|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/dax.h> | 
|  |  | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_log_recover.h" | 
|  | #include "xfs_log_priv.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_errortag.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_buf_mem.h" | 
|  | #include "xfs_notify_failure.h" | 
|  |  | 
|  | struct kmem_cache *xfs_buf_cache; | 
|  |  | 
|  | /* | 
|  | * Locking orders | 
|  | * | 
|  | * xfs_buf_stale: | 
|  | *	b_sema (caller holds) | 
|  | *	  b_lock | 
|  | *	    lru_lock | 
|  | * | 
|  | * xfs_buf_rele: | 
|  | *	b_lock | 
|  | *	  lru_lock | 
|  | * | 
|  | * xfs_buftarg_drain_rele | 
|  | *	lru_lock | 
|  | *	  b_lock (trylock due to inversion) | 
|  | * | 
|  | * xfs_buftarg_isolate | 
|  | *	lru_lock | 
|  | *	  b_lock (trylock due to inversion) | 
|  | */ | 
|  |  | 
|  | static void xfs_buf_submit(struct xfs_buf *bp); | 
|  | static int xfs_buf_iowait(struct xfs_buf *bp); | 
|  |  | 
|  | static inline bool xfs_buf_is_uncached(struct xfs_buf *bp) | 
|  | { | 
|  | return bp->b_rhash_key == XFS_BUF_DADDR_NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we mark a buffer stale, we remove the buffer from the LRU and clear the | 
|  | * b_lru_ref count so that the buffer is freed immediately when the buffer | 
|  | * reference count falls to zero. If the buffer is already on the LRU, we need | 
|  | * to remove the reference that LRU holds on the buffer. | 
|  | * | 
|  | * This prevents build-up of stale buffers on the LRU. | 
|  | */ | 
|  | void | 
|  | xfs_buf_stale( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | bp->b_flags |= XBF_STALE; | 
|  |  | 
|  | /* | 
|  | * Clear the delwri status so that a delwri queue walker will not | 
|  | * flush this buffer to disk now that it is stale. The delwri queue has | 
|  | * a reference to the buffer, so this is safe to do. | 
|  | */ | 
|  | bp->b_flags &= ~_XBF_DELWRI_Q; | 
|  |  | 
|  | spin_lock(&bp->b_lock); | 
|  | atomic_set(&bp->b_lru_ref, 0); | 
|  | if (!(bp->b_state & XFS_BSTATE_DISPOSE) && | 
|  | (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru))) | 
|  | bp->b_hold--; | 
|  |  | 
|  | ASSERT(bp->b_hold >= 1); | 
|  | spin_unlock(&bp->b_lock); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_free_callback( | 
|  | struct callback_head	*cb) | 
|  | { | 
|  | struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu); | 
|  |  | 
|  | if (bp->b_maps != &bp->__b_map) | 
|  | kfree(bp->b_maps); | 
|  | kmem_cache_free(xfs_buf_cache, bp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_free( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | unsigned int		size = BBTOB(bp->b_length); | 
|  |  | 
|  | might_sleep(); | 
|  | trace_xfs_buf_free(bp, _RET_IP_); | 
|  |  | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  |  | 
|  | if (!xfs_buftarg_is_mem(bp->b_target) && size >= PAGE_SIZE) | 
|  | mm_account_reclaimed_pages(howmany(size, PAGE_SHIFT)); | 
|  |  | 
|  | if (is_vmalloc_addr(bp->b_addr)) | 
|  | vfree(bp->b_addr); | 
|  | else if (bp->b_flags & _XBF_KMEM) | 
|  | kfree(bp->b_addr); | 
|  | else | 
|  | folio_put(virt_to_folio(bp->b_addr)); | 
|  |  | 
|  | call_rcu(&bp->b_rcu, xfs_buf_free_callback); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_alloc_kmem( | 
|  | struct xfs_buf		*bp, | 
|  | size_t			size, | 
|  | gfp_t			gfp_mask) | 
|  | { | 
|  | ASSERT(is_power_of_2(size)); | 
|  | ASSERT(size < PAGE_SIZE); | 
|  |  | 
|  | bp->b_addr = kmalloc(size, gfp_mask | __GFP_NOFAIL); | 
|  | if (!bp->b_addr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Slab guarantees that we get back naturally aligned allocations for | 
|  | * power of two sizes.  Keep this check as the canary in the coal mine | 
|  | * if anything changes in slab. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!IS_ALIGNED((unsigned long)bp->b_addr, size))) { | 
|  | kfree(bp->b_addr); | 
|  | bp->b_addr = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  | bp->b_flags |= _XBF_KMEM; | 
|  | trace_xfs_buf_backing_kmem(bp, _RET_IP_); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate backing memory for a buffer. | 
|  | * | 
|  | * For tmpfs-backed buffers used by in-memory btrees this directly maps the | 
|  | * tmpfs page cache folios. | 
|  | * | 
|  | * For real file system buffers there are three different kinds backing memory: | 
|  | * | 
|  | * The first type backs the buffer by a kmalloc allocation.  This is done for | 
|  | * less than PAGE_SIZE allocations to avoid wasting memory. | 
|  | * | 
|  | * The second type is a single folio buffer - this may be a high order folio or | 
|  | * just a single page sized folio, but either way they get treated the same way | 
|  | * by the rest of the code - the buffer memory spans a single contiguous memory | 
|  | * region that we don't have to map and unmap to access the data directly. | 
|  | * | 
|  | * The third type of buffer is the vmalloc()d buffer. This provides the buffer | 
|  | * with the required contiguous memory region but backed by discontiguous | 
|  | * physical pages. | 
|  | */ | 
|  | static int | 
|  | xfs_buf_alloc_backing_mem( | 
|  | struct xfs_buf	*bp, | 
|  | xfs_buf_flags_t	flags) | 
|  | { | 
|  | size_t		size = BBTOB(bp->b_length); | 
|  | gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN; | 
|  | struct folio	*folio; | 
|  |  | 
|  | if (xfs_buftarg_is_mem(bp->b_target)) | 
|  | return xmbuf_map_backing_mem(bp); | 
|  |  | 
|  | /* Assure zeroed buffer for non-read cases. */ | 
|  | if (!(flags & XBF_READ)) | 
|  | gfp_mask |= __GFP_ZERO; | 
|  |  | 
|  | if (flags & XBF_READ_AHEAD) | 
|  | gfp_mask |= __GFP_NORETRY; | 
|  |  | 
|  | /* | 
|  | * For buffers smaller than PAGE_SIZE use a kmalloc allocation if that | 
|  | * is properly aligned.  The slab allocator now guarantees an aligned | 
|  | * allocation for all power of two sizes, which matches most of the | 
|  | * smaller than PAGE_SIZE buffers used by XFS. | 
|  | */ | 
|  | if (size < PAGE_SIZE && is_power_of_2(size)) | 
|  | return xfs_buf_alloc_kmem(bp, size, gfp_mask); | 
|  |  | 
|  | /* | 
|  | * Don't bother with the retry loop for single PAGE allocations: vmalloc | 
|  | * won't do any better. | 
|  | */ | 
|  | if (size <= PAGE_SIZE) | 
|  | gfp_mask |= __GFP_NOFAIL; | 
|  |  | 
|  | /* | 
|  | * Optimistically attempt a single high order folio allocation for | 
|  | * larger than PAGE_SIZE buffers. | 
|  | * | 
|  | * Allocating a high order folio makes the assumption that buffers are a | 
|  | * power-of-2 size, matching the power-of-2 folios sizes available. | 
|  | * | 
|  | * The exception here are user xattr data buffers, which can be arbitrarily | 
|  | * sized up to 64kB plus structure metadata, skip straight to the vmalloc | 
|  | * path for them instead of wasting memory here. | 
|  | */ | 
|  | if (size > PAGE_SIZE) { | 
|  | if (!is_power_of_2(size)) | 
|  | goto fallback; | 
|  | gfp_mask &= ~__GFP_DIRECT_RECLAIM; | 
|  | gfp_mask |= __GFP_NORETRY; | 
|  | } | 
|  | folio = folio_alloc(gfp_mask, get_order(size)); | 
|  | if (!folio) { | 
|  | if (size <= PAGE_SIZE) | 
|  | return -ENOMEM; | 
|  | trace_xfs_buf_backing_fallback(bp, _RET_IP_); | 
|  | goto fallback; | 
|  | } | 
|  | bp->b_addr = folio_address(folio); | 
|  | trace_xfs_buf_backing_folio(bp, _RET_IP_); | 
|  | return 0; | 
|  |  | 
|  | fallback: | 
|  | for (;;) { | 
|  | bp->b_addr = __vmalloc(size, gfp_mask); | 
|  | if (bp->b_addr) | 
|  | break; | 
|  | if (flags & XBF_READ_AHEAD) | 
|  | return -ENOMEM; | 
|  | XFS_STATS_INC(bp->b_mount, xb_page_retries); | 
|  | memalloc_retry_wait(gfp_mask); | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_backing_vmalloc(bp, _RET_IP_); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_alloc( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  | int			i; | 
|  |  | 
|  | *bpp = NULL; | 
|  | bp = kmem_cache_zalloc(xfs_buf_cache, | 
|  | GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); | 
|  |  | 
|  | /* | 
|  | * We don't want certain flags to appear in b_flags unless they are | 
|  | * specifically set by later operations on the buffer. | 
|  | */ | 
|  | flags &= ~(XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); | 
|  |  | 
|  | /* | 
|  | * A new buffer is held and locked by the owner.  This ensures that the | 
|  | * buffer is owned by the caller and racing RCU lookups right after | 
|  | * inserting into the hash table are safe (and will have to wait for | 
|  | * the unlock to do anything non-trivial). | 
|  | */ | 
|  | bp->b_hold = 1; | 
|  | sema_init(&bp->b_sema, 0); /* held, no waiters */ | 
|  |  | 
|  | spin_lock_init(&bp->b_lock); | 
|  | atomic_set(&bp->b_lru_ref, 1); | 
|  | init_completion(&bp->b_iowait); | 
|  | INIT_LIST_HEAD(&bp->b_lru); | 
|  | INIT_LIST_HEAD(&bp->b_list); | 
|  | INIT_LIST_HEAD(&bp->b_li_list); | 
|  | bp->b_target = target; | 
|  | bp->b_mount = target->bt_mount; | 
|  | bp->b_flags = flags; | 
|  | bp->b_rhash_key = map[0].bm_bn; | 
|  | bp->b_length = 0; | 
|  | bp->b_map_count = nmaps; | 
|  | if (nmaps == 1) | 
|  | bp->b_maps = &bp->__b_map; | 
|  | else | 
|  | bp->b_maps = kcalloc(nmaps, sizeof(struct xfs_buf_map), | 
|  | GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); | 
|  | for (i = 0; i < nmaps; i++) { | 
|  | bp->b_maps[i].bm_bn = map[i].bm_bn; | 
|  | bp->b_maps[i].bm_len = map[i].bm_len; | 
|  | bp->b_length += map[i].bm_len; | 
|  | } | 
|  |  | 
|  | atomic_set(&bp->b_pin_count, 0); | 
|  | init_waitqueue_head(&bp->b_waiters); | 
|  |  | 
|  | XFS_STATS_INC(bp->b_mount, xb_create); | 
|  | trace_xfs_buf_init(bp, _RET_IP_); | 
|  |  | 
|  | error = xfs_buf_alloc_backing_mem(bp, flags); | 
|  | if (error) { | 
|  | xfs_buf_free(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Finding and Reading Buffers | 
|  | */ | 
|  | static int | 
|  | _xfs_buf_obj_cmp( | 
|  | struct rhashtable_compare_arg	*arg, | 
|  | const void			*obj) | 
|  | { | 
|  | const struct xfs_buf_map	*map = arg->key; | 
|  | const struct xfs_buf		*bp = obj; | 
|  |  | 
|  | /* | 
|  | * The key hashing in the lookup path depends on the key being the | 
|  | * first element of the compare_arg, make sure to assert this. | 
|  | */ | 
|  | BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); | 
|  |  | 
|  | if (bp->b_rhash_key != map->bm_bn) | 
|  | return 1; | 
|  |  | 
|  | if (unlikely(bp->b_length != map->bm_len)) { | 
|  | /* | 
|  | * found a block number match. If the range doesn't | 
|  | * match, the only way this is allowed is if the buffer | 
|  | * in the cache is stale and the transaction that made | 
|  | * it stale has not yet committed. i.e. we are | 
|  | * reallocating a busy extent. Skip this buffer and | 
|  | * continue searching for an exact match. | 
|  | * | 
|  | * Note: If we're scanning for incore buffers to stale, don't | 
|  | * complain if we find non-stale buffers. | 
|  | */ | 
|  | if (!(map->bm_flags & XBM_LIVESCAN)) | 
|  | ASSERT(bp->b_flags & XBF_STALE); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct rhashtable_params xfs_buf_hash_params = { | 
|  | .min_size		= 32,	/* empty AGs have minimal footprint */ | 
|  | .nelem_hint		= 16, | 
|  | .key_len		= sizeof(xfs_daddr_t), | 
|  | .key_offset		= offsetof(struct xfs_buf, b_rhash_key), | 
|  | .head_offset		= offsetof(struct xfs_buf, b_rhash_head), | 
|  | .automatic_shrinking	= true, | 
|  | .obj_cmpfn		= _xfs_buf_obj_cmp, | 
|  | }; | 
|  |  | 
|  | int | 
|  | xfs_buf_cache_init( | 
|  | struct xfs_buf_cache	*bch) | 
|  | { | 
|  | return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_cache_destroy( | 
|  | struct xfs_buf_cache	*bch) | 
|  | { | 
|  | rhashtable_destroy(&bch->bc_hash); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_map_verify( | 
|  | struct xfs_buftarg	*btp, | 
|  | struct xfs_buf_map	*map) | 
|  | { | 
|  | xfs_daddr_t		eofs; | 
|  |  | 
|  | /* Check for IOs smaller than the sector size / not sector aligned */ | 
|  | ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize)); | 
|  | ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); | 
|  |  | 
|  | /* | 
|  | * Corrupted block numbers can get through to here, unfortunately, so we | 
|  | * have to check that the buffer falls within the filesystem bounds. | 
|  | */ | 
|  | eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); | 
|  | if (map->bm_bn < 0 || map->bm_bn >= eofs) { | 
|  | xfs_alert(btp->bt_mount, | 
|  | "%s: daddr 0x%llx out of range, EOFS 0x%llx", | 
|  | __func__, map->bm_bn, eofs); | 
|  | WARN_ON(1); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_find_lock( | 
|  | struct xfs_buf          *bp, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | if (flags & XBF_TRYLOCK) { | 
|  | if (!xfs_buf_trylock(bp)) { | 
|  | XFS_STATS_INC(bp->b_mount, xb_busy_locked); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } else { | 
|  | xfs_buf_lock(bp); | 
|  | XFS_STATS_INC(bp->b_mount, xb_get_locked_waited); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the buffer is stale, clear all the external state associated with | 
|  | * it. We need to keep flags such as how we allocated the buffer memory | 
|  | * intact here. | 
|  | */ | 
|  | if (bp->b_flags & XBF_STALE) { | 
|  | if (flags & XBF_LIVESCAN) { | 
|  | xfs_buf_unlock(bp); | 
|  | return -ENOENT; | 
|  | } | 
|  | ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); | 
|  | bp->b_flags &= _XBF_KMEM; | 
|  | bp->b_ops = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | xfs_buf_try_hold( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | spin_lock(&bp->b_lock); | 
|  | if (bp->b_hold == 0) { | 
|  | spin_unlock(&bp->b_lock); | 
|  | return false; | 
|  | } | 
|  | bp->b_hold++; | 
|  | spin_unlock(&bp->b_lock); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | xfs_buf_lookup( | 
|  | struct xfs_buf_cache	*bch, | 
|  | struct xfs_buf_map	*map, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_buf          *bp; | 
|  | int			error; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params); | 
|  | if (!bp || !xfs_buf_try_hold(bp)) { | 
|  | rcu_read_unlock(); | 
|  | return -ENOENT; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | error = xfs_buf_find_lock(bp, flags); | 
|  | if (error) { | 
|  | xfs_buf_rele(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_find(bp, flags, _RET_IP_); | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert the new_bp into the hash table. This consumes the perag reference | 
|  | * taken for the lookup regardless of the result of the insert. | 
|  | */ | 
|  | static int | 
|  | xfs_buf_find_insert( | 
|  | struct xfs_buftarg	*btp, | 
|  | struct xfs_buf_cache	*bch, | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_buf_map	*cmap, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_buf		*new_bp; | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_buf_alloc(btp, map, nmaps, flags, &new_bp); | 
|  | if (error) | 
|  | goto out_drop_pag; | 
|  |  | 
|  | /* The new buffer keeps the perag reference until it is freed. */ | 
|  | new_bp->b_pag = pag; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash, | 
|  | &new_bp->b_rhash_head, xfs_buf_hash_params); | 
|  | if (IS_ERR(bp)) { | 
|  | rcu_read_unlock(); | 
|  | error = PTR_ERR(bp); | 
|  | goto out_free_buf; | 
|  | } | 
|  | if (bp && xfs_buf_try_hold(bp)) { | 
|  | /* found an existing buffer */ | 
|  | rcu_read_unlock(); | 
|  | error = xfs_buf_find_lock(bp, flags); | 
|  | if (error) | 
|  | xfs_buf_rele(bp); | 
|  | else | 
|  | *bpp = bp; | 
|  | goto out_free_buf; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | *bpp = new_bp; | 
|  | return 0; | 
|  |  | 
|  | out_free_buf: | 
|  | xfs_buf_free(new_bp); | 
|  | out_drop_pag: | 
|  | if (pag) | 
|  | xfs_perag_put(pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static inline struct xfs_perag * | 
|  | xfs_buftarg_get_pag( | 
|  | struct xfs_buftarg		*btp, | 
|  | const struct xfs_buf_map	*map) | 
|  | { | 
|  | struct xfs_mount		*mp = btp->bt_mount; | 
|  |  | 
|  | if (xfs_buftarg_is_mem(btp)) | 
|  | return NULL; | 
|  | return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn)); | 
|  | } | 
|  |  | 
|  | static inline struct xfs_buf_cache * | 
|  | xfs_buftarg_buf_cache( | 
|  | struct xfs_buftarg		*btp, | 
|  | struct xfs_perag		*pag) | 
|  | { | 
|  | if (pag) | 
|  | return &pag->pag_bcache; | 
|  | return btp->bt_cache; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assembles a buffer covering the specified range. The code is optimised for | 
|  | * cache hits, as metadata intensive workloads will see 3 orders of magnitude | 
|  | * more hits than misses. | 
|  | */ | 
|  | int | 
|  | xfs_buf_get_map( | 
|  | struct xfs_buftarg	*btp, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_buf_cache	*bch; | 
|  | struct xfs_perag	*pag; | 
|  | struct xfs_buf		*bp = NULL; | 
|  | struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn }; | 
|  | int			error; | 
|  | int			i; | 
|  |  | 
|  | if (flags & XBF_LIVESCAN) | 
|  | cmap.bm_flags |= XBM_LIVESCAN; | 
|  | for (i = 0; i < nmaps; i++) | 
|  | cmap.bm_len += map[i].bm_len; | 
|  |  | 
|  | error = xfs_buf_map_verify(btp, &cmap); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | pag = xfs_buftarg_get_pag(btp, &cmap); | 
|  | bch = xfs_buftarg_buf_cache(btp, pag); | 
|  |  | 
|  | error = xfs_buf_lookup(bch, &cmap, flags, &bp); | 
|  | if (error && error != -ENOENT) | 
|  | goto out_put_perag; | 
|  |  | 
|  | /* cache hits always outnumber misses by at least 10:1 */ | 
|  | if (unlikely(!bp)) { | 
|  | XFS_STATS_INC(btp->bt_mount, xb_miss_locked); | 
|  |  | 
|  | if (flags & XBF_INCORE) | 
|  | goto out_put_perag; | 
|  |  | 
|  | /* xfs_buf_find_insert() consumes the perag reference. */ | 
|  | error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps, | 
|  | flags, &bp); | 
|  | if (error) | 
|  | return error; | 
|  | } else { | 
|  | XFS_STATS_INC(btp->bt_mount, xb_get_locked); | 
|  | if (pag) | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear b_error if this is a lookup from a caller that doesn't expect | 
|  | * valid data to be found in the buffer. | 
|  | */ | 
|  | if (!(flags & XBF_READ)) | 
|  | xfs_buf_ioerror(bp, 0); | 
|  |  | 
|  | XFS_STATS_INC(btp->bt_mount, xb_get); | 
|  | trace_xfs_buf_get(bp, flags, _RET_IP_); | 
|  | *bpp = bp; | 
|  | return 0; | 
|  |  | 
|  | out_put_perag: | 
|  | if (pag) | 
|  | xfs_perag_put(pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | _xfs_buf_read( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); | 
|  |  | 
|  | bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE); | 
|  | bp->b_flags |= XBF_READ; | 
|  | xfs_buf_submit(bp); | 
|  | return xfs_buf_iowait(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reverify a buffer found in cache without an attached ->b_ops. | 
|  | * | 
|  | * If the caller passed an ops structure and the buffer doesn't have ops | 
|  | * assigned, set the ops and use it to verify the contents. If verification | 
|  | * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is | 
|  | * already in XBF_DONE state on entry. | 
|  | * | 
|  | * Under normal operations, every in-core buffer is verified on read I/O | 
|  | * completion. There are two scenarios that can lead to in-core buffers without | 
|  | * an assigned ->b_ops. The first is during log recovery of buffers on a V4 | 
|  | * filesystem, though these buffers are purged at the end of recovery. The | 
|  | * other is online repair, which intentionally reads with a NULL buffer ops to | 
|  | * run several verifiers across an in-core buffer in order to establish buffer | 
|  | * type.  If repair can't establish that, the buffer will be left in memory | 
|  | * with NULL buffer ops. | 
|  | */ | 
|  | int | 
|  | xfs_buf_reverify( | 
|  | struct xfs_buf		*bp, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | ASSERT(bp->b_flags & XBF_DONE); | 
|  | ASSERT(bp->b_error == 0); | 
|  |  | 
|  | if (!ops || bp->b_ops) | 
|  | return 0; | 
|  |  | 
|  | bp->b_ops = ops; | 
|  | bp->b_ops->verify_read(bp); | 
|  | if (bp->b_error) | 
|  | bp->b_flags &= ~XBF_DONE; | 
|  | return bp->b_error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_read_map( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp, | 
|  | const struct xfs_buf_ops *ops, | 
|  | xfs_failaddr_t		fa) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(!(flags & (XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD))); | 
|  |  | 
|  | flags |= XBF_READ; | 
|  | *bpp = NULL; | 
|  |  | 
|  | error = xfs_buf_get_map(target, map, nmaps, flags, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | trace_xfs_buf_read(bp, flags, _RET_IP_); | 
|  |  | 
|  | if (!(bp->b_flags & XBF_DONE)) { | 
|  | /* Initiate the buffer read and wait. */ | 
|  | XFS_STATS_INC(target->bt_mount, xb_get_read); | 
|  | bp->b_ops = ops; | 
|  | error = _xfs_buf_read(bp); | 
|  | } else { | 
|  | /* Buffer already read; all we need to do is check it. */ | 
|  | error = xfs_buf_reverify(bp, ops); | 
|  |  | 
|  | /* We do not want read in the flags */ | 
|  | bp->b_flags &= ~XBF_READ; | 
|  | ASSERT(bp->b_ops != NULL || ops == NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we've had a read error, then the contents of the buffer are | 
|  | * invalid and should not be used. To ensure that a followup read tries | 
|  | * to pull the buffer from disk again, we clear the XBF_DONE flag and | 
|  | * mark the buffer stale. This ensures that anyone who has a current | 
|  | * reference to the buffer will interpret it's contents correctly and | 
|  | * future cache lookups will also treat it as an empty, uninitialised | 
|  | * buffer. | 
|  | */ | 
|  | if (error) { | 
|  | /* | 
|  | * Check against log shutdown for error reporting because | 
|  | * metadata writeback may require a read first and we need to | 
|  | * report errors in metadata writeback until the log is shut | 
|  | * down. High level transaction read functions already check | 
|  | * against mount shutdown, anyway, so we only need to be | 
|  | * concerned about low level IO interactions here. | 
|  | */ | 
|  | if (!xlog_is_shutdown(target->bt_mount->m_log)) | 
|  | xfs_buf_ioerror_alert(bp, fa); | 
|  |  | 
|  | bp->b_flags &= ~XBF_DONE; | 
|  | xfs_buf_stale(bp); | 
|  | xfs_buf_relse(bp); | 
|  |  | 
|  | /* bad CRC means corrupted metadata */ | 
|  | if (error == -EFSBADCRC) | 
|  | error = -EFSCORRUPTED; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	If we are not low on memory then do the readahead in a deadlock | 
|  | *	safe manner. | 
|  | */ | 
|  | void | 
|  | xfs_buf_readahead_map( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | const xfs_buf_flags_t	flags = XBF_READ | XBF_ASYNC | XBF_READ_AHEAD; | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | /* | 
|  | * Currently we don't have a good means or justification for performing | 
|  | * xmbuf_map_page asynchronously, so we don't do readahead. | 
|  | */ | 
|  | if (xfs_buftarg_is_mem(target)) | 
|  | return; | 
|  |  | 
|  | if (xfs_buf_get_map(target, map, nmaps, flags | XBF_TRYLOCK, &bp)) | 
|  | return; | 
|  | trace_xfs_buf_readahead(bp, 0, _RET_IP_); | 
|  |  | 
|  | if (bp->b_flags & XBF_DONE) { | 
|  | xfs_buf_reverify(bp, ops); | 
|  | xfs_buf_relse(bp); | 
|  | return; | 
|  | } | 
|  | XFS_STATS_INC(target->bt_mount, xb_get_read); | 
|  | bp->b_ops = ops; | 
|  | bp->b_flags &= ~(XBF_WRITE | XBF_DONE); | 
|  | bp->b_flags |= flags; | 
|  | percpu_counter_inc(&target->bt_readahead_count); | 
|  | xfs_buf_submit(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read an uncached buffer from disk. Allocates and returns a locked | 
|  | * buffer containing the disk contents or nothing. Uncached buffers always have | 
|  | * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer | 
|  | * is cached or uncached during fault diagnosis. | 
|  | */ | 
|  | int | 
|  | xfs_buf_read_uncached( | 
|  | struct xfs_buftarg	*target, | 
|  | xfs_daddr_t		daddr, | 
|  | size_t			numblks, | 
|  | struct xfs_buf		**bpp, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  |  | 
|  | *bpp = NULL; | 
|  |  | 
|  | error = xfs_buf_get_uncached(target, numblks, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* set up the buffer for a read IO */ | 
|  | ASSERT(bp->b_map_count == 1); | 
|  | bp->b_rhash_key = XFS_BUF_DADDR_NULL; | 
|  | bp->b_maps[0].bm_bn = daddr; | 
|  | bp->b_flags |= XBF_READ; | 
|  | bp->b_ops = ops; | 
|  |  | 
|  | xfs_buf_submit(bp); | 
|  | error = xfs_buf_iowait(bp); | 
|  | if (error) { | 
|  | xfs_buf_relse(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_get_uncached( | 
|  | struct xfs_buftarg	*target, | 
|  | size_t			numblks, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | int			error; | 
|  | DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); | 
|  |  | 
|  | error = xfs_buf_alloc(target, &map, 1, 0, bpp); | 
|  | if (!error) | 
|  | trace_xfs_buf_get_uncached(*bpp, _RET_IP_); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Increment reference count on buffer, to hold the buffer concurrently | 
|  | *	with another thread which may release (free) the buffer asynchronously. | 
|  | *	Must hold the buffer already to call this function. | 
|  | */ | 
|  | void | 
|  | xfs_buf_hold( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | trace_xfs_buf_hold(bp, _RET_IP_); | 
|  |  | 
|  | spin_lock(&bp->b_lock); | 
|  | bp->b_hold++; | 
|  | spin_unlock(&bp->b_lock); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_rele_uncached( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  |  | 
|  | spin_lock(&bp->b_lock); | 
|  | if (--bp->b_hold) { | 
|  | spin_unlock(&bp->b_lock); | 
|  | return; | 
|  | } | 
|  | spin_unlock(&bp->b_lock); | 
|  | xfs_buf_free(bp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_rele_cached( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_buftarg	*btp = bp->b_target; | 
|  | struct xfs_perag	*pag = bp->b_pag; | 
|  | struct xfs_buf_cache	*bch = xfs_buftarg_buf_cache(btp, pag); | 
|  | bool			freebuf = false; | 
|  |  | 
|  | trace_xfs_buf_rele(bp, _RET_IP_); | 
|  |  | 
|  | spin_lock(&bp->b_lock); | 
|  | ASSERT(bp->b_hold >= 1); | 
|  | if (bp->b_hold > 1) { | 
|  | bp->b_hold--; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* we are asked to drop the last reference */ | 
|  | if (atomic_read(&bp->b_lru_ref)) { | 
|  | /* | 
|  | * If the buffer is added to the LRU, keep the reference to the | 
|  | * buffer for the LRU and clear the (now stale) dispose list | 
|  | * state flag, else drop the reference. | 
|  | */ | 
|  | if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) | 
|  | bp->b_state &= ~XFS_BSTATE_DISPOSE; | 
|  | else | 
|  | bp->b_hold--; | 
|  | } else { | 
|  | bp->b_hold--; | 
|  | /* | 
|  | * most of the time buffers will already be removed from the | 
|  | * LRU, so optimise that case by checking for the | 
|  | * XFS_BSTATE_DISPOSE flag indicating the last list the buffer | 
|  | * was on was the disposal list | 
|  | */ | 
|  | if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { | 
|  | list_lru_del_obj(&btp->bt_lru, &bp->b_lru); | 
|  | } else { | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  | } | 
|  |  | 
|  | ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); | 
|  | rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head, | 
|  | xfs_buf_hash_params); | 
|  | if (pag) | 
|  | xfs_perag_put(pag); | 
|  | freebuf = true; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&bp->b_lock); | 
|  |  | 
|  | if (freebuf) | 
|  | xfs_buf_free(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a hold on the specified buffer. | 
|  | */ | 
|  | void | 
|  | xfs_buf_rele( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | trace_xfs_buf_rele(bp, _RET_IP_); | 
|  | if (xfs_buf_is_uncached(bp)) | 
|  | xfs_buf_rele_uncached(bp); | 
|  | else | 
|  | xfs_buf_rele_cached(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Lock a buffer object, if it is not already locked. | 
|  | * | 
|  | *	If we come across a stale, pinned, locked buffer, we know that we are | 
|  | *	being asked to lock a buffer that has been reallocated. Because it is | 
|  | *	pinned, we know that the log has not been pushed to disk and hence it | 
|  | *	will still be locked.  Rather than continuing to have trylock attempts | 
|  | *	fail until someone else pushes the log, push it ourselves before | 
|  | *	returning.  This means that the xfsaild will not get stuck trying | 
|  | *	to push on stale inode buffers. | 
|  | */ | 
|  | int | 
|  | xfs_buf_trylock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | int			locked; | 
|  |  | 
|  | locked = down_trylock(&bp->b_sema) == 0; | 
|  | if (locked) | 
|  | trace_xfs_buf_trylock(bp, _RET_IP_); | 
|  | else | 
|  | trace_xfs_buf_trylock_fail(bp, _RET_IP_); | 
|  | return locked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Lock a buffer object. | 
|  | * | 
|  | *	If we come across a stale, pinned, locked buffer, we know that we | 
|  | *	are being asked to lock a buffer that has been reallocated. Because | 
|  | *	it is pinned, we know that the log has not been pushed to disk and | 
|  | *	hence it will still be locked. Rather than sleeping until someone | 
|  | *	else pushes the log, push it ourselves before trying to get the lock. | 
|  | */ | 
|  | void | 
|  | xfs_buf_lock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | trace_xfs_buf_lock(bp, _RET_IP_); | 
|  |  | 
|  | if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) | 
|  | xfs_log_force(bp->b_mount, 0); | 
|  | down(&bp->b_sema); | 
|  |  | 
|  | trace_xfs_buf_lock_done(bp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_unlock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | up(&bp->b_sema); | 
|  | trace_xfs_buf_unlock(bp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_buf_wait_unpin( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | DECLARE_WAITQUEUE	(wait, current); | 
|  |  | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | return; | 
|  |  | 
|  | add_wait_queue(&bp->b_waiters, &wait); | 
|  | for (;;) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | break; | 
|  | io_schedule(); | 
|  | } | 
|  | remove_wait_queue(&bp->b_waiters, &wait); | 
|  | set_current_state(TASK_RUNNING); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioerror_alert_ratelimited( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | static unsigned long	lasttime; | 
|  | static struct xfs_buftarg *lasttarg; | 
|  |  | 
|  | if (bp->b_target != lasttarg || | 
|  | time_after(jiffies, (lasttime + 5*HZ))) { | 
|  | lasttime = jiffies; | 
|  | xfs_buf_ioerror_alert(bp, __this_address); | 
|  | } | 
|  | lasttarg = bp->b_target; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for this latest trip around the retry handler, and decide if | 
|  | * we've failed enough times to constitute a permanent failure. | 
|  | */ | 
|  | static bool | 
|  | xfs_buf_ioerror_permanent( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_error_cfg	*cfg) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  |  | 
|  | if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && | 
|  | ++bp->b_retries > cfg->max_retries) | 
|  | return true; | 
|  | if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && | 
|  | time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) | 
|  | return true; | 
|  |  | 
|  | /* At unmount we may treat errors differently */ | 
|  | if (xfs_is_unmounting(mp) && mp->m_fail_unmount) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On a sync write or shutdown we just want to stale the buffer and let the | 
|  | * caller handle the error in bp->b_error appropriately. | 
|  | * | 
|  | * If the write was asynchronous then no one will be looking for the error.  If | 
|  | * this is the first failure of this type, clear the error state and write the | 
|  | * buffer out again. This means we always retry an async write failure at least | 
|  | * once, but we also need to set the buffer up to behave correctly now for | 
|  | * repeated failures. | 
|  | * | 
|  | * If we get repeated async write failures, then we take action according to the | 
|  | * error configuration we have been set up to use. | 
|  | * | 
|  | * Returns true if this function took care of error handling and the caller must | 
|  | * not touch the buffer again.  Return false if the caller should proceed with | 
|  | * normal I/O completion handling. | 
|  | */ | 
|  | static bool | 
|  | xfs_buf_ioend_handle_error( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | struct xfs_error_cfg	*cfg; | 
|  | struct xfs_log_item	*lip; | 
|  |  | 
|  | /* | 
|  | * If we've already shutdown the journal because of I/O errors, there's | 
|  | * no point in giving this a retry. | 
|  | */ | 
|  | if (xlog_is_shutdown(mp->m_log)) | 
|  | goto out_stale; | 
|  |  | 
|  | xfs_buf_ioerror_alert_ratelimited(bp); | 
|  |  | 
|  | /* | 
|  | * We're not going to bother about retrying this during recovery. | 
|  | * One strike! | 
|  | */ | 
|  | if (bp->b_flags & _XBF_LOGRECOVERY) { | 
|  | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Synchronous writes will have callers process the error. | 
|  | */ | 
|  | if (!(bp->b_flags & XBF_ASYNC)) | 
|  | goto out_stale; | 
|  |  | 
|  | trace_xfs_buf_iodone_async(bp, _RET_IP_); | 
|  |  | 
|  | cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); | 
|  | if (bp->b_last_error != bp->b_error || | 
|  | !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) { | 
|  | bp->b_last_error = bp->b_error; | 
|  | if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && | 
|  | !bp->b_first_retry_time) | 
|  | bp->b_first_retry_time = jiffies; | 
|  | goto resubmit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Permanent error - we need to trigger a shutdown if we haven't already | 
|  | * to indicate that inconsistency will result from this action. | 
|  | */ | 
|  | if (xfs_buf_ioerror_permanent(bp, cfg)) { | 
|  | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
|  | goto out_stale; | 
|  | } | 
|  |  | 
|  | /* Still considered a transient error. Caller will schedule retries. */ | 
|  | list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { | 
|  | set_bit(XFS_LI_FAILED, &lip->li_flags); | 
|  | clear_bit(XFS_LI_FLUSHING, &lip->li_flags); | 
|  | } | 
|  |  | 
|  | xfs_buf_ioerror(bp, 0); | 
|  | xfs_buf_relse(bp); | 
|  | return true; | 
|  |  | 
|  | resubmit: | 
|  | xfs_buf_ioerror(bp, 0); | 
|  | bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL); | 
|  | reinit_completion(&bp->b_iowait); | 
|  | xfs_buf_submit(bp); | 
|  | return true; | 
|  | out_stale: | 
|  | xfs_buf_stale(bp); | 
|  | bp->b_flags |= XBF_DONE; | 
|  | bp->b_flags &= ~XBF_WRITE; | 
|  | trace_xfs_buf_error_relse(bp, _RET_IP_); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* returns false if the caller needs to resubmit the I/O, else true */ | 
|  | static bool | 
|  | __xfs_buf_ioend( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | trace_xfs_buf_iodone(bp, _RET_IP_); | 
|  |  | 
|  | if (bp->b_flags & XBF_READ) { | 
|  | if (!bp->b_error && is_vmalloc_addr(bp->b_addr)) | 
|  | invalidate_kernel_vmap_range(bp->b_addr, | 
|  | roundup(BBTOB(bp->b_length), PAGE_SIZE)); | 
|  | if (!bp->b_error && bp->b_ops) | 
|  | bp->b_ops->verify_read(bp); | 
|  | if (!bp->b_error) | 
|  | bp->b_flags |= XBF_DONE; | 
|  | if (bp->b_flags & XBF_READ_AHEAD) | 
|  | percpu_counter_dec(&bp->b_target->bt_readahead_count); | 
|  | } else { | 
|  | if (!bp->b_error) { | 
|  | bp->b_flags &= ~XBF_WRITE_FAIL; | 
|  | bp->b_flags |= XBF_DONE; | 
|  | } | 
|  |  | 
|  | if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp)) | 
|  | return false; | 
|  |  | 
|  | /* clear the retry state */ | 
|  | bp->b_last_error = 0; | 
|  | bp->b_retries = 0; | 
|  | bp->b_first_retry_time = 0; | 
|  |  | 
|  | /* | 
|  | * Note that for things like remote attribute buffers, there may | 
|  | * not be a buffer log item here, so processing the buffer log | 
|  | * item must remain optional. | 
|  | */ | 
|  | if (bp->b_log_item) | 
|  | xfs_buf_item_done(bp); | 
|  |  | 
|  | if (bp->b_iodone) | 
|  | bp->b_iodone(bp); | 
|  | } | 
|  |  | 
|  | bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD | | 
|  | _XBF_LOGRECOVERY); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioend( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | if (!__xfs_buf_ioend(bp)) | 
|  | return; | 
|  | if (bp->b_flags & XBF_ASYNC) | 
|  | xfs_buf_relse(bp); | 
|  | else | 
|  | complete(&bp->b_iowait); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioend_work( | 
|  | struct work_struct	*work) | 
|  | { | 
|  | struct xfs_buf		*bp = | 
|  | container_of(work, struct xfs_buf, b_ioend_work); | 
|  |  | 
|  | if (__xfs_buf_ioend(bp)) | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  |  | 
|  | void | 
|  | __xfs_buf_ioerror( | 
|  | struct xfs_buf		*bp, | 
|  | int			error, | 
|  | xfs_failaddr_t		failaddr) | 
|  | { | 
|  | ASSERT(error <= 0 && error >= -1000); | 
|  | bp->b_error = error; | 
|  | trace_xfs_buf_ioerror(bp, error, failaddr); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_ioerror_alert( | 
|  | struct xfs_buf		*bp, | 
|  | xfs_failaddr_t		func) | 
|  | { | 
|  | xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error", | 
|  | "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", | 
|  | func, (uint64_t)xfs_buf_daddr(bp), | 
|  | bp->b_length, -bp->b_error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To simulate an I/O failure, the buffer must be locked and held with at least | 
|  | * three references. The LRU reference is dropped by the stale call. The buf | 
|  | * item reference is dropped via ioend processing. The third reference is owned | 
|  | * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC. | 
|  | */ | 
|  | void | 
|  | xfs_buf_ioend_fail( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | bp->b_flags &= ~XBF_DONE; | 
|  | xfs_buf_stale(bp); | 
|  | xfs_buf_ioerror(bp, -EIO); | 
|  | xfs_buf_ioend(bp); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_bwrite( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | | 
|  | XBF_DONE); | 
|  |  | 
|  | xfs_buf_submit(bp); | 
|  | error = xfs_buf_iowait(bp); | 
|  | if (error) | 
|  | xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_bio_end_io( | 
|  | struct bio		*bio) | 
|  | { | 
|  | struct xfs_buf		*bp = bio->bi_private; | 
|  |  | 
|  | if (bio->bi_status) | 
|  | xfs_buf_ioerror(bp, blk_status_to_errno(bio->bi_status)); | 
|  | else if ((bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) && | 
|  | XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR)) | 
|  | xfs_buf_ioerror(bp, -EIO); | 
|  |  | 
|  | if (bp->b_flags & XBF_ASYNC) { | 
|  | INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); | 
|  | queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); | 
|  | } else { | 
|  | complete(&bp->b_iowait); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static inline blk_opf_t | 
|  | xfs_buf_bio_op( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | blk_opf_t		op; | 
|  |  | 
|  | if (bp->b_flags & XBF_WRITE) { | 
|  | op = REQ_OP_WRITE; | 
|  | } else { | 
|  | op = REQ_OP_READ; | 
|  | if (bp->b_flags & XBF_READ_AHEAD) | 
|  | op |= REQ_RAHEAD; | 
|  | } | 
|  |  | 
|  | return op | REQ_META; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_submit_bio( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | unsigned int		len = BBTOB(bp->b_length); | 
|  | unsigned int		nr_vecs = bio_add_max_vecs(bp->b_addr, len); | 
|  | unsigned int		map = 0; | 
|  | struct blk_plug		plug; | 
|  | struct bio		*bio; | 
|  |  | 
|  | bio = bio_alloc(bp->b_target->bt_bdev, nr_vecs, xfs_buf_bio_op(bp), | 
|  | GFP_NOIO); | 
|  | if (is_vmalloc_addr(bp->b_addr)) | 
|  | bio_add_vmalloc(bio, bp->b_addr, len); | 
|  | else | 
|  | bio_add_virt_nofail(bio, bp->b_addr, len); | 
|  | bio->bi_private = bp; | 
|  | bio->bi_end_io = xfs_buf_bio_end_io; | 
|  |  | 
|  | /* | 
|  | * If there is more than one map segment, split out a new bio for each | 
|  | * map except of the last one.  The last map is handled by the | 
|  | * remainder of the original bio outside the loop. | 
|  | */ | 
|  | blk_start_plug(&plug); | 
|  | for (map = 0; map < bp->b_map_count - 1; map++) { | 
|  | struct bio	*split; | 
|  |  | 
|  | split = bio_split(bio, bp->b_maps[map].bm_len, GFP_NOFS, | 
|  | &fs_bio_set); | 
|  | split->bi_iter.bi_sector = bp->b_maps[map].bm_bn; | 
|  | bio_chain(split, bio); | 
|  | submit_bio(split); | 
|  | } | 
|  | bio->bi_iter.bi_sector = bp->b_maps[map].bm_bn; | 
|  | submit_bio(bio); | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for I/O completion of a sync buffer and return the I/O error code. | 
|  | */ | 
|  | static int | 
|  | xfs_buf_iowait( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | ASSERT(!(bp->b_flags & XBF_ASYNC)); | 
|  |  | 
|  | do { | 
|  | trace_xfs_buf_iowait(bp, _RET_IP_); | 
|  | wait_for_completion(&bp->b_iowait); | 
|  | trace_xfs_buf_iowait_done(bp, _RET_IP_); | 
|  | } while (!__xfs_buf_ioend(bp)); | 
|  |  | 
|  | return bp->b_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run the write verifier callback function if it exists. If this fails, mark | 
|  | * the buffer with an error and do not dispatch the I/O. | 
|  | */ | 
|  | static bool | 
|  | xfs_buf_verify_write( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | if (bp->b_ops) { | 
|  | bp->b_ops->verify_write(bp); | 
|  | if (bp->b_error) | 
|  | return false; | 
|  | } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) { | 
|  | /* | 
|  | * Non-crc filesystems don't attach verifiers during log | 
|  | * recovery, so don't warn for such filesystems. | 
|  | */ | 
|  | if (xfs_has_crc(bp->b_mount)) { | 
|  | xfs_warn(bp->b_mount, | 
|  | "%s: no buf ops on daddr 0x%llx len %d", | 
|  | __func__, xfs_buf_daddr(bp), | 
|  | bp->b_length); | 
|  | xfs_hex_dump(bp->b_addr, XFS_CORRUPTION_DUMP_LEN); | 
|  | dump_stack(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Buffer I/O submission path, read or write. Asynchronous submission transfers | 
|  | * the buffer lock ownership and the current reference to the IO. It is not | 
|  | * safe to reference the buffer after a call to this function unless the caller | 
|  | * holds an additional reference itself. | 
|  | */ | 
|  | static void | 
|  | xfs_buf_submit( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | trace_xfs_buf_submit(bp, _RET_IP_); | 
|  |  | 
|  | ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); | 
|  |  | 
|  | /* | 
|  | * On log shutdown we stale and complete the buffer immediately. We can | 
|  | * be called to read the superblock before the log has been set up, so | 
|  | * be careful checking the log state. | 
|  | * | 
|  | * Checking the mount shutdown state here can result in the log tail | 
|  | * moving inappropriately on disk as the log may not yet be shut down. | 
|  | * i.e. failing this buffer on mount shutdown can remove it from the AIL | 
|  | * and move the tail of the log forwards without having written this | 
|  | * buffer to disk. This corrupts the log tail state in memory, and | 
|  | * because the log may not be shut down yet, it can then be propagated | 
|  | * to disk before the log is shutdown. Hence we check log shutdown | 
|  | * state here rather than mount state to avoid corrupting the log tail | 
|  | * on shutdown. | 
|  | */ | 
|  | if (bp->b_mount->m_log && xlog_is_shutdown(bp->b_mount->m_log)) { | 
|  | xfs_buf_ioend_fail(bp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (bp->b_flags & XBF_WRITE) | 
|  | xfs_buf_wait_unpin(bp); | 
|  |  | 
|  | /* | 
|  | * Make sure we capture only current IO errors rather than stale errors | 
|  | * left over from previous use of the buffer (e.g. failed readahead). | 
|  | */ | 
|  | bp->b_error = 0; | 
|  |  | 
|  | if ((bp->b_flags & XBF_WRITE) && !xfs_buf_verify_write(bp)) { | 
|  | xfs_force_shutdown(bp->b_mount, SHUTDOWN_CORRUPT_INCORE); | 
|  | xfs_buf_ioend(bp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* In-memory targets are directly mapped, no I/O required. */ | 
|  | if (xfs_buftarg_is_mem(bp->b_target)) { | 
|  | xfs_buf_ioend(bp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | xfs_buf_submit_bio(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log a message about and stale a buffer that a caller has decided is corrupt. | 
|  | * | 
|  | * This function should be called for the kinds of metadata corruption that | 
|  | * cannot be detect from a verifier, such as incorrect inter-block relationship | 
|  | * data.  Do /not/ call this function from a verifier function. | 
|  | * | 
|  | * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will | 
|  | * be marked stale, but b_error will not be set.  The caller is responsible for | 
|  | * releasing the buffer or fixing it. | 
|  | */ | 
|  | void | 
|  | __xfs_buf_mark_corrupt( | 
|  | struct xfs_buf		*bp, | 
|  | xfs_failaddr_t		fa) | 
|  | { | 
|  | ASSERT(bp->b_flags & XBF_DONE); | 
|  |  | 
|  | xfs_buf_corruption_error(bp, fa); | 
|  | xfs_buf_stale(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Handling of buffer targets (buftargs). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Wait for any bufs with callbacks that have been submitted but have not yet | 
|  | * returned. These buffers will have an elevated hold count, so wait on those | 
|  | * while freeing all the buffers only held by the LRU. | 
|  | */ | 
|  | static enum lru_status | 
|  | xfs_buftarg_drain_rele( | 
|  | struct list_head	*item, | 
|  | struct list_lru_one	*lru, | 
|  | void			*arg) | 
|  |  | 
|  | { | 
|  | struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru); | 
|  | struct list_head	*dispose = arg; | 
|  |  | 
|  | if (!spin_trylock(&bp->b_lock)) | 
|  | return LRU_SKIP; | 
|  | if (bp->b_hold > 1) { | 
|  | /* need to wait, so skip it this pass */ | 
|  | spin_unlock(&bp->b_lock); | 
|  | trace_xfs_buf_drain_buftarg(bp, _RET_IP_); | 
|  | return LRU_SKIP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clear the LRU reference count so the buffer doesn't get | 
|  | * ignored in xfs_buf_rele(). | 
|  | */ | 
|  | atomic_set(&bp->b_lru_ref, 0); | 
|  | bp->b_state |= XFS_BSTATE_DISPOSE; | 
|  | list_lru_isolate_move(lru, item, dispose); | 
|  | spin_unlock(&bp->b_lock); | 
|  | return LRU_REMOVED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for outstanding I/O on the buftarg to complete. | 
|  | */ | 
|  | void | 
|  | xfs_buftarg_wait( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | /* | 
|  | * First wait for all in-flight readahead buffers to be released.  This is | 
|  | * critical as new buffers do not make the LRU until they are released. | 
|  | * | 
|  | * Next, flush the buffer workqueue to ensure all completion processing | 
|  | * has finished. Just waiting on buffer locks is not sufficient for | 
|  | * async IO as the reference count held over IO is not released until | 
|  | * after the buffer lock is dropped. Hence we need to ensure here that | 
|  | * all reference counts have been dropped before we start walking the | 
|  | * LRU list. | 
|  | */ | 
|  | while (percpu_counter_sum(&btp->bt_readahead_count)) | 
|  | delay(100); | 
|  | flush_workqueue(btp->bt_mount->m_buf_workqueue); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buftarg_drain( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | LIST_HEAD(dispose); | 
|  | int			loop = 0; | 
|  | bool			write_fail = false; | 
|  |  | 
|  | xfs_buftarg_wait(btp); | 
|  |  | 
|  | /* loop until there is nothing left on the lru list. */ | 
|  | while (list_lru_count(&btp->bt_lru)) { | 
|  | list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele, | 
|  | &dispose, LONG_MAX); | 
|  |  | 
|  | while (!list_empty(&dispose)) { | 
|  | struct xfs_buf *bp; | 
|  | bp = list_first_entry(&dispose, struct xfs_buf, b_lru); | 
|  | list_del_init(&bp->b_lru); | 
|  | if (bp->b_flags & XBF_WRITE_FAIL) { | 
|  | write_fail = true; | 
|  | xfs_buf_alert_ratelimited(bp, | 
|  | "XFS: Corruption Alert", | 
|  | "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", | 
|  | (long long)xfs_buf_daddr(bp)); | 
|  | } | 
|  | xfs_buf_rele(bp); | 
|  | } | 
|  | if (loop++ != 0) | 
|  | delay(100); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If one or more failed buffers were freed, that means dirty metadata | 
|  | * was thrown away. This should only ever happen after I/O completion | 
|  | * handling has elevated I/O error(s) to permanent failures and shuts | 
|  | * down the journal. | 
|  | */ | 
|  | if (write_fail) { | 
|  | ASSERT(xlog_is_shutdown(btp->bt_mount->m_log)); | 
|  | xfs_alert(btp->bt_mount, | 
|  | "Please run xfs_repair to determine the extent of the problem."); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum lru_status | 
|  | xfs_buftarg_isolate( | 
|  | struct list_head	*item, | 
|  | struct list_lru_one	*lru, | 
|  | void			*arg) | 
|  | { | 
|  | struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru); | 
|  | struct list_head	*dispose = arg; | 
|  |  | 
|  | /* | 
|  | * we are inverting the lru lock/bp->b_lock here, so use a trylock. | 
|  | * If we fail to get the lock, just skip it. | 
|  | */ | 
|  | if (!spin_trylock(&bp->b_lock)) | 
|  | return LRU_SKIP; | 
|  | /* | 
|  | * Decrement the b_lru_ref count unless the value is already | 
|  | * zero. If the value is already zero, we need to reclaim the | 
|  | * buffer, otherwise it gets another trip through the LRU. | 
|  | */ | 
|  | if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { | 
|  | spin_unlock(&bp->b_lock); | 
|  | return LRU_ROTATE; | 
|  | } | 
|  |  | 
|  | bp->b_state |= XFS_BSTATE_DISPOSE; | 
|  | list_lru_isolate_move(lru, item, dispose); | 
|  | spin_unlock(&bp->b_lock); | 
|  | return LRU_REMOVED; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | xfs_buftarg_shrink_scan( | 
|  | struct shrinker		*shrink, | 
|  | struct shrink_control	*sc) | 
|  | { | 
|  | struct xfs_buftarg	*btp = shrink->private_data; | 
|  | LIST_HEAD(dispose); | 
|  | unsigned long		freed; | 
|  |  | 
|  | freed = list_lru_shrink_walk(&btp->bt_lru, sc, | 
|  | xfs_buftarg_isolate, &dispose); | 
|  |  | 
|  | while (!list_empty(&dispose)) { | 
|  | struct xfs_buf *bp; | 
|  | bp = list_first_entry(&dispose, struct xfs_buf, b_lru); | 
|  | list_del_init(&bp->b_lru); | 
|  | xfs_buf_rele(bp); | 
|  | } | 
|  |  | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | xfs_buftarg_shrink_count( | 
|  | struct shrinker		*shrink, | 
|  | struct shrink_control	*sc) | 
|  | { | 
|  | struct xfs_buftarg	*btp = shrink->private_data; | 
|  | return list_lru_shrink_count(&btp->bt_lru, sc); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_destroy_buftarg( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | shrinker_free(btp->bt_shrinker); | 
|  | ASSERT(percpu_counter_sum(&btp->bt_readahead_count) == 0); | 
|  | percpu_counter_destroy(&btp->bt_readahead_count); | 
|  | list_lru_destroy(&btp->bt_lru); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_free_buftarg( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | xfs_destroy_buftarg(btp); | 
|  | fs_put_dax(btp->bt_daxdev, btp->bt_mount); | 
|  | /* the main block device is closed by kill_block_super */ | 
|  | if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev) | 
|  | bdev_fput(btp->bt_file); | 
|  | kfree(btp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure this buffer target for hardware-assisted atomic writes if the | 
|  | * underlying block device supports is congruent with the filesystem geometry. | 
|  | */ | 
|  | static inline void | 
|  | xfs_configure_buftarg_atomic_writes( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | struct xfs_mount	*mp = btp->bt_mount; | 
|  | unsigned int		min_bytes, max_bytes; | 
|  |  | 
|  | min_bytes = bdev_atomic_write_unit_min_bytes(btp->bt_bdev); | 
|  | max_bytes = bdev_atomic_write_unit_max_bytes(btp->bt_bdev); | 
|  |  | 
|  | /* | 
|  | * Ignore atomic write geometry that is nonsense or doesn't even cover | 
|  | * a single fsblock. | 
|  | */ | 
|  | if (min_bytes > max_bytes || | 
|  | min_bytes > mp->m_sb.sb_blocksize || | 
|  | max_bytes < mp->m_sb.sb_blocksize) { | 
|  | min_bytes = 0; | 
|  | max_bytes = 0; | 
|  | } | 
|  |  | 
|  | btp->bt_awu_min = min_bytes; | 
|  | btp->bt_awu_max = max_bytes; | 
|  | } | 
|  |  | 
|  | /* Configure a buffer target that abstracts a block device. */ | 
|  | int | 
|  | xfs_configure_buftarg( | 
|  | struct xfs_buftarg	*btp, | 
|  | unsigned int		sectorsize) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | ASSERT(btp->bt_bdev != NULL); | 
|  |  | 
|  | /* Set up metadata sector size info */ | 
|  | btp->bt_meta_sectorsize = sectorsize; | 
|  | btp->bt_meta_sectormask = sectorsize - 1; | 
|  |  | 
|  | error = bdev_validate_blocksize(btp->bt_bdev, sectorsize); | 
|  | if (error) { | 
|  | xfs_warn(btp->bt_mount, | 
|  | "Cannot use blocksize %u on device %pg, err %d", | 
|  | sectorsize, btp->bt_bdev, error); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (bdev_can_atomic_write(btp->bt_bdev)) | 
|  | xfs_configure_buftarg_atomic_writes(btp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_init_buftarg( | 
|  | struct xfs_buftarg		*btp, | 
|  | size_t				logical_sectorsize, | 
|  | const char			*descr) | 
|  | { | 
|  | /* Set up device logical sector size mask */ | 
|  | btp->bt_logical_sectorsize = logical_sectorsize; | 
|  | btp->bt_logical_sectormask = logical_sectorsize - 1; | 
|  |  | 
|  | /* | 
|  | * Buffer IO error rate limiting. Limit it to no more than 10 messages | 
|  | * per 30 seconds so as to not spam logs too much on repeated errors. | 
|  | */ | 
|  | ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | if (list_lru_init(&btp->bt_lru)) | 
|  | return -ENOMEM; | 
|  | if (percpu_counter_init(&btp->bt_readahead_count, 0, GFP_KERNEL)) | 
|  | goto out_destroy_lru; | 
|  |  | 
|  | btp->bt_shrinker = | 
|  | shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr); | 
|  | if (!btp->bt_shrinker) | 
|  | goto out_destroy_io_count; | 
|  | btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count; | 
|  | btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan; | 
|  | btp->bt_shrinker->private_data = btp; | 
|  | shrinker_register(btp->bt_shrinker); | 
|  | return 0; | 
|  |  | 
|  | out_destroy_io_count: | 
|  | percpu_counter_destroy(&btp->bt_readahead_count); | 
|  | out_destroy_lru: | 
|  | list_lru_destroy(&btp->bt_lru); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | struct xfs_buftarg * | 
|  | xfs_alloc_buftarg( | 
|  | struct xfs_mount	*mp, | 
|  | struct file		*bdev_file) | 
|  | { | 
|  | struct xfs_buftarg	*btp; | 
|  | const struct dax_holder_operations *ops = NULL; | 
|  | int			error; | 
|  |  | 
|  |  | 
|  | #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE) | 
|  | ops = &xfs_dax_holder_operations; | 
|  | #endif | 
|  | btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL); | 
|  |  | 
|  | btp->bt_mount = mp; | 
|  | btp->bt_file = bdev_file; | 
|  | btp->bt_bdev = file_bdev(bdev_file); | 
|  | btp->bt_dev = btp->bt_bdev->bd_dev; | 
|  | btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off, | 
|  | mp, ops); | 
|  |  | 
|  | /* | 
|  | * Flush and invalidate all devices' pagecaches before reading any | 
|  | * metadata because XFS doesn't use the bdev pagecache. | 
|  | */ | 
|  | error = sync_blockdev(btp->bt_bdev); | 
|  | if (error) | 
|  | goto error_free; | 
|  |  | 
|  | /* | 
|  | * When allocating the buftargs we have not yet read the super block and | 
|  | * thus don't know the file system sector size yet. | 
|  | */ | 
|  | btp->bt_meta_sectorsize = bdev_logical_block_size(btp->bt_bdev); | 
|  | btp->bt_meta_sectormask = btp->bt_meta_sectorsize - 1; | 
|  |  | 
|  | error = xfs_init_buftarg(btp, btp->bt_meta_sectorsize, | 
|  | mp->m_super->s_id); | 
|  | if (error) | 
|  | goto error_free; | 
|  |  | 
|  | return btp; | 
|  |  | 
|  | error_free: | 
|  | kfree(btp); | 
|  | return ERR_PTR(error); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | xfs_buf_list_del( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | list_del_init(&bp->b_list); | 
|  | wake_up_var(&bp->b_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cancel a delayed write list. | 
|  | * | 
|  | * Remove each buffer from the list, clear the delwri queue flag and drop the | 
|  | * associated buffer reference. | 
|  | */ | 
|  | void | 
|  | xfs_buf_delwri_cancel( | 
|  | struct list_head	*list) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | while (!list_empty(list)) { | 
|  | bp = list_first_entry(list, struct xfs_buf, b_list); | 
|  |  | 
|  | xfs_buf_lock(bp); | 
|  | bp->b_flags &= ~_XBF_DELWRI_Q; | 
|  | xfs_buf_list_del(bp); | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a buffer to the delayed write list. | 
|  | * | 
|  | * This queues a buffer for writeout if it hasn't already been.  Note that | 
|  | * neither this routine nor the buffer list submission functions perform | 
|  | * any internal synchronization.  It is expected that the lists are thread-local | 
|  | * to the callers. | 
|  | * | 
|  | * Returns true if we queued up the buffer, or false if it already had | 
|  | * been on the buffer list. | 
|  | */ | 
|  | bool | 
|  | xfs_buf_delwri_queue( | 
|  | struct xfs_buf		*bp, | 
|  | struct list_head	*list) | 
|  | { | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  | ASSERT(!(bp->b_flags & XBF_READ)); | 
|  |  | 
|  | /* | 
|  | * If the buffer is already marked delwri it already is queued up | 
|  | * by someone else for imediate writeout.  Just ignore it in that | 
|  | * case. | 
|  | */ | 
|  | if (bp->b_flags & _XBF_DELWRI_Q) { | 
|  | trace_xfs_buf_delwri_queued(bp, _RET_IP_); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_delwri_queue(bp, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * If a buffer gets written out synchronously or marked stale while it | 
|  | * is on a delwri list we lazily remove it. To do this, the other party | 
|  | * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. | 
|  | * It remains referenced and on the list.  In a rare corner case it | 
|  | * might get readded to a delwri list after the synchronous writeout, in | 
|  | * which case we need just need to re-add the flag here. | 
|  | */ | 
|  | bp->b_flags |= _XBF_DELWRI_Q; | 
|  | if (list_empty(&bp->b_list)) { | 
|  | xfs_buf_hold(bp); | 
|  | list_add_tail(&bp->b_list, list); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a buffer to this delwri list as part of a data integrity operation. | 
|  | * If the buffer is on any other delwri list, we'll wait for that to clear | 
|  | * so that the caller can submit the buffer for IO and wait for the result. | 
|  | * Callers must ensure the buffer is not already on the list. | 
|  | */ | 
|  | void | 
|  | xfs_buf_delwri_queue_here( | 
|  | struct xfs_buf		*bp, | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | /* | 
|  | * We need this buffer to end up on the /caller's/ delwri list, not any | 
|  | * old list.  This can happen if the buffer is marked stale (which | 
|  | * clears DELWRI_Q) after the AIL queues the buffer to its list but | 
|  | * before the AIL has a chance to submit the list. | 
|  | */ | 
|  | while (!list_empty(&bp->b_list)) { | 
|  | xfs_buf_unlock(bp); | 
|  | wait_var_event(&bp->b_list, list_empty(&bp->b_list)); | 
|  | xfs_buf_lock(bp); | 
|  | } | 
|  |  | 
|  | ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); | 
|  |  | 
|  | xfs_buf_delwri_queue(bp, buffer_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare function is more complex than it needs to be because | 
|  | * the return value is only 32 bits and we are doing comparisons | 
|  | * on 64 bit values | 
|  | */ | 
|  | static int | 
|  | xfs_buf_cmp( | 
|  | void			*priv, | 
|  | const struct list_head	*a, | 
|  | const struct list_head	*b) | 
|  | { | 
|  | struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list); | 
|  | struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list); | 
|  | xfs_daddr_t		diff; | 
|  |  | 
|  | diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; | 
|  | if (diff < 0) | 
|  | return -1; | 
|  | if (diff > 0) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | xfs_buf_delwri_submit_prep( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | /* | 
|  | * Someone else might have written the buffer synchronously or marked it | 
|  | * stale in the meantime.  In that case only the _XBF_DELWRI_Q flag got | 
|  | * cleared, and we have to drop the reference and remove it from the | 
|  | * list here. | 
|  | */ | 
|  | if (!(bp->b_flags & _XBF_DELWRI_Q)) { | 
|  | xfs_buf_list_del(bp); | 
|  | xfs_buf_relse(bp); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_delwri_split(bp, _RET_IP_); | 
|  | bp->b_flags &= ~_XBF_DELWRI_Q; | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out a buffer list asynchronously. | 
|  | * | 
|  | * This will take the @buffer_list, write all non-locked and non-pinned buffers | 
|  | * out and not wait for I/O completion on any of the buffers.  This interface | 
|  | * is only safely useable for callers that can track I/O completion by higher | 
|  | * level means, e.g. AIL pushing as the @buffer_list is consumed in this | 
|  | * function. | 
|  | * | 
|  | * Note: this function will skip buffers it would block on, and in doing so | 
|  | * leaves them on @buffer_list so they can be retried on a later pass. As such, | 
|  | * it is up to the caller to ensure that the buffer list is fully submitted or | 
|  | * cancelled appropriately when they are finished with the list. Failure to | 
|  | * cancel or resubmit the list until it is empty will result in leaked buffers | 
|  | * at unmount time. | 
|  | */ | 
|  | int | 
|  | xfs_buf_delwri_submit_nowait( | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | struct xfs_buf		*bp, *n; | 
|  | int			pinned = 0; | 
|  | struct blk_plug		plug; | 
|  |  | 
|  | list_sort(NULL, buffer_list, xfs_buf_cmp); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | list_for_each_entry_safe(bp, n, buffer_list, b_list) { | 
|  | if (!xfs_buf_trylock(bp)) | 
|  | continue; | 
|  | if (xfs_buf_ispinned(bp)) { | 
|  | xfs_buf_unlock(bp); | 
|  | pinned++; | 
|  | continue; | 
|  | } | 
|  | if (!xfs_buf_delwri_submit_prep(bp)) | 
|  | continue; | 
|  | bp->b_flags |= XBF_ASYNC; | 
|  | xfs_buf_list_del(bp); | 
|  | xfs_buf_submit(bp); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | return pinned; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out a buffer list synchronously. | 
|  | * | 
|  | * This will take the @buffer_list, write all buffers out and wait for I/O | 
|  | * completion on all of the buffers. @buffer_list is consumed by the function, | 
|  | * so callers must have some other way of tracking buffers if they require such | 
|  | * functionality. | 
|  | */ | 
|  | int | 
|  | xfs_buf_delwri_submit( | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | LIST_HEAD		(wait_list); | 
|  | int			error = 0, error2; | 
|  | struct xfs_buf		*bp, *n; | 
|  | struct blk_plug		plug; | 
|  |  | 
|  | list_sort(NULL, buffer_list, xfs_buf_cmp); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | list_for_each_entry_safe(bp, n, buffer_list, b_list) { | 
|  | xfs_buf_lock(bp); | 
|  | if (!xfs_buf_delwri_submit_prep(bp)) | 
|  | continue; | 
|  | bp->b_flags &= ~XBF_ASYNC; | 
|  | list_move_tail(&bp->b_list, &wait_list); | 
|  | xfs_buf_submit(bp); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | /* Wait for IO to complete. */ | 
|  | while (!list_empty(&wait_list)) { | 
|  | bp = list_first_entry(&wait_list, struct xfs_buf, b_list); | 
|  |  | 
|  | xfs_buf_list_del(bp); | 
|  |  | 
|  | /* | 
|  | * Wait on the locked buffer, check for errors and unlock and | 
|  | * release the delwri queue reference. | 
|  | */ | 
|  | error2 = xfs_buf_iowait(bp); | 
|  | xfs_buf_relse(bp); | 
|  | if (!error) | 
|  | error = error2; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) | 
|  | { | 
|  | /* | 
|  | * Set the lru reference count to 0 based on the error injection tag. | 
|  | * This allows userspace to disrupt buffer caching for debug/testing | 
|  | * purposes. | 
|  | */ | 
|  | if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) | 
|  | lru_ref = 0; | 
|  |  | 
|  | atomic_set(&bp->b_lru_ref, lru_ref); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify an on-disk magic value against the magic value specified in the | 
|  | * verifier structure. The verifier magic is in disk byte order so the caller is | 
|  | * expected to pass the value directly from disk. | 
|  | */ | 
|  | bool | 
|  | xfs_verify_magic( | 
|  | struct xfs_buf		*bp, | 
|  | __be32			dmagic) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | int			idx; | 
|  |  | 
|  | idx = xfs_has_crc(mp); | 
|  | if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) | 
|  | return false; | 
|  | return dmagic == bp->b_ops->magic[idx]; | 
|  | } | 
|  | /* | 
|  | * Verify an on-disk magic value against the magic value specified in the | 
|  | * verifier structure. The verifier magic is in disk byte order so the caller is | 
|  | * expected to pass the value directly from disk. | 
|  | */ | 
|  | bool | 
|  | xfs_verify_magic16( | 
|  | struct xfs_buf		*bp, | 
|  | __be16			dmagic) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | int			idx; | 
|  |  | 
|  | idx = xfs_has_crc(mp); | 
|  | if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) | 
|  | return false; | 
|  | return dmagic == bp->b_ops->magic16[idx]; | 
|  | } |