|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * Copyright (C) 2017 Oracle.  All Rights Reserved. | 
|  | * Author: Darrick J. Wong <darrick.wong@oracle.com> | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_rmap_btree.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_rmap.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_bit.h" | 
|  | #include <linux/fsmap.h> | 
|  | #include "xfs_fsmap.h" | 
|  | #include "xfs_refcount.h" | 
|  | #include "xfs_refcount_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_rtbitmap.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_rtgroup.h" | 
|  | #include "xfs_rtrmap_btree.h" | 
|  | #include "xfs_rtrefcount_btree.h" | 
|  |  | 
|  | /* Convert an xfs_fsmap to an fsmap. */ | 
|  | static void | 
|  | xfs_fsmap_from_internal( | 
|  | struct fsmap		*dest, | 
|  | struct xfs_fsmap	*src) | 
|  | { | 
|  | dest->fmr_device = src->fmr_device; | 
|  | dest->fmr_flags = src->fmr_flags; | 
|  | dest->fmr_physical = BBTOB(src->fmr_physical); | 
|  | dest->fmr_owner = src->fmr_owner; | 
|  | dest->fmr_offset = BBTOB(src->fmr_offset); | 
|  | dest->fmr_length = BBTOB(src->fmr_length); | 
|  | dest->fmr_reserved[0] = 0; | 
|  | dest->fmr_reserved[1] = 0; | 
|  | dest->fmr_reserved[2] = 0; | 
|  | } | 
|  |  | 
|  | /* Convert an fsmap to an xfs_fsmap. */ | 
|  | static void | 
|  | xfs_fsmap_to_internal( | 
|  | struct xfs_fsmap	*dest, | 
|  | struct fsmap		*src) | 
|  | { | 
|  | dest->fmr_device = src->fmr_device; | 
|  | dest->fmr_flags = src->fmr_flags; | 
|  | dest->fmr_physical = BTOBBT(src->fmr_physical); | 
|  | dest->fmr_owner = src->fmr_owner; | 
|  | dest->fmr_offset = BTOBBT(src->fmr_offset); | 
|  | dest->fmr_length = BTOBBT(src->fmr_length); | 
|  | } | 
|  |  | 
|  | /* Convert an fsmap owner into an rmapbt owner. */ | 
|  | static int | 
|  | xfs_fsmap_owner_to_rmap( | 
|  | struct xfs_rmap_irec	*dest, | 
|  | const struct xfs_fsmap	*src) | 
|  | { | 
|  | if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) { | 
|  | dest->rm_owner = src->fmr_owner; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (src->fmr_owner) { | 
|  | case 0:			/* "lowest owner id possible" */ | 
|  | case -1ULL:		/* "highest owner id possible" */ | 
|  | dest->rm_owner = src->fmr_owner; | 
|  | break; | 
|  | case XFS_FMR_OWN_FREE: | 
|  | dest->rm_owner = XFS_RMAP_OWN_NULL; | 
|  | break; | 
|  | case XFS_FMR_OWN_UNKNOWN: | 
|  | dest->rm_owner = XFS_RMAP_OWN_UNKNOWN; | 
|  | break; | 
|  | case XFS_FMR_OWN_FS: | 
|  | dest->rm_owner = XFS_RMAP_OWN_FS; | 
|  | break; | 
|  | case XFS_FMR_OWN_LOG: | 
|  | dest->rm_owner = XFS_RMAP_OWN_LOG; | 
|  | break; | 
|  | case XFS_FMR_OWN_AG: | 
|  | dest->rm_owner = XFS_RMAP_OWN_AG; | 
|  | break; | 
|  | case XFS_FMR_OWN_INOBT: | 
|  | dest->rm_owner = XFS_RMAP_OWN_INOBT; | 
|  | break; | 
|  | case XFS_FMR_OWN_INODES: | 
|  | dest->rm_owner = XFS_RMAP_OWN_INODES; | 
|  | break; | 
|  | case XFS_FMR_OWN_REFC: | 
|  | dest->rm_owner = XFS_RMAP_OWN_REFC; | 
|  | break; | 
|  | case XFS_FMR_OWN_COW: | 
|  | dest->rm_owner = XFS_RMAP_OWN_COW; | 
|  | break; | 
|  | case XFS_FMR_OWN_DEFECTIVE:	/* not implemented */ | 
|  | /* fall through */ | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Convert an rmapbt owner into an fsmap owner. */ | 
|  | static int | 
|  | xfs_fsmap_owner_from_frec( | 
|  | struct xfs_fsmap		*dest, | 
|  | const struct xfs_fsmap_irec	*frec) | 
|  | { | 
|  | dest->fmr_flags = 0; | 
|  | if (!XFS_RMAP_NON_INODE_OWNER(frec->owner)) { | 
|  | dest->fmr_owner = frec->owner; | 
|  | return 0; | 
|  | } | 
|  | dest->fmr_flags |= FMR_OF_SPECIAL_OWNER; | 
|  |  | 
|  | switch (frec->owner) { | 
|  | case XFS_RMAP_OWN_FS: | 
|  | dest->fmr_owner = XFS_FMR_OWN_FS; | 
|  | break; | 
|  | case XFS_RMAP_OWN_LOG: | 
|  | dest->fmr_owner = XFS_FMR_OWN_LOG; | 
|  | break; | 
|  | case XFS_RMAP_OWN_AG: | 
|  | dest->fmr_owner = XFS_FMR_OWN_AG; | 
|  | break; | 
|  | case XFS_RMAP_OWN_INOBT: | 
|  | dest->fmr_owner = XFS_FMR_OWN_INOBT; | 
|  | break; | 
|  | case XFS_RMAP_OWN_INODES: | 
|  | dest->fmr_owner = XFS_FMR_OWN_INODES; | 
|  | break; | 
|  | case XFS_RMAP_OWN_REFC: | 
|  | dest->fmr_owner = XFS_FMR_OWN_REFC; | 
|  | break; | 
|  | case XFS_RMAP_OWN_COW: | 
|  | dest->fmr_owner = XFS_FMR_OWN_COW; | 
|  | break; | 
|  | case XFS_RMAP_OWN_NULL:	/* "free" */ | 
|  | dest->fmr_owner = XFS_FMR_OWN_FREE; | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* getfsmap query state */ | 
|  | struct xfs_getfsmap_info { | 
|  | struct xfs_fsmap_head	*head; | 
|  | struct fsmap		*fsmap_recs;	/* mapping records */ | 
|  | struct xfs_buf		*agf_bp;	/* AGF, for refcount queries */ | 
|  | struct xfs_group	*group;		/* group info, if applicable */ | 
|  | xfs_daddr_t		next_daddr;	/* next daddr we expect */ | 
|  | /* daddr of low fsmap key when we're using the rtbitmap */ | 
|  | xfs_daddr_t		low_daddr; | 
|  | /* daddr of high fsmap key, or the last daddr on the device */ | 
|  | xfs_daddr_t		end_daddr; | 
|  | u64			missing_owner;	/* owner of holes */ | 
|  | u32			dev;		/* device id */ | 
|  | /* | 
|  | * Low rmap key for the query.  If low.rm_blockcount is nonzero, this | 
|  | * is the second (or later) call to retrieve the recordset in pieces. | 
|  | * xfs_getfsmap_rec_before_start will compare all records retrieved | 
|  | * by the rmapbt query to filter out any records that start before | 
|  | * the last record. | 
|  | */ | 
|  | struct xfs_rmap_irec	low; | 
|  | struct xfs_rmap_irec	high;		/* high rmap key */ | 
|  | bool			last;		/* last extent? */ | 
|  | }; | 
|  |  | 
|  | /* Associate a device with a getfsmap handler. */ | 
|  | struct xfs_getfsmap_dev { | 
|  | u32			dev; | 
|  | int			(*fn)(struct xfs_trans *tp, | 
|  | const struct xfs_fsmap *keys, | 
|  | struct xfs_getfsmap_info *info); | 
|  | sector_t		nr_sectors; | 
|  | }; | 
|  |  | 
|  | /* Compare two getfsmap device handlers. */ | 
|  | static int | 
|  | xfs_getfsmap_dev_compare( | 
|  | const void			*p1, | 
|  | const void			*p2) | 
|  | { | 
|  | const struct xfs_getfsmap_dev	*d1 = p1; | 
|  | const struct xfs_getfsmap_dev	*d2 = p2; | 
|  |  | 
|  | return d1->dev - d2->dev; | 
|  | } | 
|  |  | 
|  | /* Decide if this mapping is shared. */ | 
|  | STATIC int | 
|  | xfs_getfsmap_is_shared( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_getfsmap_info	*info, | 
|  | const struct xfs_fsmap_irec	*frec, | 
|  | bool				*stat) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | struct xfs_btree_cur		*cur; | 
|  | xfs_agblock_t			fbno; | 
|  | xfs_extlen_t			flen = 0; | 
|  | int				error; | 
|  |  | 
|  | *stat = false; | 
|  | if (!xfs_has_reflink(mp) || !info->group) | 
|  | return 0; | 
|  |  | 
|  | if (info->group->xg_type == XG_TYPE_RTG) | 
|  | cur = xfs_rtrefcountbt_init_cursor(tp, to_rtg(info->group)); | 
|  | else | 
|  | cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, | 
|  | to_perag(info->group)); | 
|  |  | 
|  | /* Are there any shared blocks here? */ | 
|  | error = xfs_refcount_find_shared(cur, frec->rec_key, | 
|  | XFS_BB_TO_FSBT(mp, frec->len_daddr), &fbno, &flen, | 
|  | false); | 
|  |  | 
|  | xfs_btree_del_cursor(cur, error); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | *stat = flen > 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | xfs_getfsmap_format( | 
|  | struct xfs_mount		*mp, | 
|  | struct xfs_fsmap		*xfm, | 
|  | struct xfs_getfsmap_info	*info) | 
|  | { | 
|  | struct fsmap			*rec; | 
|  |  | 
|  | trace_xfs_getfsmap_mapping(mp, xfm); | 
|  |  | 
|  | rec = &info->fsmap_recs[info->head->fmh_entries++]; | 
|  | xfs_fsmap_from_internal(rec, xfm); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | xfs_getfsmap_frec_before_start( | 
|  | struct xfs_getfsmap_info	*info, | 
|  | const struct xfs_fsmap_irec	*frec) | 
|  | { | 
|  | if (info->low_daddr != XFS_BUF_DADDR_NULL) | 
|  | return frec->start_daddr < info->low_daddr; | 
|  | if (info->low.rm_blockcount) { | 
|  | struct xfs_rmap_irec	rec = { | 
|  | .rm_startblock	= frec->rec_key, | 
|  | .rm_owner	= frec->owner, | 
|  | .rm_flags	= frec->rm_flags, | 
|  | }; | 
|  |  | 
|  | return xfs_rmap_compare(&rec, &info->low) < 0; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Format a reverse mapping for getfsmap, having translated rm_startblock | 
|  | * into the appropriate daddr units.  Pass in a nonzero @len_daddr if the | 
|  | * length could be larger than rm_blockcount in struct xfs_rmap_irec. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_getfsmap_helper( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_getfsmap_info	*info, | 
|  | const struct xfs_fsmap_irec	*frec) | 
|  | { | 
|  | struct xfs_fsmap		fmr; | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | bool				shared; | 
|  | int				error = 0; | 
|  |  | 
|  | if (fatal_signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | /* | 
|  | * Filter out records that start before our startpoint, if the | 
|  | * caller requested that. | 
|  | */ | 
|  | if (xfs_getfsmap_frec_before_start(info, frec)) | 
|  | goto out; | 
|  |  | 
|  | /* Are we just counting mappings? */ | 
|  | if (info->head->fmh_count == 0) { | 
|  | if (info->head->fmh_entries == UINT_MAX) | 
|  | return -ECANCELED; | 
|  |  | 
|  | if (frec->start_daddr > info->next_daddr) | 
|  | info->head->fmh_entries++; | 
|  |  | 
|  | if (info->last) | 
|  | return 0; | 
|  |  | 
|  | info->head->fmh_entries++; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the record starts past the last physical block we saw, | 
|  | * then we've found a gap.  Report the gap as being owned by | 
|  | * whatever the caller specified is the missing owner. | 
|  | */ | 
|  | if (frec->start_daddr > info->next_daddr) { | 
|  | if (info->head->fmh_entries >= info->head->fmh_count) | 
|  | return -ECANCELED; | 
|  |  | 
|  | fmr.fmr_device = info->dev; | 
|  | fmr.fmr_physical = info->next_daddr; | 
|  | fmr.fmr_owner = info->missing_owner; | 
|  | fmr.fmr_offset = 0; | 
|  | fmr.fmr_length = frec->start_daddr - info->next_daddr; | 
|  | fmr.fmr_flags = FMR_OF_SPECIAL_OWNER; | 
|  | xfs_getfsmap_format(mp, &fmr, info); | 
|  | } | 
|  |  | 
|  | if (info->last) | 
|  | goto out; | 
|  |  | 
|  | /* Fill out the extent we found */ | 
|  | if (info->head->fmh_entries >= info->head->fmh_count) | 
|  | return -ECANCELED; | 
|  |  | 
|  | trace_xfs_fsmap_mapping(mp, info->dev, | 
|  | info->group ? info->group->xg_gno : NULLAGNUMBER, | 
|  | frec); | 
|  |  | 
|  | fmr.fmr_device = info->dev; | 
|  | fmr.fmr_physical = frec->start_daddr; | 
|  | error = xfs_fsmap_owner_from_frec(&fmr, frec); | 
|  | if (error) | 
|  | return error; | 
|  | fmr.fmr_offset = XFS_FSB_TO_BB(mp, frec->offset); | 
|  | fmr.fmr_length = frec->len_daddr; | 
|  | if (frec->rm_flags & XFS_RMAP_UNWRITTEN) | 
|  | fmr.fmr_flags |= FMR_OF_PREALLOC; | 
|  | if (frec->rm_flags & XFS_RMAP_ATTR_FORK) | 
|  | fmr.fmr_flags |= FMR_OF_ATTR_FORK; | 
|  | if (frec->rm_flags & XFS_RMAP_BMBT_BLOCK) | 
|  | fmr.fmr_flags |= FMR_OF_EXTENT_MAP; | 
|  | if (fmr.fmr_flags == 0) { | 
|  | error = xfs_getfsmap_is_shared(tp, info, frec, &shared); | 
|  | if (error) | 
|  | return error; | 
|  | if (shared) | 
|  | fmr.fmr_flags |= FMR_OF_SHARED; | 
|  | } | 
|  |  | 
|  | xfs_getfsmap_format(mp, &fmr, info); | 
|  | out: | 
|  | info->next_daddr = max(info->next_daddr, | 
|  | frec->start_daddr + frec->len_daddr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | xfs_getfsmap_group_helper( | 
|  | struct xfs_getfsmap_info	*info, | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_group		*xg, | 
|  | xfs_agblock_t			startblock, | 
|  | xfs_extlen_t			blockcount, | 
|  | struct xfs_fsmap_irec		*frec) | 
|  | { | 
|  | /* | 
|  | * For an info->last query, we're looking for a gap between the last | 
|  | * mapping emitted and the high key specified by userspace.  If the | 
|  | * user's query spans less than 1 fsblock, then info->high and | 
|  | * info->low will have the same rm_startblock, which causes rec_daddr | 
|  | * and next_daddr to be the same.  Therefore, use the end_daddr that | 
|  | * we calculated from userspace's high key to synthesize the record. | 
|  | * Note that if the btree query found a mapping, there won't be a gap. | 
|  | */ | 
|  | if (info->last) | 
|  | frec->start_daddr = info->end_daddr + 1; | 
|  | else | 
|  | frec->start_daddr = xfs_gbno_to_daddr(xg, startblock); | 
|  |  | 
|  | frec->len_daddr = XFS_FSB_TO_BB(xg->xg_mount, blockcount); | 
|  | return xfs_getfsmap_helper(tp, info, frec); | 
|  | } | 
|  |  | 
|  | /* Transform a rmapbt irec into a fsmap */ | 
|  | STATIC int | 
|  | xfs_getfsmap_rmapbt_helper( | 
|  | struct xfs_btree_cur		*cur, | 
|  | const struct xfs_rmap_irec	*rec, | 
|  | void				*priv) | 
|  | { | 
|  | struct xfs_fsmap_irec		frec = { | 
|  | .owner			= rec->rm_owner, | 
|  | .offset			= rec->rm_offset, | 
|  | .rm_flags		= rec->rm_flags, | 
|  | .rec_key		= rec->rm_startblock, | 
|  | }; | 
|  | struct xfs_getfsmap_info	*info = priv; | 
|  |  | 
|  | return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group, | 
|  | rec->rm_startblock, rec->rm_blockcount, &frec); | 
|  | } | 
|  |  | 
|  | /* Transform a bnobt irec into a fsmap */ | 
|  | STATIC int | 
|  | xfs_getfsmap_datadev_bnobt_helper( | 
|  | struct xfs_btree_cur		*cur, | 
|  | const struct xfs_alloc_rec_incore *rec, | 
|  | void				*priv) | 
|  | { | 
|  | struct xfs_fsmap_irec		frec = { | 
|  | .owner			= XFS_RMAP_OWN_NULL, /* "free" */ | 
|  | .rec_key		= rec->ar_startblock, | 
|  | }; | 
|  | struct xfs_getfsmap_info	*info = priv; | 
|  |  | 
|  | return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group, | 
|  | rec->ar_startblock, rec->ar_blockcount, &frec); | 
|  | } | 
|  |  | 
|  | /* Set rmap flags based on the getfsmap flags */ | 
|  | static void | 
|  | xfs_getfsmap_set_irec_flags( | 
|  | struct xfs_rmap_irec	*irec, | 
|  | const struct xfs_fsmap	*fmr) | 
|  | { | 
|  | irec->rm_flags = 0; | 
|  | if (fmr->fmr_flags & FMR_OF_ATTR_FORK) | 
|  | irec->rm_flags |= XFS_RMAP_ATTR_FORK; | 
|  | if (fmr->fmr_flags & FMR_OF_EXTENT_MAP) | 
|  | irec->rm_flags |= XFS_RMAP_BMBT_BLOCK; | 
|  | if (fmr->fmr_flags & FMR_OF_PREALLOC) | 
|  | irec->rm_flags |= XFS_RMAP_UNWRITTEN; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r) | 
|  | { | 
|  | if (!xfs_has_reflink(mp)) | 
|  | return true; | 
|  | if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner)) | 
|  | return true; | 
|  | if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK | | 
|  | XFS_RMAP_UNWRITTEN)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Execute a getfsmap query against the regular data device. */ | 
|  | STATIC int | 
|  | __xfs_getfsmap_datadev( | 
|  | struct xfs_trans		*tp, | 
|  | const struct xfs_fsmap		*keys, | 
|  | struct xfs_getfsmap_info	*info, | 
|  | int				(*query_fn)(struct xfs_trans *, | 
|  | struct xfs_getfsmap_info *, | 
|  | struct xfs_btree_cur **, | 
|  | void *), | 
|  | void				*priv) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | struct xfs_perag		*pag = NULL; | 
|  | struct xfs_btree_cur		*bt_cur = NULL; | 
|  | xfs_fsblock_t			start_fsb; | 
|  | xfs_fsblock_t			end_fsb; | 
|  | xfs_agnumber_t			start_ag, end_ag; | 
|  | uint64_t			eofs; | 
|  | int				error = 0; | 
|  |  | 
|  | eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | 
|  | if (keys[0].fmr_physical >= eofs) | 
|  | return 0; | 
|  | start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical); | 
|  | end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical)); | 
|  |  | 
|  | /* | 
|  | * Convert the fsmap low/high keys to AG based keys.  Initialize | 
|  | * low to the fsmap low key and max out the high key to the end | 
|  | * of the AG. | 
|  | */ | 
|  | info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); | 
|  | error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); | 
|  | if (error) | 
|  | return error; | 
|  | info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length); | 
|  | xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); | 
|  |  | 
|  | /* Adjust the low key if we are continuing from where we left off. */ | 
|  | if (info->low.rm_blockcount == 0) { | 
|  | /* No previous record from which to continue */ | 
|  | } else if (rmap_not_shareable(mp, &info->low)) { | 
|  | /* Last record seen was an unshareable extent */ | 
|  | info->low.rm_owner = 0; | 
|  | info->low.rm_offset = 0; | 
|  |  | 
|  | start_fsb += info->low.rm_blockcount; | 
|  | if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs) | 
|  | return 0; | 
|  | } else { | 
|  | /* Last record seen was a shareable file data extent */ | 
|  | info->low.rm_offset += info->low.rm_blockcount; | 
|  | } | 
|  | info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb); | 
|  |  | 
|  | info->high.rm_startblock = -1U; | 
|  | info->high.rm_owner = ULLONG_MAX; | 
|  | info->high.rm_offset = ULLONG_MAX; | 
|  | info->high.rm_blockcount = 0; | 
|  | info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; | 
|  |  | 
|  | start_ag = XFS_FSB_TO_AGNO(mp, start_fsb); | 
|  | end_ag = XFS_FSB_TO_AGNO(mp, end_fsb); | 
|  |  | 
|  | while ((pag = xfs_perag_next_range(mp, pag, start_ag, end_ag))) { | 
|  | /* | 
|  | * Set the AG high key from the fsmap high key if this | 
|  | * is the last AG that we're querying. | 
|  | */ | 
|  | info->group = pag_group(pag); | 
|  | if (pag_agno(pag) == end_ag) { | 
|  | info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp, | 
|  | end_fsb); | 
|  | info->high.rm_offset = XFS_BB_TO_FSBT(mp, | 
|  | keys[1].fmr_offset); | 
|  | error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); | 
|  | if (error) | 
|  | break; | 
|  | xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); | 
|  | } | 
|  |  | 
|  | if (bt_cur) { | 
|  | xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); | 
|  | bt_cur = NULL; | 
|  | xfs_trans_brelse(tp, info->agf_bp); | 
|  | info->agf_bp = NULL; | 
|  | } | 
|  |  | 
|  | error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | trace_xfs_fsmap_low_group_key(mp, info->dev, pag_agno(pag), | 
|  | &info->low); | 
|  | trace_xfs_fsmap_high_group_key(mp, info->dev, pag_agno(pag), | 
|  | &info->high); | 
|  |  | 
|  | error = query_fn(tp, info, &bt_cur, priv); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Set the AG low key to the start of the AG prior to | 
|  | * moving on to the next AG. | 
|  | */ | 
|  | if (pag_agno(pag) == start_ag) | 
|  | memset(&info->low, 0, sizeof(info->low)); | 
|  |  | 
|  | /* | 
|  | * If this is the last AG, report any gap at the end of it | 
|  | * before we drop the reference to the perag when the loop | 
|  | * terminates. | 
|  | */ | 
|  | if (pag_agno(pag) == end_ag) { | 
|  | info->last = true; | 
|  | error = query_fn(tp, info, &bt_cur, priv); | 
|  | if (error) | 
|  | break; | 
|  | } | 
|  | info->group = NULL; | 
|  | } | 
|  |  | 
|  | if (bt_cur) | 
|  | xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : | 
|  | XFS_BTREE_NOERROR); | 
|  | if (info->agf_bp) { | 
|  | xfs_trans_brelse(tp, info->agf_bp); | 
|  | info->agf_bp = NULL; | 
|  | } | 
|  | if (info->group) { | 
|  | xfs_perag_rele(pag); | 
|  | info->group = NULL; | 
|  | } else if (pag) { | 
|  | /* loop termination case */ | 
|  | xfs_perag_rele(pag); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Actually query the rmap btree. */ | 
|  | STATIC int | 
|  | xfs_getfsmap_datadev_rmapbt_query( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_getfsmap_info	*info, | 
|  | struct xfs_btree_cur		**curpp, | 
|  | void				*priv) | 
|  | { | 
|  | /* Report any gap at the end of the last AG. */ | 
|  | if (info->last) | 
|  | return xfs_getfsmap_rmapbt_helper(*curpp, &info->high, info); | 
|  |  | 
|  | /* Allocate cursor for this AG and query_range it. */ | 
|  | *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp, | 
|  | to_perag(info->group)); | 
|  | return xfs_rmap_query_range(*curpp, &info->low, &info->high, | 
|  | xfs_getfsmap_rmapbt_helper, info); | 
|  | } | 
|  |  | 
|  | /* Execute a getfsmap query against the regular data device rmapbt. */ | 
|  | STATIC int | 
|  | xfs_getfsmap_datadev_rmapbt( | 
|  | struct xfs_trans		*tp, | 
|  | const struct xfs_fsmap		*keys, | 
|  | struct xfs_getfsmap_info	*info) | 
|  | { | 
|  | info->missing_owner = XFS_FMR_OWN_FREE; | 
|  | return __xfs_getfsmap_datadev(tp, keys, info, | 
|  | xfs_getfsmap_datadev_rmapbt_query, NULL); | 
|  | } | 
|  |  | 
|  | /* Actually query the bno btree. */ | 
|  | STATIC int | 
|  | xfs_getfsmap_datadev_bnobt_query( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_getfsmap_info	*info, | 
|  | struct xfs_btree_cur		**curpp, | 
|  | void				*priv) | 
|  | { | 
|  | struct xfs_alloc_rec_incore	*key = priv; | 
|  |  | 
|  | /* Report any gap at the end of the last AG. */ | 
|  | if (info->last) | 
|  | return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info); | 
|  |  | 
|  | /* Allocate cursor for this AG and query_range it. */ | 
|  | *curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp, | 
|  | to_perag(info->group)); | 
|  | key->ar_startblock = info->low.rm_startblock; | 
|  | key[1].ar_startblock = info->high.rm_startblock; | 
|  | return xfs_alloc_query_range(*curpp, key, &key[1], | 
|  | xfs_getfsmap_datadev_bnobt_helper, info); | 
|  | } | 
|  |  | 
|  | /* Execute a getfsmap query against the regular data device's bnobt. */ | 
|  | STATIC int | 
|  | xfs_getfsmap_datadev_bnobt( | 
|  | struct xfs_trans		*tp, | 
|  | const struct xfs_fsmap		*keys, | 
|  | struct xfs_getfsmap_info	*info) | 
|  | { | 
|  | struct xfs_alloc_rec_incore	akeys[2]; | 
|  |  | 
|  | memset(akeys, 0, sizeof(akeys)); | 
|  | info->missing_owner = XFS_FMR_OWN_UNKNOWN; | 
|  | return __xfs_getfsmap_datadev(tp, keys, info, | 
|  | xfs_getfsmap_datadev_bnobt_query, &akeys[0]); | 
|  | } | 
|  |  | 
|  | /* Execute a getfsmap query against the log device. */ | 
|  | STATIC int | 
|  | xfs_getfsmap_logdev( | 
|  | struct xfs_trans		*tp, | 
|  | const struct xfs_fsmap		*keys, | 
|  | struct xfs_getfsmap_info	*info) | 
|  | { | 
|  | struct xfs_fsmap_irec		frec = { | 
|  | .start_daddr		= 0, | 
|  | .rec_key		= 0, | 
|  | .owner			= XFS_RMAP_OWN_LOG, | 
|  | }; | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | xfs_fsblock_t			start_fsb, end_fsb; | 
|  | uint64_t			eofs; | 
|  |  | 
|  | eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); | 
|  | if (keys[0].fmr_physical >= eofs) | 
|  | return 0; | 
|  | start_fsb = XFS_BB_TO_FSBT(mp, | 
|  | keys[0].fmr_physical + keys[0].fmr_length); | 
|  | end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical)); | 
|  |  | 
|  | /* Adjust the low key if we are continuing from where we left off. */ | 
|  | if (keys[0].fmr_length > 0) | 
|  | info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb); | 
|  |  | 
|  | trace_xfs_fsmap_low_linear_key(mp, info->dev, start_fsb); | 
|  | trace_xfs_fsmap_high_linear_key(mp, info->dev, end_fsb); | 
|  |  | 
|  | if (start_fsb > 0) | 
|  | return 0; | 
|  |  | 
|  | /* Fabricate an rmap entry for the external log device. */ | 
|  | frec.len_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); | 
|  | return xfs_getfsmap_helper(tp, info, &frec); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_XFS_RT | 
|  | /* Transform a rtbitmap "record" into a fsmap */ | 
|  | STATIC int | 
|  | xfs_getfsmap_rtdev_rtbitmap_helper( | 
|  | struct xfs_rtgroup		*rtg, | 
|  | struct xfs_trans		*tp, | 
|  | const struct xfs_rtalloc_rec	*rec, | 
|  | void				*priv) | 
|  | { | 
|  | struct xfs_fsmap_irec		frec = { | 
|  | .owner			= XFS_RMAP_OWN_NULL, /* "free" */ | 
|  | }; | 
|  | struct xfs_mount		*mp = rtg_mount(rtg); | 
|  | struct xfs_getfsmap_info	*info = priv; | 
|  | xfs_rtblock_t			start_rtb = | 
|  | xfs_rtx_to_rtb(rtg, rec->ar_startext); | 
|  | uint64_t			rtbcount = | 
|  | xfs_rtbxlen_to_blen(mp, rec->ar_extcount); | 
|  |  | 
|  | /* | 
|  | * For an info->last query, we're looking for a gap between the last | 
|  | * mapping emitted and the high key specified by userspace.  If the | 
|  | * user's query spans less than 1 fsblock, then info->high and | 
|  | * info->low will have the same rm_startblock, which causes rec_daddr | 
|  | * and next_daddr to be the same.  Therefore, use the end_daddr that | 
|  | * we calculated from userspace's high key to synthesize the record. | 
|  | * Note that if the btree query found a mapping, there won't be a gap. | 
|  | */ | 
|  | if (info->last) | 
|  | frec.start_daddr = info->end_daddr + 1; | 
|  | else | 
|  | frec.start_daddr = xfs_rtb_to_daddr(mp, start_rtb); | 
|  |  | 
|  | frec.len_daddr = XFS_FSB_TO_BB(mp, rtbcount); | 
|  | return xfs_getfsmap_helper(tp, info, &frec); | 
|  | } | 
|  |  | 
|  | /* Execute a getfsmap query against the realtime device rtbitmap. */ | 
|  | STATIC int | 
|  | xfs_getfsmap_rtdev_rtbitmap( | 
|  | struct xfs_trans		*tp, | 
|  | const struct xfs_fsmap		*keys, | 
|  | struct xfs_getfsmap_info	*info) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | xfs_rtblock_t			start_rtbno, end_rtbno; | 
|  | xfs_rtxnum_t			start_rtx, end_rtx; | 
|  | xfs_rgnumber_t			start_rgno, end_rgno; | 
|  | struct xfs_rtgroup		*rtg = NULL; | 
|  | uint64_t			eofs; | 
|  | int				error; | 
|  |  | 
|  | eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks); | 
|  | if (keys[0].fmr_physical >= eofs) | 
|  | return 0; | 
|  |  | 
|  | info->missing_owner = XFS_FMR_OWN_UNKNOWN; | 
|  |  | 
|  | /* Adjust the low key if we are continuing from where we left off. */ | 
|  | start_rtbno = xfs_daddr_to_rtb(mp, | 
|  | keys[0].fmr_physical + keys[0].fmr_length); | 
|  | if (keys[0].fmr_length > 0) { | 
|  | info->low_daddr = xfs_rtb_to_daddr(mp, start_rtbno); | 
|  | if (info->low_daddr >= eofs) | 
|  | return 0; | 
|  | } | 
|  | start_rtx = xfs_rtb_to_rtx(mp, start_rtbno); | 
|  | start_rgno = xfs_rtb_to_rgno(mp, start_rtbno); | 
|  |  | 
|  | end_rtbno = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical)); | 
|  | end_rgno = xfs_rtb_to_rgno(mp, end_rtbno); | 
|  |  | 
|  | trace_xfs_fsmap_low_linear_key(mp, info->dev, start_rtbno); | 
|  | trace_xfs_fsmap_high_linear_key(mp, info->dev, end_rtbno); | 
|  |  | 
|  | end_rtx = -1ULL; | 
|  |  | 
|  | while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) { | 
|  | if (rtg_rgno(rtg) == end_rgno) | 
|  | end_rtx = xfs_rtb_to_rtx(mp, | 
|  | end_rtbno + mp->m_sb.sb_rextsize - 1); | 
|  |  | 
|  | info->group = rtg_group(rtg); | 
|  | xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED); | 
|  | error = xfs_rtalloc_query_range(rtg, tp, start_rtx, end_rtx, | 
|  | xfs_getfsmap_rtdev_rtbitmap_helper, info); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Report any gaps at the end of the rtbitmap by simulating a | 
|  | * zero-length free extent starting at the rtx after the end | 
|  | * of the query range. | 
|  | */ | 
|  | if (rtg_rgno(rtg) == end_rgno) { | 
|  | struct xfs_rtalloc_rec	ahigh = { | 
|  | .ar_startext	= min(end_rtx + 1, | 
|  | rtg->rtg_extents), | 
|  | }; | 
|  |  | 
|  | info->last = true; | 
|  | error = xfs_getfsmap_rtdev_rtbitmap_helper(rtg, tp, | 
|  | &ahigh, info); | 
|  | if (error) | 
|  | break; | 
|  | } | 
|  |  | 
|  | xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED); | 
|  | info->group = NULL; | 
|  | start_rtx = 0; | 
|  | } | 
|  |  | 
|  | /* loop termination case */ | 
|  | if (rtg) { | 
|  | if (info->group) { | 
|  | xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED); | 
|  | info->group = NULL; | 
|  | } | 
|  | xfs_rtgroup_rele(rtg); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Transform a realtime rmapbt record into a fsmap */ | 
|  | STATIC int | 
|  | xfs_getfsmap_rtdev_rmapbt_helper( | 
|  | struct xfs_btree_cur		*cur, | 
|  | const struct xfs_rmap_irec	*rec, | 
|  | void				*priv) | 
|  | { | 
|  | struct xfs_fsmap_irec		frec = { | 
|  | .owner			= rec->rm_owner, | 
|  | .offset			= rec->rm_offset, | 
|  | .rm_flags		= rec->rm_flags, | 
|  | .rec_key		= rec->rm_startblock, | 
|  | }; | 
|  | struct xfs_getfsmap_info	*info = priv; | 
|  |  | 
|  | return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group, | 
|  | rec->rm_startblock, rec->rm_blockcount, &frec); | 
|  | } | 
|  |  | 
|  | /* Actually query the rtrmap btree. */ | 
|  | STATIC int | 
|  | xfs_getfsmap_rtdev_rmapbt_query( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_getfsmap_info	*info, | 
|  | struct xfs_btree_cur		**curpp) | 
|  | { | 
|  | struct xfs_rtgroup		*rtg = to_rtg(info->group); | 
|  |  | 
|  | /* Query the rtrmapbt */ | 
|  | xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP | XFS_RTGLOCK_REFCOUNT); | 
|  | *curpp = xfs_rtrmapbt_init_cursor(tp, rtg); | 
|  | return xfs_rmap_query_range(*curpp, &info->low, &info->high, | 
|  | xfs_getfsmap_rtdev_rmapbt_helper, info); | 
|  | } | 
|  |  | 
|  | /* Execute a getfsmap query against the realtime device rmapbt. */ | 
|  | STATIC int | 
|  | xfs_getfsmap_rtdev_rmapbt( | 
|  | struct xfs_trans		*tp, | 
|  | const struct xfs_fsmap		*keys, | 
|  | struct xfs_getfsmap_info	*info) | 
|  | { | 
|  | struct xfs_fsmap		key0 = *keys; /* struct copy */ | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | struct xfs_rtgroup		*rtg = NULL; | 
|  | struct xfs_btree_cur		*bt_cur = NULL; | 
|  | xfs_daddr_t			rtstart_daddr; | 
|  | xfs_rtblock_t			start_rtb; | 
|  | xfs_rtblock_t			end_rtb; | 
|  | xfs_rgnumber_t			start_rg, end_rg; | 
|  | uint64_t			eofs; | 
|  | int				error = 0; | 
|  |  | 
|  | eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart + mp->m_sb.sb_rblocks); | 
|  | if (key0.fmr_physical >= eofs) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * On zoned filesystems with an internal rt volume, the volume comes | 
|  | * immediately after the end of the data volume.  However, the | 
|  | * xfs_rtblock_t address space is relative to the start of the data | 
|  | * device, which means that the first @rtstart fsblocks do not actually | 
|  | * point anywhere.  If a fsmap query comes in with the low key starting | 
|  | * below @rtstart, report it as "owned by filesystem". | 
|  | */ | 
|  | rtstart_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart); | 
|  | if (xfs_has_zoned(mp) && key0.fmr_physical < rtstart_daddr) { | 
|  | struct xfs_fsmap_irec		frec = { | 
|  | .owner			= XFS_RMAP_OWN_FS, | 
|  | .len_daddr		= rtstart_daddr, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Adjust the start of the query range if we're picking up from | 
|  | * a previous round, and only emit the record if we haven't | 
|  | * already gone past. | 
|  | */ | 
|  | key0.fmr_physical += key0.fmr_length; | 
|  | if (key0.fmr_physical < rtstart_daddr) { | 
|  | error = xfs_getfsmap_helper(tp, info, &frec); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | key0.fmr_physical = rtstart_daddr; | 
|  | } | 
|  |  | 
|  | /* Zero the other fields to avoid further adjustments. */ | 
|  | key0.fmr_owner = 0; | 
|  | key0.fmr_offset = 0; | 
|  | key0.fmr_length = 0; | 
|  | } | 
|  |  | 
|  | start_rtb = xfs_daddr_to_rtb(mp, key0.fmr_physical); | 
|  | end_rtb = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical)); | 
|  | info->missing_owner = XFS_FMR_OWN_FREE; | 
|  |  | 
|  | /* | 
|  | * Convert the fsmap low/high keys to rtgroup based keys.  Initialize | 
|  | * low to the fsmap low key and max out the high key to the end | 
|  | * of the rtgroup. | 
|  | */ | 
|  | info->low.rm_offset = XFS_BB_TO_FSBT(mp, key0.fmr_offset); | 
|  | error = xfs_fsmap_owner_to_rmap(&info->low, &key0); | 
|  | if (error) | 
|  | return error; | 
|  | info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, key0.fmr_length); | 
|  | xfs_getfsmap_set_irec_flags(&info->low, &key0); | 
|  |  | 
|  | /* Adjust the low key if we are continuing from where we left off. */ | 
|  | if (info->low.rm_blockcount == 0) { | 
|  | /* No previous record from which to continue */ | 
|  | } else if (rmap_not_shareable(mp, &info->low)) { | 
|  | /* Last record seen was an unshareable extent */ | 
|  | info->low.rm_owner = 0; | 
|  | info->low.rm_offset = 0; | 
|  |  | 
|  | start_rtb += info->low.rm_blockcount; | 
|  | if (xfs_rtb_to_daddr(mp, start_rtb) >= eofs) | 
|  | return 0; | 
|  | } else { | 
|  | /* Last record seen was a shareable file data extent */ | 
|  | info->low.rm_offset += info->low.rm_blockcount; | 
|  | } | 
|  | info->low.rm_startblock = xfs_rtb_to_rgbno(mp, start_rtb); | 
|  |  | 
|  | info->high.rm_startblock = -1U; | 
|  | info->high.rm_owner = ULLONG_MAX; | 
|  | info->high.rm_offset = ULLONG_MAX; | 
|  | info->high.rm_blockcount = 0; | 
|  | info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; | 
|  |  | 
|  | start_rg = xfs_rtb_to_rgno(mp, start_rtb); | 
|  | end_rg = xfs_rtb_to_rgno(mp, end_rtb); | 
|  |  | 
|  | while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rg, end_rg))) { | 
|  | /* | 
|  | * Set the rtgroup high key from the fsmap high key if this | 
|  | * is the last rtgroup that we're querying. | 
|  | */ | 
|  | info->group = rtg_group(rtg); | 
|  | if (rtg_rgno(rtg) == end_rg) { | 
|  | info->high.rm_startblock = | 
|  | xfs_rtb_to_rgbno(mp, end_rtb); | 
|  | info->high.rm_offset = | 
|  | XFS_BB_TO_FSBT(mp, keys[1].fmr_offset); | 
|  | error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); | 
|  | if (error) | 
|  | break; | 
|  | xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); | 
|  | } | 
|  |  | 
|  | if (bt_cur) { | 
|  | xfs_rtgroup_unlock(to_rtg(bt_cur->bc_group), | 
|  | XFS_RTGLOCK_RMAP | | 
|  | XFS_RTGLOCK_REFCOUNT); | 
|  | xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); | 
|  | bt_cur = NULL; | 
|  | } | 
|  |  | 
|  | trace_xfs_fsmap_low_group_key(mp, info->dev, rtg_rgno(rtg), | 
|  | &info->low); | 
|  | trace_xfs_fsmap_high_group_key(mp, info->dev, rtg_rgno(rtg), | 
|  | &info->high); | 
|  |  | 
|  | error = xfs_getfsmap_rtdev_rmapbt_query(tp, info, &bt_cur); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Set the rtgroup low key to the start of the rtgroup prior to | 
|  | * moving on to the next rtgroup. | 
|  | */ | 
|  | if (rtg_rgno(rtg) == start_rg) | 
|  | memset(&info->low, 0, sizeof(info->low)); | 
|  |  | 
|  | /* | 
|  | * If this is the last rtgroup, report any gap at the end of it | 
|  | * before we drop the reference to the perag when the loop | 
|  | * terminates. | 
|  | */ | 
|  | if (rtg_rgno(rtg) == end_rg) { | 
|  | info->last = true; | 
|  | error = xfs_getfsmap_rtdev_rmapbt_helper(bt_cur, | 
|  | &info->high, info); | 
|  | if (error) | 
|  | break; | 
|  | } | 
|  | info->group = NULL; | 
|  | } | 
|  |  | 
|  | if (bt_cur) { | 
|  | xfs_rtgroup_unlock(to_rtg(bt_cur->bc_group), | 
|  | XFS_RTGLOCK_RMAP | XFS_RTGLOCK_REFCOUNT); | 
|  | xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : | 
|  | XFS_BTREE_NOERROR); | 
|  | } | 
|  |  | 
|  | /* loop termination case */ | 
|  | if (rtg) { | 
|  | info->group = NULL; | 
|  | xfs_rtgroup_rele(rtg); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  | #endif /* CONFIG_XFS_RT */ | 
|  |  | 
|  | static uint32_t | 
|  | xfs_getfsmap_device( | 
|  | struct xfs_mount	*mp, | 
|  | enum xfs_device		dev) | 
|  | { | 
|  | if (mp->m_sb.sb_rtstart) | 
|  | return dev; | 
|  |  | 
|  | switch (dev) { | 
|  | case XFS_DEV_DATA: | 
|  | return new_encode_dev(mp->m_ddev_targp->bt_dev); | 
|  | case XFS_DEV_LOG: | 
|  | return new_encode_dev(mp->m_logdev_targp->bt_dev); | 
|  | case XFS_DEV_RT: | 
|  | if (!mp->m_rtdev_targp) | 
|  | break; | 
|  | return new_encode_dev(mp->m_rtdev_targp->bt_dev); | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Do we recognize the device? */ | 
|  | STATIC bool | 
|  | xfs_getfsmap_is_valid_device( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_fsmap	*fm) | 
|  | { | 
|  | return fm->fmr_device == 0 || | 
|  | fm->fmr_device == UINT_MAX || | 
|  | fm->fmr_device == xfs_getfsmap_device(mp, XFS_DEV_DATA) || | 
|  | fm->fmr_device == xfs_getfsmap_device(mp, XFS_DEV_LOG) || | 
|  | (mp->m_rtdev_targp && | 
|  | fm->fmr_device == xfs_getfsmap_device(mp, XFS_DEV_RT)); | 
|  | } | 
|  |  | 
|  | /* Ensure that the low key is less than the high key. */ | 
|  | STATIC bool | 
|  | xfs_getfsmap_check_keys( | 
|  | struct xfs_fsmap		*low_key, | 
|  | struct xfs_fsmap		*high_key) | 
|  | { | 
|  | if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) { | 
|  | if (low_key->fmr_offset) | 
|  | return false; | 
|  | } | 
|  | if (high_key->fmr_flags != -1U && | 
|  | (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | | 
|  | FMR_OF_EXTENT_MAP))) { | 
|  | if (high_key->fmr_offset && high_key->fmr_offset != -1ULL) | 
|  | return false; | 
|  | } | 
|  | if (high_key->fmr_length && high_key->fmr_length != -1ULL) | 
|  | return false; | 
|  |  | 
|  | if (low_key->fmr_device > high_key->fmr_device) | 
|  | return false; | 
|  | if (low_key->fmr_device < high_key->fmr_device) | 
|  | return true; | 
|  |  | 
|  | if (low_key->fmr_physical > high_key->fmr_physical) | 
|  | return false; | 
|  | if (low_key->fmr_physical < high_key->fmr_physical) | 
|  | return true; | 
|  |  | 
|  | if (low_key->fmr_owner > high_key->fmr_owner) | 
|  | return false; | 
|  | if (low_key->fmr_owner < high_key->fmr_owner) | 
|  | return true; | 
|  |  | 
|  | if (low_key->fmr_offset > high_key->fmr_offset) | 
|  | return false; | 
|  | if (low_key->fmr_offset < high_key->fmr_offset) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are only two devices if we didn't configure RT devices at build time. | 
|  | */ | 
|  | #ifdef CONFIG_XFS_RT | 
|  | #define XFS_GETFSMAP_DEVS	3 | 
|  | #else | 
|  | #define XFS_GETFSMAP_DEVS	2 | 
|  | #endif /* CONFIG_XFS_RT */ | 
|  |  | 
|  | /* | 
|  | * Get filesystem's extents as described in head, and format for output. Fills | 
|  | * in the supplied records array until there are no more reverse mappings to | 
|  | * return or head.fmh_entries == head.fmh_count.  In the second case, this | 
|  | * function returns -ECANCELED to indicate that more records would have been | 
|  | * returned. | 
|  | * | 
|  | * Key to Confusion | 
|  | * ---------------- | 
|  | * There are multiple levels of keys and counters at work here: | 
|  | * xfs_fsmap_head.fmh_keys	-- low and high fsmap keys passed in; | 
|  | *				   these reflect fs-wide sector addrs. | 
|  | * dkeys			-- fmh_keys used to query each device; | 
|  | *				   these are fmh_keys but w/ the low key | 
|  | *				   bumped up by fmr_length. | 
|  | * xfs_getfsmap_info.next_daddr	-- next disk addr we expect to see; this | 
|  | *				   is how we detect gaps in the fsmap | 
|  | records and report them. | 
|  | * xfs_getfsmap_info.low/high	-- per-AG low/high keys computed from | 
|  | *				   dkeys; used to query the metadata. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_getfsmap( | 
|  | struct xfs_mount		*mp, | 
|  | struct xfs_fsmap_head		*head, | 
|  | struct fsmap			*fsmap_recs) | 
|  | { | 
|  | struct xfs_trans		*tp = NULL; | 
|  | struct xfs_fsmap		dkeys[2];	/* per-dev keys */ | 
|  | struct xfs_getfsmap_dev		handlers[XFS_GETFSMAP_DEVS]; | 
|  | struct xfs_getfsmap_info	info = { | 
|  | .fsmap_recs		= fsmap_recs, | 
|  | .head			= head, | 
|  | }; | 
|  | bool				use_rmap; | 
|  | int				i; | 
|  | int				error = 0; | 
|  |  | 
|  | if (head->fmh_iflags & ~FMH_IF_VALID) | 
|  | return -EINVAL; | 
|  | if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) || | 
|  | !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1])) | 
|  | return -EINVAL; | 
|  | if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1])) | 
|  | return -EINVAL; | 
|  |  | 
|  | use_rmap = xfs_has_rmapbt(mp) && | 
|  | has_capability_noaudit(current, CAP_SYS_ADMIN); | 
|  | head->fmh_entries = 0; | 
|  |  | 
|  | /* Set up our device handlers. */ | 
|  | memset(handlers, 0, sizeof(handlers)); | 
|  | handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | 
|  | handlers[0].dev = xfs_getfsmap_device(mp, XFS_DEV_DATA); | 
|  | if (use_rmap) | 
|  | handlers[0].fn = xfs_getfsmap_datadev_rmapbt; | 
|  | else | 
|  | handlers[0].fn = xfs_getfsmap_datadev_bnobt; | 
|  | if (mp->m_logdev_targp != mp->m_ddev_targp) { | 
|  | handlers[1].nr_sectors = XFS_FSB_TO_BB(mp, | 
|  | mp->m_sb.sb_logblocks); | 
|  | handlers[1].dev = xfs_getfsmap_device(mp, XFS_DEV_LOG); | 
|  | handlers[1].fn = xfs_getfsmap_logdev; | 
|  | } | 
|  | #ifdef CONFIG_XFS_RT | 
|  | /* | 
|  | * For zoned file systems there is no rtbitmap, so only support fsmap | 
|  | * if the callers is privileged enough to use the full rmap version. | 
|  | */ | 
|  | if (mp->m_rtdev_targp && (use_rmap || !xfs_has_zoned(mp))) { | 
|  | handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks); | 
|  | handlers[2].dev = xfs_getfsmap_device(mp, XFS_DEV_RT); | 
|  | if (use_rmap) | 
|  | handlers[2].fn = xfs_getfsmap_rtdev_rmapbt; | 
|  | else | 
|  | handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap; | 
|  | } | 
|  | #endif /* CONFIG_XFS_RT */ | 
|  |  | 
|  | xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev), | 
|  | xfs_getfsmap_dev_compare); | 
|  |  | 
|  | /* | 
|  | * To continue where we left off, we allow userspace to use the | 
|  | * last mapping from a previous call as the low key of the next. | 
|  | * This is identified by a non-zero length in the low key. We | 
|  | * have to increment the low key in this scenario to ensure we | 
|  | * don't return the same mapping again, and instead return the | 
|  | * very next mapping. | 
|  | * | 
|  | * If the low key mapping refers to file data, the same physical | 
|  | * blocks could be mapped to several other files/offsets. | 
|  | * According to rmapbt record ordering, the minimal next | 
|  | * possible record for the block range is the next starting | 
|  | * offset in the same inode. Therefore, each fsmap backend bumps | 
|  | * the file offset to continue the search appropriately.  For | 
|  | * all other low key mapping types (attr blocks, metadata), each | 
|  | * fsmap backend bumps the physical offset as there can be no | 
|  | * other mapping for the same physical block range. | 
|  | */ | 
|  | dkeys[0] = head->fmh_keys[0]; | 
|  | memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap)); | 
|  |  | 
|  | info.next_daddr = head->fmh_keys[0].fmr_physical + | 
|  | head->fmh_keys[0].fmr_length; | 
|  |  | 
|  | /* For each device we support... */ | 
|  | for (i = 0; i < XFS_GETFSMAP_DEVS; i++) { | 
|  | /* Is this device within the range the user asked for? */ | 
|  | if (!handlers[i].fn) | 
|  | continue; | 
|  | if (head->fmh_keys[0].fmr_device > handlers[i].dev) | 
|  | continue; | 
|  | if (head->fmh_keys[1].fmr_device < handlers[i].dev) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If this device number matches the high key, we have to pass | 
|  | * the high key to the handler to limit the query results, and | 
|  | * set the end_daddr so that we can synthesize records at the | 
|  | * end of the query range or device. | 
|  | */ | 
|  | if (handlers[i].dev == head->fmh_keys[1].fmr_device) { | 
|  | dkeys[1] = head->fmh_keys[1]; | 
|  | info.end_daddr = min(handlers[i].nr_sectors - 1, | 
|  | dkeys[1].fmr_physical); | 
|  | } else { | 
|  | info.end_daddr = handlers[i].nr_sectors - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the device number exceeds the low key, zero out the low | 
|  | * key so that we get everything from the beginning. | 
|  | */ | 
|  | if (handlers[i].dev > head->fmh_keys[0].fmr_device) | 
|  | memset(&dkeys[0], 0, sizeof(struct xfs_fsmap)); | 
|  |  | 
|  | /* | 
|  | * Grab an empty transaction so that we can use its recursive | 
|  | * buffer locking abilities to detect cycles in the rmapbt | 
|  | * without deadlocking. | 
|  | */ | 
|  | tp = xfs_trans_alloc_empty(mp); | 
|  |  | 
|  | info.dev = handlers[i].dev; | 
|  | info.last = false; | 
|  | info.group = NULL; | 
|  | info.low_daddr = XFS_BUF_DADDR_NULL; | 
|  | info.low.rm_blockcount = 0; | 
|  | error = handlers[i].fn(tp, dkeys, &info); | 
|  | if (error) | 
|  | break; | 
|  | xfs_trans_cancel(tp); | 
|  | tp = NULL; | 
|  | info.next_daddr = 0; | 
|  | } | 
|  |  | 
|  | if (tp) | 
|  | xfs_trans_cancel(tp); | 
|  |  | 
|  | /* | 
|  | * For internal RT device we need to report different synthetic devices | 
|  | * for a single physical device, and thus can't report the actual dev_t. | 
|  | */ | 
|  | if (!mp->m_sb.sb_rtstart) | 
|  | head->fmh_oflags = FMH_OF_DEV_T; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_ioc_getfsmap( | 
|  | struct xfs_inode	*ip, | 
|  | struct fsmap_head	__user *arg) | 
|  | { | 
|  | struct xfs_fsmap_head	xhead = {0}; | 
|  | struct fsmap_head	head; | 
|  | struct fsmap		*recs; | 
|  | unsigned int		count; | 
|  | __u32			last_flags = 0; | 
|  | bool			done = false; | 
|  | int			error; | 
|  |  | 
|  | if (copy_from_user(&head, arg, sizeof(struct fsmap_head))) | 
|  | return -EFAULT; | 
|  | if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) || | 
|  | memchr_inv(head.fmh_keys[0].fmr_reserved, 0, | 
|  | sizeof(head.fmh_keys[0].fmr_reserved)) || | 
|  | memchr_inv(head.fmh_keys[1].fmr_reserved, 0, | 
|  | sizeof(head.fmh_keys[1].fmr_reserved))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Use an internal memory buffer so that we don't have to copy fsmap | 
|  | * data to userspace while holding locks.  Start by trying to allocate | 
|  | * up to 128k for the buffer, but fall back to a single page if needed. | 
|  | */ | 
|  | count = min_t(unsigned int, head.fmh_count, | 
|  | 131072 / sizeof(struct fsmap)); | 
|  | recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL); | 
|  | if (!recs) { | 
|  | count = min_t(unsigned int, head.fmh_count, | 
|  | PAGE_SIZE / sizeof(struct fsmap)); | 
|  | recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL); | 
|  | if (!recs) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | xhead.fmh_iflags = head.fmh_iflags; | 
|  | xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]); | 
|  | xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]); | 
|  |  | 
|  | trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]); | 
|  | trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]); | 
|  |  | 
|  | head.fmh_entries = 0; | 
|  | do { | 
|  | struct fsmap __user	*user_recs; | 
|  | struct fsmap		*last_rec; | 
|  |  | 
|  | user_recs = &arg->fmh_recs[head.fmh_entries]; | 
|  | xhead.fmh_entries = 0; | 
|  | xhead.fmh_count = min_t(unsigned int, count, | 
|  | head.fmh_count - head.fmh_entries); | 
|  |  | 
|  | /* Run query, record how many entries we got. */ | 
|  | error = xfs_getfsmap(ip->i_mount, &xhead, recs); | 
|  | switch (error) { | 
|  | case 0: | 
|  | /* | 
|  | * There are no more records in the result set.  Copy | 
|  | * whatever we got to userspace and break out. | 
|  | */ | 
|  | done = true; | 
|  | break; | 
|  | case -ECANCELED: | 
|  | /* | 
|  | * The internal memory buffer is full.  Copy whatever | 
|  | * records we got to userspace and go again if we have | 
|  | * not yet filled the userspace buffer. | 
|  | */ | 
|  | error = 0; | 
|  | break; | 
|  | default: | 
|  | goto out_free; | 
|  | } | 
|  | head.fmh_entries += xhead.fmh_entries; | 
|  | head.fmh_oflags = xhead.fmh_oflags; | 
|  |  | 
|  | /* | 
|  | * If the caller wanted a record count or there aren't any | 
|  | * new records to return, we're done. | 
|  | */ | 
|  | if (head.fmh_count == 0 || xhead.fmh_entries == 0) | 
|  | break; | 
|  |  | 
|  | /* Copy all the records we got out to userspace. */ | 
|  | if (copy_to_user(user_recs, recs, | 
|  | xhead.fmh_entries * sizeof(struct fsmap))) { | 
|  | error = -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* Remember the last record flags we copied to userspace. */ | 
|  | last_rec = &recs[xhead.fmh_entries - 1]; | 
|  | last_flags = last_rec->fmr_flags; | 
|  |  | 
|  | /* Set up the low key for the next iteration. */ | 
|  | xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec); | 
|  | trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]); | 
|  | } while (!done && head.fmh_entries < head.fmh_count); | 
|  |  | 
|  | /* | 
|  | * If there are no more records in the query result set and we're not | 
|  | * in counting mode, mark the last record returned with the LAST flag. | 
|  | */ | 
|  | if (done && head.fmh_count > 0 && head.fmh_entries > 0) { | 
|  | struct fsmap __user	*user_rec; | 
|  |  | 
|  | last_flags |= FMR_OF_LAST; | 
|  | user_rec = &arg->fmh_recs[head.fmh_entries - 1]; | 
|  |  | 
|  | if (copy_to_user(&user_rec->fmr_flags, &last_flags, | 
|  | sizeof(last_flags))) { | 
|  | error = -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* copy back header */ | 
|  | if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) { | 
|  | error = -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | out_free: | 
|  | kvfree(recs); | 
|  | return error; | 
|  | } |