|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  |  | 
|  | /* | 
|  | * Linux-specific definitions for managing interactions with Microsoft's | 
|  | * Hyper-V hypervisor. The definitions in this file are architecture | 
|  | * independent. See arch/<arch>/include/asm/mshyperv.h for definitions | 
|  | * that are specific to architecture <arch>. | 
|  | * | 
|  | * Definitions that are derived from Hyper-V code or headers should not go in | 
|  | * this file, but should instead go in the relevant files in include/hyperv. | 
|  | * | 
|  | * Copyright (C) 2019, Microsoft, Inc. | 
|  | * | 
|  | * Author : Michael Kelley <mikelley@microsoft.com> | 
|  | */ | 
|  |  | 
|  | #ifndef _ASM_GENERIC_MSHYPERV_H | 
|  | #define _ASM_GENERIC_MSHYPERV_H | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <acpi/acpi_numa.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <hyperv/hvhdk.h> | 
|  |  | 
|  | #define VTPM_BASE_ADDRESS 0xfed40000 | 
|  |  | 
|  | enum hv_partition_type { | 
|  | HV_PARTITION_TYPE_GUEST, | 
|  | HV_PARTITION_TYPE_ROOT, | 
|  | }; | 
|  |  | 
|  | struct ms_hyperv_info { | 
|  | u32 features; | 
|  | u32 priv_high; | 
|  | u32 ext_features; | 
|  | u32 misc_features; | 
|  | u32 hints; | 
|  | u32 nested_features; | 
|  | u32 max_vp_index; | 
|  | u32 max_lp_index; | 
|  | u8 vtl; | 
|  | union { | 
|  | u32 isolation_config_a; | 
|  | struct { | 
|  | u32 paravisor_present : 1; | 
|  | u32 reserved_a1 : 31; | 
|  | }; | 
|  | }; | 
|  | union { | 
|  | u32 isolation_config_b; | 
|  | struct { | 
|  | u32 cvm_type : 4; | 
|  | u32 reserved_b1 : 1; | 
|  | u32 shared_gpa_boundary_active : 1; | 
|  | u32 shared_gpa_boundary_bits : 6; | 
|  | u32 reserved_b2 : 20; | 
|  | }; | 
|  | }; | 
|  | u64 shared_gpa_boundary; | 
|  | }; | 
|  | extern struct ms_hyperv_info ms_hyperv; | 
|  | extern bool hv_nested; | 
|  | extern u64 hv_current_partition_id; | 
|  | extern enum hv_partition_type hv_curr_partition_type; | 
|  |  | 
|  | extern void * __percpu *hyperv_pcpu_input_arg; | 
|  | extern void * __percpu *hyperv_pcpu_output_arg; | 
|  |  | 
|  | u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr); | 
|  | u64 hv_do_fast_hypercall8(u16 control, u64 input8); | 
|  | u64 hv_do_fast_hypercall16(u16 control, u64 input1, u64 input2); | 
|  |  | 
|  | bool hv_isolation_type_snp(void); | 
|  | bool hv_isolation_type_tdx(void); | 
|  |  | 
|  | /* | 
|  | * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64), | 
|  | * it doesn't provide a recommendation flag and AEOI must be disabled. | 
|  | */ | 
|  | static inline bool hv_recommend_using_aeoi(void) | 
|  | { | 
|  | #ifdef HV_DEPRECATING_AEOI_RECOMMENDED | 
|  | return !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED); | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node) | 
|  | { | 
|  | struct hv_proximity_domain_info pxm_info = {}; | 
|  |  | 
|  | if (node != NUMA_NO_NODE) { | 
|  | pxm_info.domain_id = node_to_pxm(node); | 
|  | pxm_info.flags.proximity_info_valid = 1; | 
|  | pxm_info.flags.proximity_preferred = 1; | 
|  | } | 
|  |  | 
|  | return pxm_info; | 
|  | } | 
|  |  | 
|  | /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */ | 
|  | static inline int hv_result(u64 status) | 
|  | { | 
|  | return status & HV_HYPERCALL_RESULT_MASK; | 
|  | } | 
|  |  | 
|  | static inline bool hv_result_success(u64 status) | 
|  | { | 
|  | return hv_result(status) == HV_STATUS_SUCCESS; | 
|  | } | 
|  |  | 
|  | static inline unsigned int hv_repcomp(u64 status) | 
|  | { | 
|  | /* Bits [43:32] of status have 'Reps completed' data. */ | 
|  | return (status & HV_HYPERCALL_REP_COMP_MASK) >> | 
|  | HV_HYPERCALL_REP_COMP_OFFSET; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rep hypercalls. Callers of this functions are supposed to ensure that | 
|  | * rep_count and varhead_size comply with Hyper-V hypercall definition. | 
|  | */ | 
|  | static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, | 
|  | void *input, void *output) | 
|  | { | 
|  | u64 control = code; | 
|  | u64 status; | 
|  | u16 rep_comp; | 
|  |  | 
|  | control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; | 
|  | control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; | 
|  |  | 
|  | do { | 
|  | status = hv_do_hypercall(control, input, output); | 
|  | if (!hv_result_success(status)) | 
|  | return status; | 
|  |  | 
|  | rep_comp = hv_repcomp(status); | 
|  |  | 
|  | control &= ~HV_HYPERCALL_REP_START_MASK; | 
|  | control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; | 
|  |  | 
|  | touch_nmi_watchdog(); | 
|  | } while (rep_comp < rep_count); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Generate the guest OS identifier as described in the Hyper-V TLFS */ | 
|  | static inline u64 hv_generate_guest_id(u64 kernel_version) | 
|  | { | 
|  | u64 guest_id; | 
|  |  | 
|  | guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48); | 
|  | guest_id |= (kernel_version << 16); | 
|  |  | 
|  | return guest_id; | 
|  | } | 
|  |  | 
|  | /* Free the message slot and signal end-of-message if required */ | 
|  | static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) | 
|  | { | 
|  | /* | 
|  | * On crash we're reading some other CPU's message page and we need | 
|  | * to be careful: this other CPU may already had cleared the header | 
|  | * and the host may already had delivered some other message there. | 
|  | * In case we blindly write msg->header.message_type we're going | 
|  | * to lose it. We can still lose a message of the same type but | 
|  | * we count on the fact that there can only be one | 
|  | * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages | 
|  | * on crash. | 
|  | */ | 
|  | if (cmpxchg(&msg->header.message_type, old_msg_type, | 
|  | HVMSG_NONE) != old_msg_type) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The cmxchg() above does an implicit memory barrier to | 
|  | * ensure the write to MessageType (ie set to | 
|  | * HVMSG_NONE) happens before we read the | 
|  | * MessagePending and EOMing. Otherwise, the EOMing | 
|  | * will not deliver any more messages since there is | 
|  | * no empty slot | 
|  | */ | 
|  | if (msg->header.message_flags.msg_pending) { | 
|  | /* | 
|  | * This will cause message queue rescan to | 
|  | * possibly deliver another msg from the | 
|  | * hypervisor | 
|  | */ | 
|  | hv_set_msr(HV_MSR_EOM, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | int hv_get_hypervisor_version(union hv_hypervisor_version_info *info); | 
|  |  | 
|  | void hv_setup_vmbus_handler(void (*handler)(void)); | 
|  | void hv_remove_vmbus_handler(void); | 
|  | void hv_setup_stimer0_handler(void (*handler)(void)); | 
|  | void hv_remove_stimer0_handler(void); | 
|  |  | 
|  | void hv_setup_kexec_handler(void (*handler)(void)); | 
|  | void hv_remove_kexec_handler(void); | 
|  | void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); | 
|  | void hv_remove_crash_handler(void); | 
|  | void hv_setup_mshv_handler(void (*handler)(void)); | 
|  |  | 
|  | extern int vmbus_interrupt; | 
|  | extern int vmbus_irq; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_HYPERV) | 
|  | /* | 
|  | * Hypervisor's notion of virtual processor ID is different from | 
|  | * Linux' notion of CPU ID. This information can only be retrieved | 
|  | * in the context of the calling CPU. Setup a map for easy access | 
|  | * to this information. | 
|  | */ | 
|  | extern u32 *hv_vp_index; | 
|  | extern u32 hv_max_vp_index; | 
|  |  | 
|  | extern u64 (*hv_read_reference_counter)(void); | 
|  |  | 
|  | /* Sentinel value for an uninitialized entry in hv_vp_index array */ | 
|  | #define VP_INVAL	U32_MAX | 
|  |  | 
|  | int __init hv_common_init(void); | 
|  | void __init hv_get_partition_id(void); | 
|  | void __init hv_common_free(void); | 
|  | void __init ms_hyperv_late_init(void); | 
|  | int hv_common_cpu_init(unsigned int cpu); | 
|  | int hv_common_cpu_die(unsigned int cpu); | 
|  | void hv_identify_partition_type(void); | 
|  |  | 
|  | /** | 
|  | * hv_cpu_number_to_vp_number() - Map CPU to VP. | 
|  | * @cpu_number: CPU number in Linux terms | 
|  | * | 
|  | * This function returns the mapping between the Linux processor | 
|  | * number and the hypervisor's virtual processor number, useful | 
|  | * in making hypercalls and such that talk about specific | 
|  | * processors. | 
|  | * | 
|  | * Return: Virtual processor number in Hyper-V terms | 
|  | */ | 
|  | static inline int hv_cpu_number_to_vp_number(int cpu_number) | 
|  | { | 
|  | return hv_vp_index[cpu_number]; | 
|  | } | 
|  |  | 
|  | static inline int __cpumask_to_vpset(struct hv_vpset *vpset, | 
|  | const struct cpumask *cpus, | 
|  | bool (*func)(int cpu)) | 
|  | { | 
|  | int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; | 
|  | int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK; | 
|  |  | 
|  | /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */ | 
|  | if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex | 
|  | * structs are not cleared between calls, we risk flushing unneeded | 
|  | * vCPUs otherwise. | 
|  | */ | 
|  | for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++) | 
|  | vpset->bank_contents[vcpu_bank] = 0; | 
|  |  | 
|  | /* | 
|  | * Some banks may end up being empty but this is acceptable. | 
|  | */ | 
|  | for_each_cpu(cpu, cpus) { | 
|  | if (func && func(cpu)) | 
|  | continue; | 
|  | vcpu = hv_cpu_number_to_vp_number(cpu); | 
|  | if (vcpu == VP_INVAL) | 
|  | return -1; | 
|  | vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK; | 
|  | vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK; | 
|  | __set_bit(vcpu_offset, (unsigned long *) | 
|  | &vpset->bank_contents[vcpu_bank]); | 
|  | if (vcpu_bank >= nr_bank) | 
|  | nr_bank = vcpu_bank + 1; | 
|  | } | 
|  | vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); | 
|  | return nr_bank; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant, | 
|  | * 'func' is called for each CPU present in cpumask.  If 'func' returns | 
|  | * true, that CPU is skipped -- i.e., that CPU from cpumask is *not* | 
|  | * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are | 
|  | * skipped. | 
|  | */ | 
|  | static inline int cpumask_to_vpset(struct hv_vpset *vpset, | 
|  | const struct cpumask *cpus) | 
|  | { | 
|  | return __cpumask_to_vpset(vpset, cpus, NULL); | 
|  | } | 
|  |  | 
|  | static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset, | 
|  | const struct cpumask *cpus, | 
|  | bool (*func)(int cpu)) | 
|  | { | 
|  | return __cpumask_to_vpset(vpset, cpus, func); | 
|  | } | 
|  |  | 
|  | #define _hv_status_fmt(fmt) "%s: Hyper-V status: %#x = %s: " fmt | 
|  | #define hv_status_printk(level, status, fmt, ...) \ | 
|  | do { \ | 
|  | u64 __status = (status); \ | 
|  | pr_##level(_hv_status_fmt(fmt), __func__, hv_result(__status), \ | 
|  | hv_result_to_string(__status), ##__VA_ARGS__); \ | 
|  | } while (0) | 
|  | #define hv_status_err(status, fmt, ...) \ | 
|  | hv_status_printk(err, status, fmt, ##__VA_ARGS__) | 
|  | #define hv_status_debug(status, fmt, ...) \ | 
|  | hv_status_printk(debug, status, fmt, ##__VA_ARGS__) | 
|  |  | 
|  | const char *hv_result_to_string(u64 hv_status); | 
|  | int hv_result_to_errno(u64 status); | 
|  | void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die); | 
|  | bool hv_is_hyperv_initialized(void); | 
|  | bool hv_is_hibernation_supported(void); | 
|  | enum hv_isolation_type hv_get_isolation_type(void); | 
|  | bool hv_is_isolation_supported(void); | 
|  | bool hv_isolation_type_snp(void); | 
|  | u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size); | 
|  | u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2); | 
|  | void hyperv_cleanup(void); | 
|  | bool hv_query_ext_cap(u64 cap_query); | 
|  | void hv_setup_dma_ops(struct device *dev, bool coherent); | 
|  | #else /* CONFIG_HYPERV */ | 
|  | static inline void hv_identify_partition_type(void) {} | 
|  | static inline bool hv_is_hyperv_initialized(void) { return false; } | 
|  | static inline bool hv_is_hibernation_supported(void) { return false; } | 
|  | static inline void hyperv_cleanup(void) {} | 
|  | static inline void ms_hyperv_late_init(void) {} | 
|  | static inline bool hv_is_isolation_supported(void) { return false; } | 
|  | static inline enum hv_isolation_type hv_get_isolation_type(void) | 
|  | { | 
|  | return HV_ISOLATION_TYPE_NONE; | 
|  | } | 
|  | #endif /* CONFIG_HYPERV */ | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_MSHV_ROOT) | 
|  | static inline bool hv_root_partition(void) | 
|  | { | 
|  | return hv_curr_partition_type == HV_PARTITION_TYPE_ROOT; | 
|  | } | 
|  | int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages); | 
|  | int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id); | 
|  | int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags); | 
|  |  | 
|  | #else /* CONFIG_MSHV_ROOT */ | 
|  | static inline bool hv_root_partition(void) { return false; } | 
|  | static inline int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | static inline int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | static inline int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | #endif /* CONFIG_MSHV_ROOT */ | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE) | 
|  | u8 __init get_vtl(void); | 
|  | #else | 
|  | static inline u8 get_vtl(void) { return 0; } | 
|  | #endif | 
|  |  | 
|  | #endif |