|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
|  | * Copyright (c) 2016-2018 Christoph Hellwig. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_bmap_util.h" | 
|  | #include "xfs_errortag.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_space.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_iomap.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_rtgroup.h" | 
|  | #include "xfs_dquot_item.h" | 
|  | #include "xfs_dquot.h" | 
|  | #include "xfs_reflink.h" | 
|  | #include "xfs_health.h" | 
|  | #include "xfs_rtbitmap.h" | 
|  | #include "xfs_icache.h" | 
|  | #include "xfs_zone_alloc.h" | 
|  |  | 
|  | #define XFS_ALLOC_ALIGN(mp, off) \ | 
|  | (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log) | 
|  |  | 
|  | static int | 
|  | xfs_alert_fsblock_zero( | 
|  | xfs_inode_t	*ip, | 
|  | xfs_bmbt_irec_t	*imap) | 
|  | { | 
|  | xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, | 
|  | "Access to block zero in inode %llu " | 
|  | "start_block: %llx start_off: %llx " | 
|  | "blkcnt: %llx extent-state: %x", | 
|  | (unsigned long long)ip->i_ino, | 
|  | (unsigned long long)imap->br_startblock, | 
|  | (unsigned long long)imap->br_startoff, | 
|  | (unsigned long long)imap->br_blockcount, | 
|  | imap->br_state); | 
|  | xfs_bmap_mark_sick(ip, XFS_DATA_FORK); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | u64 | 
|  | xfs_iomap_inode_sequence( | 
|  | struct xfs_inode	*ip, | 
|  | u16			iomap_flags) | 
|  | { | 
|  | u64			cookie = 0; | 
|  |  | 
|  | if (iomap_flags & IOMAP_F_XATTR) | 
|  | return READ_ONCE(ip->i_af.if_seq); | 
|  | if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp) | 
|  | cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32; | 
|  | return cookie | READ_ONCE(ip->i_df.if_seq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the iomap passed to us is still valid for the given offset and | 
|  | * length. | 
|  | */ | 
|  | static bool | 
|  | xfs_iomap_valid( | 
|  | struct inode		*inode, | 
|  | const struct iomap	*iomap) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  |  | 
|  | if (iomap->type == IOMAP_HOLE) | 
|  | return true; | 
|  |  | 
|  | if (iomap->validity_cookie != | 
|  | xfs_iomap_inode_sequence(ip, iomap->flags)) { | 
|  | trace_xfs_iomap_invalid(ip, iomap); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const struct iomap_write_ops xfs_iomap_write_ops = { | 
|  | .iomap_valid		= xfs_iomap_valid, | 
|  | }; | 
|  |  | 
|  | int | 
|  | xfs_bmbt_to_iomap( | 
|  | struct xfs_inode	*ip, | 
|  | struct iomap		*iomap, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | unsigned int		mapping_flags, | 
|  | u16			iomap_flags, | 
|  | u64			sequence_cookie) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_buftarg	*target = xfs_inode_buftarg(ip); | 
|  |  | 
|  | if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { | 
|  | xfs_bmap_mark_sick(ip, XFS_DATA_FORK); | 
|  | return xfs_alert_fsblock_zero(ip, imap); | 
|  | } | 
|  |  | 
|  | if (imap->br_startblock == HOLESTARTBLOCK) { | 
|  | iomap->addr = IOMAP_NULL_ADDR; | 
|  | iomap->type = IOMAP_HOLE; | 
|  | } else if (imap->br_startblock == DELAYSTARTBLOCK || | 
|  | isnullstartblock(imap->br_startblock)) { | 
|  | iomap->addr = IOMAP_NULL_ADDR; | 
|  | iomap->type = IOMAP_DELALLOC; | 
|  | } else { | 
|  | xfs_daddr_t	daddr = xfs_fsb_to_db(ip, imap->br_startblock); | 
|  |  | 
|  | iomap->addr = BBTOB(daddr); | 
|  | if (mapping_flags & IOMAP_DAX) | 
|  | iomap->addr += target->bt_dax_part_off; | 
|  |  | 
|  | if (imap->br_state == XFS_EXT_UNWRITTEN) | 
|  | iomap->type = IOMAP_UNWRITTEN; | 
|  | else | 
|  | iomap->type = IOMAP_MAPPED; | 
|  |  | 
|  | /* | 
|  | * Mark iomaps starting at the first sector of a RTG as merge | 
|  | * boundary so that each I/O completions is contained to a | 
|  | * single RTG. | 
|  | */ | 
|  | if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) && | 
|  | xfs_rtbno_is_group_start(mp, imap->br_startblock)) | 
|  | iomap->flags |= IOMAP_F_BOUNDARY; | 
|  | } | 
|  | iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); | 
|  | iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); | 
|  | if (mapping_flags & IOMAP_DAX) | 
|  | iomap->dax_dev = target->bt_daxdev; | 
|  | else | 
|  | iomap->bdev = target->bt_bdev; | 
|  | iomap->flags = iomap_flags; | 
|  |  | 
|  | if (xfs_ipincount(ip) && | 
|  | (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) | 
|  | iomap->flags |= IOMAP_F_DIRTY; | 
|  |  | 
|  | iomap->validity_cookie = sequence_cookie; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_hole_to_iomap( | 
|  | struct xfs_inode	*ip, | 
|  | struct iomap		*iomap, | 
|  | xfs_fileoff_t		offset_fsb, | 
|  | xfs_fileoff_t		end_fsb) | 
|  | { | 
|  | struct xfs_buftarg	*target = xfs_inode_buftarg(ip); | 
|  |  | 
|  | iomap->addr = IOMAP_NULL_ADDR; | 
|  | iomap->type = IOMAP_HOLE; | 
|  | iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); | 
|  | iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); | 
|  | iomap->bdev = target->bt_bdev; | 
|  | iomap->dax_dev = target->bt_daxdev; | 
|  | } | 
|  |  | 
|  | static inline xfs_fileoff_t | 
|  | xfs_iomap_end_fsb( | 
|  | struct xfs_mount	*mp, | 
|  | loff_t			offset, | 
|  | loff_t			count) | 
|  | { | 
|  | ASSERT(offset <= mp->m_super->s_maxbytes); | 
|  | return min(XFS_B_TO_FSB(mp, offset + count), | 
|  | XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); | 
|  | } | 
|  |  | 
|  | static xfs_extlen_t | 
|  | xfs_eof_alignment( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_extlen_t		align = 0; | 
|  |  | 
|  | if (!XFS_IS_REALTIME_INODE(ip)) { | 
|  | /* | 
|  | * Round up the allocation request to a stripe unit | 
|  | * (m_dalign) boundary if the file size is >= stripe unit | 
|  | * size, and we are allocating past the allocation eof. | 
|  | * | 
|  | * If mounted with the "-o swalloc" option the alignment is | 
|  | * increased from the strip unit size to the stripe width. | 
|  | */ | 
|  | if (mp->m_swidth && xfs_has_swalloc(mp)) | 
|  | align = mp->m_swidth; | 
|  | else if (mp->m_dalign) | 
|  | align = mp->m_dalign; | 
|  |  | 
|  | if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) | 
|  | align = 0; | 
|  | } | 
|  |  | 
|  | return align; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if last_fsb is outside the last extent, and if so grow it to the next | 
|  | * stripe unit boundary. | 
|  | */ | 
|  | xfs_fileoff_t | 
|  | xfs_iomap_eof_align_last_fsb( | 
|  | struct xfs_inode	*ip, | 
|  | xfs_fileoff_t		end_fsb) | 
|  | { | 
|  | struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); | 
|  | xfs_extlen_t		extsz = xfs_get_extsz_hint(ip); | 
|  | xfs_extlen_t		align = xfs_eof_alignment(ip); | 
|  | struct xfs_bmbt_irec	irec; | 
|  | struct xfs_iext_cursor	icur; | 
|  |  | 
|  | ASSERT(!xfs_need_iread_extents(ifp)); | 
|  |  | 
|  | /* | 
|  | * Always round up the allocation request to the extent hint boundary. | 
|  | */ | 
|  | if (extsz) { | 
|  | if (align) | 
|  | align = roundup_64(align, extsz); | 
|  | else | 
|  | align = extsz; | 
|  | } | 
|  |  | 
|  | if (align) { | 
|  | xfs_fileoff_t	aligned_end_fsb = roundup_64(end_fsb, align); | 
|  |  | 
|  | xfs_iext_last(ifp, &icur); | 
|  | if (!xfs_iext_get_extent(ifp, &icur, &irec) || | 
|  | aligned_end_fsb >= irec.br_startoff + irec.br_blockcount) | 
|  | return aligned_end_fsb; | 
|  | } | 
|  |  | 
|  | return end_fsb; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_iomap_write_direct( | 
|  | struct xfs_inode	*ip, | 
|  | xfs_fileoff_t		offset_fsb, | 
|  | xfs_fileoff_t		count_fsb, | 
|  | unsigned int		flags, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | u64			*seq) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_trans	*tp; | 
|  | xfs_filblks_t		resaligned; | 
|  | int			nimaps; | 
|  | unsigned int		dblocks, rblocks; | 
|  | bool			force = false; | 
|  | int			error; | 
|  | int			bmapi_flags = XFS_BMAPI_PREALLOC; | 
|  | int			nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT; | 
|  |  | 
|  | ASSERT(count_fsb > 0); | 
|  |  | 
|  | resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, | 
|  | xfs_get_extsz_hint(ip)); | 
|  | if (unlikely(XFS_IS_REALTIME_INODE(ip))) { | 
|  | dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); | 
|  | rblocks = resaligned; | 
|  | } else { | 
|  | dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); | 
|  | rblocks = 0; | 
|  | } | 
|  |  | 
|  | error = xfs_qm_dqattach(ip); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * For DAX, we do not allocate unwritten extents, but instead we zero | 
|  | * the block before we commit the transaction.  Ideally we'd like to do | 
|  | * this outside the transaction context, but if we commit and then crash | 
|  | * we may not have zeroed the blocks and this will be exposed on | 
|  | * recovery of the allocation. Hence we must zero before commit. | 
|  | * | 
|  | * Further, if we are mapping unwritten extents here, we need to zero | 
|  | * and convert them to written so that we don't need an unwritten extent | 
|  | * callback for DAX. This also means that we need to be able to dip into | 
|  | * the reserve block pool for bmbt block allocation if there is no space | 
|  | * left but we need to do unwritten extent conversion. | 
|  | */ | 
|  | if (flags & IOMAP_DAX) { | 
|  | bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; | 
|  | if (imap->br_state == XFS_EXT_UNWRITTEN) { | 
|  | force = true; | 
|  | nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT; | 
|  | dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, | 
|  | rblocks, force, &tp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * From this point onwards we overwrite the imap pointer that the | 
|  | * caller gave to us. | 
|  | */ | 
|  | nimaps = 1; | 
|  | error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0, | 
|  | imap, &nimaps); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * Complete the transaction | 
|  | */ | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { | 
|  | xfs_bmap_mark_sick(ip, XFS_DATA_FORK); | 
|  | error = xfs_alert_fsblock_zero(ip, imap); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | *seq = xfs_iomap_inode_sequence(ip, 0); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return error; | 
|  |  | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | STATIC bool | 
|  | xfs_quota_need_throttle( | 
|  | struct xfs_inode	*ip, | 
|  | xfs_dqtype_t		type, | 
|  | xfs_fsblock_t		alloc_blocks) | 
|  | { | 
|  | struct xfs_dquot	*dq = xfs_inode_dquot(ip, type); | 
|  | struct xfs_dquot_res	*res; | 
|  | struct xfs_dquot_pre	*pre; | 
|  |  | 
|  | if (!dq || !xfs_this_quota_on(ip->i_mount, type)) | 
|  | return false; | 
|  |  | 
|  | if (XFS_IS_REALTIME_INODE(ip)) { | 
|  | res = &dq->q_rtb; | 
|  | pre = &dq->q_rtb_prealloc; | 
|  | } else { | 
|  | res = &dq->q_blk; | 
|  | pre = &dq->q_blk_prealloc; | 
|  | } | 
|  |  | 
|  | /* no hi watermark, no throttle */ | 
|  | if (!pre->q_prealloc_hi_wmark) | 
|  | return false; | 
|  |  | 
|  | /* under the lo watermark, no throttle */ | 
|  | if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_quota_calc_throttle( | 
|  | struct xfs_inode	*ip, | 
|  | xfs_dqtype_t		type, | 
|  | xfs_fsblock_t		*qblocks, | 
|  | int			*qshift, | 
|  | int64_t			*qfreesp) | 
|  | { | 
|  | struct xfs_dquot	*dq = xfs_inode_dquot(ip, type); | 
|  | struct xfs_dquot_res	*res; | 
|  | struct xfs_dquot_pre	*pre; | 
|  | int64_t			freesp; | 
|  | int			shift = 0; | 
|  |  | 
|  | if (!dq) { | 
|  | res = NULL; | 
|  | pre = NULL; | 
|  | } else if (XFS_IS_REALTIME_INODE(ip)) { | 
|  | res = &dq->q_rtb; | 
|  | pre = &dq->q_rtb_prealloc; | 
|  | } else { | 
|  | res = &dq->q_blk; | 
|  | pre = &dq->q_blk_prealloc; | 
|  | } | 
|  |  | 
|  | /* no dq, or over hi wmark, squash the prealloc completely */ | 
|  | if (!res || res->reserved >= pre->q_prealloc_hi_wmark) { | 
|  | *qblocks = 0; | 
|  | *qfreesp = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | freesp = pre->q_prealloc_hi_wmark - res->reserved; | 
|  | if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) { | 
|  | shift = 2; | 
|  | if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT]) | 
|  | shift += 2; | 
|  | if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT]) | 
|  | shift += 2; | 
|  | } | 
|  |  | 
|  | if (freesp < *qfreesp) | 
|  | *qfreesp = freesp; | 
|  |  | 
|  | /* only overwrite the throttle values if we are more aggressive */ | 
|  | if ((freesp >> shift) < (*qblocks >> *qshift)) { | 
|  | *qblocks = freesp; | 
|  | *qshift = shift; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int64_t | 
|  | xfs_iomap_freesp( | 
|  | struct xfs_mount	*mp, | 
|  | unsigned int		idx, | 
|  | uint64_t		low_space[XFS_LOWSP_MAX], | 
|  | int			*shift) | 
|  | { | 
|  | int64_t			freesp; | 
|  |  | 
|  | freesp = xfs_estimate_freecounter(mp, idx); | 
|  | if (freesp < low_space[XFS_LOWSP_5_PCNT]) { | 
|  | *shift = 2; | 
|  | if (freesp < low_space[XFS_LOWSP_4_PCNT]) | 
|  | (*shift)++; | 
|  | if (freesp < low_space[XFS_LOWSP_3_PCNT]) | 
|  | (*shift)++; | 
|  | if (freesp < low_space[XFS_LOWSP_2_PCNT]) | 
|  | (*shift)++; | 
|  | if (freesp < low_space[XFS_LOWSP_1_PCNT]) | 
|  | (*shift)++; | 
|  | } | 
|  | return freesp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we don't have a user specified preallocation size, dynamically increase | 
|  | * the preallocation size as the size of the file grows.  Cap the maximum size | 
|  | * at a single extent or less if the filesystem is near full. The closer the | 
|  | * filesystem is to being full, the smaller the maximum preallocation. | 
|  | */ | 
|  | STATIC xfs_fsblock_t | 
|  | xfs_iomap_prealloc_size( | 
|  | struct xfs_inode	*ip, | 
|  | int			whichfork, | 
|  | loff_t			offset, | 
|  | loff_t			count, | 
|  | struct xfs_iext_cursor	*icur) | 
|  | { | 
|  | struct xfs_iext_cursor	ncur = *icur; | 
|  | struct xfs_bmbt_irec	prev, got; | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork); | 
|  | xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | int64_t			freesp; | 
|  | xfs_fsblock_t		qblocks; | 
|  | xfs_fsblock_t		alloc_blocks = 0; | 
|  | xfs_extlen_t		plen; | 
|  | int			shift = 0; | 
|  | int			qshift = 0; | 
|  |  | 
|  | /* | 
|  | * As an exception we don't do any preallocation at all if the file is | 
|  | * smaller than the minimum preallocation and we are using the default | 
|  | * dynamic preallocation scheme, as it is likely this is the only write | 
|  | * to the file that is going to be done. | 
|  | */ | 
|  | if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Use the minimum preallocation size for small files or if we are | 
|  | * writing right after a hole. | 
|  | */ | 
|  | if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || | 
|  | !xfs_iext_prev_extent(ifp, &ncur, &prev) || | 
|  | prev.br_startoff + prev.br_blockcount < offset_fsb) | 
|  | return mp->m_allocsize_blocks; | 
|  |  | 
|  | /* | 
|  | * Take the size of the preceding data extents as the basis for the | 
|  | * preallocation size. Note that we don't care if the previous extents | 
|  | * are written or not. | 
|  | */ | 
|  | plen = prev.br_blockcount; | 
|  | while (xfs_iext_prev_extent(ifp, &ncur, &got)) { | 
|  | if (plen > XFS_MAX_BMBT_EXTLEN / 2 || | 
|  | isnullstartblock(got.br_startblock) || | 
|  | got.br_startoff + got.br_blockcount != prev.br_startoff || | 
|  | got.br_startblock + got.br_blockcount != prev.br_startblock) | 
|  | break; | 
|  | plen += got.br_blockcount; | 
|  | prev = got; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the size of the extents is greater than half the maximum extent | 
|  | * length, then use the current offset as the basis.  This ensures that | 
|  | * for large files the preallocation size always extends to | 
|  | * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe | 
|  | * unit/width alignment of real extents. | 
|  | */ | 
|  | alloc_blocks = plen * 2; | 
|  | if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) | 
|  | alloc_blocks = XFS_B_TO_FSB(mp, offset); | 
|  | qblocks = alloc_blocks; | 
|  |  | 
|  | /* | 
|  | * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc | 
|  | * down to the nearest power of two value after throttling. To prevent | 
|  | * the round down from unconditionally reducing the maximum supported | 
|  | * prealloc size, we round up first, apply appropriate throttling, round | 
|  | * down and cap the value to XFS_BMBT_MAX_EXTLEN. | 
|  | */ | 
|  | alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN), | 
|  | alloc_blocks); | 
|  |  | 
|  | if (unlikely(XFS_IS_REALTIME_INODE(ip))) | 
|  | freesp = xfs_rtbxlen_to_blen(mp, | 
|  | xfs_iomap_freesp(mp, XC_FREE_RTEXTENTS, | 
|  | mp->m_low_rtexts, &shift)); | 
|  | else | 
|  | freesp = xfs_iomap_freesp(mp, XC_FREE_BLOCKS, mp->m_low_space, | 
|  | &shift); | 
|  |  | 
|  | /* | 
|  | * Check each quota to cap the prealloc size, provide a shift value to | 
|  | * throttle with and adjust amount of available space. | 
|  | */ | 
|  | if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks)) | 
|  | xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift, | 
|  | &freesp); | 
|  | if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks)) | 
|  | xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift, | 
|  | &freesp); | 
|  | if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks)) | 
|  | xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift, | 
|  | &freesp); | 
|  |  | 
|  | /* | 
|  | * The final prealloc size is set to the minimum of free space available | 
|  | * in each of the quotas and the overall filesystem. | 
|  | * | 
|  | * The shift throttle value is set to the maximum value as determined by | 
|  | * the global low free space values and per-quota low free space values. | 
|  | */ | 
|  | alloc_blocks = min(alloc_blocks, qblocks); | 
|  | shift = max(shift, qshift); | 
|  |  | 
|  | if (shift) | 
|  | alloc_blocks >>= shift; | 
|  | /* | 
|  | * rounddown_pow_of_two() returns an undefined result if we pass in | 
|  | * alloc_blocks = 0. | 
|  | */ | 
|  | if (alloc_blocks) | 
|  | alloc_blocks = rounddown_pow_of_two(alloc_blocks); | 
|  | if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) | 
|  | alloc_blocks = XFS_MAX_BMBT_EXTLEN; | 
|  |  | 
|  | /* | 
|  | * If we are still trying to allocate more space than is | 
|  | * available, squash the prealloc hard. This can happen if we | 
|  | * have a large file on a small filesystem and the above | 
|  | * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN. | 
|  | */ | 
|  | while (alloc_blocks && alloc_blocks >= freesp) | 
|  | alloc_blocks >>= 4; | 
|  | if (alloc_blocks < mp->m_allocsize_blocks) | 
|  | alloc_blocks = mp->m_allocsize_blocks; | 
|  | trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, | 
|  | mp->m_allocsize_blocks); | 
|  | return alloc_blocks; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_iomap_write_unwritten( | 
|  | xfs_inode_t	*ip, | 
|  | xfs_off_t	offset, | 
|  | xfs_off_t	count, | 
|  | bool		update_isize) | 
|  | { | 
|  | xfs_mount_t	*mp = ip->i_mount; | 
|  | xfs_fileoff_t	offset_fsb; | 
|  | xfs_filblks_t	count_fsb; | 
|  | xfs_filblks_t	numblks_fsb; | 
|  | int		nimaps; | 
|  | xfs_trans_t	*tp; | 
|  | xfs_bmbt_irec_t imap; | 
|  | struct inode	*inode = VFS_I(ip); | 
|  | xfs_fsize_t	i_size; | 
|  | uint		resblks; | 
|  | int		error; | 
|  |  | 
|  | trace_xfs_unwritten_convert(ip, offset, count); | 
|  |  | 
|  | offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); | 
|  | count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); | 
|  |  | 
|  | /* | 
|  | * Reserve enough blocks in this transaction for two complete extent | 
|  | * btree splits.  We may be converting the middle part of an unwritten | 
|  | * extent and in this case we will insert two new extents in the btree | 
|  | * each of which could cause a full split. | 
|  | * | 
|  | * This reservation amount will be used in the first call to | 
|  | * xfs_bmbt_split() to select an AG with enough space to satisfy the | 
|  | * rest of the operation. | 
|  | */ | 
|  | resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; | 
|  |  | 
|  | /* Attach dquots so that bmbt splits are accounted correctly. */ | 
|  | error = xfs_qm_dqattach(ip); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * Set up a transaction to convert the range of extents | 
|  | * from unwritten to real. Do allocations in a loop until | 
|  | * we have covered the range passed in. | 
|  | * | 
|  | * Note that we can't risk to recursing back into the filesystem | 
|  | * here as we might be asked to write out the same inode that we | 
|  | * complete here and might deadlock on the iolock. | 
|  | */ | 
|  | error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, | 
|  | 0, true, &tp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, | 
|  | XFS_IEXT_WRITE_UNWRITTEN_CNT); | 
|  | if (error) | 
|  | goto error_on_bmapi_transaction; | 
|  |  | 
|  | /* | 
|  | * Modify the unwritten extent state of the buffer. | 
|  | */ | 
|  | nimaps = 1; | 
|  | error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, | 
|  | XFS_BMAPI_CONVERT, resblks, &imap, | 
|  | &nimaps); | 
|  | if (error) | 
|  | goto error_on_bmapi_transaction; | 
|  |  | 
|  | /* | 
|  | * Log the updated inode size as we go.  We have to be careful | 
|  | * to only log it up to the actual write offset if it is | 
|  | * halfway into a block. | 
|  | */ | 
|  | i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); | 
|  | if (i_size > offset + count) | 
|  | i_size = offset + count; | 
|  | if (update_isize && i_size > i_size_read(inode)) | 
|  | i_size_write(inode, i_size); | 
|  | i_size = xfs_new_eof(ip, i_size); | 
|  | if (i_size) { | 
|  | ip->i_disk_size = i_size; | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  | } | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) { | 
|  | xfs_bmap_mark_sick(ip, XFS_DATA_FORK); | 
|  | return xfs_alert_fsblock_zero(ip, &imap); | 
|  | } | 
|  |  | 
|  | if ((numblks_fsb = imap.br_blockcount) == 0) { | 
|  | /* | 
|  | * The numblks_fsb value should always get | 
|  | * smaller, otherwise the loop is stuck. | 
|  | */ | 
|  | ASSERT(imap.br_blockcount); | 
|  | break; | 
|  | } | 
|  | offset_fsb += numblks_fsb; | 
|  | count_fsb -= numblks_fsb; | 
|  | } while (count_fsb > 0); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_on_bmapi_transaction: | 
|  | xfs_trans_cancel(tp); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | imap_needs_alloc( | 
|  | struct inode		*inode, | 
|  | unsigned		flags, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | int			nimaps) | 
|  | { | 
|  | /* don't allocate blocks when just zeroing */ | 
|  | if (flags & IOMAP_ZERO) | 
|  | return false; | 
|  | if (!nimaps || | 
|  | imap->br_startblock == HOLESTARTBLOCK || | 
|  | imap->br_startblock == DELAYSTARTBLOCK) | 
|  | return true; | 
|  | /* we convert unwritten extents before copying the data for DAX */ | 
|  | if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | imap_needs_cow( | 
|  | struct xfs_inode	*ip, | 
|  | unsigned int		flags, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | int			nimaps) | 
|  | { | 
|  | if (!xfs_is_cow_inode(ip)) | 
|  | return false; | 
|  |  | 
|  | /* when zeroing we don't have to COW holes or unwritten extents */ | 
|  | if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { | 
|  | if (!nimaps || | 
|  | imap->br_startblock == HOLESTARTBLOCK || | 
|  | imap->br_state == XFS_EXT_UNWRITTEN) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extents not yet cached requires exclusive access, don't block for | 
|  | * IOMAP_NOWAIT. | 
|  | * | 
|  | * This is basically an opencoded xfs_ilock_data_map_shared() call, but with | 
|  | * support for IOMAP_NOWAIT. | 
|  | */ | 
|  | static int | 
|  | xfs_ilock_for_iomap( | 
|  | struct xfs_inode	*ip, | 
|  | unsigned		flags, | 
|  | unsigned		*lockmode) | 
|  | { | 
|  | if (flags & IOMAP_NOWAIT) { | 
|  | if (xfs_need_iread_extents(&ip->i_df)) | 
|  | return -EAGAIN; | 
|  | if (!xfs_ilock_nowait(ip, *lockmode)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | if (xfs_need_iread_extents(&ip->i_df)) | 
|  | *lockmode = XFS_ILOCK_EXCL; | 
|  | xfs_ilock(ip, *lockmode); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the imap we are going to return to the caller spans the entire | 
|  | * range that the caller requested for the IO. | 
|  | */ | 
|  | static bool | 
|  | imap_spans_range( | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | xfs_fileoff_t		offset_fsb, | 
|  | xfs_fileoff_t		end_fsb) | 
|  | { | 
|  | if (imap->br_startoff > offset_fsb) | 
|  | return false; | 
|  | if (imap->br_startoff + imap->br_blockcount < end_fsb) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | xfs_bmap_hw_atomic_write_possible( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | xfs_fileoff_t		offset_fsb, | 
|  | xfs_fileoff_t		end_fsb) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_fsize_t		len = XFS_FSB_TO_B(mp, end_fsb - offset_fsb); | 
|  |  | 
|  | /* | 
|  | * atomic writes are required to be naturally aligned for disk blocks, | 
|  | * which ensures that we adhere to block layer rules that we won't | 
|  | * straddle any boundary or violate write alignment requirement. | 
|  | */ | 
|  | if (!IS_ALIGNED(imap->br_startblock, imap->br_blockcount)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Spanning multiple extents would mean that multiple BIOs would be | 
|  | * issued, and so would lose atomicity required for REQ_ATOMIC-based | 
|  | * atomics. | 
|  | */ | 
|  | if (!imap_spans_range(imap, offset_fsb, end_fsb)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The ->iomap_begin caller should ensure this, but check anyway. | 
|  | */ | 
|  | return len <= xfs_inode_buftarg(ip)->bt_awu_max; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_direct_write_iomap_begin( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			length, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap, | 
|  | struct iomap		*srcmap) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_bmbt_irec	imap, cmap; | 
|  | xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length); | 
|  | xfs_fileoff_t		orig_end_fsb = end_fsb; | 
|  | int			nimaps = 1, error = 0; | 
|  | bool			shared = false; | 
|  | u16			iomap_flags = 0; | 
|  | bool			needs_alloc; | 
|  | unsigned int		lockmode; | 
|  | u64			seq; | 
|  |  | 
|  | ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO)); | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | /* | 
|  | * Writes that span EOF might trigger an IO size update on completion, | 
|  | * so consider them to be dirty for the purposes of O_DSYNC even if | 
|  | * there is no other metadata changes pending or have been made here. | 
|  | */ | 
|  | if (offset + length > i_size_read(inode)) | 
|  | iomap_flags |= IOMAP_F_DIRTY; | 
|  |  | 
|  | /* HW-offload atomics are always used in this path */ | 
|  | if (flags & IOMAP_ATOMIC) | 
|  | iomap_flags |= IOMAP_F_ATOMIC_BIO; | 
|  |  | 
|  | /* | 
|  | * COW writes may allocate delalloc space or convert unwritten COW | 
|  | * extents, so we need to make sure to take the lock exclusively here. | 
|  | */ | 
|  | if (xfs_is_cow_inode(ip)) | 
|  | lockmode = XFS_ILOCK_EXCL; | 
|  | else | 
|  | lockmode = XFS_ILOCK_SHARED; | 
|  |  | 
|  | relock: | 
|  | error = xfs_ilock_for_iomap(ip, flags, &lockmode); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * The reflink iflag could have changed since the earlier unlocked | 
|  | * check, check if it again and relock if needed. | 
|  | */ | 
|  | if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) { | 
|  | xfs_iunlock(ip, lockmode); | 
|  | lockmode = XFS_ILOCK_EXCL; | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, | 
|  | &nimaps, 0); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (imap_needs_cow(ip, flags, &imap, nimaps)) { | 
|  | error = -EAGAIN; | 
|  | if (flags & IOMAP_NOWAIT) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* may drop and re-acquire the ilock */ | 
|  | error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared, | 
|  | &lockmode, | 
|  | (flags & IOMAP_DIRECT) || IS_DAX(inode)); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  | if (shared) { | 
|  | if ((flags & IOMAP_ATOMIC) && | 
|  | !xfs_bmap_hw_atomic_write_possible(ip, &cmap, | 
|  | offset_fsb, end_fsb)) { | 
|  | error = -ENOPROTOOPT; | 
|  | goto out_unlock; | 
|  | } | 
|  | goto out_found_cow; | 
|  | } | 
|  | end_fsb = imap.br_startoff + imap.br_blockcount; | 
|  | length = XFS_FSB_TO_B(mp, end_fsb) - offset; | 
|  | } | 
|  |  | 
|  | needs_alloc = imap_needs_alloc(inode, flags, &imap, nimaps); | 
|  |  | 
|  | if (flags & IOMAP_ATOMIC) { | 
|  | error = -ENOPROTOOPT; | 
|  | /* | 
|  | * If we allocate less than what is required for the write | 
|  | * then we may end up with multiple extents, which means that | 
|  | * REQ_ATOMIC-based cannot be used, so avoid this possibility. | 
|  | */ | 
|  | if (needs_alloc && orig_end_fsb - offset_fsb > 1) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (!xfs_bmap_hw_atomic_write_possible(ip, &imap, offset_fsb, | 
|  | orig_end_fsb)) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (needs_alloc) | 
|  | goto allocate_blocks; | 
|  |  | 
|  | /* | 
|  | * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with | 
|  | * a single map so that we avoid partial IO failures due to the rest of | 
|  | * the I/O range not covered by this map triggering an EAGAIN condition | 
|  | * when it is subsequently mapped and aborting the I/O. | 
|  | */ | 
|  | if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) { | 
|  | error = -EAGAIN; | 
|  | if (!imap_spans_range(&imap, offset_fsb, end_fsb)) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For overwrite only I/O, we cannot convert unwritten extents without | 
|  | * requiring sub-block zeroing.  This can only be done under an | 
|  | * exclusive IOLOCK, hence return -EAGAIN if this is not a written | 
|  | * extent to tell the caller to try again. | 
|  | */ | 
|  | if (flags & IOMAP_OVERWRITE_ONLY) { | 
|  | error = -EAGAIN; | 
|  | if (imap.br_state != XFS_EXT_NORM && | 
|  | ((offset | length) & mp->m_blockmask)) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | seq = xfs_iomap_inode_sequence(ip, iomap_flags); | 
|  | xfs_iunlock(ip, lockmode); | 
|  | trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); | 
|  | return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); | 
|  |  | 
|  | allocate_blocks: | 
|  | error = -EAGAIN; | 
|  | if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * We cap the maximum length we map to a sane size  to keep the chunks | 
|  | * of work done where somewhat symmetric with the work writeback does. | 
|  | * This is a completely arbitrary number pulled out of thin air as a | 
|  | * best guess for initial testing. | 
|  | * | 
|  | * Note that the values needs to be less than 32-bits wide until the | 
|  | * lower level functions are updated. | 
|  | */ | 
|  | length = min_t(loff_t, length, 1024 * PAGE_SIZE); | 
|  | end_fsb = xfs_iomap_end_fsb(mp, offset, length); | 
|  |  | 
|  | if (offset + length > XFS_ISIZE(ip)) | 
|  | end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb); | 
|  | else if (nimaps && imap.br_startblock == HOLESTARTBLOCK) | 
|  | end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); | 
|  | xfs_iunlock(ip, lockmode); | 
|  |  | 
|  | error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb, | 
|  | flags, &imap, &seq); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); | 
|  | return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, | 
|  | iomap_flags | IOMAP_F_NEW, seq); | 
|  |  | 
|  | out_found_cow: | 
|  | length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); | 
|  | trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); | 
|  | if (imap.br_startblock != HOLESTARTBLOCK) { | 
|  | seq = xfs_iomap_inode_sequence(ip, 0); | 
|  | error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  | } | 
|  | seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); | 
|  | xfs_iunlock(ip, lockmode); | 
|  | return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); | 
|  |  | 
|  | out_unlock: | 
|  | if (lockmode) | 
|  | xfs_iunlock(ip, lockmode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | const struct iomap_ops xfs_direct_write_iomap_ops = { | 
|  | .iomap_begin		= xfs_direct_write_iomap_begin, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_XFS_RT | 
|  | /* | 
|  | * This is really simple.  The space has already been reserved before taking the | 
|  | * IOLOCK, the actual block allocation is done just before submitting the bio | 
|  | * and only recorded in the extent map on I/O completion. | 
|  | */ | 
|  | static int | 
|  | xfs_zoned_direct_write_iomap_begin( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			length, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap, | 
|  | struct iomap		*srcmap) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | int			error; | 
|  |  | 
|  | ASSERT(!(flags & IOMAP_OVERWRITE_ONLY)); | 
|  |  | 
|  | /* | 
|  | * Needs to be pushed down into the allocator so that only writes into | 
|  | * a single zone can be supported. | 
|  | */ | 
|  | if (flags & IOMAP_NOWAIT) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * Ensure the extent list is in memory in so that we don't have to do | 
|  | * read it from the I/O completion handler. | 
|  | */ | 
|  | if (xfs_need_iread_extents(&ip->i_df)) { | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | iomap->type = IOMAP_MAPPED; | 
|  | iomap->flags = IOMAP_F_DIRTY; | 
|  | iomap->bdev = ip->i_mount->m_rtdev_targp->bt_bdev; | 
|  | iomap->offset = offset; | 
|  | iomap->length = length; | 
|  | iomap->flags = IOMAP_F_ANON_WRITE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct iomap_ops xfs_zoned_direct_write_iomap_ops = { | 
|  | .iomap_begin		= xfs_zoned_direct_write_iomap_begin, | 
|  | }; | 
|  | #endif /* CONFIG_XFS_RT */ | 
|  |  | 
|  | static int | 
|  | xfs_atomic_write_cow_iomap_begin( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			length, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap, | 
|  | struct iomap		*srcmap) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | const xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length); | 
|  | xfs_filblks_t		count_fsb = end_fsb - offset_fsb; | 
|  | int			nmaps = 1; | 
|  | xfs_filblks_t		resaligned; | 
|  | struct xfs_bmbt_irec	cmap; | 
|  | struct xfs_iext_cursor	icur; | 
|  | struct xfs_trans	*tp; | 
|  | unsigned int		dblocks = 0, rblocks = 0; | 
|  | int			error; | 
|  | u64			seq; | 
|  |  | 
|  | ASSERT(flags & IOMAP_WRITE); | 
|  | ASSERT(flags & IOMAP_DIRECT); | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | if (!xfs_can_sw_atomic_write(mp)) { | 
|  | ASSERT(xfs_can_sw_atomic_write(mp)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* blocks are always allocated in this path */ | 
|  | if (flags & IOMAP_NOWAIT) | 
|  | return -EAGAIN; | 
|  |  | 
|  | trace_xfs_iomap_atomic_write_cow(ip, offset, length); | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | if (!ip->i_cowfp) { | 
|  | ASSERT(!xfs_is_reflink_inode(ip)); | 
|  | xfs_ifork_init_cow(ip); | 
|  | } | 
|  |  | 
|  | if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) | 
|  | cmap.br_startoff = end_fsb; | 
|  | if (cmap.br_startoff <= offset_fsb) { | 
|  | xfs_trim_extent(&cmap, offset_fsb, count_fsb); | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | end_fsb = cmap.br_startoff; | 
|  | count_fsb = end_fsb - offset_fsb; | 
|  |  | 
|  | resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, | 
|  | xfs_get_cowextsz_hint(ip)); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | if (XFS_IS_REALTIME_INODE(ip)) { | 
|  | dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); | 
|  | rblocks = resaligned; | 
|  | } else { | 
|  | dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); | 
|  | rblocks = 0; | 
|  | } | 
|  |  | 
|  | error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, | 
|  | rblocks, false, &tp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* extent layout could have changed since the unlock, so check again */ | 
|  | if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) | 
|  | cmap.br_startoff = end_fsb; | 
|  | if (cmap.br_startoff <= offset_fsb) { | 
|  | xfs_trim_extent(&cmap, offset_fsb, count_fsb); | 
|  | xfs_trans_cancel(tp); | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate the entire reservation as unwritten blocks. | 
|  | * | 
|  | * Use XFS_BMAPI_EXTSZALIGN to hint at aligning new extents according to | 
|  | * extszhint, such that there will be a greater chance that future | 
|  | * atomic writes to that same range will be aligned (and don't require | 
|  | * this COW-based method). | 
|  | */ | 
|  | error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, | 
|  | XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC | | 
|  | XFS_BMAPI_EXTSZALIGN, 0, &cmap, &nmaps); | 
|  | if (error) { | 
|  | xfs_trans_cancel(tp); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | xfs_inode_set_cowblocks_tag(ip); | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | found: | 
|  | if (cmap.br_state != XFS_EXT_NORM) { | 
|  | error = xfs_reflink_convert_cow_locked(ip, offset_fsb, | 
|  | count_fsb); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  | cmap.br_state = XFS_EXT_NORM; | 
|  | } | 
|  |  | 
|  | length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); | 
|  | trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); | 
|  | seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); | 
|  |  | 
|  | out_unlock: | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | const struct iomap_ops xfs_atomic_write_cow_iomap_ops = { | 
|  | .iomap_begin		= xfs_atomic_write_cow_iomap_begin, | 
|  | }; | 
|  |  | 
|  | static int | 
|  | xfs_dax_write_iomap_end( | 
|  | struct inode		*inode, | 
|  | loff_t			pos, | 
|  | loff_t			length, | 
|  | ssize_t			written, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  |  | 
|  | if (!xfs_is_cow_inode(ip)) | 
|  | return 0; | 
|  |  | 
|  | if (!written) | 
|  | return xfs_reflink_cancel_cow_range(ip, pos, length, true); | 
|  |  | 
|  | return xfs_reflink_end_cow(ip, pos, written); | 
|  | } | 
|  |  | 
|  | const struct iomap_ops xfs_dax_write_iomap_ops = { | 
|  | .iomap_begin	= xfs_direct_write_iomap_begin, | 
|  | .iomap_end	= xfs_dax_write_iomap_end, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Convert a hole to a delayed allocation. | 
|  | */ | 
|  | static void | 
|  | xfs_bmap_add_extent_hole_delay( | 
|  | struct xfs_inode	*ip,	/* incore inode pointer */ | 
|  | int			whichfork, | 
|  | struct xfs_iext_cursor	*icur, | 
|  | struct xfs_bmbt_irec	*new)	/* new data to add to file extents */ | 
|  | { | 
|  | struct xfs_ifork	*ifp;	/* inode fork pointer */ | 
|  | xfs_bmbt_irec_t		left;	/* left neighbor extent entry */ | 
|  | xfs_filblks_t		newlen=0;	/* new indirect size */ | 
|  | xfs_filblks_t		oldlen=0;	/* old indirect size */ | 
|  | xfs_bmbt_irec_t		right;	/* right neighbor extent entry */ | 
|  | uint32_t		state = xfs_bmap_fork_to_state(whichfork); | 
|  | xfs_filblks_t		temp;	 /* temp for indirect calculations */ | 
|  |  | 
|  | ifp = xfs_ifork_ptr(ip, whichfork); | 
|  | ASSERT(isnullstartblock(new->br_startblock)); | 
|  |  | 
|  | /* | 
|  | * Check and set flags if this segment has a left neighbor | 
|  | */ | 
|  | if (xfs_iext_peek_prev_extent(ifp, icur, &left)) { | 
|  | state |= BMAP_LEFT_VALID; | 
|  | if (isnullstartblock(left.br_startblock)) | 
|  | state |= BMAP_LEFT_DELAY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check and set flags if the current (right) segment exists. | 
|  | * If it doesn't exist, we're converting the hole at end-of-file. | 
|  | */ | 
|  | if (xfs_iext_get_extent(ifp, icur, &right)) { | 
|  | state |= BMAP_RIGHT_VALID; | 
|  | if (isnullstartblock(right.br_startblock)) | 
|  | state |= BMAP_RIGHT_DELAY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set contiguity flags on the left and right neighbors. | 
|  | * Don't let extents get too large, even if the pieces are contiguous. | 
|  | */ | 
|  | if ((state & BMAP_LEFT_VALID) && (state & BMAP_LEFT_DELAY) && | 
|  | left.br_startoff + left.br_blockcount == new->br_startoff && | 
|  | left.br_blockcount + new->br_blockcount <= XFS_MAX_BMBT_EXTLEN) | 
|  | state |= BMAP_LEFT_CONTIG; | 
|  |  | 
|  | if ((state & BMAP_RIGHT_VALID) && (state & BMAP_RIGHT_DELAY) && | 
|  | new->br_startoff + new->br_blockcount == right.br_startoff && | 
|  | new->br_blockcount + right.br_blockcount <= XFS_MAX_BMBT_EXTLEN && | 
|  | (!(state & BMAP_LEFT_CONTIG) || | 
|  | (left.br_blockcount + new->br_blockcount + | 
|  | right.br_blockcount <= XFS_MAX_BMBT_EXTLEN))) | 
|  | state |= BMAP_RIGHT_CONTIG; | 
|  |  | 
|  | /* | 
|  | * Switch out based on the contiguity flags. | 
|  | */ | 
|  | switch (state & (BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG)) { | 
|  | case BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG: | 
|  | /* | 
|  | * New allocation is contiguous with delayed allocations | 
|  | * on the left and on the right. | 
|  | * Merge all three into a single extent record. | 
|  | */ | 
|  | temp = left.br_blockcount + new->br_blockcount + | 
|  | right.br_blockcount; | 
|  |  | 
|  | oldlen = startblockval(left.br_startblock) + | 
|  | startblockval(new->br_startblock) + | 
|  | startblockval(right.br_startblock); | 
|  | newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp), | 
|  | oldlen); | 
|  | left.br_startblock = nullstartblock(newlen); | 
|  | left.br_blockcount = temp; | 
|  |  | 
|  | xfs_iext_remove(ip, icur, state); | 
|  | xfs_iext_prev(ifp, icur); | 
|  | xfs_iext_update_extent(ip, state, icur, &left); | 
|  | break; | 
|  |  | 
|  | case BMAP_LEFT_CONTIG: | 
|  | /* | 
|  | * New allocation is contiguous with a delayed allocation | 
|  | * on the left. | 
|  | * Merge the new allocation with the left neighbor. | 
|  | */ | 
|  | temp = left.br_blockcount + new->br_blockcount; | 
|  |  | 
|  | oldlen = startblockval(left.br_startblock) + | 
|  | startblockval(new->br_startblock); | 
|  | newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp), | 
|  | oldlen); | 
|  | left.br_blockcount = temp; | 
|  | left.br_startblock = nullstartblock(newlen); | 
|  |  | 
|  | xfs_iext_prev(ifp, icur); | 
|  | xfs_iext_update_extent(ip, state, icur, &left); | 
|  | break; | 
|  |  | 
|  | case BMAP_RIGHT_CONTIG: | 
|  | /* | 
|  | * New allocation is contiguous with a delayed allocation | 
|  | * on the right. | 
|  | * Merge the new allocation with the right neighbor. | 
|  | */ | 
|  | temp = new->br_blockcount + right.br_blockcount; | 
|  | oldlen = startblockval(new->br_startblock) + | 
|  | startblockval(right.br_startblock); | 
|  | newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp), | 
|  | oldlen); | 
|  | right.br_startoff = new->br_startoff; | 
|  | right.br_startblock = nullstartblock(newlen); | 
|  | right.br_blockcount = temp; | 
|  | xfs_iext_update_extent(ip, state, icur, &right); | 
|  | break; | 
|  |  | 
|  | case 0: | 
|  | /* | 
|  | * New allocation is not contiguous with another | 
|  | * delayed allocation. | 
|  | * Insert a new entry. | 
|  | */ | 
|  | oldlen = newlen = 0; | 
|  | xfs_iext_insert(ip, icur, new, state); | 
|  | break; | 
|  | } | 
|  | if (oldlen != newlen) { | 
|  | ASSERT(oldlen > newlen); | 
|  | xfs_add_fdblocks(ip->i_mount, oldlen - newlen); | 
|  |  | 
|  | /* | 
|  | * Nothing to do for disk quota accounting here. | 
|  | */ | 
|  | xfs_mod_delalloc(ip, 0, (int64_t)newlen - oldlen); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a delayed allocation extent to an inode. Blocks are reserved from the | 
|  | * global pool and the extent inserted into the inode in-core extent tree. | 
|  | * | 
|  | * On entry, got refers to the first extent beyond the offset of the extent to | 
|  | * allocate or eof is specified if no such extent exists. On return, got refers | 
|  | * to the extent record that was inserted to the inode fork. | 
|  | * | 
|  | * Note that the allocated extent may have been merged with contiguous extents | 
|  | * during insertion into the inode fork. Thus, got does not reflect the current | 
|  | * state of the inode fork on return. If necessary, the caller can use lastx to | 
|  | * look up the updated record in the inode fork. | 
|  | */ | 
|  | static int | 
|  | xfs_bmapi_reserve_delalloc( | 
|  | struct xfs_inode	*ip, | 
|  | int			whichfork, | 
|  | xfs_fileoff_t		off, | 
|  | xfs_filblks_t		len, | 
|  | xfs_filblks_t		prealloc, | 
|  | struct xfs_bmbt_irec	*got, | 
|  | struct xfs_iext_cursor	*icur, | 
|  | int			eof) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork); | 
|  | xfs_extlen_t		alen; | 
|  | xfs_extlen_t		indlen; | 
|  | uint64_t		fdblocks; | 
|  | int			error; | 
|  | xfs_fileoff_t		aoff; | 
|  | bool			use_cowextszhint = | 
|  | whichfork == XFS_COW_FORK && !prealloc; | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Cap the alloc length. Keep track of prealloc so we know whether to | 
|  | * tag the inode before we return. | 
|  | */ | 
|  | aoff = off; | 
|  | alen = XFS_FILBLKS_MIN(len + prealloc, XFS_MAX_BMBT_EXTLEN); | 
|  | if (!eof) | 
|  | alen = XFS_FILBLKS_MIN(alen, got->br_startoff - aoff); | 
|  | if (prealloc && alen >= len) | 
|  | prealloc = alen - len; | 
|  |  | 
|  | /* | 
|  | * If we're targetting the COW fork but aren't creating a speculative | 
|  | * posteof preallocation, try to expand the reservation to align with | 
|  | * the COW extent size hint if there's sufficient free space. | 
|  | * | 
|  | * Unlike the data fork, the CoW cancellation functions will free all | 
|  | * the reservations at inactivation, so we don't require that every | 
|  | * delalloc reservation have a dirty pagecache. | 
|  | */ | 
|  | if (use_cowextszhint) { | 
|  | struct xfs_bmbt_irec	prev; | 
|  | xfs_extlen_t		extsz = xfs_get_cowextsz_hint(ip); | 
|  |  | 
|  | if (!xfs_iext_peek_prev_extent(ifp, icur, &prev)) | 
|  | prev.br_startoff = NULLFILEOFF; | 
|  |  | 
|  | error = xfs_bmap_extsize_align(mp, got, &prev, extsz, 0, eof, | 
|  | 1, 0, &aoff, &alen); | 
|  | ASSERT(!error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make a transaction-less quota reservation for delayed allocation | 
|  | * blocks.  This number gets adjusted later.  We return if we haven't | 
|  | * allocated blocks already inside this loop. | 
|  | */ | 
|  | error = xfs_quota_reserve_blkres(ip, alen); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Split changing sb for alen and indlen since they could be coming | 
|  | * from different places. | 
|  | */ | 
|  | indlen = (xfs_extlen_t)xfs_bmap_worst_indlen(ip, alen); | 
|  | ASSERT(indlen > 0); | 
|  |  | 
|  | fdblocks = indlen; | 
|  | if (XFS_IS_REALTIME_INODE(ip)) { | 
|  | ASSERT(!xfs_is_zoned_inode(ip)); | 
|  | error = xfs_dec_frextents(mp, xfs_blen_to_rtbxlen(mp, alen)); | 
|  | if (error) | 
|  | goto out_unreserve_quota; | 
|  | } else { | 
|  | fdblocks += alen; | 
|  | } | 
|  |  | 
|  | error = xfs_dec_fdblocks(mp, fdblocks, false); | 
|  | if (error) | 
|  | goto out_unreserve_frextents; | 
|  |  | 
|  | ip->i_delayed_blks += alen; | 
|  | xfs_mod_delalloc(ip, alen, indlen); | 
|  |  | 
|  | got->br_startoff = aoff; | 
|  | got->br_startblock = nullstartblock(indlen); | 
|  | got->br_blockcount = alen; | 
|  | got->br_state = XFS_EXT_NORM; | 
|  |  | 
|  | xfs_bmap_add_extent_hole_delay(ip, whichfork, icur, got); | 
|  |  | 
|  | /* | 
|  | * Tag the inode if blocks were preallocated. Note that COW fork | 
|  | * preallocation can occur at the start or end of the extent, even when | 
|  | * prealloc == 0, so we must also check the aligned offset and length. | 
|  | */ | 
|  | if (whichfork == XFS_DATA_FORK && prealloc) | 
|  | xfs_inode_set_eofblocks_tag(ip); | 
|  | if (whichfork == XFS_COW_FORK && (prealloc || aoff < off || alen > len)) | 
|  | xfs_inode_set_cowblocks_tag(ip); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unreserve_frextents: | 
|  | if (XFS_IS_REALTIME_INODE(ip)) | 
|  | xfs_add_frextents(mp, xfs_blen_to_rtbxlen(mp, alen)); | 
|  | out_unreserve_quota: | 
|  | if (XFS_IS_QUOTA_ON(mp)) | 
|  | xfs_quota_unreserve_blkres(ip, alen); | 
|  | out: | 
|  | if (error == -ENOSPC || error == -EDQUOT) { | 
|  | trace_xfs_delalloc_enospc(ip, off, len); | 
|  |  | 
|  | if (prealloc || use_cowextszhint) { | 
|  | /* retry without any preallocation */ | 
|  | use_cowextszhint = false; | 
|  | prealloc = 0; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_zoned_buffered_write_iomap_begin( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			count, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap, | 
|  | struct iomap		*srcmap) | 
|  | { | 
|  | struct iomap_iter	*iter = | 
|  | container_of(iomap, struct iomap_iter, iomap); | 
|  | struct xfs_zone_alloc_ctx *ac = iter->private; | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, count); | 
|  | u16			iomap_flags = IOMAP_F_SHARED; | 
|  | unsigned int		lockmode = XFS_ILOCK_EXCL; | 
|  | xfs_filblks_t		count_fsb; | 
|  | xfs_extlen_t		indlen; | 
|  | struct xfs_bmbt_irec	got; | 
|  | struct xfs_iext_cursor	icur; | 
|  | int			error = 0; | 
|  |  | 
|  | ASSERT(!xfs_get_extsz_hint(ip)); | 
|  | ASSERT(!(flags & IOMAP_UNSHARE)); | 
|  | ASSERT(ac); | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | error = xfs_qm_dqattach(ip); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_ilock_for_iomap(ip, flags, &lockmode); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || | 
|  | XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { | 
|  | xfs_bmap_mark_sick(ip, XFS_DATA_FORK); | 
|  | error = -EFSCORRUPTED; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(mp, xs_blk_mapw); | 
|  |  | 
|  | error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * For zeroing operations check if there is any data to zero first. | 
|  | * | 
|  | * For regular writes we always need to allocate new blocks, but need to | 
|  | * provide the source mapping when the range is unaligned to support | 
|  | * read-modify-write of the whole block in the page cache. | 
|  | * | 
|  | * In either case we need to limit the reported range to the boundaries | 
|  | * of the source map in the data fork. | 
|  | */ | 
|  | if (!IS_ALIGNED(offset, mp->m_sb.sb_blocksize) || | 
|  | !IS_ALIGNED(offset + count, mp->m_sb.sb_blocksize) || | 
|  | (flags & IOMAP_ZERO)) { | 
|  | struct xfs_bmbt_irec	smap; | 
|  | struct xfs_iext_cursor	scur; | 
|  |  | 
|  | if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &scur, | 
|  | &smap)) | 
|  | smap.br_startoff = end_fsb; /* fake hole until EOF */ | 
|  | if (smap.br_startoff > offset_fsb) { | 
|  | /* | 
|  | * We never need to allocate blocks for zeroing a hole. | 
|  | */ | 
|  | if (flags & IOMAP_ZERO) { | 
|  | xfs_hole_to_iomap(ip, iomap, offset_fsb, | 
|  | smap.br_startoff); | 
|  | goto out_unlock; | 
|  | } | 
|  | end_fsb = min(end_fsb, smap.br_startoff); | 
|  | } else { | 
|  | end_fsb = min(end_fsb, | 
|  | smap.br_startoff + smap.br_blockcount); | 
|  | xfs_trim_extent(&smap, offset_fsb, | 
|  | end_fsb - offset_fsb); | 
|  | error = xfs_bmbt_to_iomap(ip, srcmap, &smap, flags, 0, | 
|  | xfs_iomap_inode_sequence(ip, 0)); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ip->i_cowfp) | 
|  | xfs_ifork_init_cow(ip); | 
|  |  | 
|  | if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) | 
|  | got.br_startoff = end_fsb; | 
|  | if (got.br_startoff <= offset_fsb) { | 
|  | trace_xfs_reflink_cow_found(ip, &got); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cap the maximum length to keep the chunks of work done here somewhat | 
|  | * symmetric with the work writeback does. | 
|  | */ | 
|  | end_fsb = min(end_fsb, got.br_startoff); | 
|  | count_fsb = min3(end_fsb - offset_fsb, XFS_MAX_BMBT_EXTLEN, | 
|  | XFS_B_TO_FSB(mp, 1024 * PAGE_SIZE)); | 
|  |  | 
|  | /* | 
|  | * The block reservation is supposed to cover all blocks that the | 
|  | * operation could possible write, but there is a nasty corner case | 
|  | * where blocks could be stolen from underneath us: | 
|  | * | 
|  | *  1) while this thread iterates over a larger buffered write, | 
|  | *  2) another thread is causing a write fault that calls into | 
|  | *     ->page_mkwrite in range this thread writes to, using up the | 
|  | *     delalloc reservation created by a previous call to this function. | 
|  | *  3) another thread does direct I/O on the range that the write fault | 
|  | *     happened on, which causes writeback of the dirty data. | 
|  | *  4) this then set the stale flag, which cuts the current iomap | 
|  | *     iteration short, causing the new call to ->iomap_begin that gets | 
|  | *     us here again, but now without a sufficient reservation. | 
|  | * | 
|  | * This is a very unusual I/O pattern, and nothing but generic/095 is | 
|  | * known to hit it. There's not really much we can do here, so turn this | 
|  | * into a short write. | 
|  | */ | 
|  | if (count_fsb > ac->reserved_blocks) { | 
|  | xfs_warn_ratelimited(mp, | 
|  | "Short write on ino 0x%llx comm %.20s due to three-way race with write fault and direct I/O", | 
|  | ip->i_ino, current->comm); | 
|  | count_fsb = ac->reserved_blocks; | 
|  | if (!count_fsb) { | 
|  | error = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | error = xfs_quota_reserve_blkres(ip, count_fsb); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | indlen = xfs_bmap_worst_indlen(ip, count_fsb); | 
|  | error = xfs_dec_fdblocks(mp, indlen, false); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  | ip->i_delayed_blks += count_fsb; | 
|  | xfs_mod_delalloc(ip, count_fsb, indlen); | 
|  |  | 
|  | got.br_startoff = offset_fsb; | 
|  | got.br_startblock = nullstartblock(indlen); | 
|  | got.br_blockcount = count_fsb; | 
|  | got.br_state = XFS_EXT_NORM; | 
|  | xfs_bmap_add_extent_hole_delay(ip, XFS_COW_FORK, &icur, &got); | 
|  | ac->reserved_blocks -= count_fsb; | 
|  | iomap_flags |= IOMAP_F_NEW; | 
|  |  | 
|  | trace_xfs_iomap_alloc(ip, offset, XFS_FSB_TO_B(mp, count_fsb), | 
|  | XFS_COW_FORK, &got); | 
|  | done: | 
|  | error = xfs_bmbt_to_iomap(ip, iomap, &got, flags, iomap_flags, | 
|  | xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED)); | 
|  | out_unlock: | 
|  | xfs_iunlock(ip, lockmode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buffered_write_iomap_begin( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			count, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap, | 
|  | struct iomap		*srcmap) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, count); | 
|  | struct xfs_bmbt_irec	imap, cmap; | 
|  | struct xfs_iext_cursor	icur, ccur; | 
|  | xfs_fsblock_t		prealloc_blocks = 0; | 
|  | bool			eof = false, cow_eof = false, shared = false; | 
|  | int			allocfork = XFS_DATA_FORK; | 
|  | int			error = 0; | 
|  | unsigned int		lockmode = XFS_ILOCK_EXCL; | 
|  | unsigned int		iomap_flags = 0; | 
|  | u64			seq; | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | if (xfs_is_zoned_inode(ip)) | 
|  | return xfs_zoned_buffered_write_iomap_begin(inode, offset, | 
|  | count, flags, iomap, srcmap); | 
|  |  | 
|  | /* we can't use delayed allocations when using extent size hints */ | 
|  | if (xfs_get_extsz_hint(ip)) | 
|  | return xfs_direct_write_iomap_begin(inode, offset, count, | 
|  | flags, iomap, srcmap); | 
|  |  | 
|  | error = xfs_qm_dqattach(ip); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_ilock_for_iomap(ip, flags, &lockmode); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || | 
|  | XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { | 
|  | xfs_bmap_mark_sick(ip, XFS_DATA_FORK); | 
|  | error = -EFSCORRUPTED; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(mp, xs_blk_mapw); | 
|  |  | 
|  | error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Search the data fork first to look up our source mapping.  We | 
|  | * always need the data fork map, as we have to return it to the | 
|  | * iomap code so that the higher level write code can read data in to | 
|  | * perform read-modify-write cycles for unaligned writes. | 
|  | */ | 
|  | eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); | 
|  | if (eof) | 
|  | imap.br_startoff = end_fsb; /* fake hole until the end */ | 
|  |  | 
|  | /* We never need to allocate blocks for zeroing or unsharing a hole. */ | 
|  | if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) && | 
|  | imap.br_startoff > offset_fsb) { | 
|  | xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For zeroing, trim a delalloc extent that extends beyond the EOF | 
|  | * block.  If it starts beyond the EOF block, convert it to an | 
|  | * unwritten extent. | 
|  | */ | 
|  | if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb && | 
|  | isnullstartblock(imap.br_startblock)) { | 
|  | xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); | 
|  |  | 
|  | if (offset_fsb >= eof_fsb) | 
|  | goto convert_delay; | 
|  | if (end_fsb > eof_fsb) { | 
|  | end_fsb = eof_fsb; | 
|  | xfs_trim_extent(&imap, offset_fsb, | 
|  | end_fsb - offset_fsb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search the COW fork extent list even if we did not find a data fork | 
|  | * extent.  This serves two purposes: first this implements the | 
|  | * speculative preallocation using cowextsize, so that we also unshare | 
|  | * block adjacent to shared blocks instead of just the shared blocks | 
|  | * themselves.  Second the lookup in the extent list is generally faster | 
|  | * than going out to the shared extent tree. | 
|  | */ | 
|  | if (xfs_is_cow_inode(ip)) { | 
|  | if (!ip->i_cowfp) { | 
|  | ASSERT(!xfs_is_reflink_inode(ip)); | 
|  | xfs_ifork_init_cow(ip); | 
|  | } | 
|  | cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, | 
|  | &ccur, &cmap); | 
|  | if (!cow_eof && cmap.br_startoff <= offset_fsb) { | 
|  | trace_xfs_reflink_cow_found(ip, &cmap); | 
|  | goto found_cow; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (imap.br_startoff <= offset_fsb) { | 
|  | /* | 
|  | * For reflink files we may need a delalloc reservation when | 
|  | * overwriting shared extents.   This includes zeroing of | 
|  | * existing extents that contain data. | 
|  | */ | 
|  | if (!xfs_is_cow_inode(ip) || | 
|  | ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { | 
|  | trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, | 
|  | &imap); | 
|  | goto found_imap; | 
|  | } | 
|  |  | 
|  | xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); | 
|  |  | 
|  | /* Trim the mapping to the nearest shared extent boundary. */ | 
|  | error = xfs_bmap_trim_cow(ip, &imap, &shared); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Not shared?  Just report the (potentially capped) extent. */ | 
|  | if (!shared) { | 
|  | trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, | 
|  | &imap); | 
|  | goto found_imap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fork all the shared blocks from our write offset until the | 
|  | * end of the extent. | 
|  | */ | 
|  | allocfork = XFS_COW_FORK; | 
|  | end_fsb = imap.br_startoff + imap.br_blockcount; | 
|  | } else { | 
|  | /* | 
|  | * We cap the maximum length we map here to MAX_WRITEBACK_PAGES | 
|  | * pages to keep the chunks of work done where somewhat | 
|  | * symmetric with the work writeback does.  This is a completely | 
|  | * arbitrary number pulled out of thin air. | 
|  | * | 
|  | * Note that the values needs to be less than 32-bits wide until | 
|  | * the lower level functions are updated. | 
|  | */ | 
|  | count = min_t(loff_t, count, 1024 * PAGE_SIZE); | 
|  | end_fsb = xfs_iomap_end_fsb(mp, offset, count); | 
|  |  | 
|  | if (xfs_is_always_cow_inode(ip)) | 
|  | allocfork = XFS_COW_FORK; | 
|  | } | 
|  |  | 
|  | if (eof && offset + count > XFS_ISIZE(ip)) { | 
|  | /* | 
|  | * Determine the initial size of the preallocation. | 
|  | * We clean up any extra preallocation when the file is closed. | 
|  | */ | 
|  | if (xfs_has_allocsize(mp)) | 
|  | prealloc_blocks = mp->m_allocsize_blocks; | 
|  | else if (allocfork == XFS_DATA_FORK) | 
|  | prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, | 
|  | offset, count, &icur); | 
|  | else | 
|  | prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, | 
|  | offset, count, &ccur); | 
|  | if (prealloc_blocks) { | 
|  | xfs_extlen_t	align; | 
|  | xfs_off_t	end_offset; | 
|  | xfs_fileoff_t	p_end_fsb; | 
|  |  | 
|  | end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1); | 
|  | p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + | 
|  | prealloc_blocks; | 
|  |  | 
|  | align = xfs_eof_alignment(ip); | 
|  | if (align) | 
|  | p_end_fsb = roundup_64(p_end_fsb, align); | 
|  |  | 
|  | p_end_fsb = min(p_end_fsb, | 
|  | XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); | 
|  | ASSERT(p_end_fsb > offset_fsb); | 
|  | prealloc_blocks = p_end_fsb - end_fsb; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch | 
|  | * them out if the write happens to fail. | 
|  | */ | 
|  | iomap_flags |= IOMAP_F_NEW; | 
|  | if (allocfork == XFS_COW_FORK) { | 
|  | error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, | 
|  | end_fsb - offset_fsb, prealloc_blocks, &cmap, | 
|  | &ccur, cow_eof); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap); | 
|  | goto found_cow; | 
|  | } | 
|  |  | 
|  | error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, | 
|  | end_fsb - offset_fsb, prealloc_blocks, &imap, &icur, | 
|  | eof); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap); | 
|  | found_imap: | 
|  | seq = xfs_iomap_inode_sequence(ip, iomap_flags); | 
|  | xfs_iunlock(ip, lockmode); | 
|  | return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); | 
|  |  | 
|  | convert_delay: | 
|  | xfs_iunlock(ip, lockmode); | 
|  | truncate_pagecache(inode, offset); | 
|  | error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset, | 
|  | iomap, NULL); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap); | 
|  | return 0; | 
|  |  | 
|  | found_cow: | 
|  | if (imap.br_startoff <= offset_fsb) { | 
|  | error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, | 
|  | xfs_iomap_inode_sequence(ip, 0)); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  | } else { | 
|  | xfs_trim_extent(&cmap, offset_fsb, | 
|  | imap.br_startoff - offset_fsb); | 
|  | } | 
|  |  | 
|  | iomap_flags |= IOMAP_F_SHARED; | 
|  | seq = xfs_iomap_inode_sequence(ip, iomap_flags); | 
|  | xfs_iunlock(ip, lockmode); | 
|  | return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq); | 
|  |  | 
|  | out_unlock: | 
|  | xfs_iunlock(ip, lockmode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buffered_write_delalloc_punch( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			length, | 
|  | struct iomap		*iomap) | 
|  | { | 
|  | struct iomap_iter	*iter = | 
|  | container_of(iomap, struct iomap_iter, iomap); | 
|  |  | 
|  | xfs_bmap_punch_delalloc_range(XFS_I(inode), | 
|  | (iomap->flags & IOMAP_F_SHARED) ? | 
|  | XFS_COW_FORK : XFS_DATA_FORK, | 
|  | offset, offset + length, iter->private); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buffered_write_iomap_end( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			length, | 
|  | ssize_t			written, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap) | 
|  | { | 
|  | loff_t			start_byte, end_byte; | 
|  |  | 
|  | /* If we didn't reserve the blocks, we're not allowed to punch them. */ | 
|  | if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * iomap_page_mkwrite() will never fail in a way that requires delalloc | 
|  | * extents that it allocated to be revoked.  Hence never try to release | 
|  | * them here. | 
|  | */ | 
|  | if (flags & IOMAP_FAULT) | 
|  | return 0; | 
|  |  | 
|  | /* Nothing to do if we've written the entire delalloc extent */ | 
|  | start_byte = iomap_last_written_block(inode, offset, written); | 
|  | end_byte = round_up(offset + length, i_blocksize(inode)); | 
|  | if (start_byte >= end_byte) | 
|  | return 0; | 
|  |  | 
|  | /* For zeroing operations the callers already hold invalidate_lock. */ | 
|  | if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { | 
|  | rwsem_assert_held_write(&inode->i_mapping->invalidate_lock); | 
|  | iomap_write_delalloc_release(inode, start_byte, end_byte, flags, | 
|  | iomap, xfs_buffered_write_delalloc_punch); | 
|  | } else { | 
|  | filemap_invalidate_lock(inode->i_mapping); | 
|  | iomap_write_delalloc_release(inode, start_byte, end_byte, flags, | 
|  | iomap, xfs_buffered_write_delalloc_punch); | 
|  | filemap_invalidate_unlock(inode->i_mapping); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct iomap_ops xfs_buffered_write_iomap_ops = { | 
|  | .iomap_begin		= xfs_buffered_write_iomap_begin, | 
|  | .iomap_end		= xfs_buffered_write_iomap_end, | 
|  | }; | 
|  |  | 
|  | static int | 
|  | xfs_read_iomap_begin( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			length, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap, | 
|  | struct iomap		*srcmap) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_bmbt_irec	imap; | 
|  | xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length); | 
|  | int			nimaps = 1, error = 0; | 
|  | bool			shared = false; | 
|  | unsigned int		lockmode = XFS_ILOCK_SHARED; | 
|  | u64			seq; | 
|  |  | 
|  | ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO))); | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | error = xfs_ilock_for_iomap(ip, flags, &lockmode); | 
|  | if (error) | 
|  | return error; | 
|  | error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, | 
|  | &nimaps, 0); | 
|  | if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode))) | 
|  | error = xfs_reflink_trim_around_shared(ip, &imap, &shared); | 
|  | seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0); | 
|  | xfs_iunlock(ip, lockmode); | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  | trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); | 
|  | return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, | 
|  | shared ? IOMAP_F_SHARED : 0, seq); | 
|  | } | 
|  |  | 
|  | const struct iomap_ops xfs_read_iomap_ops = { | 
|  | .iomap_begin		= xfs_read_iomap_begin, | 
|  | }; | 
|  |  | 
|  | static int | 
|  | xfs_seek_iomap_begin( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			length, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap, | 
|  | struct iomap		*srcmap) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length); | 
|  | xfs_fileoff_t		cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; | 
|  | struct xfs_iext_cursor	icur; | 
|  | struct xfs_bmbt_irec	imap, cmap; | 
|  | int			error = 0; | 
|  | unsigned		lockmode; | 
|  | u64			seq; | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | lockmode = xfs_ilock_data_map_shared(ip); | 
|  | error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { | 
|  | /* | 
|  | * If we found a data extent we are done. | 
|  | */ | 
|  | if (imap.br_startoff <= offset_fsb) | 
|  | goto done; | 
|  | data_fsb = imap.br_startoff; | 
|  | } else { | 
|  | /* | 
|  | * Fake a hole until the end of the file. | 
|  | */ | 
|  | data_fsb = xfs_iomap_end_fsb(mp, offset, length); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a COW fork extent covers the hole, report it - capped to the next | 
|  | * data fork extent: | 
|  | */ | 
|  | if (xfs_inode_has_cow_data(ip) && | 
|  | xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) | 
|  | cow_fsb = cmap.br_startoff; | 
|  | if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { | 
|  | if (data_fsb < cow_fsb + cmap.br_blockcount) | 
|  | end_fsb = min(end_fsb, data_fsb); | 
|  | xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb); | 
|  | seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); | 
|  | error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, | 
|  | IOMAP_F_SHARED, seq); | 
|  | /* | 
|  | * This is a COW extent, so we must probe the page cache | 
|  | * because there could be dirty page cache being backed | 
|  | * by this extent. | 
|  | */ | 
|  | iomap->type = IOMAP_UNWRITTEN; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Else report a hole, capped to the next found data or COW extent. | 
|  | */ | 
|  | if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) | 
|  | imap.br_blockcount = cow_fsb - offset_fsb; | 
|  | else | 
|  | imap.br_blockcount = data_fsb - offset_fsb; | 
|  | imap.br_startoff = offset_fsb; | 
|  | imap.br_startblock = HOLESTARTBLOCK; | 
|  | imap.br_state = XFS_EXT_NORM; | 
|  | done: | 
|  | seq = xfs_iomap_inode_sequence(ip, 0); | 
|  | xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); | 
|  | error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); | 
|  | out_unlock: | 
|  | xfs_iunlock(ip, lockmode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | const struct iomap_ops xfs_seek_iomap_ops = { | 
|  | .iomap_begin		= xfs_seek_iomap_begin, | 
|  | }; | 
|  |  | 
|  | static int | 
|  | xfs_xattr_iomap_begin( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | loff_t			length, | 
|  | unsigned		flags, | 
|  | struct iomap		*iomap, | 
|  | struct iomap		*srcmap) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length); | 
|  | struct xfs_bmbt_irec	imap; | 
|  | int			nimaps = 1, error = 0; | 
|  | unsigned		lockmode; | 
|  | int			seq; | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | lockmode = xfs_ilock_attr_map_shared(ip); | 
|  |  | 
|  | /* if there are no attribute fork or extents, return ENOENT */ | 
|  | if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) { | 
|  | error = -ENOENT; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL); | 
|  | error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, | 
|  | &nimaps, XFS_BMAPI_ATTRFORK); | 
|  | out_unlock: | 
|  |  | 
|  | seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR); | 
|  | xfs_iunlock(ip, lockmode); | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  | ASSERT(nimaps); | 
|  | return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq); | 
|  | } | 
|  |  | 
|  | const struct iomap_ops xfs_xattr_iomap_ops = { | 
|  | .iomap_begin		= xfs_xattr_iomap_begin, | 
|  | }; | 
|  |  | 
|  | int | 
|  | xfs_zero_range( | 
|  | struct xfs_inode	*ip, | 
|  | loff_t			pos, | 
|  | loff_t			len, | 
|  | struct xfs_zone_alloc_ctx *ac, | 
|  | bool			*did_zero) | 
|  | { | 
|  | struct inode		*inode = VFS_I(ip); | 
|  |  | 
|  | xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); | 
|  |  | 
|  | if (IS_DAX(inode)) | 
|  | return dax_zero_range(inode, pos, len, did_zero, | 
|  | &xfs_dax_write_iomap_ops); | 
|  | return iomap_zero_range(inode, pos, len, did_zero, | 
|  | &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops, | 
|  | ac); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_truncate_page( | 
|  | struct xfs_inode	*ip, | 
|  | loff_t			pos, | 
|  | struct xfs_zone_alloc_ctx *ac, | 
|  | bool			*did_zero) | 
|  | { | 
|  | struct inode		*inode = VFS_I(ip); | 
|  |  | 
|  | if (IS_DAX(inode)) | 
|  | return dax_truncate_page(inode, pos, did_zero, | 
|  | &xfs_dax_write_iomap_ops); | 
|  | return iomap_truncate_page(inode, pos, did_zero, | 
|  | &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops, | 
|  | ac); | 
|  | } |