist to NULL so that events | 
|  | * happening while looping w/out locks, are not lost. We cannot | 
|  | * have the poll callback to queue directly on ep->rdllist, | 
|  | * because we want the "sproc" callback to be able to do it | 
|  | * in a lockless way. | 
|  | */ | 
|  | lockdep_assert_irqs_enabled(); | 
|  | spin_lock_irq(&ep->lock); | 
|  | list_splice_init(&ep->rdllist, txlist); | 
|  | WRITE_ONCE(ep->ovflist, NULL); | 
|  | spin_unlock_irq(&ep->lock); | 
|  | } | 
|  |  | 
|  | static void ep_done_scan(struct eventpoll *ep, | 
|  | struct list_head *txlist) | 
|  | { | 
|  | struct epitem *epi, *nepi; | 
|  |  | 
|  | spin_lock_irq(&ep->lock); | 
|  | /* | 
|  | * During the time we spent inside the "sproc" callback, some | 
|  | * other events might have been queued by the poll callback. | 
|  | * We re-insert them inside the main ready-list here. | 
|  | */ | 
|  | for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; | 
|  | nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { | 
|  | /* | 
|  | * We need to check if the item is already in the list. | 
|  | * During the "sproc" callback execution time, items are | 
|  | * queued into ->ovflist but the "txlist" might already | 
|  | * contain them, and the list_splice() below takes care of them. | 
|  | */ | 
|  | if (!ep_is_linked(epi)) { | 
|  | /* | 
|  | * ->ovflist is LIFO, so we have to reverse it in order | 
|  | * to keep in FIFO. | 
|  | */ | 
|  | list_add(&epi->rdllink, &ep->rdllist); | 
|  | ep_pm_stay_awake(epi); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after | 
|  | * releasing the lock, events will be queued in the normal way inside | 
|  | * ep->rdllist. | 
|  | */ | 
|  | WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); | 
|  |  | 
|  | /* | 
|  | * Quickly re-inject items left on "txlist". | 
|  | */ | 
|  | list_splice(txlist, &ep->rdllist); | 
|  | __pm_relax(ep->ws); | 
|  |  | 
|  | if (!list_empty(&ep->rdllist)) { | 
|  | if (waitqueue_active(&ep->wq)) | 
|  | wake_up(&ep->wq); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&ep->lock); | 
|  | } | 
|  |  | 
|  | static void ep_get(struct eventpoll *ep) | 
|  | { | 
|  | refcount_inc(&ep->refcount); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if the event poll can be disposed | 
|  | */ | 
|  | static bool ep_refcount_dec_and_test(struct eventpoll *ep) | 
|  | { | 
|  | if (!refcount_dec_and_test(&ep->refcount)) | 
|  | return false; | 
|  |  | 
|  | WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void ep_free(struct eventpoll *ep) | 
|  | { | 
|  | ep_resume_napi_irqs(ep); | 
|  | mutex_destroy(&ep->mtx); | 
|  | free_uid(ep->user); | 
|  | wakeup_source_unregister(ep->ws); | 
|  | kfree(ep); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Removes a "struct epitem" from the eventpoll RB tree and deallocates | 
|  | * all the associated resources. Must be called with "mtx" held. | 
|  | * If the dying flag is set, do the removal only if force is true. | 
|  | * This prevents ep_clear_and_put() from dropping all the ep references | 
|  | * while running concurrently with eventpoll_release_file(). | 
|  | * Returns true if the eventpoll can be disposed. | 
|  | */ | 
|  | static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) | 
|  | { | 
|  | struct file *file = epi->ffd.file; | 
|  | struct epitems_head *to_free; | 
|  | struct hlist_head *head; | 
|  |  | 
|  | lockdep_assert_irqs_enabled(); | 
|  |  | 
|  | /* | 
|  | * Removes poll wait queue hooks. | 
|  | */ | 
|  | ep_unregister_pollwait(ep, epi); | 
|  |  | 
|  | /* Remove the current item from the list of epoll hooks */ | 
|  | spin_lock(&file->f_lock); | 
|  | if (epi->dying && !force) { | 
|  | spin_unlock(&file->f_lock); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | to_free = NULL; | 
|  | head = file->f_ep; | 
|  | if (head->first == &epi->fllink && !epi->fllink.next) { | 
|  | /* See eventpoll_release() for details. */ | 
|  | WRITE_ONCE(file->f_ep, NULL); | 
|  | if (!is_file_epoll(file)) { | 
|  | struct epitems_head *v; | 
|  | v = container_of(head, struct epitems_head, epitems); | 
|  | if (!smp_load_acquire(&v->next)) | 
|  | to_free = v; | 
|  | } | 
|  | } | 
|  | hlist_del_rcu(&epi->fllink); | 
|  | spin_unlock(&file->f_lock); | 
|  | free_ephead(to_free); | 
|  |  | 
|  | rb_erase_cached(&epi->rbn, &ep->rbr); | 
|  |  | 
|  | spin_lock_irq(&ep->lock); | 
|  | if (ep_is_linked(epi)) | 
|  | list_del_init(&epi->rdllink); | 
|  | spin_unlock_irq(&ep->lock); | 
|  |  | 
|  | wakeup_source_unregister(ep_wakeup_source(epi)); | 
|  | /* | 
|  | * At this point it is safe to free the eventpoll item. Use the union | 
|  | * field epi->rcu, since we are trying to minimize the size of | 
|  | * 'struct epitem'. The 'rbn' field is no longer in use. Protected by | 
|  | * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make | 
|  | * use of the rbn field. | 
|  | */ | 
|  | kfree_rcu(epi, rcu); | 
|  |  | 
|  | percpu_counter_dec(&ep->user->epoll_watches); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ep_remove variant for callers owing an additional reference to the ep | 
|  | */ | 
|  | static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) | 
|  | { | 
|  | if (__ep_remove(ep, epi, false)) | 
|  | WARN_ON_ONCE(ep_refcount_dec_and_test(ep)); | 
|  | } | 
|  |  | 
|  | static void ep_clear_and_put(struct eventpoll *ep) | 
|  | { | 
|  | struct rb_node *rbp, *next; | 
|  | struct epitem *epi; | 
|  |  | 
|  | /* We need to release all tasks waiting for these file */ | 
|  | if (waitqueue_active(&ep->poll_wait)) | 
|  | ep_poll_safewake(ep, NULL, 0); | 
|  |  | 
|  | mutex_lock(&ep->mtx); | 
|  |  | 
|  | /* | 
|  | * Walks through the whole tree by unregistering poll callbacks. | 
|  | */ | 
|  | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | epi = rb_entry(rbp, struct epitem, rbn); | 
|  |  | 
|  | ep_unregister_pollwait(ep, epi); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walks through the whole tree and try to free each "struct epitem". | 
|  | * Note that ep_remove_safe() will not remove the epitem in case of a | 
|  | * racing eventpoll_release_file(); the latter will do the removal. | 
|  | * At this point we are sure no poll callbacks will be lingering around. | 
|  | * Since we still own a reference to the eventpoll struct, the loop can't | 
|  | * dispose it. | 
|  | */ | 
|  | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { | 
|  | next = rb_next(rbp); | 
|  | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | ep_remove_safe(ep, epi); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&ep->mtx); | 
|  | if (ep_refcount_dec_and_test(ep)) | 
|  | ep_free(ep); | 
|  | } | 
|  |  | 
|  | static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!is_file_epoll(file)) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (cmd) { | 
|  | case EPIOCSPARAMS: | 
|  | case EPIOCGPARAMS: | 
|  | ret = ep_eventpoll_bp_ioctl(file, cmd, arg); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ep_eventpoll_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct eventpoll *ep = file->private_data; | 
|  |  | 
|  | if (ep) | 
|  | ep_clear_and_put(ep); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); | 
|  |  | 
|  | static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) | 
|  | { | 
|  | struct eventpoll *ep = file->private_data; | 
|  | LIST_HEAD(txlist); | 
|  | struct epitem *epi, *tmp; | 
|  | poll_table pt; | 
|  | __poll_t res = 0; | 
|  |  | 
|  | init_poll_funcptr(&pt, NULL); | 
|  |  | 
|  | /* Insert inside our poll wait queue */ | 
|  | poll_wait(file, &ep->poll_wait, wait); | 
|  |  | 
|  | /* | 
|  | * Proceed to find out if wanted events are really available inside | 
|  | * the ready list. | 
|  | */ | 
|  | mutex_lock_nested(&ep->mtx, depth); | 
|  | ep_start_scan(ep, &txlist); | 
|  | list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { | 
|  | if (ep_item_poll(epi, &pt, depth + 1)) { | 
|  | res = EPOLLIN | EPOLLRDNORM; | 
|  | break; | 
|  | } else { | 
|  | /* | 
|  | * Item has been dropped into the ready list by the poll | 
|  | * callback, but it's not actually ready, as far as | 
|  | * caller requested events goes. We can remove it here. | 
|  | */ | 
|  | __pm_relax(ep_wakeup_source(epi)); | 
|  | list_del_init(&epi->rdllink); | 
|  | } | 
|  | } | 
|  | ep_done_scan(ep, &txlist); | 
|  | mutex_unlock(&ep->mtx); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The ffd.file pointer may be in the process of being torn down due to | 
|  | * being closed, but we may not have finished eventpoll_release() yet. | 
|  | * | 
|  | * Normally, even with the atomic_long_inc_not_zero, the file may have | 
|  | * been free'd and then gotten re-allocated to something else (since | 
|  | * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). | 
|  | * | 
|  | * But for epoll, users hold the ep->mtx mutex, and as such any file in | 
|  | * the process of being free'd will block in eventpoll_release_file() | 
|  | * and thus the underlying file allocation will not be free'd, and the | 
|  | * file re-use cannot happen. | 
|  | * | 
|  | * For the same reason we can avoid a rcu_read_lock() around the | 
|  | * operation - 'ffd.file' cannot go away even if the refcount has | 
|  | * reached zero (but we must still not call out to ->poll() functions | 
|  | * etc). | 
|  | */ | 
|  | static struct file *epi_fget(const struct epitem *epi) | 
|  | { | 
|  | struct file *file; | 
|  |  | 
|  | file = epi->ffd.file; | 
|  | if (!file_ref_get(&file->f_ref)) | 
|  | file = NULL; | 
|  | return file; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Differs from ep_eventpoll_poll() in that internal callers already have | 
|  | * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() | 
|  | * is correctly annotated. | 
|  | */ | 
|  | static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, | 
|  | int depth) | 
|  | { | 
|  | struct file *file = epi_fget(epi); | 
|  | __poll_t res; | 
|  |  | 
|  | /* | 
|  | * We could return EPOLLERR | EPOLLHUP or something, but let's | 
|  | * treat this more as "file doesn't exist, poll didn't happen". | 
|  | */ | 
|  | if (!file) | 
|  | return 0; | 
|  |  | 
|  | pt->_key = epi->event.events; | 
|  | if (!is_file_epoll(file)) | 
|  | res = vfs_poll(file, pt); | 
|  | else | 
|  | res = __ep_eventpoll_poll(file, pt, depth); | 
|  | fput(file); | 
|  | return res & epi->event.events; | 
|  | } | 
|  |  | 
|  | static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) | 
|  | { | 
|  | return __ep_eventpoll_poll(file, wait, 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static void ep_show_fdinfo(struct seq_file *m, struct file *f) | 
|  | { | 
|  | struct eventpoll *ep = f->private_data; | 
|  | struct rb_node *rbp; | 
|  |  | 
|  | mutex_lock(&ep->mtx); | 
|  | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | struct epitem *epi = rb_entry(rbp, struct epitem, rbn); | 
|  | struct inode *inode = file_inode(epi->ffd.file); | 
|  |  | 
|  | seq_printf(m, "tfd: %8d events: %8x data: %16llx " | 
|  | " pos:%lli ino:%lx sdev:%x\n", | 
|  | epi->ffd.fd, epi->event.events, | 
|  | (long long)epi->event.data, | 
|  | (long long)epi->ffd.file->f_pos, | 
|  | inode->i_ino, inode->i_sb->s_dev); | 
|  | if (seq_has_overflowed(m)) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&ep->mtx); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* File callbacks that implement the eventpoll file behaviour */ | 
|  | static const struct file_operations eventpoll_fops = { | 
|  | #ifdef CONFIG_PROC_FS | 
|  | .show_fdinfo	= ep_show_fdinfo, | 
|  | #endif | 
|  | .release	= ep_eventpoll_release, | 
|  | .poll		= ep_eventpoll_poll, | 
|  | .llseek		= noop_llseek, | 
|  | .unlocked_ioctl	= ep_eventpoll_ioctl, | 
|  | .compat_ioctl   = compat_ptr_ioctl, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is called from eventpoll_release() to unlink files from the eventpoll | 
|  | * interface. We need to have this facility to cleanup correctly files that are | 
|  | * closed without being removed from the eventpoll interface. | 
|  | */ | 
|  | void eventpoll_release_file(struct file *file) | 
|  | { | 
|  | struct eventpoll *ep; | 
|  | struct epitem *epi; | 
|  | bool dispose; | 
|  |  | 
|  | /* | 
|  | * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from | 
|  | * touching the epitems list before eventpoll_release_file() can access | 
|  | * the ep->mtx. | 
|  | */ | 
|  | again: | 
|  | spin_lock(&file->f_lock); | 
|  | if (file->f_ep && file->f_ep->first) { | 
|  | epi = hlist_entry(file->f_ep->first, struct epitem, fllink); | 
|  | epi->dying = true; | 
|  | spin_unlock(&file->f_lock); | 
|  |  | 
|  | /* | 
|  | * ep access is safe as we still own a reference to the ep | 
|  | * struct | 
|  | */ | 
|  | ep = epi->ep; | 
|  | mutex_lock(&ep->mtx); | 
|  | dispose = __ep_remove(ep, epi, true); | 
|  | mutex_unlock(&ep->mtx); | 
|  |  | 
|  | if (dispose && ep_refcount_dec_and_test(ep)) | 
|  | ep_free(ep); | 
|  | goto again; | 
|  | } | 
|  | spin_unlock(&file->f_lock); | 
|  | } | 
|  |  | 
|  | static int ep_alloc(struct eventpoll **pep) | 
|  | { | 
|  | struct eventpoll *ep; | 
|  |  | 
|  | ep = kzalloc(sizeof(*ep), GFP_KERNEL); | 
|  | if (unlikely(!ep)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_init(&ep->mtx); | 
|  | spin_lock_init(&ep->lock); | 
|  | init_waitqueue_head(&ep->wq); | 
|  | init_waitqueue_head(&ep->poll_wait); | 
|  | INIT_LIST_HEAD(&ep->rdllist); | 
|  | ep->rbr = RB_ROOT_CACHED; | 
|  | ep->ovflist = EP_UNACTIVE_PTR; | 
|  | ep->user = get_current_user(); | 
|  | refcount_set(&ep->refcount, 1); | 
|  |  | 
|  | *pep = ep; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search the file inside the eventpoll tree. The RB tree operations | 
|  | * are protected by the "mtx" mutex, and ep_find() must be called with | 
|  | * "mtx" held. | 
|  | */ | 
|  | static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) | 
|  | { | 
|  | int kcmp; | 
|  | struct rb_node *rbp; | 
|  | struct epitem *epi, *epir = NULL; | 
|  | struct epoll_filefd ffd; | 
|  |  | 
|  | ep_set_ffd(&ffd, file, fd); | 
|  | for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { | 
|  | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | kcmp = ep_cmp_ffd(&ffd, &epi->ffd); | 
|  | if (kcmp > 0) | 
|  | rbp = rbp->rb_right; | 
|  | else if (kcmp < 0) | 
|  | rbp = rbp->rb_left; | 
|  | else { | 
|  | epir = epi; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return epir; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KCMP | 
|  | static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) | 
|  | { | 
|  | struct rb_node *rbp; | 
|  | struct epitem *epi; | 
|  |  | 
|  | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | if (epi->ffd.fd == tfd) { | 
|  | if (toff == 0) | 
|  | return epi; | 
|  | else | 
|  | toff--; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, | 
|  | unsigned long toff) | 
|  | { | 
|  | struct file *file_raw; | 
|  | struct eventpoll *ep; | 
|  | struct epitem *epi; | 
|  |  | 
|  | if (!is_file_epoll(file)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | ep = file->private_data; | 
|  |  | 
|  | mutex_lock(&ep->mtx); | 
|  | epi = ep_find_tfd(ep, tfd, toff); | 
|  | if (epi) | 
|  | file_raw = epi->ffd.file; | 
|  | else | 
|  | file_raw = ERR_PTR(-ENOENT); | 
|  | mutex_unlock(&ep->mtx); | 
|  |  | 
|  | return file_raw; | 
|  | } | 
|  | #endif /* CONFIG_KCMP */ | 
|  |  | 
|  | /* | 
|  | * This is the callback that is passed to the wait queue wakeup | 
|  | * mechanism. It is called by the stored file descriptors when they | 
|  | * have events to report. | 
|  | */ | 
|  | static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) | 
|  | { | 
|  | int pwake = 0; | 
|  | struct epitem *epi = ep_item_from_wait(wait); | 
|  | struct eventpoll *ep = epi->ep; | 
|  | __poll_t pollflags = key_to_poll(key); | 
|  | unsigned long flags; | 
|  | int ewake = 0; | 
|  |  | 
|  | spin_lock_irqsave(&ep->lock, flags); | 
|  |  | 
|  | ep_set_busy_poll_napi_id(epi); | 
|  |  | 
|  | /* | 
|  | * If the event mask does not contain any poll(2) event, we consider the | 
|  | * descriptor to be disabled. This condition is likely the effect of the | 
|  | * EPOLLONESHOT bit that disables the descriptor when an event is received, | 
|  | * until the next EPOLL_CTL_MOD will be issued. | 
|  | */ | 
|  | if (!(epi->event.events & ~EP_PRIVATE_BITS)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Check the events coming with the callback. At this stage, not | 
|  | * every device reports the events in the "key" parameter of the | 
|  | * callback. We need to be able to handle both cases here, hence the | 
|  | * test for "key" != NULL before the event match test. | 
|  | */ | 
|  | if (pollflags && !(pollflags & epi->event.events)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * If we are transferring events to userspace, we can hold no locks | 
|  | * (because we're accessing user memory, and because of linux f_op->poll() | 
|  | * semantics). All the events that happen during that period of time are | 
|  | * chained in ep->ovflist and requeued later on. | 
|  | */ | 
|  | if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { | 
|  | if (epi->next == EP_UNACTIVE_PTR) { | 
|  | epi->next = READ_ONCE(ep->ovflist); | 
|  | WRITE_ONCE(ep->ovflist, epi); | 
|  | ep_pm_stay_awake_rcu(epi); | 
|  | } | 
|  | } else if (!ep_is_linked(epi)) { | 
|  | /* In the usual case, add event to ready list. */ | 
|  | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | ep_pm_stay_awake_rcu(epi); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up ( if active ) both the eventpoll wait list and the ->poll() | 
|  | * wait list. | 
|  | */ | 
|  | if (waitqueue_active(&ep->wq)) { | 
|  | if ((epi->event.events & EPOLLEXCLUSIVE) && | 
|  | !(pollflags & POLLFREE)) { | 
|  | switch (pollflags & EPOLLINOUT_BITS) { | 
|  | case EPOLLIN: | 
|  | if (epi->event.events & EPOLLIN) | 
|  | ewake = 1; | 
|  | break; | 
|  | case EPOLLOUT: | 
|  | if (epi->event.events & EPOLLOUT) | 
|  | ewake = 1; | 
|  | break; | 
|  | case 0: | 
|  | ewake = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (sync) | 
|  | wake_up_sync(&ep->wq); | 
|  | else | 
|  | wake_up(&ep->wq); | 
|  | } | 
|  | if (waitqueue_active(&ep->poll_wait)) | 
|  | pwake++; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&ep->lock, flags); | 
|  |  | 
|  | /* We have to call this outside the lock */ | 
|  | if (pwake) | 
|  | ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); | 
|  |  | 
|  | if (!(epi->event.events & EPOLLEXCLUSIVE)) | 
|  | ewake = 1; | 
|  |  | 
|  | if (pollflags & POLLFREE) { | 
|  | /* | 
|  | * If we race with ep_remove_wait_queue() it can miss | 
|  | * ->whead = NULL and do another remove_wait_queue() after | 
|  | * us, so we can't use __remove_wait_queue(). | 
|  | */ | 
|  | list_del_init(&wait->entry); | 
|  | /* | 
|  | * ->whead != NULL protects us from the race with | 
|  | * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() | 
|  | * takes whead->lock held by the caller. Once we nullify it, | 
|  | * nothing protects ep/epi or even wait. | 
|  | */ | 
|  | smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); | 
|  | } | 
|  |  | 
|  | return ewake; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the callback that is used to add our wait queue to the | 
|  | * target file wakeup lists. | 
|  | */ | 
|  | static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, | 
|  | poll_table *pt) | 
|  | { | 
|  | struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); | 
|  | struct epitem *epi = epq->epi; | 
|  | struct eppoll_entry *pwq; | 
|  |  | 
|  | if (unlikely(!epi))	// an earlier allocation has failed | 
|  | return; | 
|  |  | 
|  | pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); | 
|  | if (unlikely(!pwq)) { | 
|  | epq->epi = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); | 
|  | pwq->whead = whead; | 
|  | pwq->base = epi; | 
|  | if (epi->event.events & EPOLLEXCLUSIVE) | 
|  | add_wait_queue_exclusive(whead, &pwq->wait); | 
|  | else | 
|  | add_wait_queue(whead, &pwq->wait); | 
|  | pwq->next = epi->pwqlist; | 
|  | epi->pwqlist = pwq; | 
|  | } | 
|  |  | 
|  | static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) | 
|  | { | 
|  | int kcmp; | 
|  | struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; | 
|  | struct epitem *epic; | 
|  | bool leftmost = true; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | epic = rb_entry(parent, struct epitem, rbn); | 
|  | kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); | 
|  | if (kcmp > 0) { | 
|  | p = &parent->rb_right; | 
|  | leftmost = false; | 
|  | } else | 
|  | p = &parent->rb_left; | 
|  | } | 
|  | rb_link_node(&epi->rbn, parent, p); | 
|  | rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | #define PATH_ARR_SIZE 5 | 
|  | /* | 
|  | * These are the number paths of length 1 to 5, that we are allowing to emanate | 
|  | * from a single file of interest. For example, we allow 1000 paths of length | 
|  | * 1, to emanate from each file of interest. This essentially represents the | 
|  | * potential wakeup paths, which need to be limited in order to avoid massive | 
|  | * uncontrolled wakeup storms. The common use case should be a single ep which | 
|  | * is connected to n file sources. In this case each file source has 1 path | 
|  | * of length 1. Thus, the numbers below should be more than sufficient. These | 
|  | * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify | 
|  | * and delete can't add additional paths. Protected by the epnested_mutex. | 
|  | */ | 
|  | static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; | 
|  | static int path_count[PATH_ARR_SIZE]; | 
|  |  | 
|  | static int path_count_inc(int nests) | 
|  | { | 
|  | /* Allow an arbitrary number of depth 1 paths */ | 
|  | if (nests == 0) | 
|  | return 0; | 
|  |  | 
|  | if (++path_count[nests] > path_limits[nests]) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void path_count_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PATH_ARR_SIZE; i++) | 
|  | path_count[i] = 0; | 
|  | } | 
|  |  | 
|  | static int reverse_path_check_proc(struct hlist_head *refs, int depth) | 
|  | { | 
|  | int error = 0; | 
|  | struct epitem *epi; | 
|  |  | 
|  | if (depth > EP_MAX_NESTS) /* too deep nesting */ | 
|  | return -1; | 
|  |  | 
|  | /* CTL_DEL can remove links here, but that can't increase our count */ | 
|  | hlist_for_each_entry_rcu(epi, refs, fllink) { | 
|  | struct hlist_head *refs = &epi->ep->refs; | 
|  | if (hlist_empty(refs)) | 
|  | error = path_count_inc(depth); | 
|  | else | 
|  | error = reverse_path_check_proc(refs, depth + 1); | 
|  | if (error != 0) | 
|  | break; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * reverse_path_check - The tfile_check_list is list of epitem_head, which have | 
|  | *                      links that are proposed to be newly added. We need to | 
|  | *                      make sure that those added links don't add too many | 
|  | *                      paths such that we will spend all our time waking up | 
|  | *                      eventpoll objects. | 
|  | * | 
|  | * Return: %zero if the proposed links don't create too many paths, | 
|  | *	    %-1 otherwise. | 
|  | */ | 
|  | static int reverse_path_check(void) | 
|  | { | 
|  | struct epitems_head *p; | 
|  |  | 
|  | for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { | 
|  | int error; | 
|  | path_count_init(); | 
|  | rcu_read_lock(); | 
|  | error = reverse_path_check_proc(&p->epitems, 0); | 
|  | rcu_read_unlock(); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ep_create_wakeup_source(struct epitem *epi) | 
|  | { | 
|  | struct name_snapshot n; | 
|  | struct wakeup_source *ws; | 
|  |  | 
|  | if (!epi->ep->ws) { | 
|  | epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); | 
|  | if (!epi->ep->ws) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); | 
|  | ws = wakeup_source_register(NULL, n.name.name); | 
|  | release_dentry_name_snapshot(&n); | 
|  |  | 
|  | if (!ws) | 
|  | return -ENOMEM; | 
|  | rcu_assign_pointer(epi->ws, ws); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ | 
|  | static noinline void ep_destroy_wakeup_source(struct epitem *epi) | 
|  | { | 
|  | struct wakeup_source *ws = ep_wakeup_source(epi); | 
|  |  | 
|  | RCU_INIT_POINTER(epi->ws, NULL); | 
|  |  | 
|  | /* | 
|  | * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is | 
|  | * used internally by wakeup_source_remove, too (called by | 
|  | * wakeup_source_unregister), so we cannot use call_rcu | 
|  | */ | 
|  | synchronize_rcu(); | 
|  | wakeup_source_unregister(ws); | 
|  | } | 
|  |  | 
|  | static int attach_epitem(struct file *file, struct epitem *epi) | 
|  | { | 
|  | struct epitems_head *to_free = NULL; | 
|  | struct hlist_head *head = NULL; | 
|  | struct eventpoll *ep = NULL; | 
|  |  | 
|  | if (is_file_epoll(file)) | 
|  | ep = file->private_data; | 
|  |  | 
|  | if (ep) { | 
|  | head = &ep->refs; | 
|  | } else if (!READ_ONCE(file->f_ep)) { | 
|  | allocate: | 
|  | to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); | 
|  | if (!to_free) | 
|  | return -ENOMEM; | 
|  | head = &to_free->epitems; | 
|  | } | 
|  | spin_lock(&file->f_lock); | 
|  | if (!file->f_ep) { | 
|  | if (unlikely(!head)) { | 
|  | spin_unlock(&file->f_lock); | 
|  | goto allocate; | 
|  | } | 
|  | /* See eventpoll_release() for details. */ | 
|  | WRITE_ONCE(file->f_ep, head); | 
|  | to_free = NULL; | 
|  | } | 
|  | hlist_add_head_rcu(&epi->fllink, file->f_ep); | 
|  | spin_unlock(&file->f_lock); | 
|  | free_ephead(to_free); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called with "mtx" held. | 
|  | */ | 
|  | static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, | 
|  | struct file *tfile, int fd, int full_check) | 
|  | { | 
|  | int error, pwake = 0; | 
|  | __poll_t revents; | 
|  | struct epitem *epi; | 
|  | struct ep_pqueue epq; | 
|  | struct eventpoll *tep = NULL; | 
|  |  | 
|  | if (is_file_epoll(tfile)) | 
|  | tep = tfile->private_data; | 
|  |  | 
|  | lockdep_assert_irqs_enabled(); | 
|  |  | 
|  | if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, | 
|  | max_user_watches) >= 0)) | 
|  | return -ENOSPC; | 
|  | percpu_counter_inc(&ep->user->epoll_watches); | 
|  |  | 
|  | if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { | 
|  | percpu_counter_dec(&ep->user->epoll_watches); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Item initialization follow here ... */ | 
|  | INIT_LIST_HEAD(&epi->rdllink); | 
|  | epi->ep = ep; | 
|  | ep_set_ffd(&epi->ffd, tfile, fd); | 
|  | epi->event = *event; | 
|  | epi->next = EP_UNACTIVE_PTR; | 
|  |  | 
|  | if (tep) | 
|  | mutex_lock_nested(&tep->mtx, 1); | 
|  | /* Add the current item to the list of active epoll hook for this file */ | 
|  | if (unlikely(attach_epitem(tfile, epi) < 0)) { | 
|  | if (tep) | 
|  | mutex_unlock(&tep->mtx); | 
|  | kmem_cache_free(epi_cache, epi); | 
|  | percpu_counter_dec(&ep->user->epoll_watches); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (full_check && !tep) | 
|  | list_file(tfile); | 
|  |  | 
|  | /* | 
|  | * Add the current item to the RB tree. All RB tree operations are | 
|  | * protected by "mtx", and ep_insert() is called with "mtx" held. | 
|  | */ | 
|  | ep_rbtree_insert(ep, epi); | 
|  | if (tep) | 
|  | mutex_unlock(&tep->mtx); | 
|  |  | 
|  | /* | 
|  | * ep_remove_safe() calls in the later error paths can't lead to | 
|  | * ep_free() as the ep file itself still holds an ep reference. | 
|  | */ | 
|  | ep_get(ep); | 
|  |  | 
|  | /* now check if we've created too many backpaths */ | 
|  | if (unlikely(full_check && reverse_path_check())) { | 
|  | ep_remove_safe(ep, epi); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (epi->event.events & EPOLLWAKEUP) { | 
|  | error = ep_create_wakeup_source(epi); | 
|  | if (error) { | 
|  | ep_remove_safe(ep, epi); | 
|  | return error; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize the poll table using the queue callback */ | 
|  | epq.epi = epi; | 
|  | init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); | 
|  |  | 
|  | /* | 
|  | * Attach the item to the poll hooks and get current event bits. | 
|  | * We can safely use the file* here because its usage count has | 
|  | * been increased by the caller of this function. Note that after | 
|  | * this operation completes, the poll callback can start hitting | 
|  | * the new item. | 
|  | */ | 
|  | revents = ep_item_poll(epi, &epq.pt, 1); | 
|  |  | 
|  | /* | 
|  | * We have to check if something went wrong during the poll wait queue | 
|  | * install process. Namely an allocation for a wait queue failed due | 
|  | * high memory pressure. | 
|  | */ | 
|  | if (unlikely(!epq.epi)) { | 
|  | ep_remove_safe(ep, epi); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* We have to drop the new item inside our item list to keep track of it */ | 
|  | spin_lock_irq(&ep->lock); | 
|  |  | 
|  | /* record NAPI ID of new item if present */ | 
|  | ep_set_busy_poll_napi_id(epi); | 
|  |  | 
|  | /* If the file is already "ready" we drop it inside the ready list */ | 
|  | if (revents && !ep_is_linked(epi)) { | 
|  | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | ep_pm_stay_awake(epi); | 
|  |  | 
|  | /* Notify waiting tasks that events are available */ | 
|  | if (waitqueue_active(&ep->wq)) | 
|  | wake_up(&ep->wq); | 
|  | if (waitqueue_active(&ep->poll_wait)) | 
|  | pwake++; | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&ep->lock); | 
|  |  | 
|  | /* We have to call this outside the lock */ | 
|  | if (pwake) | 
|  | ep_poll_safewake(ep, NULL, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Modify the interest event mask by dropping an event if the new mask | 
|  | * has a match in the current file status. Must be called with "mtx" held. | 
|  | */ | 
|  | static int ep_modify(struct eventpoll *ep, struct epitem *epi, | 
|  | const struct epoll_event *event) | 
|  | { | 
|  | int pwake = 0; | 
|  | poll_table pt; | 
|  |  | 
|  | lockdep_assert_irqs_enabled(); | 
|  |  | 
|  | init_poll_funcptr(&pt, NULL); | 
|  |  | 
|  | /* | 
|  | * Set the new event interest mask before calling f_op->poll(); | 
|  | * otherwise we might miss an event that happens between the | 
|  | * f_op->poll() call and the new event set registering. | 
|  | */ | 
|  | epi->event.events = event->events; /* need barrier below */ | 
|  | epi->event.data = event->data; /* protected by mtx */ | 
|  | if (epi->event.events & EPOLLWAKEUP) { | 
|  | if (!ep_has_wakeup_source(epi)) | 
|  | ep_create_wakeup_source(epi); | 
|  | } else if (ep_has_wakeup_source(epi)) { | 
|  | ep_destroy_wakeup_source(epi); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following barrier has two effects: | 
|  | * | 
|  | * 1) Flush epi changes above to other CPUs.  This ensures | 
|  | *    we do not miss events from ep_poll_callback if an | 
|  | *    event occurs immediately after we call f_op->poll(). | 
|  | *    We need this because we did not take ep->lock while | 
|  | *    changing epi above (but ep_poll_callback does take | 
|  | *    ep->lock). | 
|  | * | 
|  | * 2) We also need to ensure we do not miss _past_ events | 
|  | *    when calling f_op->poll().  This barrier also | 
|  | *    pairs with the barrier in wq_has_sleeper (see | 
|  | *    comments for wq_has_sleeper). | 
|  | * | 
|  | * This barrier will now guarantee ep_poll_callback or f_op->poll | 
|  | * (or both) will notice the readiness of an item. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * Get current event bits. We can safely use the file* here because | 
|  | * its usage count has been increased by the caller of this function. | 
|  | * If the item is "hot" and it is not registered inside the ready | 
|  | * list, push it inside. | 
|  | */ | 
|  | if (ep_item_poll(epi, &pt, 1)) { | 
|  | spin_lock_irq(&ep->lock); | 
|  | if (!ep_is_linked(epi)) { | 
|  | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | ep_pm_stay_awake(epi); | 
|  |  | 
|  | /* Notify waiting tasks that events are available */ | 
|  | if (waitqueue_active(&ep->wq)) | 
|  | wake_up(&ep->wq); | 
|  | if (waitqueue_active(&ep->poll_wait)) | 
|  | pwake++; | 
|  | } | 
|  | spin_unlock_irq(&ep->lock); | 
|  | } | 
|  |  | 
|  | /* We have to call this outside the lock */ | 
|  | if (pwake) | 
|  | ep_poll_safewake(ep, NULL, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ep_send_events(struct eventpoll *ep, | 
|  | struct epoll_event __user *events, int maxevents) | 
|  | { | 
|  | struct epitem *epi, *tmp; | 
|  | LIST_HEAD(txlist); | 
|  | poll_table pt; | 
|  | int res = 0; | 
|  |  | 
|  | /* | 
|  | * Always short-circuit for fatal signals to allow threads to make a | 
|  | * timely exit without the chance of finding more events available and | 
|  | * fetching repeatedly. | 
|  | */ | 
|  | if (fatal_signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | init_poll_funcptr(&pt, NULL); | 
|  |  | 
|  | mutex_lock(&ep->mtx); | 
|  | ep_start_scan(ep, &txlist); | 
|  |  | 
|  | /* | 
|  | * We can loop without lock because we are passed a task private list. | 
|  | * Items cannot vanish during the loop we are holding ep->mtx. | 
|  | */ | 
|  | list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { | 
|  | struct wakeup_source *ws; | 
|  | __poll_t revents; | 
|  |  | 
|  | if (res >= maxevents) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Activate ep->ws before deactivating epi->ws to prevent | 
|  | * triggering auto-suspend here (in case we reactive epi->ws | 
|  | * below). | 
|  | * | 
|  | * This could be rearranged to delay the deactivation of epi->ws | 
|  | * instead, but then epi->ws would temporarily be out of sync | 
|  | * with ep_is_linked(). | 
|  | */ | 
|  | ws = ep_wakeup_source(epi); | 
|  | if (ws) { | 
|  | if (ws->active) | 
|  | __pm_stay_awake(ep->ws); | 
|  | __pm_relax(ws); | 
|  | } | 
|  |  | 
|  | list_del_init(&epi->rdllink); | 
|  |  | 
|  | /* | 
|  | * If the event mask intersect the caller-requested one, | 
|  | * deliver the event to userspace. Again, we are holding ep->mtx, | 
|  | * so no operations coming from userspace can change the item. | 
|  | */ | 
|  | revents = ep_item_poll(epi, &pt, 1); | 
|  | if (!revents) | 
|  | continue; | 
|  |  | 
|  | events = epoll_put_uevent(revents, epi->event.data, events); | 
|  | if (!events) { | 
|  | list_add(&epi->rdllink, &txlist); | 
|  | ep_pm_stay_awake(epi); | 
|  | if (!res) | 
|  | res = -EFAULT; | 
|  | break; | 
|  | } | 
|  | res++; | 
|  | if (epi->event.events & EPOLLONESHOT) | 
|  | epi->event.events &= EP_PRIVATE_BITS; | 
|  | else if (!(epi->event.events & EPOLLET)) { | 
|  | /* | 
|  | * If this file has been added with Level | 
|  | * Trigger mode, we need to insert back inside | 
|  | * the ready list, so that the next call to | 
|  | * epoll_wait() will check again the events | 
|  | * availability. At this point, no one can insert | 
|  | * into ep->rdllist besides us. The epoll_ctl() | 
|  | * callers are locked out by | 
|  | * ep_send_events() holding "mtx" and the | 
|  | * poll callback will queue them in ep->ovflist. | 
|  | */ | 
|  | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | ep_pm_stay_awake(epi); | 
|  | } | 
|  | } | 
|  | ep_done_scan(ep, &txlist); | 
|  | mutex_unlock(&ep->mtx); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) | 
|  | { | 
|  | struct timespec64 now; | 
|  |  | 
|  | if (ms < 0) | 
|  | return NULL; | 
|  |  | 
|  | if (!ms) { | 
|  | to->tv_sec = 0; | 
|  | to->tv_nsec = 0; | 
|  | return to; | 
|  | } | 
|  |  | 
|  | to->tv_sec = ms / MSEC_PER_SEC; | 
|  | to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); | 
|  |  | 
|  | ktime_get_ts64(&now); | 
|  | *to = timespec64_add_safe(now, *to); | 
|  | return to; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * autoremove_wake_function, but remove even on failure to wake up, because we | 
|  | * know that default_wake_function/ttwu will only fail if the thread is already | 
|  | * woken, and in that case the ep_poll loop will remove the entry anyways, not | 
|  | * try to reuse it. | 
|  | */ | 
|  | static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, | 
|  | unsigned int mode, int sync, void *key) | 
|  | { | 
|  | int ret = default_wake_function(wq_entry, mode, sync, key); | 
|  |  | 
|  | /* | 
|  | * Pairs with list_empty_careful in ep_poll, and ensures future loop | 
|  | * iterations see the cause of this wakeup. | 
|  | */ | 
|  | list_del_init_careful(&wq_entry->entry); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ep_try_send_events(struct eventpoll *ep, | 
|  | struct epoll_event __user *events, int maxevents) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | /* | 
|  | * Try to transfer events to user space. In case we get 0 events and | 
|  | * there's still timeout left over, we go trying again in search of | 
|  | * more luck. | 
|  | */ | 
|  | res = ep_send_events(ep, events, maxevents); | 
|  | if (res > 0) | 
|  | ep_suspend_napi_irqs(ep); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int ep_schedule_timeout(ktime_t *to) | 
|  | { | 
|  | if (to) | 
|  | return ktime_after(*to, ktime_get()); | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep_poll - Retrieves ready events, and delivers them to the caller-supplied | 
|  | *           event buffer. | 
|  | * | 
|  | * @ep: Pointer to the eventpoll context. | 
|  | * @events: Pointer to the userspace buffer where the ready events should be | 
|  | *          stored. | 
|  | * @maxevents: Size (in terms of number of events) of the caller event buffer. | 
|  | * @timeout: Maximum timeout for the ready events fetch operation, in | 
|  | *           timespec. If the timeout is zero, the function will not block, | 
|  | *           while if the @timeout ptr is NULL, the function will block | 
|  | *           until at least one event has been retrieved (or an error | 
|  | *           occurred). | 
|  | * | 
|  | * Return: the number of ready events which have been fetched, or an | 
|  | *          error code, in case of error. | 
|  | */ | 
|  | static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, | 
|  | int maxevents, struct timespec64 *timeout) | 
|  | { | 
|  | int res, eavail, timed_out = 0; | 
|  | u64 slack = 0; | 
|  | wait_queue_entry_t wait; | 
|  | ktime_t expires, *to = NULL; | 
|  |  | 
|  | lockdep_assert_irqs_enabled(); | 
|  |  | 
|  | if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { | 
|  | slack = select_estimate_accuracy(timeout); | 
|  | to = &expires; | 
|  | *to = timespec64_to_ktime(*timeout); | 
|  | } else if (timeout) { | 
|  | /* | 
|  | * Avoid the unnecessary trip to the wait queue loop, if the | 
|  | * caller specified a non blocking operation. | 
|  | */ | 
|  | timed_out = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This call is racy: We may or may not see events that are being added | 
|  | * to the ready list under the lock (e.g., in IRQ callbacks). For cases | 
|  | * with a non-zero timeout, this thread will check the ready list under | 
|  | * lock and will add to the wait queue.  For cases with a zero | 
|  | * timeout, the user by definition should not care and will have to | 
|  | * recheck again. | 
|  | */ | 
|  | eavail = ep_events_available(ep); | 
|  |  | 
|  | while (1) { | 
|  | if (eavail) { | 
|  | res = ep_try_send_events(ep, events, maxevents); | 
|  | if (res) | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if (timed_out) | 
|  | return 0; | 
|  |  | 
|  | eavail = ep_busy_loop(ep); | 
|  | if (eavail) | 
|  | continue; | 
|  |  | 
|  | if (signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | /* | 
|  | * Internally init_wait() uses autoremove_wake_function(), | 
|  | * thus wait entry is removed from the wait queue on each | 
|  | * wakeup. Why it is important? In case of several waiters | 
|  | * each new wakeup will hit the next waiter, giving it the | 
|  | * chance to harvest new event. Otherwise wakeup can be | 
|  | * lost. This is also good performance-wise, because on | 
|  | * normal wakeup path no need to call __remove_wait_queue() | 
|  | * explicitly, thus ep->lock is not taken, which halts the | 
|  | * event delivery. | 
|  | * | 
|  | * In fact, we now use an even more aggressive function that | 
|  | * unconditionally removes, because we don't reuse the wait | 
|  | * entry between loop iterations. This lets us also avoid the | 
|  | * performance issue if a process is killed, causing all of its | 
|  | * threads to wake up without being removed normally. | 
|  | */ | 
|  | init_wait(&wait); | 
|  | wait.func = ep_autoremove_wake_function; | 
|  |  | 
|  | spin_lock_irq(&ep->lock); | 
|  | /* | 
|  | * Barrierless variant, waitqueue_active() is called under | 
|  | * the same lock on wakeup ep_poll_callback() side, so it | 
|  | * is safe to avoid an explicit barrier. | 
|  | */ | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  |  | 
|  | /* | 
|  | * Do the final check under the lock. ep_start/done_scan() | 
|  | * plays with two lists (->rdllist and ->ovflist) and there | 
|  | * is always a race when both lists are empty for short | 
|  | * period of time although events are pending, so lock is | 
|  | * important. | 
|  | */ | 
|  | eavail = ep_events_available(ep); | 
|  | if (!eavail) | 
|  | __add_wait_queue_exclusive(&ep->wq, &wait); | 
|  |  | 
|  | spin_unlock_irq(&ep->lock); | 
|  |  | 
|  | if (!eavail) | 
|  | timed_out = !ep_schedule_timeout(to) || | 
|  | !schedule_hrtimeout_range(to, slack, | 
|  | HRTIMER_MODE_ABS); | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | /* | 
|  | * We were woken up, thus go and try to harvest some events. | 
|  | * If timed out and still on the wait queue, recheck eavail | 
|  | * carefully under lock, below. | 
|  | */ | 
|  | eavail = 1; | 
|  |  | 
|  | if (!list_empty_careful(&wait.entry)) { | 
|  | spin_lock_irq(&ep->lock); | 
|  | /* | 
|  | * If the thread timed out and is not on the wait queue, | 
|  | * it means that the thread was woken up after its | 
|  | * timeout expired before it could reacquire the lock. | 
|  | * Thus, when wait.entry is empty, it needs to harvest | 
|  | * events. | 
|  | */ | 
|  | if (timed_out) | 
|  | eavail = list_empty(&wait.entry); | 
|  | __remove_wait_queue(&ep->wq, &wait); | 
|  | spin_unlock_irq(&ep->lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep_loop_check_proc - verify that adding an epoll file @ep inside another | 
|  | *                      epoll file does not create closed loops, and | 
|  | *                      determine the depth of the subtree starting at @ep | 
|  | * | 
|  | * @ep: the &struct eventpoll to be currently checked. | 
|  | * @depth: Current depth of the path being checked. | 
|  | * | 
|  | * Return: depth of the subtree, or INT_MAX if we found a loop or went too deep. | 
|  | */ | 
|  | static int ep_loop_check_proc(struct eventpoll *ep, int depth) | 
|  | { | 
|  | int result = 0; | 
|  | struct rb_node *rbp; | 
|  | struct epitem *epi; | 
|  |  | 
|  | if (ep->gen == loop_check_gen) | 
|  | return ep->loop_check_depth; | 
|  |  | 
|  | mutex_lock_nested(&ep->mtx, depth + 1); | 
|  | ep->gen = loop_check_gen; | 
|  | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | if (unlikely(is_file_epoll(epi->ffd.file))) { | 
|  | struct eventpoll *ep_tovisit; | 
|  | ep_tovisit = epi->ffd.file->private_data; | 
|  | if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) | 
|  | result = INT_MAX; | 
|  | else | 
|  | result = max(result, ep_loop_check_proc(ep_tovisit, depth + 1) + 1); | 
|  | if (result > EP_MAX_NESTS) | 
|  | break; | 
|  | } else { | 
|  | /* | 
|  | * If we've reached a file that is not associated with | 
|  | * an ep, then we need to check if the newly added | 
|  | * links are going to add too many wakeup paths. We do | 
|  | * this by adding it to the tfile_check_list, if it's | 
|  | * not already there, and calling reverse_path_check() | 
|  | * during ep_insert(). | 
|  | */ | 
|  | list_file(epi->ffd.file); | 
|  | } | 
|  | } | 
|  | ep->loop_check_depth = result; | 
|  | mutex_unlock(&ep->mtx); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* ep_get_upwards_depth_proc - determine depth of @ep when traversed upwards */ | 
|  | static int ep_get_upwards_depth_proc(struct eventpoll *ep, int depth) | 
|  | { | 
|  | int result = 0; | 
|  | struct epitem *epi; | 
|  |  | 
|  | if (ep->gen == loop_check_gen) | 
|  | return ep->loop_check_depth; | 
|  | hlist_for_each_entry_rcu(epi, &ep->refs, fllink) | 
|  | result = max(result, ep_get_upwards_depth_proc(epi->ep, depth + 1) + 1); | 
|  | ep->gen = loop_check_gen; | 
|  | ep->loop_check_depth = result; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep_loop_check - Performs a check to verify that adding an epoll file (@to) | 
|  | *                 into another epoll file (represented by @ep) does not create | 
|  | *                 closed loops or too deep chains. | 
|  | * | 
|  | * @ep: Pointer to the epoll we are inserting into. | 
|  | * @to: Pointer to the epoll to be inserted. | 
|  | * | 
|  | * Return: %zero if adding the epoll @to inside the epoll @from | 
|  | * does not violate the constraints, or %-1 otherwise. | 
|  | */ | 
|  | static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) | 
|  | { | 
|  | int depth, upwards_depth; | 
|  |  | 
|  | inserting_into = ep; | 
|  | /* | 
|  | * Check how deep down we can get from @to, and whether it is possible | 
|  | * to loop up to @ep. | 
|  | */ | 
|  | depth = ep_loop_check_proc(to, 0); | 
|  | if (depth > EP_MAX_NESTS) | 
|  | return -1; | 
|  | /* Check how far up we can go from @ep. */ | 
|  | rcu_read_lock(); | 
|  | upwards_depth = ep_get_upwards_depth_proc(ep, 0); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return (depth+1+upwards_depth > EP_MAX_NESTS) ? -1 : 0; | 
|  | } | 
|  |  | 
|  | static void clear_tfile_check_list(void) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | while (tfile_check_list != EP_UNACTIVE_PTR) { | 
|  | struct epitems_head *head = tfile_check_list; | 
|  | tfile_check_list = head->next; | 
|  | unlist_file(head); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open an eventpoll file descriptor. | 
|  | */ | 
|  | static int do_epoll_create(int flags) | 
|  | { | 
|  | int error, fd; | 
|  | struct eventpoll *ep = NULL; | 
|  | struct file *file; | 
|  |  | 
|  | /* Check the EPOLL_* constant for consistency.  */ | 
|  | BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); | 
|  |  | 
|  | if (flags & ~EPOLL_CLOEXEC) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * Create the internal data structure ("struct eventpoll"). | 
|  | */ | 
|  | error = ep_alloc(&ep); | 
|  | if (error < 0) | 
|  | return error; | 
|  | /* | 
|  | * Creates all the items needed to setup an eventpoll file. That is, | 
|  | * a file structure and a free file descriptor. | 
|  | */ | 
|  | fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); | 
|  | if (fd < 0) { | 
|  | error = fd; | 
|  | goto out_free_ep; | 
|  | } | 
|  | file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, | 
|  | O_RDWR | (flags & O_CLOEXEC)); | 
|  | if (IS_ERR(file)) { | 
|  | error = PTR_ERR(file); | 
|  | goto out_free_fd; | 
|  | } | 
|  | ep->file = file; | 
|  | fd_install(fd, file); | 
|  | return fd; | 
|  |  | 
|  | out_free_fd: | 
|  | put_unused_fd(fd); | 
|  | out_free_ep: | 
|  | ep_clear_and_put(ep); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(epoll_create1, int, flags) | 
|  | { | 
|  | return do_epoll_create(flags); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(epoll_create, int, size) | 
|  | { | 
|  | if (size <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_epoll_create(0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) | 
|  | { | 
|  | if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) | 
|  | epev->events &= ~EPOLLWAKEUP; | 
|  | } | 
|  | #else | 
|  | static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) | 
|  | { | 
|  | epev->events &= ~EPOLLWAKEUP; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int epoll_mutex_lock(struct mutex *mutex, int depth, | 
|  | bool nonblock) | 
|  | { | 
|  | if (!nonblock) { | 
|  | mutex_lock_nested(mutex, depth); | 
|  | return 0; | 
|  | } | 
|  | if (mutex_trylock(mutex)) | 
|  | return 0; | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, | 
|  | bool nonblock) | 
|  | { | 
|  | int error; | 
|  | int full_check = 0; | 
|  | struct eventpoll *ep; | 
|  | struct epitem *epi; | 
|  | struct eventpoll *tep = NULL; | 
|  |  | 
|  | CLASS(fd, f)(epfd); | 
|  | if (fd_empty(f)) | 
|  | return -EBADF; | 
|  |  | 
|  | /* Get the "struct file *" for the target file */ | 
|  | CLASS(fd, tf)(fd); | 
|  | if (fd_empty(tf)) | 
|  | return -EBADF; | 
|  |  | 
|  | /* The target file descriptor must support poll */ | 
|  | if (!file_can_poll(fd_file(tf))) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Check if EPOLLWAKEUP is allowed */ | 
|  | if (ep_op_has_event(op)) | 
|  | ep_take_care_of_epollwakeup(epds); | 
|  |  | 
|  | /* | 
|  | * We have to check that the file structure underneath the file descriptor | 
|  | * the user passed to us _is_ an eventpoll file. And also we do not permit | 
|  | * adding an epoll file descriptor inside itself. | 
|  | */ | 
|  | error = -EINVAL; | 
|  | if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f))) | 
|  | goto error_tgt_fput; | 
|  |  | 
|  | /* | 
|  | * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, | 
|  | * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. | 
|  | * Also, we do not currently supported nested exclusive wakeups. | 
|  | */ | 
|  | if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { | 
|  | if (op == EPOLL_CTL_MOD) | 
|  | goto error_tgt_fput; | 
|  | if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) || | 
|  | (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) | 
|  | goto error_tgt_fput; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point it is safe to assume that the "private_data" contains | 
|  | * our own data structure. | 
|  | */ | 
|  | ep = fd_file(f)->private_data; | 
|  |  | 
|  | /* | 
|  | * When we insert an epoll file descriptor inside another epoll file | 
|  | * descriptor, there is the chance of creating closed loops, which are | 
|  | * better be handled here, than in more critical paths. While we are | 
|  | * checking for loops we also determine the list of files reachable | 
|  | * and hang them on the tfile_check_list, so we can check that we | 
|  | * haven't created too many possible wakeup paths. | 
|  | * | 
|  | * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when | 
|  | * the epoll file descriptor is attaching directly to a wakeup source, | 
|  | * unless the epoll file descriptor is nested. The purpose of taking the | 
|  | * 'epnested_mutex' on add is to prevent complex toplogies such as loops and | 
|  | * deep wakeup paths from forming in parallel through multiple | 
|  | * EPOLL_CTL_ADD operations. | 
|  | */ | 
|  | error = epoll_mutex_lock(&ep->mtx, 0, nonblock); | 
|  | if (error) | 
|  | goto error_tgt_fput; | 
|  | if (op == EPOLL_CTL_ADD) { | 
|  | if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen || | 
|  | is_file_epoll(fd_file(tf))) { | 
|  | mutex_unlock(&ep->mtx); | 
|  | error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); | 
|  | if (error) | 
|  | goto error_tgt_fput; | 
|  | loop_check_gen++; | 
|  | full_check = 1; | 
|  | if (is_file_epoll(fd_file(tf))) { | 
|  | tep = fd_file(tf)->private_data; | 
|  | error = -ELOOP; | 
|  | if (ep_loop_check(ep, tep) != 0) | 
|  | goto error_tgt_fput; | 
|  | } | 
|  | error = epoll_mutex_lock(&ep->mtx, 0, nonblock); | 
|  | if (error) | 
|  | goto error_tgt_fput; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to lookup the file inside our RB tree. Since we grabbed "mtx" | 
|  | * above, we can be sure to be able to use the item looked up by | 
|  | * ep_find() till we release the mutex. | 
|  | */ | 
|  | epi = ep_find(ep, fd_file(tf), fd); | 
|  |  | 
|  | error = -EINVAL; | 
|  | switch (op) { | 
|  | case EPOLL_CTL_ADD: | 
|  | if (!epi) { | 
|  | epds->events |= EPOLLERR | EPOLLHUP; | 
|  | error = ep_insert(ep, epds, fd_file(tf), fd, full_check); | 
|  | } else | 
|  | error = -EEXIST; | 
|  | break; | 
|  | case EPOLL_CTL_DEL: | 
|  | if (epi) { | 
|  | /* | 
|  | * The eventpoll itself is still alive: the refcount | 
|  | * can't go to zero here. | 
|  | */ | 
|  | ep_remove_safe(ep, epi); | 
|  | error = 0; | 
|  | } else { | 
|  | error = -ENOENT; | 
|  | } | 
|  | break; | 
|  | case EPOLL_CTL_MOD: | 
|  | if (epi) { | 
|  | if (!(epi->event.events & EPOLLEXCLUSIVE)) { | 
|  | epds->events |= EPOLLERR | EPOLLHUP; | 
|  | error = ep_modify(ep, epi, epds); | 
|  | } | 
|  | } else | 
|  | error = -ENOENT; | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&ep->mtx); | 
|  |  | 
|  | error_tgt_fput: | 
|  | if (full_check) { | 
|  | clear_tfile_check_list(); | 
|  | loop_check_gen++; | 
|  | mutex_unlock(&epnested_mutex); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following function implements the controller interface for | 
|  | * the eventpoll file that enables the insertion/removal/change of | 
|  | * file descriptors inside the interest set. | 
|  | */ | 
|  | SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, | 
|  | struct epoll_event __user *, event) | 
|  | { | 
|  | struct epoll_event epds; | 
|  |  | 
|  | if (ep_op_has_event(op) && | 
|  | copy_from_user(&epds, event, sizeof(struct epoll_event))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return do_epoll_ctl(epfd, op, fd, &epds, false); | 
|  | } | 
|  |  | 
|  | static int ep_check_params(struct file *file, struct epoll_event __user *evs, | 
|  | int maxevents) | 
|  | { | 
|  | /* The maximum number of event must be greater than zero */ | 
|  | if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Verify that the area passed by the user is writeable */ | 
|  | if (!access_ok(evs, maxevents * sizeof(struct epoll_event))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * We have to check that the file structure underneath the fd | 
|  | * the user passed to us _is_ an eventpoll file. | 
|  | */ | 
|  | if (!is_file_epoll(file)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int epoll_sendevents(struct file *file, struct epoll_event __user *events, | 
|  | int maxevents) | 
|  | { | 
|  | struct eventpoll *ep; | 
|  | int ret; | 
|  |  | 
|  | ret = ep_check_params(file, events, maxevents); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | ep = file->private_data; | 
|  | /* | 
|  | * Racy call, but that's ok - it should get retried based on | 
|  | * poll readiness anyway. | 
|  | */ | 
|  | if (ep_events_available(ep)) | 
|  | return ep_try_send_events(ep, events, maxevents); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Implement the event wait interface for the eventpoll file. It is the kernel | 
|  | * part of the user space epoll_wait(2). | 
|  | */ | 
|  | static int do_epoll_wait(int epfd, struct epoll_event __user *events, | 
|  | int maxevents, struct timespec64 *to) | 
|  | { | 
|  | struct eventpoll *ep; | 
|  | int ret; | 
|  |  | 
|  | /* Get the "struct file *" for the eventpoll file */ | 
|  | CLASS(fd, f)(epfd); | 
|  | if (fd_empty(f)) | 
|  | return -EBADF; | 
|  |  | 
|  | ret = ep_check_params(fd_file(f), events, maxevents); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * At this point it is safe to assume that the "private_data" contains | 
|  | * our own data structure. | 
|  | */ | 
|  | ep = fd_file(f)->private_data; | 
|  |  | 
|  | /* Time to fish for events ... */ | 
|  | return ep_poll(ep, events, maxevents, to); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, | 
|  | int, maxevents, int, timeout) | 
|  | { | 
|  | struct timespec64 to; | 
|  |  | 
|  | return do_epoll_wait(epfd, events, maxevents, | 
|  | ep_timeout_to_timespec(&to, timeout)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Implement the event wait interface for the eventpoll file. It is the kernel | 
|  | * part of the user space epoll_pwait(2). | 
|  | */ | 
|  | static int do_epoll_pwait(int epfd, struct epoll_event __user *events, | 
|  | int maxevents, struct timespec64 *to, | 
|  | const sigset_t __user *sigmask, size_t sigsetsize) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * If the caller wants a certain signal mask to be set during the wait, | 
|  | * we apply it here. | 
|  | */ | 
|  | error = set_user_sigmask(sigmask, sigsetsize); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = do_epoll_wait(epfd, events, maxevents, to); | 
|  |  | 
|  | restore_saved_sigmask_unless(error == -EINTR); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, | 
|  | int, maxevents, int, timeout, const sigset_t __user *, sigmask, | 
|  | size_t, sigsetsize) | 
|  | { | 
|  | struct timespec64 to; | 
|  |  | 
|  | return do_epoll_pwait(epfd, events, maxevents, | 
|  | ep_timeout_to_timespec(&to, timeout), | 
|  | sigmask, sigsetsize); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, | 
|  | int, maxevents, const struct __kernel_timespec __user *, timeout, | 
|  | const sigset_t __user *, sigmask, size_t, sigsetsize) | 
|  | { | 
|  | struct timespec64 ts, *to = NULL; | 
|  |  | 
|  | if (timeout) { | 
|  | if (get_timespec64(&ts, timeout)) | 
|  | return -EFAULT; | 
|  | to = &ts; | 
|  | if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return do_epoll_pwait(epfd, events, maxevents, to, | 
|  | sigmask, sigsetsize); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, | 
|  | int maxevents, struct timespec64 *timeout, | 
|  | const compat_sigset_t __user *sigmask, | 
|  | compat_size_t sigsetsize) | 
|  | { | 
|  | long err; | 
|  |  | 
|  | /* | 
|  | * If the caller wants a certain signal mask to be set during the wait, | 
|  | * we apply it here. | 
|  | */ | 
|  | err = set_compat_user_sigmask(sigmask, sigsetsize); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = do_epoll_wait(epfd, events, maxevents, timeout); | 
|  |  | 
|  | restore_saved_sigmask_unless(err == -EINTR); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, | 
|  | struct epoll_event __user *, events, | 
|  | int, maxevents, int, timeout, | 
|  | const compat_sigset_t __user *, sigmask, | 
|  | compat_size_t, sigsetsize) | 
|  | { | 
|  | struct timespec64 to; | 
|  |  | 
|  | return do_compat_epoll_pwait(epfd, events, maxevents, | 
|  | ep_timeout_to_timespec(&to, timeout), | 
|  | sigmask, sigsetsize); | 
|  | } | 
|  |  | 
|  | COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, | 
|  | struct epoll_event __user *, events, | 
|  | int, maxevents, | 
|  | const struct __kernel_timespec __user *, timeout, | 
|  | const compat_sigset_t __user *, sigmask, | 
|  | compat_size_t, sigsetsize) | 
|  | { | 
|  | struct timespec64 ts, *to = NULL; | 
|  |  | 
|  | if (timeout) { | 
|  | if (get_timespec64(&ts, timeout)) | 
|  | return -EFAULT; | 
|  | to = &ts; | 
|  | if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return do_compat_epoll_pwait(epfd, events, maxevents, to, | 
|  | sigmask, sigsetsize); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int __init eventpoll_init(void) | 
|  | { | 
|  | struct sysinfo si; | 
|  |  | 
|  | si_meminfo(&si); | 
|  | /* | 
|  | * Allows top 4% of lomem to be allocated for epoll watches (per user). | 
|  | */ | 
|  | max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / | 
|  | EP_ITEM_COST; | 
|  | BUG_ON(max_user_watches < 0); | 
|  |  | 
|  | /* | 
|  | * We can have many thousands of epitems, so prevent this from | 
|  | * using an extra cache line on 64-bit (and smaller) CPUs | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); | 
|  |  | 
|  | /* Allocates slab cache used to allocate "struct epitem" items */ | 
|  | epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), | 
|  | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); | 
|  |  | 
|  | /* Allocates slab cache used to allocate "struct eppoll_entry" */ | 
|  | pwq_cache = kmem_cache_create("eventpoll_pwq", | 
|  | sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); | 
|  | epoll_sysctls_init(); | 
|  |  | 
|  | ephead_cache = kmem_cache_create("ep_head", | 
|  | sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | fs_initcall(eventpoll_init); |