|  | /* | 
|  | * hugetlbpage-backed filesystem.  Based on ramfs. | 
|  | * | 
|  | * Nadia Yvette Chambers, 2002 | 
|  | * | 
|  | * Copyright (C) 2002 Linus Torvalds. | 
|  | * License: GPL | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/thread_info.h> | 
|  | #include <asm/current.h> | 
|  | #include <linux/falloc.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/fs_parser.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/dnotify.h> | 
|  | #include <linux/statfs.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/uio.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/sched/mm.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/hugetlbfs.h> | 
|  |  | 
|  | static const struct address_space_operations hugetlbfs_aops; | 
|  | static const struct file_operations hugetlbfs_file_operations; | 
|  | static const struct inode_operations hugetlbfs_dir_inode_operations; | 
|  | static const struct inode_operations hugetlbfs_inode_operations; | 
|  |  | 
|  | enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; | 
|  |  | 
|  | struct hugetlbfs_fs_context { | 
|  | struct hstate		*hstate; | 
|  | unsigned long long	max_size_opt; | 
|  | unsigned long long	min_size_opt; | 
|  | long			max_hpages; | 
|  | long			nr_inodes; | 
|  | long			min_hpages; | 
|  | enum hugetlbfs_size_type max_val_type; | 
|  | enum hugetlbfs_size_type min_val_type; | 
|  | kuid_t			uid; | 
|  | kgid_t			gid; | 
|  | umode_t			mode; | 
|  | }; | 
|  |  | 
|  | int sysctl_hugetlb_shm_group; | 
|  |  | 
|  | enum hugetlb_param { | 
|  | Opt_gid, | 
|  | Opt_min_size, | 
|  | Opt_mode, | 
|  | Opt_nr_inodes, | 
|  | Opt_pagesize, | 
|  | Opt_size, | 
|  | Opt_uid, | 
|  | }; | 
|  |  | 
|  | static const struct fs_parameter_spec hugetlb_fs_parameters[] = { | 
|  | fsparam_gid   ("gid",		Opt_gid), | 
|  | fsparam_string("min_size",	Opt_min_size), | 
|  | fsparam_u32oct("mode",		Opt_mode), | 
|  | fsparam_string("nr_inodes",	Opt_nr_inodes), | 
|  | fsparam_string("pagesize",	Opt_pagesize), | 
|  | fsparam_string("size",		Opt_size), | 
|  | fsparam_uid   ("uid",		Opt_uid), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mask used when checking the page offset value passed in via system | 
|  | * calls.  This value will be converted to a loff_t which is signed. | 
|  | * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the | 
|  | * value.  The extra bit (- 1 in the shift value) is to take the sign | 
|  | * bit into account. | 
|  | */ | 
|  | #define PGOFF_LOFFT_MAX \ | 
|  | (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1))) | 
|  |  | 
|  | static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | loff_t len, vma_len; | 
|  | int ret; | 
|  | struct hstate *h = hstate_file(file); | 
|  | vm_flags_t vm_flags; | 
|  |  | 
|  | /* | 
|  | * vma address alignment (but not the pgoff alignment) has | 
|  | * already been checked by prepare_hugepage_range.  If you add | 
|  | * any error returns here, do so after setting VM_HUGETLB, so | 
|  | * is_vm_hugetlb_page tests below unmap_region go the right | 
|  | * way when do_mmap unwinds (may be important on powerpc | 
|  | * and ia64). | 
|  | */ | 
|  | vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); | 
|  | vma->vm_ops = &hugetlb_vm_ops; | 
|  |  | 
|  | /* | 
|  | * page based offset in vm_pgoff could be sufficiently large to | 
|  | * overflow a loff_t when converted to byte offset.  This can | 
|  | * only happen on architectures where sizeof(loff_t) == | 
|  | * sizeof(unsigned long).  So, only check in those instances. | 
|  | */ | 
|  | if (sizeof(unsigned long) == sizeof(loff_t)) { | 
|  | if (vma->vm_pgoff & PGOFF_LOFFT_MAX) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* must be huge page aligned */ | 
|  | if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) | 
|  | return -EINVAL; | 
|  |  | 
|  | vma_len = (loff_t)(vma->vm_end - vma->vm_start); | 
|  | len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); | 
|  | /* check for overflow */ | 
|  | if (len < vma_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | inode_lock(inode); | 
|  | file_accessed(file); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  |  | 
|  | vm_flags = vma->vm_flags; | 
|  | /* | 
|  | * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip | 
|  | * reserving here. Note: only for SHM hugetlbfs file, the inode | 
|  | * flag S_PRIVATE is set. | 
|  | */ | 
|  | if (inode->i_flags & S_PRIVATE) | 
|  | vm_flags |= VM_NORESERVE; | 
|  |  | 
|  | if (hugetlb_reserve_pages(inode, | 
|  | vma->vm_pgoff >> huge_page_order(h), | 
|  | len >> huge_page_shift(h), vma, | 
|  | vm_flags) < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | if (vma->vm_flags & VM_WRITE && inode->i_size < len) | 
|  | i_size_write(inode, len); | 
|  | out: | 
|  | inode_unlock(inode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called under mmap_write_lock(mm). | 
|  | */ | 
|  |  | 
|  | unsigned long | 
|  | hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | unsigned long addr0 = 0; | 
|  | struct hstate *h = hstate_file(file); | 
|  |  | 
|  | if (len & ~huge_page_mask(h)) | 
|  | return -EINVAL; | 
|  | if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h))) | 
|  | return -EINVAL; | 
|  | if (addr) | 
|  | addr0 = ALIGN(addr, huge_page_size(h)); | 
|  |  | 
|  | return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, | 
|  | flags, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset. | 
|  | * Returns the maximum number of bytes one can read without touching the 1st raw | 
|  | * HWPOISON page. | 
|  | * | 
|  | * The implementation borrows the iteration logic from copy_page_to_iter*. | 
|  | */ | 
|  | static size_t adjust_range_hwpoison(struct folio *folio, size_t offset, | 
|  | size_t bytes) | 
|  | { | 
|  | struct page *page; | 
|  | size_t n = 0; | 
|  | size_t res = 0; | 
|  |  | 
|  | /* First page to start the loop. */ | 
|  | page = folio_page(folio, offset / PAGE_SIZE); | 
|  | offset %= PAGE_SIZE; | 
|  | while (1) { | 
|  | if (is_raw_hwpoison_page_in_hugepage(page)) | 
|  | break; | 
|  |  | 
|  | /* Safe to read n bytes without touching HWPOISON subpage. */ | 
|  | n = min(bytes, (size_t)PAGE_SIZE - offset); | 
|  | res += n; | 
|  | bytes -= n; | 
|  | if (!bytes || !n) | 
|  | break; | 
|  | offset += n; | 
|  | if (offset == PAGE_SIZE) { | 
|  | page = nth_page(page, 1); | 
|  | offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Support for read() - Find the page attached to f_mapping and copy out the | 
|  | * data. This provides functionality similar to filemap_read(). | 
|  | */ | 
|  | static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct hstate *h = hstate_file(file); | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | unsigned long index = iocb->ki_pos >> huge_page_shift(h); | 
|  | unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); | 
|  | unsigned long end_index; | 
|  | loff_t isize; | 
|  | ssize_t retval = 0; | 
|  |  | 
|  | while (iov_iter_count(to)) { | 
|  | struct folio *folio; | 
|  | size_t nr, copied, want; | 
|  |  | 
|  | /* nr is the maximum number of bytes to copy from this page */ | 
|  | nr = huge_page_size(h); | 
|  | isize = i_size_read(inode); | 
|  | if (!isize) | 
|  | break; | 
|  | end_index = (isize - 1) >> huge_page_shift(h); | 
|  | if (index > end_index) | 
|  | break; | 
|  | if (index == end_index) { | 
|  | nr = ((isize - 1) & ~huge_page_mask(h)) + 1; | 
|  | if (nr <= offset) | 
|  | break; | 
|  | } | 
|  | nr = nr - offset; | 
|  |  | 
|  | /* Find the folio */ | 
|  | folio = filemap_lock_hugetlb_folio(h, mapping, index); | 
|  | if (IS_ERR(folio)) { | 
|  | /* | 
|  | * We have a HOLE, zero out the user-buffer for the | 
|  | * length of the hole or request. | 
|  | */ | 
|  | copied = iov_iter_zero(nr, to); | 
|  | } else { | 
|  | folio_unlock(folio); | 
|  |  | 
|  | if (!folio_test_hwpoison(folio)) | 
|  | want = nr; | 
|  | else { | 
|  | /* | 
|  | * Adjust how many bytes safe to read without | 
|  | * touching the 1st raw HWPOISON page after | 
|  | * offset. | 
|  | */ | 
|  | want = adjust_range_hwpoison(folio, offset, nr); | 
|  | if (want == 0) { | 
|  | folio_put(folio); | 
|  | retval = -EIO; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have the folio, copy it to user space buffer. | 
|  | */ | 
|  | copied = copy_folio_to_iter(folio, offset, want, to); | 
|  | folio_put(folio); | 
|  | } | 
|  | offset += copied; | 
|  | retval += copied; | 
|  | if (copied != nr && iov_iter_count(to)) { | 
|  | if (!retval) | 
|  | retval = -EFAULT; | 
|  | break; | 
|  | } | 
|  | index += offset >> huge_page_shift(h); | 
|  | offset &= ~huge_page_mask(h); | 
|  | } | 
|  | iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_write_begin(const struct kiocb *iocb, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, unsigned len, | 
|  | struct folio **foliop, void **fsdata) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_write_end(const struct kiocb *iocb, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct folio *folio, void *fsdata) | 
|  | { | 
|  | BUG(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void hugetlb_delete_from_page_cache(struct folio *folio) | 
|  | { | 
|  | folio_clear_dirty(folio); | 
|  | folio_clear_uptodate(folio); | 
|  | filemap_remove_folio(folio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with i_mmap_rwsem held for inode based vma maps.  This makes | 
|  | * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault | 
|  | * mutex for the page in the mapping.  So, we can not race with page being | 
|  | * faulted into the vma. | 
|  | */ | 
|  | static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long pfn) | 
|  | { | 
|  | pte_t *ptep, pte; | 
|  |  | 
|  | ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); | 
|  | if (!ptep) | 
|  | return false; | 
|  |  | 
|  | pte = huge_ptep_get(vma->vm_mm, addr, ptep); | 
|  | if (huge_pte_none(pte) || !pte_present(pte)) | 
|  | return false; | 
|  |  | 
|  | if (pte_pfn(pte) == pfn) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? | 
|  | * No, because the interval tree returns us only those vmas | 
|  | * which overlap the truncated area starting at pgoff, | 
|  | * and no vma on a 32-bit arch can span beyond the 4GB. | 
|  | */ | 
|  | static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) | 
|  | { | 
|  | unsigned long offset = 0; | 
|  |  | 
|  | if (vma->vm_pgoff < start) | 
|  | offset = (start - vma->vm_pgoff) << PAGE_SHIFT; | 
|  |  | 
|  | return vma->vm_start + offset; | 
|  | } | 
|  |  | 
|  | static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) | 
|  | { | 
|  | unsigned long t_end; | 
|  |  | 
|  | if (!end) | 
|  | return vma->vm_end; | 
|  |  | 
|  | t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; | 
|  | if (t_end > vma->vm_end) | 
|  | t_end = vma->vm_end; | 
|  | return t_end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with hugetlb fault mutex held.  Therefore, no more mappings to | 
|  | * this folio can be created while executing the routine. | 
|  | */ | 
|  | static void hugetlb_unmap_file_folio(struct hstate *h, | 
|  | struct address_space *mapping, | 
|  | struct folio *folio, pgoff_t index) | 
|  | { | 
|  | struct rb_root_cached *root = &mapping->i_mmap; | 
|  | struct hugetlb_vma_lock *vma_lock; | 
|  | unsigned long pfn = folio_pfn(folio); | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long v_start; | 
|  | unsigned long v_end; | 
|  | pgoff_t start, end; | 
|  |  | 
|  | start = index * pages_per_huge_page(h); | 
|  | end = (index + 1) * pages_per_huge_page(h); | 
|  |  | 
|  | i_mmap_lock_write(mapping); | 
|  | retry: | 
|  | vma_lock = NULL; | 
|  | vma_interval_tree_foreach(vma, root, start, end - 1) { | 
|  | v_start = vma_offset_start(vma, start); | 
|  | v_end = vma_offset_end(vma, end); | 
|  |  | 
|  | if (!hugetlb_vma_maps_pfn(vma, v_start, pfn)) | 
|  | continue; | 
|  |  | 
|  | if (!hugetlb_vma_trylock_write(vma)) { | 
|  | vma_lock = vma->vm_private_data; | 
|  | /* | 
|  | * If we can not get vma lock, we need to drop | 
|  | * immap_sema and take locks in order.  First, | 
|  | * take a ref on the vma_lock structure so that | 
|  | * we can be guaranteed it will not go away when | 
|  | * dropping immap_sema. | 
|  | */ | 
|  | kref_get(&vma_lock->refs); | 
|  | break; | 
|  | } | 
|  |  | 
|  | unmap_hugepage_range(vma, v_start, v_end, NULL, | 
|  | ZAP_FLAG_DROP_MARKER); | 
|  | hugetlb_vma_unlock_write(vma); | 
|  | } | 
|  |  | 
|  | i_mmap_unlock_write(mapping); | 
|  |  | 
|  | if (vma_lock) { | 
|  | /* | 
|  | * Wait on vma_lock.  We know it is still valid as we have | 
|  | * a reference.  We must 'open code' vma locking as we do | 
|  | * not know if vma_lock is still attached to vma. | 
|  | */ | 
|  | down_write(&vma_lock->rw_sema); | 
|  | i_mmap_lock_write(mapping); | 
|  |  | 
|  | vma = vma_lock->vma; | 
|  | if (!vma) { | 
|  | /* | 
|  | * If lock is no longer attached to vma, then just | 
|  | * unlock, drop our reference and retry looking for | 
|  | * other vmas. | 
|  | */ | 
|  | up_write(&vma_lock->rw_sema); | 
|  | kref_put(&vma_lock->refs, hugetlb_vma_lock_release); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_lock is still attached to vma.  Check to see if vma | 
|  | * still maps page and if so, unmap. | 
|  | */ | 
|  | v_start = vma_offset_start(vma, start); | 
|  | v_end = vma_offset_end(vma, end); | 
|  | if (hugetlb_vma_maps_pfn(vma, v_start, pfn)) | 
|  | unmap_hugepage_range(vma, v_start, v_end, NULL, | 
|  | ZAP_FLAG_DROP_MARKER); | 
|  |  | 
|  | kref_put(&vma_lock->refs, hugetlb_vma_lock_release); | 
|  | hugetlb_vma_unlock_write(vma); | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, | 
|  | zap_flags_t zap_flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * end == 0 indicates that the entire range after start should be | 
|  | * unmapped.  Note, end is exclusive, whereas the interval tree takes | 
|  | * an inclusive "last". | 
|  | */ | 
|  | vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { | 
|  | unsigned long v_start; | 
|  | unsigned long v_end; | 
|  |  | 
|  | if (!hugetlb_vma_trylock_write(vma)) | 
|  | continue; | 
|  |  | 
|  | v_start = vma_offset_start(vma, start); | 
|  | v_end = vma_offset_end(vma, end); | 
|  |  | 
|  | unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); | 
|  |  | 
|  | /* | 
|  | * Note that vma lock only exists for shared/non-private | 
|  | * vmas.  Therefore, lock is not held when calling | 
|  | * unmap_hugepage_range for private vmas. | 
|  | */ | 
|  | hugetlb_vma_unlock_write(vma); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with hugetlb fault mutex held. | 
|  | * Returns true if page was actually removed, false otherwise. | 
|  | */ | 
|  | static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, | 
|  | struct address_space *mapping, | 
|  | struct folio *folio, pgoff_t index, | 
|  | bool truncate_op) | 
|  | { | 
|  | bool ret = false; | 
|  |  | 
|  | /* | 
|  | * If folio is mapped, it was faulted in after being | 
|  | * unmapped in caller.  Unmap (again) while holding | 
|  | * the fault mutex.  The mutex will prevent faults | 
|  | * until we finish removing the folio. | 
|  | */ | 
|  | if (unlikely(folio_mapped(folio))) | 
|  | hugetlb_unmap_file_folio(h, mapping, folio, index); | 
|  |  | 
|  | folio_lock(folio); | 
|  | /* | 
|  | * We must remove the folio from page cache before removing | 
|  | * the region/ reserve map (hugetlb_unreserve_pages).  In | 
|  | * rare out of memory conditions, removal of the region/reserve | 
|  | * map could fail.  Correspondingly, the subpool and global | 
|  | * reserve usage count can need to be adjusted. | 
|  | */ | 
|  | VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); | 
|  | hugetlb_delete_from_page_cache(folio); | 
|  | ret = true; | 
|  | if (!truncate_op) { | 
|  | if (unlikely(hugetlb_unreserve_pages(inode, index, | 
|  | index + 1, 1))) | 
|  | hugetlb_fix_reserve_counts(inode); | 
|  | } | 
|  |  | 
|  | folio_unlock(folio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove_inode_hugepages handles two distinct cases: truncation and hole | 
|  | * punch.  There are subtle differences in operation for each case. | 
|  | * | 
|  | * truncation is indicated by end of range being LLONG_MAX | 
|  | *	In this case, we first scan the range and release found pages. | 
|  | *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve | 
|  | *	maps and global counts.  Page faults can race with truncation. | 
|  | *	During faults, hugetlb_no_page() checks i_size before page allocation, | 
|  | *	and again after obtaining page table lock.  It will 'back out' | 
|  | *	allocations in the truncated range. | 
|  | * hole punch is indicated if end is not LLONG_MAX | 
|  | *	In the hole punch case we scan the range and release found pages. | 
|  | *	Only when releasing a page is the associated region/reserve map | 
|  | *	deleted.  The region/reserve map for ranges without associated | 
|  | *	pages are not modified.  Page faults can race with hole punch. | 
|  | *	This is indicated if we find a mapped page. | 
|  | * Note: If the passed end of range value is beyond the end of file, but | 
|  | * not LLONG_MAX this routine still performs a hole punch operation. | 
|  | */ | 
|  | static void remove_inode_hugepages(struct inode *inode, loff_t lstart, | 
|  | loff_t lend) | 
|  | { | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | struct address_space *mapping = &inode->i_data; | 
|  | const pgoff_t end = lend >> PAGE_SHIFT; | 
|  | struct folio_batch fbatch; | 
|  | pgoff_t next, index; | 
|  | int i, freed = 0; | 
|  | bool truncate_op = (lend == LLONG_MAX); | 
|  |  | 
|  | folio_batch_init(&fbatch); | 
|  | next = lstart >> PAGE_SHIFT; | 
|  | while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { | 
|  | for (i = 0; i < folio_batch_count(&fbatch); ++i) { | 
|  | struct folio *folio = fbatch.folios[i]; | 
|  | u32 hash = 0; | 
|  |  | 
|  | index = folio->index >> huge_page_order(h); | 
|  | hash = hugetlb_fault_mutex_hash(mapping, index); | 
|  | mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
|  |  | 
|  | /* | 
|  | * Remove folio that was part of folio_batch. | 
|  | */ | 
|  | if (remove_inode_single_folio(h, inode, mapping, folio, | 
|  | index, truncate_op)) | 
|  | freed++; | 
|  |  | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | } | 
|  | folio_batch_release(&fbatch); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (truncate_op) | 
|  | (void)hugetlb_unreserve_pages(inode, | 
|  | lstart >> huge_page_shift(h), | 
|  | LONG_MAX, freed); | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_evict_inode(struct inode *inode) | 
|  | { | 
|  | struct resv_map *resv_map; | 
|  |  | 
|  | trace_hugetlbfs_evict_inode(inode); | 
|  | remove_inode_hugepages(inode, 0, LLONG_MAX); | 
|  |  | 
|  | /* | 
|  | * Get the resv_map from the address space embedded in the inode. | 
|  | * This is the address space which points to any resv_map allocated | 
|  | * at inode creation time.  If this is a device special inode, | 
|  | * i_mapping may not point to the original address space. | 
|  | */ | 
|  | resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; | 
|  | /* Only regular and link inodes have associated reserve maps */ | 
|  | if (resv_map) | 
|  | resv_map_release(&resv_map->refs); | 
|  | clear_inode(inode); | 
|  | } | 
|  |  | 
|  | static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) | 
|  | { | 
|  | pgoff_t pgoff; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  |  | 
|  | BUG_ON(offset & ~huge_page_mask(h)); | 
|  | pgoff = offset >> PAGE_SHIFT; | 
|  |  | 
|  | i_size_write(inode, offset); | 
|  | i_mmap_lock_write(mapping); | 
|  | if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) | 
|  | hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, | 
|  | ZAP_FLAG_DROP_MARKER); | 
|  | i_mmap_unlock_write(mapping); | 
|  | remove_inode_hugepages(inode, offset, LLONG_MAX); | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_zero_partial_page(struct hstate *h, | 
|  | struct address_space *mapping, | 
|  | loff_t start, | 
|  | loff_t end) | 
|  | { | 
|  | pgoff_t idx = start >> huge_page_shift(h); | 
|  | struct folio *folio; | 
|  |  | 
|  | folio = filemap_lock_hugetlb_folio(h, mapping, idx); | 
|  | if (IS_ERR(folio)) | 
|  | return; | 
|  |  | 
|  | start = start & ~huge_page_mask(h); | 
|  | end = end & ~huge_page_mask(h); | 
|  | if (!end) | 
|  | end = huge_page_size(h); | 
|  |  | 
|  | folio_zero_segment(folio, (size_t)start, (size_t)end); | 
|  |  | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) | 
|  | { | 
|  | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | loff_t hpage_size = huge_page_size(h); | 
|  | loff_t hole_start, hole_end; | 
|  |  | 
|  | /* | 
|  | * hole_start and hole_end indicate the full pages within the hole. | 
|  | */ | 
|  | hole_start = round_up(offset, hpage_size); | 
|  | hole_end = round_down(offset + len, hpage_size); | 
|  |  | 
|  | inode_lock(inode); | 
|  |  | 
|  | /* protected by i_rwsem */ | 
|  | if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { | 
|  | inode_unlock(inode); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | i_mmap_lock_write(mapping); | 
|  |  | 
|  | /* If range starts before first full page, zero partial page. */ | 
|  | if (offset < hole_start) | 
|  | hugetlbfs_zero_partial_page(h, mapping, | 
|  | offset, min(offset + len, hole_start)); | 
|  |  | 
|  | /* Unmap users of full pages in the hole. */ | 
|  | if (hole_end > hole_start) { | 
|  | if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) | 
|  | hugetlb_vmdelete_list(&mapping->i_mmap, | 
|  | hole_start >> PAGE_SHIFT, | 
|  | hole_end >> PAGE_SHIFT, 0); | 
|  | } | 
|  |  | 
|  | /* If range extends beyond last full page, zero partial page. */ | 
|  | if ((offset + len) > hole_end && (offset + len) > hole_start) | 
|  | hugetlbfs_zero_partial_page(h, mapping, | 
|  | hole_end, offset + len); | 
|  |  | 
|  | i_mmap_unlock_write(mapping); | 
|  |  | 
|  | /* Remove full pages from the file. */ | 
|  | if (hole_end > hole_start) | 
|  | remove_inode_hugepages(inode, hole_start, hole_end); | 
|  |  | 
|  | inode_unlock(inode); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, | 
|  | loff_t len) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | struct vm_area_struct pseudo_vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | loff_t hpage_size = huge_page_size(h); | 
|  | unsigned long hpage_shift = huge_page_shift(h); | 
|  | pgoff_t start, index, end; | 
|  | int error; | 
|  | u32 hash; | 
|  |  | 
|  | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (mode & FALLOC_FL_PUNCH_HOLE) { | 
|  | error = hugetlbfs_punch_hole(inode, offset, len); | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Default preallocate case. | 
|  | * For this range, start is rounded down and end is rounded up | 
|  | * as well as being converted to page offsets. | 
|  | */ | 
|  | start = offset >> hpage_shift; | 
|  | end = (offset + len + hpage_size - 1) >> hpage_shift; | 
|  |  | 
|  | inode_lock(inode); | 
|  |  | 
|  | /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ | 
|  | error = inode_newsize_ok(inode, offset + len); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { | 
|  | error = -EPERM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a pseudo vma as this is required by the huge page | 
|  | * allocation routines. | 
|  | */ | 
|  | vma_init(&pseudo_vma, mm); | 
|  | vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); | 
|  | pseudo_vma.vm_file = file; | 
|  |  | 
|  | for (index = start; index < end; index++) { | 
|  | /* | 
|  | * This is supposed to be the vaddr where the page is being | 
|  | * faulted in, but we have no vaddr here. | 
|  | */ | 
|  | struct folio *folio; | 
|  | unsigned long addr; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * fallocate(2) manpage permits EINTR; we may have been | 
|  | * interrupted because we are using up too much memory. | 
|  | */ | 
|  | if (signal_pending(current)) { | 
|  | error = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* addr is the offset within the file (zero based) */ | 
|  | addr = index * hpage_size; | 
|  |  | 
|  | /* mutex taken here, fault path and hole punch */ | 
|  | hash = hugetlb_fault_mutex_hash(mapping, index); | 
|  | mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
|  |  | 
|  | /* See if already present in mapping to avoid alloc/free */ | 
|  | folio = filemap_get_folio(mapping, index << huge_page_order(h)); | 
|  | if (!IS_ERR(folio)) { | 
|  | folio_put(folio); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate folio without setting the avoid_reserve argument. | 
|  | * There certainly are no reserves associated with the | 
|  | * pseudo_vma.  However, there could be shared mappings with | 
|  | * reserves for the file at the inode level.  If we fallocate | 
|  | * folios in these areas, we need to consume the reserves | 
|  | * to keep reservation accounting consistent. | 
|  | */ | 
|  | folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); | 
|  | if (IS_ERR(folio)) { | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | error = PTR_ERR(folio); | 
|  | goto out; | 
|  | } | 
|  | folio_zero_user(folio, addr); | 
|  | __folio_mark_uptodate(folio); | 
|  | error = hugetlb_add_to_page_cache(folio, mapping, index); | 
|  | if (unlikely(error)) { | 
|  | restore_reserve_on_error(h, &pseudo_vma, addr, folio); | 
|  | folio_put(folio); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  |  | 
|  | folio_set_hugetlb_migratable(folio); | 
|  | /* | 
|  | * folio_unlock because locked by hugetlb_add_to_page_cache() | 
|  | * folio_put() due to reference from alloc_hugetlb_folio() | 
|  | */ | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) | 
|  | i_size_write(inode, offset + len); | 
|  | inode_set_ctime_current(inode); | 
|  | out: | 
|  | inode_unlock(inode); | 
|  |  | 
|  | out_nolock: | 
|  | trace_hugetlbfs_fallocate(inode, mode, offset, len, error); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_setattr(struct mnt_idmap *idmap, | 
|  | struct dentry *dentry, struct iattr *attr) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | int error; | 
|  | unsigned int ia_valid = attr->ia_valid; | 
|  | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); | 
|  |  | 
|  | error = setattr_prepare(idmap, dentry, attr); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | trace_hugetlbfs_setattr(inode, dentry, attr); | 
|  |  | 
|  | if (ia_valid & ATTR_SIZE) { | 
|  | loff_t oldsize = inode->i_size; | 
|  | loff_t newsize = attr->ia_size; | 
|  |  | 
|  | if (newsize & ~huge_page_mask(h)) | 
|  | return -EINVAL; | 
|  | /* protected by i_rwsem */ | 
|  | if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || | 
|  | (newsize > oldsize && (info->seals & F_SEAL_GROW))) | 
|  | return -EPERM; | 
|  | hugetlb_vmtruncate(inode, newsize); | 
|  | } | 
|  |  | 
|  | setattr_copy(idmap, inode, attr); | 
|  | mark_inode_dirty(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct inode *hugetlbfs_get_root(struct super_block *sb, | 
|  | struct hugetlbfs_fs_context *ctx) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = new_inode(sb); | 
|  | if (inode) { | 
|  | inode->i_ino = get_next_ino(); | 
|  | inode->i_mode = S_IFDIR | ctx->mode; | 
|  | inode->i_uid = ctx->uid; | 
|  | inode->i_gid = ctx->gid; | 
|  | simple_inode_init_ts(inode); | 
|  | inode->i_op = &hugetlbfs_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  | /* directory inodes start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  | lockdep_annotate_inode_mutex_key(inode); | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never | 
|  | * be taken from reclaim -- unlike regular filesystems. This needs an | 
|  | * annotation because huge_pmd_share() does an allocation under hugetlb's | 
|  | * i_mmap_rwsem. | 
|  | */ | 
|  | static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; | 
|  |  | 
|  | static struct inode *hugetlbfs_get_inode(struct super_block *sb, | 
|  | struct mnt_idmap *idmap, | 
|  | struct inode *dir, | 
|  | umode_t mode, dev_t dev) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct resv_map *resv_map = NULL; | 
|  |  | 
|  | /* | 
|  | * Reserve maps are only needed for inodes that can have associated | 
|  | * page allocations. | 
|  | */ | 
|  | if (S_ISREG(mode) || S_ISLNK(mode)) { | 
|  | resv_map = resv_map_alloc(); | 
|  | if (!resv_map) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | inode = new_inode(sb); | 
|  | if (inode) { | 
|  | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); | 
|  |  | 
|  | inode->i_ino = get_next_ino(); | 
|  | inode_init_owner(idmap, inode, dir, mode); | 
|  | lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, | 
|  | &hugetlbfs_i_mmap_rwsem_key); | 
|  | inode->i_mapping->a_ops = &hugetlbfs_aops; | 
|  | simple_inode_init_ts(inode); | 
|  | inode->i_mapping->i_private_data = resv_map; | 
|  | info->seals = F_SEAL_SEAL; | 
|  | switch (mode & S_IFMT) { | 
|  | default: | 
|  | init_special_inode(inode, mode, dev); | 
|  | break; | 
|  | case S_IFREG: | 
|  | inode->i_op = &hugetlbfs_inode_operations; | 
|  | inode->i_fop = &hugetlbfs_file_operations; | 
|  | break; | 
|  | case S_IFDIR: | 
|  | inode->i_op = &hugetlbfs_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  |  | 
|  | /* directory inodes start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  | break; | 
|  | case S_IFLNK: | 
|  | inode->i_op = &page_symlink_inode_operations; | 
|  | inode_nohighmem(inode); | 
|  | break; | 
|  | } | 
|  | lockdep_annotate_inode_mutex_key(inode); | 
|  | trace_hugetlbfs_alloc_inode(inode, dir, mode); | 
|  | } else { | 
|  | if (resv_map) | 
|  | kref_put(&resv_map->refs, resv_map_release); | 
|  | } | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * File creation. Allocate an inode, and we're done.. | 
|  | */ | 
|  | static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, | 
|  | struct dentry *dentry, umode_t mode, dev_t dev) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); | 
|  | if (!inode) | 
|  | return -ENOSPC; | 
|  | inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry);/* Extra count - pin the dentry in core */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, | 
|  | struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | int retval = hugetlbfs_mknod(idmap, dir, dentry, | 
|  | mode | S_IFDIR, 0); | 
|  | if (!retval) | 
|  | inc_nlink(dir); | 
|  | return ERR_PTR(retval); | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_create(struct mnt_idmap *idmap, | 
|  | struct inode *dir, struct dentry *dentry, | 
|  | umode_t mode, bool excl) | 
|  | { | 
|  | return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, | 
|  | struct inode *dir, struct file *file, | 
|  | umode_t mode) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); | 
|  | if (!inode) | 
|  | return -ENOSPC; | 
|  | inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); | 
|  | d_tmpfile(file, inode); | 
|  | return finish_open_simple(file, 0); | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_symlink(struct mnt_idmap *idmap, | 
|  | struct inode *dir, struct dentry *dentry, | 
|  | const char *symname) | 
|  | { | 
|  | const umode_t mode = S_IFLNK|S_IRWXUGO; | 
|  | struct inode *inode; | 
|  | int error = -ENOSPC; | 
|  |  | 
|  | inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); | 
|  | if (inode) { | 
|  | int l = strlen(symname)+1; | 
|  | error = page_symlink(inode, symname, l); | 
|  | if (!error) { | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry); | 
|  | } else | 
|  | iput(inode); | 
|  | } | 
|  | inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MIGRATION | 
|  | static int hugetlbfs_migrate_folio(struct address_space *mapping, | 
|  | struct folio *dst, struct folio *src, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = migrate_huge_page_move_mapping(mapping, dst, src); | 
|  | if (rc != MIGRATEPAGE_SUCCESS) | 
|  | return rc; | 
|  |  | 
|  | if (hugetlb_folio_subpool(src)) { | 
|  | hugetlb_set_folio_subpool(dst, | 
|  | hugetlb_folio_subpool(src)); | 
|  | hugetlb_set_folio_subpool(src, NULL); | 
|  | } | 
|  |  | 
|  | folio_migrate_flags(dst, src); | 
|  |  | 
|  | return MIGRATEPAGE_SUCCESS; | 
|  | } | 
|  | #else | 
|  | #define hugetlbfs_migrate_folio NULL | 
|  | #endif | 
|  |  | 
|  | static int hugetlbfs_error_remove_folio(struct address_space *mapping, | 
|  | struct folio *folio) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Display the mount options in /proc/mounts. | 
|  | */ | 
|  | static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) | 
|  | { | 
|  | struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); | 
|  | struct hugepage_subpool *spool = sbinfo->spool; | 
|  | unsigned long hpage_size = huge_page_size(sbinfo->hstate); | 
|  | unsigned hpage_shift = huge_page_shift(sbinfo->hstate); | 
|  | char mod; | 
|  |  | 
|  | if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) | 
|  | seq_printf(m, ",uid=%u", | 
|  | from_kuid_munged(&init_user_ns, sbinfo->uid)); | 
|  | if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) | 
|  | seq_printf(m, ",gid=%u", | 
|  | from_kgid_munged(&init_user_ns, sbinfo->gid)); | 
|  | if (sbinfo->mode != 0755) | 
|  | seq_printf(m, ",mode=%o", sbinfo->mode); | 
|  | if (sbinfo->max_inodes != -1) | 
|  | seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); | 
|  |  | 
|  | hpage_size /= 1024; | 
|  | mod = 'K'; | 
|  | if (hpage_size >= 1024) { | 
|  | hpage_size /= 1024; | 
|  | mod = 'M'; | 
|  | } | 
|  | seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); | 
|  | if (spool) { | 
|  | if (spool->max_hpages != -1) | 
|  | seq_printf(m, ",size=%llu", | 
|  | (unsigned long long)spool->max_hpages << hpage_shift); | 
|  | if (spool->min_hpages != -1) | 
|  | seq_printf(m, ",min_size=%llu", | 
|  | (unsigned long long)spool->min_hpages << hpage_shift); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) | 
|  | { | 
|  | struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); | 
|  | struct hstate *h = hstate_inode(d_inode(dentry)); | 
|  | u64 id = huge_encode_dev(dentry->d_sb->s_dev); | 
|  |  | 
|  | buf->f_fsid = u64_to_fsid(id); | 
|  | buf->f_type = HUGETLBFS_MAGIC; | 
|  | buf->f_bsize = huge_page_size(h); | 
|  | if (sbinfo) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | /* If no limits set, just report 0 or -1 for max/free/used | 
|  | * blocks, like simple_statfs() */ | 
|  | if (sbinfo->spool) { | 
|  | long free_pages; | 
|  |  | 
|  | spin_lock_irq(&sbinfo->spool->lock); | 
|  | buf->f_blocks = sbinfo->spool->max_hpages; | 
|  | free_pages = sbinfo->spool->max_hpages | 
|  | - sbinfo->spool->used_hpages; | 
|  | buf->f_bavail = buf->f_bfree = free_pages; | 
|  | spin_unlock_irq(&sbinfo->spool->lock); | 
|  | buf->f_files = sbinfo->max_inodes; | 
|  | buf->f_ffree = sbinfo->free_inodes; | 
|  | } | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  | buf->f_namelen = NAME_MAX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_put_super(struct super_block *sb) | 
|  | { | 
|  | struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); | 
|  |  | 
|  | if (sbi) { | 
|  | sb->s_fs_info = NULL; | 
|  |  | 
|  | if (sbi->spool) | 
|  | hugepage_put_subpool(sbi->spool); | 
|  |  | 
|  | kfree(sbi); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) | 
|  | { | 
|  | if (sbinfo->free_inodes >= 0) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | if (unlikely(!sbinfo->free_inodes)) { | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | return 0; | 
|  | } | 
|  | sbinfo->free_inodes--; | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) | 
|  | { | 
|  | if (sbinfo->free_inodes >= 0) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | sbinfo->free_inodes++; | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct kmem_cache *hugetlbfs_inode_cachep; | 
|  |  | 
|  | static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) | 
|  | { | 
|  | struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); | 
|  | struct hugetlbfs_inode_info *p; | 
|  |  | 
|  | if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) | 
|  | return NULL; | 
|  | p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); | 
|  | if (unlikely(!p)) { | 
|  | hugetlbfs_inc_free_inodes(sbinfo); | 
|  | return NULL; | 
|  | } | 
|  | return &p->vfs_inode; | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_free_inode(struct inode *inode) | 
|  | { | 
|  | trace_hugetlbfs_free_inode(inode); | 
|  | kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_destroy_inode(struct inode *inode) | 
|  | { | 
|  | hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); | 
|  | } | 
|  |  | 
|  | static const struct address_space_operations hugetlbfs_aops = { | 
|  | .write_begin	= hugetlbfs_write_begin, | 
|  | .write_end	= hugetlbfs_write_end, | 
|  | .dirty_folio	= noop_dirty_folio, | 
|  | .migrate_folio  = hugetlbfs_migrate_folio, | 
|  | .error_remove_folio	= hugetlbfs_error_remove_folio, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void init_once(void *foo) | 
|  | { | 
|  | struct hugetlbfs_inode_info *ei = foo; | 
|  |  | 
|  | inode_init_once(&ei->vfs_inode); | 
|  | } | 
|  |  | 
|  | static const struct file_operations hugetlbfs_file_operations = { | 
|  | .read_iter		= hugetlbfs_read_iter, | 
|  | .mmap			= hugetlbfs_file_mmap, | 
|  | .fsync			= noop_fsync, | 
|  | .get_unmapped_area	= hugetlb_get_unmapped_area, | 
|  | .llseek			= default_llseek, | 
|  | .fallocate		= hugetlbfs_fallocate, | 
|  | .fop_flags		= FOP_HUGE_PAGES, | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations hugetlbfs_dir_inode_operations = { | 
|  | .create		= hugetlbfs_create, | 
|  | .lookup		= simple_lookup, | 
|  | .link		= simple_link, | 
|  | .unlink		= simple_unlink, | 
|  | .symlink	= hugetlbfs_symlink, | 
|  | .mkdir		= hugetlbfs_mkdir, | 
|  | .rmdir		= simple_rmdir, | 
|  | .mknod		= hugetlbfs_mknod, | 
|  | .rename		= simple_rename, | 
|  | .setattr	= hugetlbfs_setattr, | 
|  | .tmpfile	= hugetlbfs_tmpfile, | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations hugetlbfs_inode_operations = { | 
|  | .setattr	= hugetlbfs_setattr, | 
|  | }; | 
|  |  | 
|  | static const struct super_operations hugetlbfs_ops = { | 
|  | .alloc_inode    = hugetlbfs_alloc_inode, | 
|  | .free_inode     = hugetlbfs_free_inode, | 
|  | .destroy_inode  = hugetlbfs_destroy_inode, | 
|  | .evict_inode	= hugetlbfs_evict_inode, | 
|  | .statfs		= hugetlbfs_statfs, | 
|  | .put_super	= hugetlbfs_put_super, | 
|  | .show_options	= hugetlbfs_show_options, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Convert size option passed from command line to number of huge pages | 
|  | * in the pool specified by hstate.  Size option could be in bytes | 
|  | * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). | 
|  | */ | 
|  | static long | 
|  | hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, | 
|  | enum hugetlbfs_size_type val_type) | 
|  | { | 
|  | if (val_type == NO_SIZE) | 
|  | return -1; | 
|  |  | 
|  | if (val_type == SIZE_PERCENT) { | 
|  | size_opt <<= huge_page_shift(h); | 
|  | size_opt *= h->max_huge_pages; | 
|  | do_div(size_opt, 100); | 
|  | } | 
|  |  | 
|  | size_opt >>= huge_page_shift(h); | 
|  | return size_opt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse one mount parameter. | 
|  | */ | 
|  | static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) | 
|  | { | 
|  | struct hugetlbfs_fs_context *ctx = fc->fs_private; | 
|  | struct fs_parse_result result; | 
|  | struct hstate *h; | 
|  | char *rest; | 
|  | unsigned long ps; | 
|  | int opt; | 
|  |  | 
|  | opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); | 
|  | if (opt < 0) | 
|  | return opt; | 
|  |  | 
|  | switch (opt) { | 
|  | case Opt_uid: | 
|  | ctx->uid = result.uid; | 
|  | return 0; | 
|  |  | 
|  | case Opt_gid: | 
|  | ctx->gid = result.gid; | 
|  | return 0; | 
|  |  | 
|  | case Opt_mode: | 
|  | ctx->mode = result.uint_32 & 01777U; | 
|  | return 0; | 
|  |  | 
|  | case Opt_size: | 
|  | /* memparse() will accept a K/M/G without a digit */ | 
|  | if (!param->string || !isdigit(param->string[0])) | 
|  | goto bad_val; | 
|  | ctx->max_size_opt = memparse(param->string, &rest); | 
|  | ctx->max_val_type = SIZE_STD; | 
|  | if (*rest == '%') | 
|  | ctx->max_val_type = SIZE_PERCENT; | 
|  | return 0; | 
|  |  | 
|  | case Opt_nr_inodes: | 
|  | /* memparse() will accept a K/M/G without a digit */ | 
|  | if (!param->string || !isdigit(param->string[0])) | 
|  | goto bad_val; | 
|  | ctx->nr_inodes = memparse(param->string, &rest); | 
|  | return 0; | 
|  |  | 
|  | case Opt_pagesize: | 
|  | ps = memparse(param->string, &rest); | 
|  | h = size_to_hstate(ps); | 
|  | if (!h) { | 
|  | pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); | 
|  | return -EINVAL; | 
|  | } | 
|  | ctx->hstate = h; | 
|  | return 0; | 
|  |  | 
|  | case Opt_min_size: | 
|  | /* memparse() will accept a K/M/G without a digit */ | 
|  | if (!param->string || !isdigit(param->string[0])) | 
|  | goto bad_val; | 
|  | ctx->min_size_opt = memparse(param->string, &rest); | 
|  | ctx->min_val_type = SIZE_STD; | 
|  | if (*rest == '%') | 
|  | ctx->min_val_type = SIZE_PERCENT; | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | bad_val: | 
|  | return invalfc(fc, "Bad value '%s' for mount option '%s'\n", | 
|  | param->string, param->key); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate the parsed options. | 
|  | */ | 
|  | static int hugetlbfs_validate(struct fs_context *fc) | 
|  | { | 
|  | struct hugetlbfs_fs_context *ctx = fc->fs_private; | 
|  |  | 
|  | /* | 
|  | * Use huge page pool size (in hstate) to convert the size | 
|  | * options to number of huge pages.  If NO_SIZE, -1 is returned. | 
|  | */ | 
|  | ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, | 
|  | ctx->max_size_opt, | 
|  | ctx->max_val_type); | 
|  | ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, | 
|  | ctx->min_size_opt, | 
|  | ctx->min_val_type); | 
|  |  | 
|  | /* | 
|  | * If max_size was specified, then min_size must be smaller | 
|  | */ | 
|  | if (ctx->max_val_type > NO_SIZE && | 
|  | ctx->min_hpages > ctx->max_hpages) { | 
|  | pr_err("Minimum size can not be greater than maximum size\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) | 
|  | { | 
|  | struct hugetlbfs_fs_context *ctx = fc->fs_private; | 
|  | struct hugetlbfs_sb_info *sbinfo; | 
|  |  | 
|  | sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); | 
|  | if (!sbinfo) | 
|  | return -ENOMEM; | 
|  | sb->s_fs_info = sbinfo; | 
|  | spin_lock_init(&sbinfo->stat_lock); | 
|  | sbinfo->hstate		= ctx->hstate; | 
|  | sbinfo->max_inodes	= ctx->nr_inodes; | 
|  | sbinfo->free_inodes	= ctx->nr_inodes; | 
|  | sbinfo->spool		= NULL; | 
|  | sbinfo->uid		= ctx->uid; | 
|  | sbinfo->gid		= ctx->gid; | 
|  | sbinfo->mode		= ctx->mode; | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize subpool if maximum or minimum size is | 
|  | * specified.  Any needed reservations (for minimum size) are taken | 
|  | * when the subpool is created. | 
|  | */ | 
|  | if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { | 
|  | sbinfo->spool = hugepage_new_subpool(ctx->hstate, | 
|  | ctx->max_hpages, | 
|  | ctx->min_hpages); | 
|  | if (!sbinfo->spool) | 
|  | goto out_free; | 
|  | } | 
|  | sb->s_maxbytes = MAX_LFS_FILESIZE; | 
|  | sb->s_blocksize = huge_page_size(ctx->hstate); | 
|  | sb->s_blocksize_bits = huge_page_shift(ctx->hstate); | 
|  | sb->s_magic = HUGETLBFS_MAGIC; | 
|  | sb->s_op = &hugetlbfs_ops; | 
|  | sb->s_d_flags = DCACHE_DONTCACHE; | 
|  | sb->s_time_gran = 1; | 
|  |  | 
|  | /* | 
|  | * Due to the special and limited functionality of hugetlbfs, it does | 
|  | * not work well as a stacking filesystem. | 
|  | */ | 
|  | sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; | 
|  | sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); | 
|  | if (!sb->s_root) | 
|  | goto out_free; | 
|  | return 0; | 
|  | out_free: | 
|  | kfree(sbinfo->spool); | 
|  | kfree(sbinfo); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int hugetlbfs_get_tree(struct fs_context *fc) | 
|  | { | 
|  | int err = hugetlbfs_validate(fc); | 
|  | if (err) | 
|  | return err; | 
|  | return get_tree_nodev(fc, hugetlbfs_fill_super); | 
|  | } | 
|  |  | 
|  | static void hugetlbfs_fs_context_free(struct fs_context *fc) | 
|  | { | 
|  | kfree(fc->fs_private); | 
|  | } | 
|  |  | 
|  | static const struct fs_context_operations hugetlbfs_fs_context_ops = { | 
|  | .free		= hugetlbfs_fs_context_free, | 
|  | .parse_param	= hugetlbfs_parse_param, | 
|  | .get_tree	= hugetlbfs_get_tree, | 
|  | }; | 
|  |  | 
|  | static int hugetlbfs_init_fs_context(struct fs_context *fc) | 
|  | { | 
|  | struct hugetlbfs_fs_context *ctx; | 
|  |  | 
|  | ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ctx->max_hpages	= -1; /* No limit on size by default */ | 
|  | ctx->nr_inodes	= -1; /* No limit on number of inodes by default */ | 
|  | ctx->uid	= current_fsuid(); | 
|  | ctx->gid	= current_fsgid(); | 
|  | ctx->mode	= 0755; | 
|  | ctx->hstate	= &default_hstate; | 
|  | ctx->min_hpages	= -1; /* No default minimum size */ | 
|  | ctx->max_val_type = NO_SIZE; | 
|  | ctx->min_val_type = NO_SIZE; | 
|  | fc->fs_private = ctx; | 
|  | fc->ops	= &hugetlbfs_fs_context_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct file_system_type hugetlbfs_fs_type = { | 
|  | .name			= "hugetlbfs", | 
|  | .init_fs_context	= hugetlbfs_init_fs_context, | 
|  | .parameters		= hugetlb_fs_parameters, | 
|  | .kill_sb		= kill_litter_super, | 
|  | .fs_flags               = FS_ALLOW_IDMAP, | 
|  | }; | 
|  |  | 
|  | static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; | 
|  |  | 
|  | static int can_do_hugetlb_shm(void) | 
|  | { | 
|  | kgid_t shm_group; | 
|  | shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); | 
|  | return capable(CAP_IPC_LOCK) || in_group_p(shm_group); | 
|  | } | 
|  |  | 
|  | static int get_hstate_idx(int page_size_log) | 
|  | { | 
|  | struct hstate *h = hstate_sizelog(page_size_log); | 
|  |  | 
|  | if (!h) | 
|  | return -1; | 
|  | return hstate_index(h); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that size should be aligned to proper hugepage size in caller side, | 
|  | * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. | 
|  | */ | 
|  | struct file *hugetlb_file_setup(const char *name, size_t size, | 
|  | vm_flags_t acctflag, int creat_flags, | 
|  | int page_size_log) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct vfsmount *mnt; | 
|  | int hstate_idx; | 
|  | struct file *file; | 
|  |  | 
|  | hstate_idx = get_hstate_idx(page_size_log); | 
|  | if (hstate_idx < 0) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | mnt = hugetlbfs_vfsmount[hstate_idx]; | 
|  | if (!mnt) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { | 
|  | struct ucounts *ucounts = current_ucounts(); | 
|  |  | 
|  | if (user_shm_lock(size, ucounts)) { | 
|  | pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", | 
|  | current->comm, current->pid); | 
|  | user_shm_unlock(size, ucounts); | 
|  | } | 
|  | return ERR_PTR(-EPERM); | 
|  | } | 
|  |  | 
|  | file = ERR_PTR(-ENOSPC); | 
|  | /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */ | 
|  | inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, | 
|  | S_IFREG | S_IRWXUGO, 0); | 
|  | if (!inode) | 
|  | goto out; | 
|  | if (creat_flags == HUGETLB_SHMFS_INODE) | 
|  | inode->i_flags |= S_PRIVATE; | 
|  |  | 
|  | inode->i_size = size; | 
|  | clear_nlink(inode); | 
|  |  | 
|  | if (hugetlb_reserve_pages(inode, 0, | 
|  | size >> huge_page_shift(hstate_inode(inode)), NULL, | 
|  | acctflag) < 0) | 
|  | file = ERR_PTR(-ENOMEM); | 
|  | else | 
|  | file = alloc_file_pseudo(inode, mnt, name, O_RDWR, | 
|  | &hugetlbfs_file_operations); | 
|  | if (!IS_ERR(file)) | 
|  | return file; | 
|  |  | 
|  | iput(inode); | 
|  | out: | 
|  | return file; | 
|  | } | 
|  |  | 
|  | static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) | 
|  | { | 
|  | struct fs_context *fc; | 
|  | struct vfsmount *mnt; | 
|  |  | 
|  | fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); | 
|  | if (IS_ERR(fc)) { | 
|  | mnt = ERR_CAST(fc); | 
|  | } else { | 
|  | struct hugetlbfs_fs_context *ctx = fc->fs_private; | 
|  | ctx->hstate = h; | 
|  | mnt = fc_mount_longterm(fc); | 
|  | put_fs_context(fc); | 
|  | } | 
|  | if (IS_ERR(mnt)) | 
|  | pr_err("Cannot mount internal hugetlbfs for page size %luK", | 
|  | huge_page_size(h) / SZ_1K); | 
|  | return mnt; | 
|  | } | 
|  |  | 
|  | static int __init init_hugetlbfs_fs(void) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | struct hstate *h; | 
|  | int error; | 
|  | int i; | 
|  |  | 
|  | if (!hugepages_supported()) { | 
|  | pr_info("disabling because there are no supported hugepage sizes\n"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | error = -ENOMEM; | 
|  | hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", | 
|  | sizeof(struct hugetlbfs_inode_info), | 
|  | 0, SLAB_ACCOUNT, init_once); | 
|  | if (hugetlbfs_inode_cachep == NULL) | 
|  | goto out; | 
|  |  | 
|  | error = register_filesystem(&hugetlbfs_fs_type); | 
|  | if (error) | 
|  | goto out_free; | 
|  |  | 
|  | /* default hstate mount is required */ | 
|  | mnt = mount_one_hugetlbfs(&default_hstate); | 
|  | if (IS_ERR(mnt)) { | 
|  | error = PTR_ERR(mnt); | 
|  | goto out_unreg; | 
|  | } | 
|  | hugetlbfs_vfsmount[default_hstate_idx] = mnt; | 
|  |  | 
|  | /* other hstates are optional */ | 
|  | i = 0; | 
|  | for_each_hstate(h) { | 
|  | if (i == default_hstate_idx) { | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mnt = mount_one_hugetlbfs(h); | 
|  | if (IS_ERR(mnt)) | 
|  | hugetlbfs_vfsmount[i] = NULL; | 
|  | else | 
|  | hugetlbfs_vfsmount[i] = mnt; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unreg: | 
|  | (void)unregister_filesystem(&hugetlbfs_fs_type); | 
|  | out_free: | 
|  | kmem_cache_destroy(hugetlbfs_inode_cachep); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  | fs_initcall(init_hugetlbfs_fs) |