|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * SHA-224, SHA-256, HMAC-SHA224, and HMAC-SHA256 library functions | 
|  | * | 
|  | * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com> | 
|  | * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> | 
|  | * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> | 
|  | * Copyright (c) 2014 Red Hat Inc. | 
|  | * Copyright 2025 Google LLC | 
|  | */ | 
|  |  | 
|  | #include <crypto/hmac.h> | 
|  | #include <crypto/sha2.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/unaligned.h> | 
|  | #include <linux/wordpart.h> | 
|  |  | 
|  | static const struct sha256_block_state sha224_iv = { | 
|  | .h = { | 
|  | SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, | 
|  | SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct sha256_ctx initial_sha256_ctx = { | 
|  | .ctx = { | 
|  | .state = { | 
|  | .h = { | 
|  | SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, | 
|  | SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, | 
|  | }, | 
|  | }, | 
|  | .bytecount = 0, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | #define sha256_iv (initial_sha256_ctx.ctx.state) | 
|  |  | 
|  | static const u32 sha256_K[64] = { | 
|  | 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, | 
|  | 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, | 
|  | 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, | 
|  | 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, | 
|  | 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, | 
|  | 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, | 
|  | 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, | 
|  | 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, | 
|  | 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, | 
|  | 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, | 
|  | 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, | 
|  | }; | 
|  |  | 
|  | #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) | 
|  | #define Maj(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) | 
|  | #define e0(x) (ror32((x), 2) ^ ror32((x), 13) ^ ror32((x), 22)) | 
|  | #define e1(x) (ror32((x), 6) ^ ror32((x), 11) ^ ror32((x), 25)) | 
|  | #define s0(x) (ror32((x), 7) ^ ror32((x), 18) ^ ((x) >> 3)) | 
|  | #define s1(x) (ror32((x), 17) ^ ror32((x), 19) ^ ((x) >> 10)) | 
|  |  | 
|  | static inline void LOAD_OP(int I, u32 *W, const u8 *input) | 
|  | { | 
|  | W[I] = get_unaligned_be32((__u32 *)input + I); | 
|  | } | 
|  |  | 
|  | static inline void BLEND_OP(int I, u32 *W) | 
|  | { | 
|  | W[I] = s1(W[I - 2]) + W[I - 7] + s0(W[I - 15]) + W[I - 16]; | 
|  | } | 
|  |  | 
|  | #define SHA256_ROUND(i, a, b, c, d, e, f, g, h)                    \ | 
|  | do {                                                       \ | 
|  | u32 t1, t2;                                        \ | 
|  | t1 = h + e1(e) + Ch(e, f, g) + sha256_K[i] + W[i]; \ | 
|  | t2 = e0(a) + Maj(a, b, c);                         \ | 
|  | d += t1;                                           \ | 
|  | h = t1 + t2;                                       \ | 
|  | } while (0) | 
|  |  | 
|  | static void sha256_block_generic(struct sha256_block_state *state, | 
|  | const u8 *input, u32 W[64]) | 
|  | { | 
|  | u32 a, b, c, d, e, f, g, h; | 
|  | int i; | 
|  |  | 
|  | /* load the input */ | 
|  | for (i = 0; i < 16; i += 8) { | 
|  | LOAD_OP(i + 0, W, input); | 
|  | LOAD_OP(i + 1, W, input); | 
|  | LOAD_OP(i + 2, W, input); | 
|  | LOAD_OP(i + 3, W, input); | 
|  | LOAD_OP(i + 4, W, input); | 
|  | LOAD_OP(i + 5, W, input); | 
|  | LOAD_OP(i + 6, W, input); | 
|  | LOAD_OP(i + 7, W, input); | 
|  | } | 
|  |  | 
|  | /* now blend */ | 
|  | for (i = 16; i < 64; i += 8) { | 
|  | BLEND_OP(i + 0, W); | 
|  | BLEND_OP(i + 1, W); | 
|  | BLEND_OP(i + 2, W); | 
|  | BLEND_OP(i + 3, W); | 
|  | BLEND_OP(i + 4, W); | 
|  | BLEND_OP(i + 5, W); | 
|  | BLEND_OP(i + 6, W); | 
|  | BLEND_OP(i + 7, W); | 
|  | } | 
|  |  | 
|  | /* load the state into our registers */ | 
|  | a = state->h[0]; | 
|  | b = state->h[1]; | 
|  | c = state->h[2]; | 
|  | d = state->h[3]; | 
|  | e = state->h[4]; | 
|  | f = state->h[5]; | 
|  | g = state->h[6]; | 
|  | h = state->h[7]; | 
|  |  | 
|  | /* now iterate */ | 
|  | for (i = 0; i < 64; i += 8) { | 
|  | SHA256_ROUND(i + 0, a, b, c, d, e, f, g, h); | 
|  | SHA256_ROUND(i + 1, h, a, b, c, d, e, f, g); | 
|  | SHA256_ROUND(i + 2, g, h, a, b, c, d, e, f); | 
|  | SHA256_ROUND(i + 3, f, g, h, a, b, c, d, e); | 
|  | SHA256_ROUND(i + 4, e, f, g, h, a, b, c, d); | 
|  | SHA256_ROUND(i + 5, d, e, f, g, h, a, b, c); | 
|  | SHA256_ROUND(i + 6, c, d, e, f, g, h, a, b); | 
|  | SHA256_ROUND(i + 7, b, c, d, e, f, g, h, a); | 
|  | } | 
|  |  | 
|  | state->h[0] += a; | 
|  | state->h[1] += b; | 
|  | state->h[2] += c; | 
|  | state->h[3] += d; | 
|  | state->h[4] += e; | 
|  | state->h[5] += f; | 
|  | state->h[6] += g; | 
|  | state->h[7] += h; | 
|  | } | 
|  |  | 
|  | static void __maybe_unused | 
|  | sha256_blocks_generic(struct sha256_block_state *state, | 
|  | const u8 *data, size_t nblocks) | 
|  | { | 
|  | u32 W[64]; | 
|  |  | 
|  | do { | 
|  | sha256_block_generic(state, data, W); | 
|  | data += SHA256_BLOCK_SIZE; | 
|  | } while (--nblocks); | 
|  |  | 
|  | memzero_explicit(W, sizeof(W)); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_CRYPTO_LIB_SHA256_ARCH) && !defined(__DISABLE_EXPORTS) | 
|  | #include "sha256.h" /* $(SRCARCH)/sha256.h */ | 
|  | #else | 
|  | #define sha256_blocks sha256_blocks_generic | 
|  | #endif | 
|  |  | 
|  | static void __sha256_init(struct __sha256_ctx *ctx, | 
|  | const struct sha256_block_state *iv, | 
|  | u64 initial_bytecount) | 
|  | { | 
|  | ctx->state = *iv; | 
|  | ctx->bytecount = initial_bytecount; | 
|  | } | 
|  |  | 
|  | void sha224_init(struct sha224_ctx *ctx) | 
|  | { | 
|  | __sha256_init(&ctx->ctx, &sha224_iv, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sha224_init); | 
|  |  | 
|  | void sha256_init(struct sha256_ctx *ctx) | 
|  | { | 
|  | __sha256_init(&ctx->ctx, &sha256_iv, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sha256_init); | 
|  |  | 
|  | void __sha256_update(struct __sha256_ctx *ctx, const u8 *data, size_t len) | 
|  | { | 
|  | size_t partial = ctx->bytecount % SHA256_BLOCK_SIZE; | 
|  |  | 
|  | ctx->bytecount += len; | 
|  |  | 
|  | if (partial + len >= SHA256_BLOCK_SIZE) { | 
|  | size_t nblocks; | 
|  |  | 
|  | if (partial) { | 
|  | size_t l = SHA256_BLOCK_SIZE - partial; | 
|  |  | 
|  | memcpy(&ctx->buf[partial], data, l); | 
|  | data += l; | 
|  | len -= l; | 
|  |  | 
|  | sha256_blocks(&ctx->state, ctx->buf, 1); | 
|  | } | 
|  |  | 
|  | nblocks = len / SHA256_BLOCK_SIZE; | 
|  | len %= SHA256_BLOCK_SIZE; | 
|  |  | 
|  | if (nblocks) { | 
|  | sha256_blocks(&ctx->state, data, nblocks); | 
|  | data += nblocks * SHA256_BLOCK_SIZE; | 
|  | } | 
|  | partial = 0; | 
|  | } | 
|  | if (len) | 
|  | memcpy(&ctx->buf[partial], data, len); | 
|  | } | 
|  | EXPORT_SYMBOL(__sha256_update); | 
|  |  | 
|  | static void __sha256_final(struct __sha256_ctx *ctx, | 
|  | u8 *out, size_t digest_size) | 
|  | { | 
|  | u64 bitcount = ctx->bytecount << 3; | 
|  | size_t partial = ctx->bytecount % SHA256_BLOCK_SIZE; | 
|  |  | 
|  | ctx->buf[partial++] = 0x80; | 
|  | if (partial > SHA256_BLOCK_SIZE - 8) { | 
|  | memset(&ctx->buf[partial], 0, SHA256_BLOCK_SIZE - partial); | 
|  | sha256_blocks(&ctx->state, ctx->buf, 1); | 
|  | partial = 0; | 
|  | } | 
|  | memset(&ctx->buf[partial], 0, SHA256_BLOCK_SIZE - 8 - partial); | 
|  | *(__be64 *)&ctx->buf[SHA256_BLOCK_SIZE - 8] = cpu_to_be64(bitcount); | 
|  | sha256_blocks(&ctx->state, ctx->buf, 1); | 
|  |  | 
|  | for (size_t i = 0; i < digest_size; i += 4) | 
|  | put_unaligned_be32(ctx->state.h[i / 4], out + i); | 
|  | } | 
|  |  | 
|  | void sha224_final(struct sha224_ctx *ctx, u8 out[SHA224_DIGEST_SIZE]) | 
|  | { | 
|  | __sha256_final(&ctx->ctx, out, SHA224_DIGEST_SIZE); | 
|  | memzero_explicit(ctx, sizeof(*ctx)); | 
|  | } | 
|  | EXPORT_SYMBOL(sha224_final); | 
|  |  | 
|  | void sha256_final(struct sha256_ctx *ctx, u8 out[SHA256_DIGEST_SIZE]) | 
|  | { | 
|  | __sha256_final(&ctx->ctx, out, SHA256_DIGEST_SIZE); | 
|  | memzero_explicit(ctx, sizeof(*ctx)); | 
|  | } | 
|  | EXPORT_SYMBOL(sha256_final); | 
|  |  | 
|  | void sha224(const u8 *data, size_t len, u8 out[SHA224_DIGEST_SIZE]) | 
|  | { | 
|  | struct sha224_ctx ctx; | 
|  |  | 
|  | sha224_init(&ctx); | 
|  | sha224_update(&ctx, data, len); | 
|  | sha224_final(&ctx, out); | 
|  | } | 
|  | EXPORT_SYMBOL(sha224); | 
|  |  | 
|  | void sha256(const u8 *data, size_t len, u8 out[SHA256_DIGEST_SIZE]) | 
|  | { | 
|  | struct sha256_ctx ctx; | 
|  |  | 
|  | sha256_init(&ctx); | 
|  | sha256_update(&ctx, data, len); | 
|  | sha256_final(&ctx, out); | 
|  | } | 
|  | EXPORT_SYMBOL(sha256); | 
|  |  | 
|  | /* | 
|  | * Pre-boot environment (as indicated by __DISABLE_EXPORTS being defined) | 
|  | * doesn't need either HMAC support or interleaved hashing support | 
|  | */ | 
|  | #ifndef __DISABLE_EXPORTS | 
|  |  | 
|  | #ifndef sha256_finup_2x_arch | 
|  | static bool sha256_finup_2x_arch(const struct __sha256_ctx *ctx, | 
|  | const u8 *data1, const u8 *data2, size_t len, | 
|  | u8 out1[SHA256_DIGEST_SIZE], | 
|  | u8 out2[SHA256_DIGEST_SIZE]) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | static bool sha256_finup_2x_is_optimized_arch(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Sequential fallback implementation of sha256_finup_2x() */ | 
|  | static noinline_for_stack void sha256_finup_2x_sequential( | 
|  | const struct __sha256_ctx *ctx, const u8 *data1, const u8 *data2, | 
|  | size_t len, u8 out1[SHA256_DIGEST_SIZE], u8 out2[SHA256_DIGEST_SIZE]) | 
|  | { | 
|  | struct __sha256_ctx mut_ctx; | 
|  |  | 
|  | mut_ctx = *ctx; | 
|  | __sha256_update(&mut_ctx, data1, len); | 
|  | __sha256_final(&mut_ctx, out1, SHA256_DIGEST_SIZE); | 
|  |  | 
|  | mut_ctx = *ctx; | 
|  | __sha256_update(&mut_ctx, data2, len); | 
|  | __sha256_final(&mut_ctx, out2, SHA256_DIGEST_SIZE); | 
|  | } | 
|  |  | 
|  | void sha256_finup_2x(const struct sha256_ctx *ctx, const u8 *data1, | 
|  | const u8 *data2, size_t len, u8 out1[SHA256_DIGEST_SIZE], | 
|  | u8 out2[SHA256_DIGEST_SIZE]) | 
|  | { | 
|  | if (ctx == NULL) | 
|  | ctx = &initial_sha256_ctx; | 
|  |  | 
|  | if (likely(sha256_finup_2x_arch(&ctx->ctx, data1, data2, len, out1, | 
|  | out2))) | 
|  | return; | 
|  | sha256_finup_2x_sequential(&ctx->ctx, data1, data2, len, out1, out2); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sha256_finup_2x); | 
|  |  | 
|  | bool sha256_finup_2x_is_optimized(void) | 
|  | { | 
|  | return sha256_finup_2x_is_optimized_arch(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sha256_finup_2x_is_optimized); | 
|  |  | 
|  | static void __hmac_sha256_preparekey(struct sha256_block_state *istate, | 
|  | struct sha256_block_state *ostate, | 
|  | const u8 *raw_key, size_t raw_key_len, | 
|  | const struct sha256_block_state *iv) | 
|  | { | 
|  | union { | 
|  | u8 b[SHA256_BLOCK_SIZE]; | 
|  | unsigned long w[SHA256_BLOCK_SIZE / sizeof(unsigned long)]; | 
|  | } derived_key = { 0 }; | 
|  |  | 
|  | if (unlikely(raw_key_len > SHA256_BLOCK_SIZE)) { | 
|  | if (iv == &sha224_iv) | 
|  | sha224(raw_key, raw_key_len, derived_key.b); | 
|  | else | 
|  | sha256(raw_key, raw_key_len, derived_key.b); | 
|  | } else { | 
|  | memcpy(derived_key.b, raw_key, raw_key_len); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) | 
|  | derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE); | 
|  | *istate = *iv; | 
|  | sha256_blocks(istate, derived_key.b, 1); | 
|  |  | 
|  | for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) | 
|  | derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^ | 
|  | HMAC_IPAD_VALUE); | 
|  | *ostate = *iv; | 
|  | sha256_blocks(ostate, derived_key.b, 1); | 
|  |  | 
|  | memzero_explicit(&derived_key, sizeof(derived_key)); | 
|  | } | 
|  |  | 
|  | void hmac_sha224_preparekey(struct hmac_sha224_key *key, | 
|  | const u8 *raw_key, size_t raw_key_len) | 
|  | { | 
|  | __hmac_sha256_preparekey(&key->key.istate, &key->key.ostate, | 
|  | raw_key, raw_key_len, &sha224_iv); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha224_preparekey); | 
|  |  | 
|  | void hmac_sha256_preparekey(struct hmac_sha256_key *key, | 
|  | const u8 *raw_key, size_t raw_key_len) | 
|  | { | 
|  | __hmac_sha256_preparekey(&key->key.istate, &key->key.ostate, | 
|  | raw_key, raw_key_len, &sha256_iv); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha256_preparekey); | 
|  |  | 
|  | void __hmac_sha256_init(struct __hmac_sha256_ctx *ctx, | 
|  | const struct __hmac_sha256_key *key) | 
|  | { | 
|  | __sha256_init(&ctx->sha_ctx, &key->istate, SHA256_BLOCK_SIZE); | 
|  | ctx->ostate = key->ostate; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__hmac_sha256_init); | 
|  |  | 
|  | void hmac_sha224_init_usingrawkey(struct hmac_sha224_ctx *ctx, | 
|  | const u8 *raw_key, size_t raw_key_len) | 
|  | { | 
|  | __hmac_sha256_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate, | 
|  | raw_key, raw_key_len, &sha224_iv); | 
|  | ctx->ctx.sha_ctx.bytecount = SHA256_BLOCK_SIZE; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha224_init_usingrawkey); | 
|  |  | 
|  | void hmac_sha256_init_usingrawkey(struct hmac_sha256_ctx *ctx, | 
|  | const u8 *raw_key, size_t raw_key_len) | 
|  | { | 
|  | __hmac_sha256_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate, | 
|  | raw_key, raw_key_len, &sha256_iv); | 
|  | ctx->ctx.sha_ctx.bytecount = SHA256_BLOCK_SIZE; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha256_init_usingrawkey); | 
|  |  | 
|  | static void __hmac_sha256_final(struct __hmac_sha256_ctx *ctx, | 
|  | u8 *out, size_t digest_size) | 
|  | { | 
|  | /* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */ | 
|  | __sha256_final(&ctx->sha_ctx, ctx->sha_ctx.buf, digest_size); | 
|  | memset(&ctx->sha_ctx.buf[digest_size], 0, | 
|  | SHA256_BLOCK_SIZE - digest_size); | 
|  | ctx->sha_ctx.buf[digest_size] = 0x80; | 
|  | *(__be32 *)&ctx->sha_ctx.buf[SHA256_BLOCK_SIZE - 4] = | 
|  | cpu_to_be32(8 * (SHA256_BLOCK_SIZE + digest_size)); | 
|  |  | 
|  | /* Compute the outer hash, which gives the HMAC value. */ | 
|  | sha256_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1); | 
|  | for (size_t i = 0; i < digest_size; i += 4) | 
|  | put_unaligned_be32(ctx->ostate.h[i / 4], out + i); | 
|  |  | 
|  | memzero_explicit(ctx, sizeof(*ctx)); | 
|  | } | 
|  |  | 
|  | void hmac_sha224_final(struct hmac_sha224_ctx *ctx, | 
|  | u8 out[SHA224_DIGEST_SIZE]) | 
|  | { | 
|  | __hmac_sha256_final(&ctx->ctx, out, SHA224_DIGEST_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha224_final); | 
|  |  | 
|  | void hmac_sha256_final(struct hmac_sha256_ctx *ctx, | 
|  | u8 out[SHA256_DIGEST_SIZE]) | 
|  | { | 
|  | __hmac_sha256_final(&ctx->ctx, out, SHA256_DIGEST_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha256_final); | 
|  |  | 
|  | void hmac_sha224(const struct hmac_sha224_key *key, | 
|  | const u8 *data, size_t data_len, u8 out[SHA224_DIGEST_SIZE]) | 
|  | { | 
|  | struct hmac_sha224_ctx ctx; | 
|  |  | 
|  | hmac_sha224_init(&ctx, key); | 
|  | hmac_sha224_update(&ctx, data, data_len); | 
|  | hmac_sha224_final(&ctx, out); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha224); | 
|  |  | 
|  | void hmac_sha256(const struct hmac_sha256_key *key, | 
|  | const u8 *data, size_t data_len, u8 out[SHA256_DIGEST_SIZE]) | 
|  | { | 
|  | struct hmac_sha256_ctx ctx; | 
|  |  | 
|  | hmac_sha256_init(&ctx, key); | 
|  | hmac_sha256_update(&ctx, data, data_len); | 
|  | hmac_sha256_final(&ctx, out); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha256); | 
|  |  | 
|  | void hmac_sha224_usingrawkey(const u8 *raw_key, size_t raw_key_len, | 
|  | const u8 *data, size_t data_len, | 
|  | u8 out[SHA224_DIGEST_SIZE]) | 
|  | { | 
|  | struct hmac_sha224_ctx ctx; | 
|  |  | 
|  | hmac_sha224_init_usingrawkey(&ctx, raw_key, raw_key_len); | 
|  | hmac_sha224_update(&ctx, data, data_len); | 
|  | hmac_sha224_final(&ctx, out); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha224_usingrawkey); | 
|  |  | 
|  | void hmac_sha256_usingrawkey(const u8 *raw_key, size_t raw_key_len, | 
|  | const u8 *data, size_t data_len, | 
|  | u8 out[SHA256_DIGEST_SIZE]) | 
|  | { | 
|  | struct hmac_sha256_ctx ctx; | 
|  |  | 
|  | hmac_sha256_init_usingrawkey(&ctx, raw_key, raw_key_len); | 
|  | hmac_sha256_update(&ctx, data, data_len); | 
|  | hmac_sha256_final(&ctx, out); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha256_usingrawkey); | 
|  | #endif /* !__DISABLE_EXPORTS */ | 
|  |  | 
|  | #ifdef sha256_mod_init_arch | 
|  | static int __init sha256_mod_init(void) | 
|  | { | 
|  | sha256_mod_init_arch(); | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(sha256_mod_init); | 
|  |  | 
|  | static void __exit sha256_mod_exit(void) | 
|  | { | 
|  | } | 
|  | module_exit(sha256_mod_exit); | 
|  | #endif | 
|  |  | 
|  | MODULE_DESCRIPTION("SHA-224, SHA-256, HMAC-SHA224, and HMAC-SHA256 library functions"); | 
|  | MODULE_LICENSE("GPL"); |