|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/pagewalk.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mmu_context.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * We want to know the real level where a entry is located ignoring any | 
|  | * folding of levels which may be happening. For example if p4d is folded then | 
|  | * a missing entry found at level 1 (p4d) is actually at level 0 (pgd). | 
|  | */ | 
|  | static int real_depth(int depth) | 
|  | { | 
|  | if (depth == 3 && PTRS_PER_PMD == 1) | 
|  | depth = 2; | 
|  | if (depth == 2 && PTRS_PER_PUD == 1) | 
|  | depth = 1; | 
|  | if (depth == 1 && PTRS_PER_P4D == 1) | 
|  | depth = 0; | 
|  | return depth; | 
|  | } | 
|  |  | 
|  | static int walk_pte_range_inner(pte_t *pte, unsigned long addr, | 
|  | unsigned long end, struct mm_walk *walk) | 
|  | { | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | int err = 0; | 
|  |  | 
|  | for (;;) { | 
|  | if (ops->install_pte && pte_none(ptep_get(pte))) { | 
|  | pte_t new_pte; | 
|  |  | 
|  | err = ops->install_pte(addr, addr + PAGE_SIZE, &new_pte, | 
|  | walk); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | set_pte_at(walk->mm, addr, pte, new_pte); | 
|  | /* Non-present before, so for arches that need it. */ | 
|  | if (!WARN_ON_ONCE(walk->no_vma)) | 
|  | update_mmu_cache(walk->vma, addr, pte); | 
|  | } else { | 
|  | err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | if (addr >= end - PAGE_SIZE) | 
|  | break; | 
|  | addr += PAGE_SIZE; | 
|  | pte++; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | pte_t *pte; | 
|  | int err = 0; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | if (walk->no_vma) { | 
|  | /* | 
|  | * pte_offset_map() might apply user-specific validation. | 
|  | * Indeed, on x86_64 the pmd entries set up by init_espfix_ap() | 
|  | * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear), | 
|  | * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them. | 
|  | */ | 
|  | if (walk->mm == &init_mm || addr >= TASK_SIZE) | 
|  | pte = pte_offset_kernel(pmd, addr); | 
|  | else | 
|  | pte = pte_offset_map(pmd, addr); | 
|  | if (pte) { | 
|  | err = walk_pte_range_inner(pte, addr, end, walk); | 
|  | if (walk->mm != &init_mm && addr < TASK_SIZE) | 
|  | pte_unmap(pte); | 
|  | } | 
|  | } else { | 
|  | pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); | 
|  | if (pte) { | 
|  | err = walk_pte_range_inner(pte, addr, end, walk); | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | } | 
|  | } | 
|  | if (!pte) | 
|  | walk->action = ACTION_AGAIN; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | bool has_handler = ops->pte_entry; | 
|  | bool has_install = ops->install_pte; | 
|  | int err = 0; | 
|  | int depth = real_depth(3); | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | again: | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none(*pmd)) { | 
|  | if (has_install) | 
|  | err = __pte_alloc(walk->mm, pmd); | 
|  | else if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, depth, walk); | 
|  | if (err) | 
|  | break; | 
|  | if (!has_install) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | walk->action = ACTION_SUBTREE; | 
|  |  | 
|  | /* | 
|  | * This implies that each ->pmd_entry() handler | 
|  | * needs to know about pmd_trans_huge() pmds | 
|  | */ | 
|  | if (ops->pmd_entry) | 
|  | err = ops->pmd_entry(pmd, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | if (walk->action == ACTION_AGAIN) | 
|  | goto again; | 
|  | if (walk->action == ACTION_CONTINUE) | 
|  | continue; | 
|  |  | 
|  | if (!has_handler) { /* No handlers for lower page tables. */ | 
|  | if (!has_install) | 
|  | continue; /* Nothing to do. */ | 
|  | /* | 
|  | * We are ONLY installing, so avoid unnecessarily | 
|  | * splitting a present huge page. | 
|  | */ | 
|  | if (pmd_present(*pmd) && pmd_trans_huge(*pmd)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (walk->vma) | 
|  | split_huge_pmd(walk->vma, pmd, addr); | 
|  | else if (pmd_leaf(*pmd) || !pmd_present(*pmd)) | 
|  | continue; /* Nothing to do. */ | 
|  |  | 
|  | err = walk_pte_range(pmd, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | if (walk->action == ACTION_AGAIN) | 
|  | goto again; | 
|  |  | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | bool has_handler = ops->pmd_entry || ops->pte_entry; | 
|  | bool has_install = ops->install_pte; | 
|  | int err = 0; | 
|  | int depth = real_depth(2); | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | do { | 
|  | again: | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none(*pud)) { | 
|  | if (has_install) | 
|  | err = __pmd_alloc(walk->mm, pud, addr); | 
|  | else if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, depth, walk); | 
|  | if (err) | 
|  | break; | 
|  | if (!has_install) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | walk->action = ACTION_SUBTREE; | 
|  |  | 
|  | if (ops->pud_entry) | 
|  | err = ops->pud_entry(pud, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | if (walk->action == ACTION_AGAIN) | 
|  | goto again; | 
|  | if (walk->action == ACTION_CONTINUE) | 
|  | continue; | 
|  |  | 
|  | if (!has_handler) { /* No handlers for lower page tables. */ | 
|  | if (!has_install) | 
|  | continue; /* Nothing to do. */ | 
|  | /* | 
|  | * We are ONLY installing, so avoid unnecessarily | 
|  | * splitting a present huge page. | 
|  | */ | 
|  | if (pud_present(*pud) && pud_trans_huge(*pud)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (walk->vma) | 
|  | split_huge_pud(walk->vma, pud, addr); | 
|  | else if (pud_leaf(*pud) || !pud_present(*pud)) | 
|  | continue; /* Nothing to do. */ | 
|  |  | 
|  | if (pud_none(*pud)) | 
|  | goto again; | 
|  |  | 
|  | err = walk_pmd_range(pud, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | bool has_handler = ops->pud_entry || ops->pmd_entry || ops->pte_entry; | 
|  | bool has_install = ops->install_pte; | 
|  | int err = 0; | 
|  | int depth = real_depth(1); | 
|  |  | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | if (p4d_none_or_clear_bad(p4d)) { | 
|  | if (has_install) | 
|  | err = __pud_alloc(walk->mm, p4d, addr); | 
|  | else if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, depth, walk); | 
|  | if (err) | 
|  | break; | 
|  | if (!has_install) | 
|  | continue; | 
|  | } | 
|  | if (ops->p4d_entry) { | 
|  | err = ops->p4d_entry(p4d, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | if (has_handler || has_install) | 
|  | err = walk_pud_range(p4d, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } while (p4d++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int walk_pgd_range(unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | bool has_handler = ops->p4d_entry || ops->pud_entry || ops->pmd_entry || | 
|  | ops->pte_entry; | 
|  | bool has_install = ops->install_pte; | 
|  | int err = 0; | 
|  |  | 
|  | if (walk->pgd) | 
|  | pgd = walk->pgd + pgd_index(addr); | 
|  | else | 
|  | pgd = pgd_offset(walk->mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) { | 
|  | if (has_install) | 
|  | err = __p4d_alloc(walk->mm, pgd, addr); | 
|  | else if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, 0, walk); | 
|  | if (err) | 
|  | break; | 
|  | if (!has_install) | 
|  | continue; | 
|  | } | 
|  | if (ops->pgd_entry) { | 
|  | err = ops->pgd_entry(pgd, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | if (has_handler || has_install) | 
|  | err = walk_p4d_range(pgd, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); | 
|  | return boundary < end ? boundary : end; | 
|  | } | 
|  |  | 
|  | static int walk_hugetlb_range(unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | unsigned long next; | 
|  | unsigned long hmask = huge_page_mask(h); | 
|  | unsigned long sz = huge_page_size(h); | 
|  | pte_t *pte; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | int err = 0; | 
|  |  | 
|  | hugetlb_vma_lock_read(vma); | 
|  | do { | 
|  | next = hugetlb_entry_end(h, addr, end); | 
|  | pte = hugetlb_walk(vma, addr & hmask, sz); | 
|  | if (pte) | 
|  | err = ops->hugetlb_entry(pte, hmask, addr, next, walk); | 
|  | else if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, -1, walk); | 
|  | if (err) | 
|  | break; | 
|  | } while (addr = next, addr != end); | 
|  | hugetlb_vma_unlock_read(vma); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_HUGETLB_PAGE */ | 
|  | static int walk_hugetlb_range(unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | /* | 
|  | * Decide whether we really walk over the current vma on [@start, @end) | 
|  | * or skip it via the returned value. Return 0 if we do walk over the | 
|  | * current vma, and return 1 if we skip the vma. Negative values means | 
|  | * error, where we abort the current walk. | 
|  | */ | 
|  | static int walk_page_test(unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  |  | 
|  | if (ops->test_walk) | 
|  | return ops->test_walk(start, end, walk); | 
|  |  | 
|  | /* | 
|  | * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP | 
|  | * range, so we don't walk over it as we do for normal vmas. However, | 
|  | * Some callers are interested in handling hole range and they don't | 
|  | * want to just ignore any single address range. Such users certainly | 
|  | * define their ->pte_hole() callbacks, so let's delegate them to handle | 
|  | * vma(VM_PFNMAP). | 
|  | */ | 
|  | if (vma->vm_flags & VM_PFNMAP) { | 
|  | int err = 1; | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(start, end, -1, walk); | 
|  | return err ? err : 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __walk_page_range(unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | int err = 0; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | bool is_hugetlb = is_vm_hugetlb_page(vma); | 
|  |  | 
|  | /* We do not support hugetlb PTE installation. */ | 
|  | if (ops->install_pte && is_hugetlb) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ops->pre_vma) { | 
|  | err = ops->pre_vma(start, end, walk); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (is_hugetlb) { | 
|  | if (ops->hugetlb_entry) | 
|  | err = walk_hugetlb_range(start, end, walk); | 
|  | } else | 
|  | err = walk_pgd_range(start, end, walk); | 
|  |  | 
|  | if (ops->post_vma) | 
|  | ops->post_vma(walk); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline void process_mm_walk_lock(struct mm_struct *mm, | 
|  | enum page_walk_lock walk_lock) | 
|  | { | 
|  | if (walk_lock == PGWALK_RDLOCK) | 
|  | mmap_assert_locked(mm); | 
|  | else if (walk_lock != PGWALK_VMA_RDLOCK_VERIFY) | 
|  | mmap_assert_write_locked(mm); | 
|  | } | 
|  |  | 
|  | static inline void process_vma_walk_lock(struct vm_area_struct *vma, | 
|  | enum page_walk_lock walk_lock) | 
|  | { | 
|  | #ifdef CONFIG_PER_VMA_LOCK | 
|  | switch (walk_lock) { | 
|  | case PGWALK_WRLOCK: | 
|  | vma_start_write(vma); | 
|  | break; | 
|  | case PGWALK_WRLOCK_VERIFY: | 
|  | vma_assert_write_locked(vma); | 
|  | break; | 
|  | case PGWALK_VMA_RDLOCK_VERIFY: | 
|  | vma_assert_locked(vma); | 
|  | break; | 
|  | case PGWALK_RDLOCK: | 
|  | /* PGWALK_RDLOCK is handled by process_mm_walk_lock */ | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See the comment for walk_page_range(), this performs the heavy lifting of the | 
|  | * operation, only sets no restrictions on how the walk proceeds. | 
|  | * | 
|  | * We usually restrict the ability to install PTEs, but this functionality is | 
|  | * available to internal memory management code and provided in mm/internal.h. | 
|  | */ | 
|  | int walk_page_range_mm(struct mm_struct *mm, unsigned long start, | 
|  | unsigned long end, const struct mm_walk_ops *ops, | 
|  | void *private) | 
|  | { | 
|  | int err = 0; | 
|  | unsigned long next; | 
|  | struct vm_area_struct *vma; | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .mm		= mm, | 
|  | .private	= private, | 
|  | }; | 
|  |  | 
|  | if (start >= end) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!walk.mm) | 
|  | return -EINVAL; | 
|  |  | 
|  | process_mm_walk_lock(walk.mm, ops->walk_lock); | 
|  |  | 
|  | vma = find_vma(walk.mm, start); | 
|  | do { | 
|  | if (!vma) { /* after the last vma */ | 
|  | walk.vma = NULL; | 
|  | next = end; | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(start, next, -1, &walk); | 
|  | } else if (start < vma->vm_start) { /* outside vma */ | 
|  | walk.vma = NULL; | 
|  | next = min(end, vma->vm_start); | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(start, next, -1, &walk); | 
|  | } else { /* inside vma */ | 
|  | process_vma_walk_lock(vma, ops->walk_lock); | 
|  | walk.vma = vma; | 
|  | next = min(end, vma->vm_end); | 
|  | vma = find_vma(mm, vma->vm_end); | 
|  |  | 
|  | err = walk_page_test(start, next, &walk); | 
|  | if (err > 0) { | 
|  | /* | 
|  | * positive return values are purely for | 
|  | * controlling the pagewalk, so should never | 
|  | * be passed to the callers. | 
|  | */ | 
|  | err = 0; | 
|  | continue; | 
|  | } | 
|  | if (err < 0) | 
|  | break; | 
|  | err = __walk_page_range(start, next, &walk); | 
|  | } | 
|  | if (err) | 
|  | break; | 
|  | } while (start = next, start < end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if the walk operations specified are permitted to be used for a | 
|  | * page table walk. | 
|  | * | 
|  | * This check is performed on all functions which are parameterised by walk | 
|  | * operations and exposed in include/linux/pagewalk.h. | 
|  | * | 
|  | * Internal memory management code can use the walk_page_range_mm() function to | 
|  | * be able to use all page walking operations. | 
|  | */ | 
|  | static bool check_ops_valid(const struct mm_walk_ops *ops) | 
|  | { | 
|  | /* | 
|  | * The installation of PTEs is solely under the control of memory | 
|  | * management logic and subject to many subtle locking, security and | 
|  | * cache considerations so we cannot permit other users to do so, and | 
|  | * certainly not for exported symbols. | 
|  | */ | 
|  | if (ops->install_pte) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * walk_page_range - walk page table with caller specific callbacks | 
|  | * @mm:		mm_struct representing the target process of page table walk | 
|  | * @start:	start address of the virtual address range | 
|  | * @end:	end address of the virtual address range | 
|  | * @ops:	operation to call during the walk | 
|  | * @private:	private data for callbacks' usage | 
|  | * | 
|  | * Recursively walk the page table tree of the process represented by @mm | 
|  | * within the virtual address range [@start, @end). During walking, we can do | 
|  | * some caller-specific works for each entry, by setting up pmd_entry(), | 
|  | * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these | 
|  | * callbacks, the associated entries/pages are just ignored. | 
|  | * The return values of these callbacks are commonly defined like below: | 
|  | * | 
|  | *  - 0  : succeeded to handle the current entry, and if you don't reach the | 
|  | *         end address yet, continue to walk. | 
|  | *  - >0 : succeeded to handle the current entry, and return to the caller | 
|  | *         with caller specific value. | 
|  | *  - <0 : failed to handle the current entry, and return to the caller | 
|  | *         with error code. | 
|  | * | 
|  | * Before starting to walk page table, some callers want to check whether | 
|  | * they really want to walk over the current vma, typically by checking | 
|  | * its vm_flags. walk_page_test() and @ops->test_walk() are used for this | 
|  | * purpose. | 
|  | * | 
|  | * If operations need to be staged before and committed after a vma is walked, | 
|  | * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(), | 
|  | * since it is intended to handle commit-type operations, can't return any | 
|  | * errors. | 
|  | * | 
|  | * struct mm_walk keeps current values of some common data like vma and pmd, | 
|  | * which are useful for the access from callbacks. If you want to pass some | 
|  | * caller-specific data to callbacks, @private should be helpful. | 
|  | * | 
|  | * Locking: | 
|  | *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock, | 
|  | *   because these function traverse vma list and/or access to vma's data. | 
|  | */ | 
|  | int walk_page_range(struct mm_struct *mm, unsigned long start, | 
|  | unsigned long end, const struct mm_walk_ops *ops, | 
|  | void *private) | 
|  | { | 
|  | if (!check_ops_valid(ops)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return walk_page_range_mm(mm, start, end, ops, private); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * walk_kernel_page_table_range - walk a range of kernel pagetables. | 
|  | * @start:	start address of the virtual address range | 
|  | * @end:	end address of the virtual address range | 
|  | * @ops:	operation to call during the walk | 
|  | * @pgd:	pgd to walk if different from mm->pgd | 
|  | * @private:	private data for callbacks' usage | 
|  | * | 
|  | * Similar to walk_page_range() but can walk any page tables even if they are | 
|  | * not backed by VMAs. Because 'unusual' entries may be walked this function | 
|  | * will also not lock the PTEs for the pte_entry() callback. This is useful for | 
|  | * walking kernel pages tables or page tables for firmware. | 
|  | * | 
|  | * Note: Be careful to walk the kernel pages tables, the caller may be need to | 
|  | * take other effective approaches (mmap lock may be insufficient) to prevent | 
|  | * the intermediate kernel page tables belonging to the specified address range | 
|  | * from being freed (e.g. memory hot-remove). | 
|  | */ | 
|  | int walk_kernel_page_table_range(unsigned long start, unsigned long end, | 
|  | const struct mm_walk_ops *ops, pgd_t *pgd, void *private) | 
|  | { | 
|  | struct mm_struct *mm = &init_mm; | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .mm		= mm, | 
|  | .pgd		= pgd, | 
|  | .private	= private, | 
|  | .no_vma		= true | 
|  | }; | 
|  |  | 
|  | if (start >= end) | 
|  | return -EINVAL; | 
|  | if (!check_ops_valid(ops)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Kernel intermediate page tables are usually not freed, so the mmap | 
|  | * read lock is sufficient. But there are some exceptions. | 
|  | * E.g. memory hot-remove. In which case, the mmap lock is insufficient | 
|  | * to prevent the intermediate kernel pages tables belonging to the | 
|  | * specified address range from being freed. The caller should take | 
|  | * other actions to prevent this race. | 
|  | */ | 
|  | mmap_assert_locked(mm); | 
|  |  | 
|  | return walk_pgd_range(start, end, &walk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * walk_page_range_debug - walk a range of pagetables not backed by a vma | 
|  | * @mm:		mm_struct representing the target process of page table walk | 
|  | * @start:	start address of the virtual address range | 
|  | * @end:	end address of the virtual address range | 
|  | * @ops:	operation to call during the walk | 
|  | * @pgd:	pgd to walk if different from mm->pgd | 
|  | * @private:	private data for callbacks' usage | 
|  | * | 
|  | * Similar to walk_page_range() but can walk any page tables even if they are | 
|  | * not backed by VMAs. Because 'unusual' entries may be walked this function | 
|  | * will also not lock the PTEs for the pte_entry() callback. | 
|  | * | 
|  | * This is for debugging purposes ONLY. | 
|  | */ | 
|  | int walk_page_range_debug(struct mm_struct *mm, unsigned long start, | 
|  | unsigned long end, const struct mm_walk_ops *ops, | 
|  | pgd_t *pgd, void *private) | 
|  | { | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .mm		= mm, | 
|  | .pgd		= pgd, | 
|  | .private	= private, | 
|  | .no_vma		= true | 
|  | }; | 
|  |  | 
|  | /* For convenience, we allow traversal of kernel mappings. */ | 
|  | if (mm == &init_mm) | 
|  | return walk_kernel_page_table_range(start, end, ops, | 
|  | pgd, private); | 
|  | if (start >= end || !walk.mm) | 
|  | return -EINVAL; | 
|  | if (!check_ops_valid(ops)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * The mmap lock protects the page walker from changes to the page | 
|  | * tables during the walk.  However a read lock is insufficient to | 
|  | * protect those areas which don't have a VMA as munmap() detaches | 
|  | * the VMAs before downgrading to a read lock and actually tearing | 
|  | * down PTEs/page tables. In which case, the mmap write lock should | 
|  | * be held. | 
|  | */ | 
|  | mmap_assert_write_locked(mm); | 
|  |  | 
|  | return walk_pgd_range(start, end, &walk); | 
|  | } | 
|  |  | 
|  | int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, const struct mm_walk_ops *ops, | 
|  | void *private) | 
|  | { | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .mm		= vma->vm_mm, | 
|  | .vma		= vma, | 
|  | .private	= private, | 
|  | }; | 
|  |  | 
|  | if (start >= end || !walk.mm) | 
|  | return -EINVAL; | 
|  | if (start < vma->vm_start || end > vma->vm_end) | 
|  | return -EINVAL; | 
|  | if (!check_ops_valid(ops)) | 
|  | return -EINVAL; | 
|  |  | 
|  | process_mm_walk_lock(walk.mm, ops->walk_lock); | 
|  | process_vma_walk_lock(vma, ops->walk_lock); | 
|  | return __walk_page_range(start, end, &walk); | 
|  | } | 
|  |  | 
|  | int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops, | 
|  | void *private) | 
|  | { | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .mm		= vma->vm_mm, | 
|  | .vma		= vma, | 
|  | .private	= private, | 
|  | }; | 
|  |  | 
|  | if (!walk.mm) | 
|  | return -EINVAL; | 
|  | if (!check_ops_valid(ops)) | 
|  | return -EINVAL; | 
|  |  | 
|  | process_mm_walk_lock(walk.mm, ops->walk_lock); | 
|  | process_vma_walk_lock(vma, ops->walk_lock); | 
|  | return __walk_page_range(vma->vm_start, vma->vm_end, &walk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * walk_page_mapping - walk all memory areas mapped into a struct address_space. | 
|  | * @mapping: Pointer to the struct address_space | 
|  | * @first_index: First page offset in the address_space | 
|  | * @nr: Number of incremental page offsets to cover | 
|  | * @ops:	operation to call during the walk | 
|  | * @private:	private data for callbacks' usage | 
|  | * | 
|  | * This function walks all memory areas mapped into a struct address_space. | 
|  | * The walk is limited to only the given page-size index range, but if | 
|  | * the index boundaries cross a huge page-table entry, that entry will be | 
|  | * included. | 
|  | * | 
|  | * Also see walk_page_range() for additional information. | 
|  | * | 
|  | * Locking: | 
|  | *   This function can't require that the struct mm_struct::mmap_lock is held, | 
|  | *   since @mapping may be mapped by multiple processes. Instead | 
|  | *   @mapping->i_mmap_rwsem must be held. This might have implications in the | 
|  | *   callbacks, and it's up tho the caller to ensure that the | 
|  | *   struct mm_struct::mmap_lock is not needed. | 
|  | * | 
|  | *   Also this means that a caller can't rely on the struct | 
|  | *   vm_area_struct::vm_flags to be constant across a call, | 
|  | *   except for immutable flags. Callers requiring this shouldn't use | 
|  | *   this function. | 
|  | * | 
|  | * Return: 0 on success, negative error code on failure, positive number on | 
|  | * caller defined premature termination. | 
|  | */ | 
|  | int walk_page_mapping(struct address_space *mapping, pgoff_t first_index, | 
|  | pgoff_t nr, const struct mm_walk_ops *ops, | 
|  | void *private) | 
|  | { | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .private	= private, | 
|  | }; | 
|  | struct vm_area_struct *vma; | 
|  | pgoff_t vba, vea, cba, cea; | 
|  | unsigned long start_addr, end_addr; | 
|  | int err = 0; | 
|  |  | 
|  | if (!check_ops_valid(ops)) | 
|  | return -EINVAL; | 
|  |  | 
|  | lockdep_assert_held(&mapping->i_mmap_rwsem); | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index, | 
|  | first_index + nr - 1) { | 
|  | /* Clip to the vma */ | 
|  | vba = vma->vm_pgoff; | 
|  | vea = vba + vma_pages(vma); | 
|  | cba = first_index; | 
|  | cba = max(cba, vba); | 
|  | cea = first_index + nr; | 
|  | cea = min(cea, vea); | 
|  |  | 
|  | start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start; | 
|  | end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start; | 
|  | if (start_addr >= end_addr) | 
|  | continue; | 
|  |  | 
|  | walk.vma = vma; | 
|  | walk.mm = vma->vm_mm; | 
|  |  | 
|  | err = walk_page_test(vma->vm_start, vma->vm_end, &walk); | 
|  | if (err > 0) { | 
|  | err = 0; | 
|  | break; | 
|  | } else if (err < 0) | 
|  | break; | 
|  |  | 
|  | err = __walk_page_range(start_addr, end_addr, &walk); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * folio_walk_start - walk the page tables to a folio | 
|  | * @fw: filled with information on success. | 
|  | * @vma: the VMA. | 
|  | * @addr: the virtual address to use for the page table walk. | 
|  | * @flags: flags modifying which folios to walk to. | 
|  | * | 
|  | * Walk the page tables using @addr in a given @vma to a mapped folio and | 
|  | * return the folio, making sure that the page table entry referenced by | 
|  | * @addr cannot change until folio_walk_end() was called. | 
|  | * | 
|  | * As default, this function returns only folios that are not special (e.g., not | 
|  | * the zeropage) and never returns folios that are supposed to be ignored by the | 
|  | * VM as documented by vm_normal_page(). If requested, zeropages will be | 
|  | * returned as well. | 
|  | * | 
|  | * As default, this function only considers present page table entries. | 
|  | * If requested, it will also consider migration entries. | 
|  | * | 
|  | * If this function returns NULL it might either indicate "there is nothing" or | 
|  | * "there is nothing suitable". | 
|  | * | 
|  | * On success, @fw is filled and the function returns the folio while the PTL | 
|  | * is still held and folio_walk_end() must be called to clean up, | 
|  | * releasing any held locks. The returned folio must *not* be used after the | 
|  | * call to folio_walk_end(), unless a short-term folio reference is taken before | 
|  | * that call. | 
|  | * | 
|  | * @fw->page will correspond to the page that is effectively referenced by | 
|  | * @addr. However, for migration entries and shared zeropages @fw->page is | 
|  | * set to NULL. Note that large folios might be mapped by multiple page table | 
|  | * entries, and this function will always only lookup a single entry as | 
|  | * specified by @addr, which might or might not cover more than a single page of | 
|  | * the returned folio. | 
|  | * | 
|  | * This function must *not* be used as a naive replacement for | 
|  | * get_user_pages() / pin_user_pages(), especially not to perform DMA or | 
|  | * to carelessly modify page content. This function may *only* be used to grab | 
|  | * short-term folio references, never to grab long-term folio references. | 
|  | * | 
|  | * Using the page table entry pointers in @fw for reading or modifying the | 
|  | * entry should be avoided where possible: however, there might be valid | 
|  | * use cases. | 
|  | * | 
|  | * WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care. | 
|  | * For example, PMD page table sharing might require prior unsharing. Also, | 
|  | * logical hugetlb entries might span multiple physical page table entries, | 
|  | * which *must* be modified in a single operation (set_huge_pte_at(), | 
|  | * huge_ptep_set_*, ...). Note that the page table entry stored in @fw might | 
|  | * not correspond to the first physical entry of a logical hugetlb entry. | 
|  | * | 
|  | * The mmap lock must be held in read mode. | 
|  | * | 
|  | * Return: folio pointer on success, otherwise NULL. | 
|  | */ | 
|  | struct folio *folio_walk_start(struct folio_walk *fw, | 
|  | struct vm_area_struct *vma, unsigned long addr, | 
|  | folio_walk_flags_t flags) | 
|  | { | 
|  | unsigned long entry_size; | 
|  | bool expose_page = true; | 
|  | struct page *page; | 
|  | pud_t *pudp, pud; | 
|  | pmd_t *pmdp, pmd; | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  | pgd_t *pgdp; | 
|  | p4d_t *p4dp; | 
|  |  | 
|  | mmap_assert_locked(vma->vm_mm); | 
|  | vma_pgtable_walk_begin(vma); | 
|  |  | 
|  | if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end)) | 
|  | goto not_found; | 
|  |  | 
|  | pgdp = pgd_offset(vma->vm_mm, addr); | 
|  | if (pgd_none_or_clear_bad(pgdp)) | 
|  | goto not_found; | 
|  |  | 
|  | p4dp = p4d_offset(pgdp, addr); | 
|  | if (p4d_none_or_clear_bad(p4dp)) | 
|  | goto not_found; | 
|  |  | 
|  | pudp = pud_offset(p4dp, addr); | 
|  | pud = pudp_get(pudp); | 
|  | if (pud_none(pud)) | 
|  | goto not_found; | 
|  | if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && | 
|  | (!pud_present(pud) || pud_leaf(pud))) { | 
|  | ptl = pud_lock(vma->vm_mm, pudp); | 
|  | pud = pudp_get(pudp); | 
|  |  | 
|  | entry_size = PUD_SIZE; | 
|  | fw->level = FW_LEVEL_PUD; | 
|  | fw->pudp = pudp; | 
|  | fw->pud = pud; | 
|  |  | 
|  | /* | 
|  | * TODO: FW_MIGRATION support for PUD migration entries | 
|  | * once there are relevant users. | 
|  | */ | 
|  | if (!pud_present(pud) || pud_special(pud)) { | 
|  | spin_unlock(ptl); | 
|  | goto not_found; | 
|  | } else if (!pud_leaf(pud)) { | 
|  | spin_unlock(ptl); | 
|  | goto pmd_table; | 
|  | } | 
|  | /* | 
|  | * TODO: vm_normal_page_pud() will be handy once we want to | 
|  | * support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs. | 
|  | */ | 
|  | page = pud_page(pud); | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | pmd_table: | 
|  | VM_WARN_ON_ONCE(!pud_present(pud) || pud_leaf(pud)); | 
|  | pmdp = pmd_offset(pudp, addr); | 
|  | pmd = pmdp_get_lockless(pmdp); | 
|  | if (pmd_none(pmd)) | 
|  | goto not_found; | 
|  | if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && | 
|  | (!pmd_present(pmd) || pmd_leaf(pmd))) { | 
|  | ptl = pmd_lock(vma->vm_mm, pmdp); | 
|  | pmd = pmdp_get(pmdp); | 
|  |  | 
|  | entry_size = PMD_SIZE; | 
|  | fw->level = FW_LEVEL_PMD; | 
|  | fw->pmdp = pmdp; | 
|  | fw->pmd = pmd; | 
|  |  | 
|  | if (pmd_none(pmd)) { | 
|  | spin_unlock(ptl); | 
|  | goto not_found; | 
|  | } else if (pmd_present(pmd) && !pmd_leaf(pmd)) { | 
|  | spin_unlock(ptl); | 
|  | goto pte_table; | 
|  | } else if (pmd_present(pmd)) { | 
|  | page = vm_normal_page_pmd(vma, addr, pmd); | 
|  | if (page) { | 
|  | goto found; | 
|  | } else if ((flags & FW_ZEROPAGE) && | 
|  | is_huge_zero_pmd(pmd)) { | 
|  | page = pfn_to_page(pmd_pfn(pmd)); | 
|  | expose_page = false; | 
|  | goto found; | 
|  | } | 
|  | } else if ((flags & FW_MIGRATION) && | 
|  | is_pmd_migration_entry(pmd)) { | 
|  | swp_entry_t entry = pmd_to_swp_entry(pmd); | 
|  |  | 
|  | page = pfn_swap_entry_to_page(entry); | 
|  | expose_page = false; | 
|  | goto found; | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | goto not_found; | 
|  | } | 
|  |  | 
|  | pte_table: | 
|  | VM_WARN_ON_ONCE(!pmd_present(pmd) || pmd_leaf(pmd)); | 
|  | ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl); | 
|  | if (!ptep) | 
|  | goto not_found; | 
|  | pte = ptep_get(ptep); | 
|  |  | 
|  | entry_size = PAGE_SIZE; | 
|  | fw->level = FW_LEVEL_PTE; | 
|  | fw->ptep = ptep; | 
|  | fw->pte = pte; | 
|  |  | 
|  | if (pte_present(pte)) { | 
|  | page = vm_normal_page(vma, addr, pte); | 
|  | if (page) | 
|  | goto found; | 
|  | if ((flags & FW_ZEROPAGE) && | 
|  | is_zero_pfn(pte_pfn(pte))) { | 
|  | page = pfn_to_page(pte_pfn(pte)); | 
|  | expose_page = false; | 
|  | goto found; | 
|  | } | 
|  | } else if (!pte_none(pte)) { | 
|  | swp_entry_t entry = pte_to_swp_entry(pte); | 
|  |  | 
|  | if ((flags & FW_MIGRATION) && | 
|  | is_migration_entry(entry)) { | 
|  | page = pfn_swap_entry_to_page(entry); | 
|  | expose_page = false; | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | not_found: | 
|  | vma_pgtable_walk_end(vma); | 
|  | return NULL; | 
|  | found: | 
|  | if (expose_page) | 
|  | /* Note: Offset from the mapped page, not the folio start. */ | 
|  | fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT); | 
|  | else | 
|  | fw->page = NULL; | 
|  | fw->ptl = ptl; | 
|  | return page_folio(page); | 
|  | } |