|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2011 STRATO.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <trace/events/btrfs.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "backref.h" | 
|  | #include "ulist.h" | 
|  | #include "transaction.h" | 
|  | #include "delayed-ref.h" | 
|  | #include "locking.h" | 
|  | #include "misc.h" | 
|  | #include "tree-mod-log.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "extent-tree.h" | 
|  | #include "relocation.h" | 
|  | #include "tree-checker.h" | 
|  |  | 
|  | /* Just arbitrary numbers so we can be sure one of these happened. */ | 
|  | #define BACKREF_FOUND_SHARED     6 | 
|  | #define BACKREF_FOUND_NOT_SHARED 7 | 
|  |  | 
|  | struct extent_inode_elem { | 
|  | u64 inum; | 
|  | u64 offset; | 
|  | u64 num_bytes; | 
|  | struct extent_inode_elem *next; | 
|  | }; | 
|  |  | 
|  | static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, | 
|  | const struct btrfs_key *key, | 
|  | const struct extent_buffer *eb, | 
|  | const struct btrfs_file_extent_item *fi, | 
|  | struct extent_inode_elem **eie) | 
|  | { | 
|  | const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); | 
|  | u64 offset = key->offset; | 
|  | struct extent_inode_elem *e; | 
|  | const u64 *root_ids; | 
|  | int root_count; | 
|  | bool cached; | 
|  |  | 
|  | if (!ctx->ignore_extent_item_pos && | 
|  | !btrfs_file_extent_compression(eb, fi) && | 
|  | !btrfs_file_extent_encryption(eb, fi) && | 
|  | !btrfs_file_extent_other_encoding(eb, fi)) { | 
|  | u64 data_offset; | 
|  |  | 
|  | data_offset = btrfs_file_extent_offset(eb, fi); | 
|  |  | 
|  | if (ctx->extent_item_pos < data_offset || | 
|  | ctx->extent_item_pos >= data_offset + data_len) | 
|  | return 1; | 
|  | offset += ctx->extent_item_pos - data_offset; | 
|  | } | 
|  |  | 
|  | if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) | 
|  | goto add_inode_elem; | 
|  |  | 
|  | cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, | 
|  | &root_count); | 
|  | if (!cached) | 
|  | goto add_inode_elem; | 
|  |  | 
|  | for (int i = 0; i < root_count; i++) { | 
|  | int ret; | 
|  |  | 
|  | ret = ctx->indirect_ref_iterator(key->objectid, offset, | 
|  | data_len, root_ids[i], | 
|  | ctx->user_ctx); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | add_inode_elem: | 
|  | e = kmalloc(sizeof(*e), GFP_NOFS); | 
|  | if (!e) | 
|  | return -ENOMEM; | 
|  |  | 
|  | e->next = *eie; | 
|  | e->inum = key->objectid; | 
|  | e->offset = offset; | 
|  | e->num_bytes = data_len; | 
|  | *eie = e; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_inode_elem_list(struct extent_inode_elem *eie) | 
|  | { | 
|  | struct extent_inode_elem *eie_next; | 
|  |  | 
|  | for (; eie; eie = eie_next) { | 
|  | eie_next = eie->next; | 
|  | kfree(eie); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, | 
|  | const struct extent_buffer *eb, | 
|  | struct extent_inode_elem **eie) | 
|  | { | 
|  | u64 disk_byte; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | int slot; | 
|  | int nritems; | 
|  | int extent_type; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * from the shared data ref, we only have the leaf but we need | 
|  | * the key. thus, we must look into all items and see that we | 
|  | * find one (some) with a reference to our extent item. | 
|  | */ | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | for (slot = 0; slot < nritems; ++slot) { | 
|  | btrfs_item_key_to_cpu(eb, &key, slot); | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | extent_type = btrfs_file_extent_type(eb, fi); | 
|  | if (extent_type == BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ | 
|  | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
|  | if (disk_byte != ctx->bytenr) | 
|  | continue; | 
|  |  | 
|  | ret = check_extent_in_eb(ctx, &key, eb, fi, eie); | 
|  | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct preftree { | 
|  | struct rb_root_cached root; | 
|  | unsigned int count; | 
|  | }; | 
|  |  | 
|  | #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 } | 
|  |  | 
|  | struct preftrees { | 
|  | struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ | 
|  | struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ | 
|  | struct preftree indirect_missing_keys; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Checks for a shared extent during backref search. | 
|  | * | 
|  | * The share_count tracks prelim_refs (direct and indirect) having a | 
|  | * ref->count >0: | 
|  | *  - incremented when a ref->count transitions to >0 | 
|  | *  - decremented when a ref->count transitions to <1 | 
|  | */ | 
|  | struct share_check { | 
|  | struct btrfs_backref_share_check_ctx *ctx; | 
|  | struct btrfs_root *root; | 
|  | u64 inum; | 
|  | u64 data_bytenr; | 
|  | u64 data_extent_gen; | 
|  | /* | 
|  | * Counts number of inodes that refer to an extent (different inodes in | 
|  | * the same root or different roots) that we could find. The sharedness | 
|  | * check typically stops once this counter gets greater than 1, so it | 
|  | * may not reflect the total number of inodes. | 
|  | */ | 
|  | int share_count; | 
|  | /* | 
|  | * The number of times we found our inode refers to the data extent we | 
|  | * are determining the sharedness. In other words, how many file extent | 
|  | * items we could find for our inode that point to our target data | 
|  | * extent. The value we get here after finishing the extent sharedness | 
|  | * check may be smaller than reality, but if it ends up being greater | 
|  | * than 1, then we know for sure the inode has multiple file extent | 
|  | * items that point to our inode, and we can safely assume it's useful | 
|  | * to cache the sharedness check result. | 
|  | */ | 
|  | int self_ref_count; | 
|  | bool have_delayed_delete_refs; | 
|  | }; | 
|  |  | 
|  | static inline int extent_is_shared(struct share_check *sc) | 
|  | { | 
|  | return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *btrfs_prelim_ref_cache; | 
|  |  | 
|  | int __init btrfs_prelim_ref_init(void) | 
|  | { | 
|  | btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", | 
|  | sizeof(struct prelim_ref), 0, 0, NULL); | 
|  | if (!btrfs_prelim_ref_cache) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cold btrfs_prelim_ref_exit(void) | 
|  | { | 
|  | kmem_cache_destroy(btrfs_prelim_ref_cache); | 
|  | } | 
|  |  | 
|  | static void free_pref(struct prelim_ref *ref) | 
|  | { | 
|  | kmem_cache_free(btrfs_prelim_ref_cache, ref); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 0 when both refs are for the same block (and can be merged). | 
|  | * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 | 
|  | * indicates a 'higher' block. | 
|  | */ | 
|  | static int prelim_ref_compare(const struct prelim_ref *ref1, | 
|  | const struct prelim_ref *ref2) | 
|  | { | 
|  | if (ref1->level < ref2->level) | 
|  | return -1; | 
|  | if (ref1->level > ref2->level) | 
|  | return 1; | 
|  | if (ref1->root_id < ref2->root_id) | 
|  | return -1; | 
|  | if (ref1->root_id > ref2->root_id) | 
|  | return 1; | 
|  | if (ref1->key_for_search.type < ref2->key_for_search.type) | 
|  | return -1; | 
|  | if (ref1->key_for_search.type > ref2->key_for_search.type) | 
|  | return 1; | 
|  | if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) | 
|  | return -1; | 
|  | if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) | 
|  | return 1; | 
|  | if (ref1->key_for_search.offset < ref2->key_for_search.offset) | 
|  | return -1; | 
|  | if (ref1->key_for_search.offset > ref2->key_for_search.offset) | 
|  | return 1; | 
|  | if (ref1->parent < ref2->parent) | 
|  | return -1; | 
|  | if (ref1->parent > ref2->parent) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int prelim_ref_rb_add_cmp(const struct rb_node *new, | 
|  | const struct rb_node *exist) | 
|  | { | 
|  | const struct prelim_ref *ref_new = | 
|  | rb_entry(new, struct prelim_ref, rbnode); | 
|  | const struct prelim_ref *ref_exist = | 
|  | rb_entry(exist, struct prelim_ref, rbnode); | 
|  |  | 
|  | /* | 
|  | * prelim_ref_compare() expects the first parameter as the existing one, | 
|  | * different from the rb_find_add_cached() order. | 
|  | */ | 
|  | return prelim_ref_compare(ref_exist, ref_new); | 
|  | } | 
|  |  | 
|  | static void update_share_count(struct share_check *sc, int oldcount, | 
|  | int newcount, const struct prelim_ref *newref) | 
|  | { | 
|  | if ((!sc) || (oldcount == 0 && newcount < 1)) | 
|  | return; | 
|  |  | 
|  | if (oldcount > 0 && newcount < 1) | 
|  | sc->share_count--; | 
|  | else if (oldcount < 1 && newcount > 0) | 
|  | sc->share_count++; | 
|  |  | 
|  | if (newref->root_id == btrfs_root_id(sc->root) && | 
|  | newref->wanted_disk_byte == sc->data_bytenr && | 
|  | newref->key_for_search.objectid == sc->inum) | 
|  | sc->self_ref_count += newref->count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add @newref to the @root rbtree, merging identical refs. | 
|  | * | 
|  | * Callers should assume that newref has been freed after calling. | 
|  | */ | 
|  | static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, | 
|  | struct preftree *preftree, | 
|  | struct prelim_ref *newref, | 
|  | struct share_check *sc) | 
|  | { | 
|  | struct rb_root_cached *root; | 
|  | struct rb_node *exist; | 
|  |  | 
|  | root = &preftree->root; | 
|  | exist = rb_find_add_cached(&newref->rbnode, root, prelim_ref_rb_add_cmp); | 
|  | if (exist) { | 
|  | struct prelim_ref *ref = rb_entry(exist, struct prelim_ref, rbnode); | 
|  | /* Identical refs, merge them and free @newref */ | 
|  | struct extent_inode_elem *eie = ref->inode_list; | 
|  |  | 
|  | while (eie && eie->next) | 
|  | eie = eie->next; | 
|  |  | 
|  | if (!eie) | 
|  | ref->inode_list = newref->inode_list; | 
|  | else | 
|  | eie->next = newref->inode_list; | 
|  | trace_btrfs_prelim_ref_merge(fs_info, ref, newref, | 
|  | preftree->count); | 
|  | /* | 
|  | * A delayed ref can have newref->count < 0. | 
|  | * The ref->count is updated to follow any | 
|  | * BTRFS_[ADD|DROP]_DELAYED_REF actions. | 
|  | */ | 
|  | update_share_count(sc, ref->count, | 
|  | ref->count + newref->count, newref); | 
|  | ref->count += newref->count; | 
|  | free_pref(newref); | 
|  | return; | 
|  | } | 
|  |  | 
|  | update_share_count(sc, 0, newref->count, newref); | 
|  | preftree->count++; | 
|  | trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the entire tree.  We don't care about internal consistency so | 
|  | * just free everything and then reset the tree root. | 
|  | */ | 
|  | static void prelim_release(struct preftree *preftree) | 
|  | { | 
|  | struct prelim_ref *ref, *next_ref; | 
|  |  | 
|  | rbtree_postorder_for_each_entry_safe(ref, next_ref, | 
|  | &preftree->root.rb_root, rbnode) { | 
|  | free_inode_elem_list(ref->inode_list); | 
|  | free_pref(ref); | 
|  | } | 
|  |  | 
|  | preftree->root = RB_ROOT_CACHED; | 
|  | preftree->count = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the rules for all callers of this function are: | 
|  | * - obtaining the parent is the goal | 
|  | * - if you add a key, you must know that it is a correct key | 
|  | * - if you cannot add the parent or a correct key, then we will look into the | 
|  | *   block later to set a correct key | 
|  | * | 
|  | * delayed refs | 
|  | * ============ | 
|  | *        backref type | shared | indirect | shared | indirect | 
|  | * information         |   tree |     tree |   data |     data | 
|  | * --------------------+--------+----------+--------+---------- | 
|  | *      parent logical |    y   |     -    |    -   |     - | 
|  | *      key to resolve |    -   |     y    |    y   |     y | 
|  | *  tree block logical |    -   |     -    |    -   |     - | 
|  | *  root for resolving |    y   |     y    |    y   |     y | 
|  | * | 
|  | * - column 1:       we've the parent -> done | 
|  | * - column 2, 3, 4: we use the key to find the parent | 
|  | * | 
|  | * on disk refs (inline or keyed) | 
|  | * ============================== | 
|  | *        backref type | shared | indirect | shared | indirect | 
|  | * information         |   tree |     tree |   data |     data | 
|  | * --------------------+--------+----------+--------+---------- | 
|  | *      parent logical |    y   |     -    |    y   |     - | 
|  | *      key to resolve |    -   |     -    |    -   |     y | 
|  | *  tree block logical |    y   |     y    |    y   |     y | 
|  | *  root for resolving |    -   |     y    |    y   |     y | 
|  | * | 
|  | * - column 1, 3: we've the parent -> done | 
|  | * - column 2:    we take the first key from the block to find the parent | 
|  | *                (see add_missing_keys) | 
|  | * - column 4:    we use the key to find the parent | 
|  | * | 
|  | * additional information that's available but not required to find the parent | 
|  | * block might help in merging entries to gain some speed. | 
|  | */ | 
|  | static int add_prelim_ref(const struct btrfs_fs_info *fs_info, | 
|  | struct preftree *preftree, u64 root_id, | 
|  | const struct btrfs_key *key, int level, u64 parent, | 
|  | u64 wanted_disk_byte, int count, | 
|  | struct share_check *sc, gfp_t gfp_mask) | 
|  | { | 
|  | struct prelim_ref *ref; | 
|  |  | 
|  | if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) | 
|  | return 0; | 
|  |  | 
|  | ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); | 
|  | if (!ref) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ref->root_id = root_id; | 
|  | if (key) | 
|  | ref->key_for_search = *key; | 
|  | else | 
|  | memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); | 
|  |  | 
|  | ref->inode_list = NULL; | 
|  | ref->level = level; | 
|  | ref->count = count; | 
|  | ref->parent = parent; | 
|  | ref->wanted_disk_byte = wanted_disk_byte; | 
|  | prelim_ref_insert(fs_info, preftree, ref, sc); | 
|  | return extent_is_shared(sc); | 
|  | } | 
|  |  | 
|  | /* direct refs use root == 0, key == NULL */ | 
|  | static int add_direct_ref(const struct btrfs_fs_info *fs_info, | 
|  | struct preftrees *preftrees, int level, u64 parent, | 
|  | u64 wanted_disk_byte, int count, | 
|  | struct share_check *sc, gfp_t gfp_mask) | 
|  | { | 
|  | return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, | 
|  | parent, wanted_disk_byte, count, sc, gfp_mask); | 
|  | } | 
|  |  | 
|  | /* indirect refs use parent == 0 */ | 
|  | static int add_indirect_ref(const struct btrfs_fs_info *fs_info, | 
|  | struct preftrees *preftrees, u64 root_id, | 
|  | const struct btrfs_key *key, int level, | 
|  | u64 wanted_disk_byte, int count, | 
|  | struct share_check *sc, gfp_t gfp_mask) | 
|  | { | 
|  | struct preftree *tree = &preftrees->indirect; | 
|  |  | 
|  | if (!key) | 
|  | tree = &preftrees->indirect_missing_keys; | 
|  | return add_prelim_ref(fs_info, tree, root_id, key, level, 0, | 
|  | wanted_disk_byte, count, sc, gfp_mask); | 
|  | } | 
|  |  | 
|  | static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) | 
|  | { | 
|  | struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct prelim_ref *ref = NULL; | 
|  | struct prelim_ref target = {}; | 
|  | int result; | 
|  |  | 
|  | target.parent = bytenr; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | ref = rb_entry(parent, struct prelim_ref, rbnode); | 
|  | result = prelim_ref_compare(ref, &target); | 
|  |  | 
|  | if (result < 0) | 
|  | p = &(*p)->rb_left; | 
|  | else if (result > 0) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, | 
|  | struct btrfs_root *root, struct btrfs_path *path, | 
|  | struct ulist *parents, | 
|  | struct preftrees *preftrees, struct prelim_ref *ref, | 
|  | int level) | 
|  | { | 
|  | int ret = 0; | 
|  | int slot; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key *key_for_search = &ref->key_for_search; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_inode_elem *eie = NULL, *old = NULL; | 
|  | u64 disk_byte; | 
|  | u64 wanted_disk_byte = ref->wanted_disk_byte; | 
|  | u64 count = 0; | 
|  | u64 data_offset; | 
|  | u8 type; | 
|  |  | 
|  | if (level != 0) { | 
|  | eb = path->nodes[level]; | 
|  | ret = ulist_add(parents, eb->start, 0, GFP_NOFS); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 1. We normally enter this function with the path already pointing to | 
|  | *    the first item to check. But sometimes, we may enter it with | 
|  | *    slot == nritems. | 
|  | * 2. We are searching for normal backref but bytenr of this leaf | 
|  | *    matches shared data backref | 
|  | * 3. The leaf owner is not equal to the root we are searching | 
|  | * | 
|  | * For these cases, go to the next leaf before we continue. | 
|  | */ | 
|  | eb = path->nodes[0]; | 
|  | if (path->slots[0] >= btrfs_header_nritems(eb) || | 
|  | is_shared_data_backref(preftrees, eb->start) || | 
|  | ref->root_id != btrfs_header_owner(eb)) { | 
|  | if (ctx->time_seq == BTRFS_SEQ_LAST) | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | else | 
|  | ret = btrfs_next_old_leaf(root, path, ctx->time_seq); | 
|  | } | 
|  |  | 
|  | while (!ret && count < ref->count) { | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | btrfs_item_key_to_cpu(eb, &key, slot); | 
|  |  | 
|  | if (key.objectid != key_for_search->objectid || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We are searching for normal backref but bytenr of this leaf | 
|  | * matches shared data backref, OR | 
|  | * the leaf owner is not equal to the root we are searching for | 
|  | */ | 
|  | if (slot == 0 && | 
|  | (is_shared_data_backref(preftrees, eb->start) || | 
|  | ref->root_id != btrfs_header_owner(eb))) { | 
|  | if (ctx->time_seq == BTRFS_SEQ_LAST) | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | else | 
|  | ret = btrfs_next_old_leaf(root, path, ctx->time_seq); | 
|  | continue; | 
|  | } | 
|  | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | type = btrfs_file_extent_type(eb, fi); | 
|  | if (type == BTRFS_FILE_EXTENT_INLINE) | 
|  | goto next; | 
|  | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
|  | data_offset = btrfs_file_extent_offset(eb, fi); | 
|  |  | 
|  | if (disk_byte == wanted_disk_byte) { | 
|  | eie = NULL; | 
|  | old = NULL; | 
|  | if (ref->key_for_search.offset == key.offset - data_offset) | 
|  | count++; | 
|  | else | 
|  | goto next; | 
|  | if (!ctx->skip_inode_ref_list) { | 
|  | ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); | 
|  | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || | 
|  | ret < 0) | 
|  | break; | 
|  | } | 
|  | if (ret > 0) | 
|  | goto next; | 
|  | ret = ulist_add_merge_ptr(parents, eb->start, | 
|  | eie, (void **)&old, GFP_NOFS); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (!ret && !ctx->skip_inode_ref_list) { | 
|  | while (old->next) | 
|  | old = old->next; | 
|  | old->next = eie; | 
|  | } | 
|  | eie = NULL; | 
|  | } | 
|  | next: | 
|  | if (ctx->time_seq == BTRFS_SEQ_LAST) | 
|  | ret = btrfs_next_item(root, path); | 
|  | else | 
|  | ret = btrfs_next_old_item(root, path, ctx->time_seq); | 
|  | } | 
|  |  | 
|  | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) | 
|  | free_inode_elem_list(eie); | 
|  | else if (ret > 0) | 
|  | ret = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * resolve an indirect backref in the form (root_id, key, level) | 
|  | * to a logical address | 
|  | */ | 
|  | static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, | 
|  | struct btrfs_path *path, | 
|  | struct preftrees *preftrees, | 
|  | struct prelim_ref *ref, struct ulist *parents) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct extent_buffer *eb; | 
|  | int ret = 0; | 
|  | int root_level; | 
|  | int level = ref->level; | 
|  | struct btrfs_key search_key = ref->key_for_search; | 
|  |  | 
|  | /* | 
|  | * If we're search_commit_root we could possibly be holding locks on | 
|  | * other tree nodes.  This happens when qgroups does backref walks when | 
|  | * adding new delayed refs.  To deal with this we need to look in cache | 
|  | * for the root, and if we don't find it then we need to search the | 
|  | * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage | 
|  | * here. | 
|  | */ | 
|  | if (path->search_commit_root) | 
|  | root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); | 
|  | else | 
|  | root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); | 
|  | if (IS_ERR(root)) { | 
|  | ret = PTR_ERR(root); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | if (!path->search_commit_root && | 
|  | test_bit(BTRFS_ROOT_DELETING, &root->state)) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (btrfs_is_testing(ctx->fs_info)) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (path->search_commit_root) | 
|  | root_level = btrfs_header_level(root->commit_root); | 
|  | else if (ctx->time_seq == BTRFS_SEQ_LAST) | 
|  | root_level = btrfs_header_level(root->node); | 
|  | else | 
|  | root_level = btrfs_old_root_level(root, ctx->time_seq); | 
|  |  | 
|  | if (root_level + 1 == level) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We can often find data backrefs with an offset that is too large | 
|  | * (>= LLONG_MAX, maximum allowed file offset) due to underflows when | 
|  | * subtracting a file's offset with the data offset of its | 
|  | * corresponding extent data item. This can happen for example in the | 
|  | * clone ioctl. | 
|  | * | 
|  | * So if we detect such case we set the search key's offset to zero to | 
|  | * make sure we will find the matching file extent item at | 
|  | * add_all_parents(), otherwise we will miss it because the offset | 
|  | * taken form the backref is much larger then the offset of the file | 
|  | * extent item. This can make us scan a very large number of file | 
|  | * extent items, but at least it will not make us miss any. | 
|  | * | 
|  | * This is an ugly workaround for a behaviour that should have never | 
|  | * existed, but it does and a fix for the clone ioctl would touch a lot | 
|  | * of places, cause backwards incompatibility and would not fix the | 
|  | * problem for extents cloned with older kernels. | 
|  | */ | 
|  | if (search_key.type == BTRFS_EXTENT_DATA_KEY && | 
|  | search_key.offset >= LLONG_MAX) | 
|  | search_key.offset = 0; | 
|  | path->lowest_level = level; | 
|  | if (ctx->time_seq == BTRFS_SEQ_LAST) | 
|  | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
|  | else | 
|  | ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); | 
|  |  | 
|  | btrfs_debug(ctx->fs_info, | 
|  | "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", | 
|  | ref->root_id, level, ref->count, ret, | 
|  | ref->key_for_search.objectid, ref->key_for_search.type, | 
|  | ref->key_for_search.offset); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | eb = path->nodes[level]; | 
|  | while (!eb) { | 
|  | if (WARN_ON(!level)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | level--; | 
|  | eb = path->nodes[level]; | 
|  | } | 
|  |  | 
|  | ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); | 
|  | out: | 
|  | btrfs_put_root(root); | 
|  | out_free: | 
|  | path->lowest_level = 0; | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct extent_inode_elem * | 
|  | unode_aux_to_inode_list(struct ulist_node *node) | 
|  | { | 
|  | if (!node) | 
|  | return NULL; | 
|  | return (struct extent_inode_elem *)(uintptr_t)node->aux; | 
|  | } | 
|  |  | 
|  | static void free_leaf_list(struct ulist *ulist) | 
|  | { | 
|  | struct ulist_node *node; | 
|  | struct ulist_iterator uiter; | 
|  |  | 
|  | ULIST_ITER_INIT(&uiter); | 
|  | while ((node = ulist_next(ulist, &uiter))) | 
|  | free_inode_elem_list(unode_aux_to_inode_list(node)); | 
|  |  | 
|  | ulist_free(ulist); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We maintain three separate rbtrees: one for direct refs, one for | 
|  | * indirect refs which have a key, and one for indirect refs which do not | 
|  | * have a key. Each tree does merge on insertion. | 
|  | * | 
|  | * Once all of the references are located, we iterate over the tree of | 
|  | * indirect refs with missing keys. An appropriate key is located and | 
|  | * the ref is moved onto the tree for indirect refs. After all missing | 
|  | * keys are thus located, we iterate over the indirect ref tree, resolve | 
|  | * each reference, and then insert the resolved reference onto the | 
|  | * direct tree (merging there too). | 
|  | * | 
|  | * New backrefs (i.e., for parent nodes) are added to the appropriate | 
|  | * rbtree as they are encountered. The new backrefs are subsequently | 
|  | * resolved as above. | 
|  | */ | 
|  | static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, | 
|  | struct btrfs_path *path, | 
|  | struct preftrees *preftrees, | 
|  | struct share_check *sc) | 
|  | { | 
|  | int ret = 0; | 
|  | struct ulist *parents; | 
|  | struct ulist_node *node; | 
|  | struct ulist_iterator uiter; | 
|  | struct rb_node *rnode; | 
|  |  | 
|  | parents = ulist_alloc(GFP_NOFS); | 
|  | if (!parents) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * We could trade memory usage for performance here by iterating | 
|  | * the tree, allocating new refs for each insertion, and then | 
|  | * freeing the entire indirect tree when we're done.  In some test | 
|  | * cases, the tree can grow quite large (~200k objects). | 
|  | */ | 
|  | while ((rnode = rb_first_cached(&preftrees->indirect.root))) { | 
|  | struct prelim_ref *ref; | 
|  | int ret2; | 
|  |  | 
|  | ref = rb_entry(rnode, struct prelim_ref, rbnode); | 
|  | if (WARN(ref->parent, | 
|  | "BUG: direct ref found in indirect tree")) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); | 
|  | preftrees->indirect.count--; | 
|  |  | 
|  | if (ref->count == 0) { | 
|  | free_pref(ref); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (sc && ref->root_id != btrfs_root_id(sc->root)) { | 
|  | free_pref(ref); | 
|  | ret = BACKREF_FOUND_SHARED; | 
|  | goto out; | 
|  | } | 
|  | ret2 = resolve_indirect_ref(ctx, path, preftrees, ref, parents); | 
|  | /* | 
|  | * we can only tolerate ENOENT,otherwise,we should catch error | 
|  | * and return directly. | 
|  | */ | 
|  | if (ret2 == -ENOENT) { | 
|  | prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, | 
|  | NULL); | 
|  | continue; | 
|  | } else if (ret2) { | 
|  | free_pref(ref); | 
|  | ret = ret2; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* we put the first parent into the ref at hand */ | 
|  | ULIST_ITER_INIT(&uiter); | 
|  | node = ulist_next(parents, &uiter); | 
|  | ref->parent = node ? node->val : 0; | 
|  | ref->inode_list = unode_aux_to_inode_list(node); | 
|  |  | 
|  | /* Add a prelim_ref(s) for any other parent(s). */ | 
|  | while ((node = ulist_next(parents, &uiter))) { | 
|  | struct prelim_ref *new_ref; | 
|  |  | 
|  | new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, | 
|  | GFP_NOFS); | 
|  | if (!new_ref) { | 
|  | free_pref(ref); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | memcpy(new_ref, ref, sizeof(*ref)); | 
|  | new_ref->parent = node->val; | 
|  | new_ref->inode_list = unode_aux_to_inode_list(node); | 
|  | prelim_ref_insert(ctx->fs_info, &preftrees->direct, | 
|  | new_ref, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now it's a direct ref, put it in the direct tree. We must | 
|  | * do this last because the ref could be merged/freed here. | 
|  | */ | 
|  | prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); | 
|  |  | 
|  | ulist_reinit(parents); | 
|  | cond_resched(); | 
|  | } | 
|  | out: | 
|  | /* | 
|  | * We may have inode lists attached to refs in the parents ulist, so we | 
|  | * must free them before freeing the ulist and its refs. | 
|  | */ | 
|  | free_leaf_list(parents); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * read tree blocks and add keys where required. | 
|  | */ | 
|  | static int add_missing_keys(struct btrfs_fs_info *fs_info, | 
|  | struct preftrees *preftrees, bool lock) | 
|  | { | 
|  | struct prelim_ref *ref; | 
|  | struct extent_buffer *eb; | 
|  | struct preftree *tree = &preftrees->indirect_missing_keys; | 
|  | struct rb_node *node; | 
|  |  | 
|  | while ((node = rb_first_cached(&tree->root))) { | 
|  | struct btrfs_tree_parent_check check = { 0 }; | 
|  |  | 
|  | ref = rb_entry(node, struct prelim_ref, rbnode); | 
|  | rb_erase_cached(node, &tree->root); | 
|  |  | 
|  | BUG_ON(ref->parent);	/* should not be a direct ref */ | 
|  | BUG_ON(ref->key_for_search.type); | 
|  | BUG_ON(!ref->wanted_disk_byte); | 
|  |  | 
|  | check.level = ref->level - 1; | 
|  | check.owner_root = ref->root_id; | 
|  |  | 
|  | eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); | 
|  | if (IS_ERR(eb)) { | 
|  | free_pref(ref); | 
|  | return PTR_ERR(eb); | 
|  | } | 
|  | if (unlikely(!extent_buffer_uptodate(eb))) { | 
|  | free_pref(ref); | 
|  | free_extent_buffer(eb); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (lock) | 
|  | btrfs_tree_read_lock(eb); | 
|  | if (btrfs_header_level(eb) == 0) | 
|  | btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); | 
|  | else | 
|  | btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); | 
|  | if (lock) | 
|  | btrfs_tree_read_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); | 
|  | cond_resched(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add all currently queued delayed refs from this head whose seq nr is | 
|  | * smaller or equal that seq to the list | 
|  | */ | 
|  | static int add_delayed_refs(const struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_delayed_ref_head *head, u64 seq, | 
|  | struct preftrees *preftrees, struct share_check *sc) | 
|  | { | 
|  | struct btrfs_delayed_ref_node *node; | 
|  | struct btrfs_key key; | 
|  | struct rb_node *n; | 
|  | int count; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&head->lock); | 
|  | for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { | 
|  | node = rb_entry(n, struct btrfs_delayed_ref_node, | 
|  | ref_node); | 
|  | if (node->seq > seq) | 
|  | continue; | 
|  |  | 
|  | switch (node->action) { | 
|  | case BTRFS_ADD_DELAYED_EXTENT: | 
|  | case BTRFS_UPDATE_DELAYED_HEAD: | 
|  | WARN_ON(1); | 
|  | continue; | 
|  | case BTRFS_ADD_DELAYED_REF: | 
|  | count = node->ref_mod; | 
|  | break; | 
|  | case BTRFS_DROP_DELAYED_REF: | 
|  | count = node->ref_mod * -1; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | switch (node->type) { | 
|  | case BTRFS_TREE_BLOCK_REF_KEY: { | 
|  | /* NORMAL INDIRECT METADATA backref */ | 
|  | struct btrfs_key *key_ptr = NULL; | 
|  | /* The owner of a tree block ref is the level. */ | 
|  | int level = btrfs_delayed_ref_owner(node); | 
|  |  | 
|  | if (head->extent_op && head->extent_op->update_key) { | 
|  | btrfs_disk_key_to_cpu(&key, &head->extent_op->key); | 
|  | key_ptr = &key; | 
|  | } | 
|  |  | 
|  | ret = add_indirect_ref(fs_info, preftrees, node->ref_root, | 
|  | key_ptr, level + 1, node->bytenr, | 
|  | count, sc, GFP_ATOMIC); | 
|  | break; | 
|  | } | 
|  | case BTRFS_SHARED_BLOCK_REF_KEY: { | 
|  | /* | 
|  | * SHARED DIRECT METADATA backref | 
|  | * | 
|  | * The owner of a tree block ref is the level. | 
|  | */ | 
|  | int level = btrfs_delayed_ref_owner(node); | 
|  |  | 
|  | ret = add_direct_ref(fs_info, preftrees, level + 1, | 
|  | node->parent, node->bytenr, count, | 
|  | sc, GFP_ATOMIC); | 
|  | break; | 
|  | } | 
|  | case BTRFS_EXTENT_DATA_REF_KEY: { | 
|  | /* NORMAL INDIRECT DATA backref */ | 
|  | key.objectid = btrfs_delayed_ref_owner(node); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = btrfs_delayed_ref_offset(node); | 
|  |  | 
|  | /* | 
|  | * If we have a share check context and a reference for | 
|  | * another inode, we can't exit immediately. This is | 
|  | * because even if this is a BTRFS_ADD_DELAYED_REF | 
|  | * reference we may find next a BTRFS_DROP_DELAYED_REF | 
|  | * which cancels out this ADD reference. | 
|  | * | 
|  | * If this is a DROP reference and there was no previous | 
|  | * ADD reference, then we need to signal that when we | 
|  | * process references from the extent tree (through | 
|  | * add_inline_refs() and add_keyed_refs()), we should | 
|  | * not exit early if we find a reference for another | 
|  | * inode, because one of the delayed DROP references | 
|  | * may cancel that reference in the extent tree. | 
|  | */ | 
|  | if (sc && count < 0) | 
|  | sc->have_delayed_delete_refs = true; | 
|  |  | 
|  | ret = add_indirect_ref(fs_info, preftrees, node->ref_root, | 
|  | &key, 0, node->bytenr, count, sc, | 
|  | GFP_ATOMIC); | 
|  | break; | 
|  | } | 
|  | case BTRFS_SHARED_DATA_REF_KEY: { | 
|  | /* SHARED DIRECT FULL backref */ | 
|  | ret = add_direct_ref(fs_info, preftrees, 0, node->parent, | 
|  | node->bytenr, count, sc, | 
|  | GFP_ATOMIC); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  | /* | 
|  | * We must ignore BACKREF_FOUND_SHARED until all delayed | 
|  | * refs have been checked. | 
|  | */ | 
|  | if (ret && (ret != BACKREF_FOUND_SHARED)) | 
|  | break; | 
|  | } | 
|  | if (!ret) | 
|  | ret = extent_is_shared(sc); | 
|  |  | 
|  | spin_unlock(&head->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add all inline backrefs for bytenr to the list | 
|  | * | 
|  | * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. | 
|  | */ | 
|  | static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, | 
|  | struct btrfs_path *path, | 
|  | int *info_level, struct preftrees *preftrees, | 
|  | struct share_check *sc) | 
|  | { | 
|  | int ret = 0; | 
|  | int slot; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | struct btrfs_extent_item *ei; | 
|  | u64 flags; | 
|  | u64 item_size; | 
|  |  | 
|  | /* | 
|  | * enumerate all inline refs | 
|  | */ | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | item_size = btrfs_item_size(leaf, slot); | 
|  | ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); | 
|  |  | 
|  | if (ctx->check_extent_item) { | 
|  | ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | flags = btrfs_extent_flags(leaf, ei); | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | ptr = (unsigned long)(ei + 1); | 
|  | end = (unsigned long)ei + item_size; | 
|  |  | 
|  | if (found_key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | struct btrfs_tree_block_info *info; | 
|  |  | 
|  | info = (struct btrfs_tree_block_info *)ptr; | 
|  | *info_level = btrfs_tree_block_level(leaf, info); | 
|  | ptr += sizeof(struct btrfs_tree_block_info); | 
|  | BUG_ON(ptr > end); | 
|  | } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { | 
|  | *info_level = found_key.offset; | 
|  | } else { | 
|  | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); | 
|  | } | 
|  |  | 
|  | while (ptr < end) { | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | u64 offset; | 
|  | int type; | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_REF_TYPE_ANY); | 
|  | if (unlikely(type == BTRFS_REF_TYPE_INVALID)) | 
|  | return -EUCLEAN; | 
|  |  | 
|  | offset = btrfs_extent_inline_ref_offset(leaf, iref); | 
|  |  | 
|  | switch (type) { | 
|  | case BTRFS_SHARED_BLOCK_REF_KEY: | 
|  | ret = add_direct_ref(ctx->fs_info, preftrees, | 
|  | *info_level + 1, offset, | 
|  | ctx->bytenr, 1, NULL, GFP_NOFS); | 
|  | break; | 
|  | case BTRFS_SHARED_DATA_REF_KEY: { | 
|  | struct btrfs_shared_data_ref *sdref; | 
|  | int count; | 
|  |  | 
|  | sdref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | count = btrfs_shared_data_ref_count(leaf, sdref); | 
|  |  | 
|  | ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, | 
|  | ctx->bytenr, count, sc, GFP_NOFS); | 
|  | break; | 
|  | } | 
|  | case BTRFS_TREE_BLOCK_REF_KEY: | 
|  | ret = add_indirect_ref(ctx->fs_info, preftrees, offset, | 
|  | NULL, *info_level + 1, | 
|  | ctx->bytenr, 1, NULL, GFP_NOFS); | 
|  | break; | 
|  | case BTRFS_EXTENT_DATA_REF_KEY: { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | int count; | 
|  | u64 root; | 
|  |  | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | count = btrfs_extent_data_ref_count(leaf, dref); | 
|  | key.objectid = btrfs_extent_data_ref_objectid(leaf, | 
|  | dref); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = btrfs_extent_data_ref_offset(leaf, dref); | 
|  |  | 
|  | if (sc && key.objectid != sc->inum && | 
|  | !sc->have_delayed_delete_refs) { | 
|  | ret = BACKREF_FOUND_SHARED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | root = btrfs_extent_data_ref_root(leaf, dref); | 
|  |  | 
|  | if (!ctx->skip_data_ref || | 
|  | !ctx->skip_data_ref(root, key.objectid, key.offset, | 
|  | ctx->user_ctx)) | 
|  | ret = add_indirect_ref(ctx->fs_info, preftrees, | 
|  | root, &key, 0, ctx->bytenr, | 
|  | count, sc, GFP_NOFS); | 
|  | break; | 
|  | } | 
|  | case BTRFS_EXTENT_OWNER_REF_KEY: | 
|  | ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA)); | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  | if (ret) | 
|  | return ret; | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add all non-inline backrefs for bytenr to the list | 
|  | * | 
|  | * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. | 
|  | */ | 
|  | static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, | 
|  | struct btrfs_root *extent_root, | 
|  | struct btrfs_path *path, | 
|  | int info_level, struct preftrees *preftrees, | 
|  | struct share_check *sc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = extent_root->fs_info; | 
|  | int ret; | 
|  | int slot; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_next_item(extent_root, path); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  |  | 
|  | if (key.objectid != ctx->bytenr) | 
|  | break; | 
|  | if (key.type < BTRFS_TREE_BLOCK_REF_KEY) | 
|  | continue; | 
|  | if (key.type > BTRFS_SHARED_DATA_REF_KEY) | 
|  | break; | 
|  |  | 
|  | switch (key.type) { | 
|  | case BTRFS_SHARED_BLOCK_REF_KEY: | 
|  | /* SHARED DIRECT METADATA backref */ | 
|  | ret = add_direct_ref(fs_info, preftrees, | 
|  | info_level + 1, key.offset, | 
|  | ctx->bytenr, 1, NULL, GFP_NOFS); | 
|  | break; | 
|  | case BTRFS_SHARED_DATA_REF_KEY: { | 
|  | /* SHARED DIRECT FULL backref */ | 
|  | struct btrfs_shared_data_ref *sdref; | 
|  | int count; | 
|  |  | 
|  | sdref = btrfs_item_ptr(leaf, slot, | 
|  | struct btrfs_shared_data_ref); | 
|  | count = btrfs_shared_data_ref_count(leaf, sdref); | 
|  | ret = add_direct_ref(fs_info, preftrees, 0, | 
|  | key.offset, ctx->bytenr, count, | 
|  | sc, GFP_NOFS); | 
|  | break; | 
|  | } | 
|  | case BTRFS_TREE_BLOCK_REF_KEY: | 
|  | /* NORMAL INDIRECT METADATA backref */ | 
|  | ret = add_indirect_ref(fs_info, preftrees, key.offset, | 
|  | NULL, info_level + 1, ctx->bytenr, | 
|  | 1, NULL, GFP_NOFS); | 
|  | break; | 
|  | case BTRFS_EXTENT_DATA_REF_KEY: { | 
|  | /* NORMAL INDIRECT DATA backref */ | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | int count; | 
|  | u64 root; | 
|  |  | 
|  | dref = btrfs_item_ptr(leaf, slot, | 
|  | struct btrfs_extent_data_ref); | 
|  | count = btrfs_extent_data_ref_count(leaf, dref); | 
|  | key.objectid = btrfs_extent_data_ref_objectid(leaf, | 
|  | dref); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = btrfs_extent_data_ref_offset(leaf, dref); | 
|  |  | 
|  | if (sc && key.objectid != sc->inum && | 
|  | !sc->have_delayed_delete_refs) { | 
|  | ret = BACKREF_FOUND_SHARED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | root = btrfs_extent_data_ref_root(leaf, dref); | 
|  |  | 
|  | if (!ctx->skip_data_ref || | 
|  | !ctx->skip_data_ref(root, key.objectid, key.offset, | 
|  | ctx->user_ctx)) | 
|  | ret = add_indirect_ref(fs_info, preftrees, root, | 
|  | &key, 0, ctx->bytenr, | 
|  | count, sc, GFP_NOFS); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The caller has joined a transaction or is holding a read lock on the | 
|  | * fs_info->commit_root_sem semaphore, so no need to worry about the root's last | 
|  | * snapshot field changing while updating or checking the cache. | 
|  | */ | 
|  | static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, int level, bool *is_shared) | 
|  | { | 
|  | const struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_backref_shared_cache_entry *entry; | 
|  |  | 
|  | if (!current->journal_info) | 
|  | lockdep_assert_held(&fs_info->commit_root_sem); | 
|  |  | 
|  | if (!ctx->use_path_cache) | 
|  | return false; | 
|  |  | 
|  | if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Level -1 is used for the data extent, which is not reliable to cache | 
|  | * because its reference count can increase or decrease without us | 
|  | * realizing. We cache results only for extent buffers that lead from | 
|  | * the root node down to the leaf with the file extent item. | 
|  | */ | 
|  | ASSERT(level >= 0); | 
|  |  | 
|  | entry = &ctx->path_cache_entries[level]; | 
|  |  | 
|  | /* Unused cache entry or being used for some other extent buffer. */ | 
|  | if (entry->bytenr != bytenr) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * We cached a false result, but the last snapshot generation of the | 
|  | * root changed, so we now have a snapshot. Don't trust the result. | 
|  | */ | 
|  | if (!entry->is_shared && | 
|  | entry->gen != btrfs_root_last_snapshot(&root->root_item)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If we cached a true result and the last generation used for dropping | 
|  | * a root changed, we can not trust the result, because the dropped root | 
|  | * could be a snapshot sharing this extent buffer. | 
|  | */ | 
|  | if (entry->is_shared && | 
|  | entry->gen != btrfs_get_last_root_drop_gen(fs_info)) | 
|  | return false; | 
|  |  | 
|  | *is_shared = entry->is_shared; | 
|  | /* | 
|  | * If the node at this level is shared, than all nodes below are also | 
|  | * shared. Currently some of the nodes below may be marked as not shared | 
|  | * because we have just switched from one leaf to another, and switched | 
|  | * also other nodes above the leaf and below the current level, so mark | 
|  | * them as shared. | 
|  | */ | 
|  | if (*is_shared) { | 
|  | for (int i = 0; i < level; i++) { | 
|  | ctx->path_cache_entries[i].is_shared = true; | 
|  | ctx->path_cache_entries[i].gen = entry->gen; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The caller has joined a transaction or is holding a read lock on the | 
|  | * fs_info->commit_root_sem semaphore, so no need to worry about the root's last | 
|  | * snapshot field changing while updating or checking the cache. | 
|  | */ | 
|  | static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, int level, bool is_shared) | 
|  | { | 
|  | const struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_backref_shared_cache_entry *entry; | 
|  | u64 gen; | 
|  |  | 
|  | if (!current->journal_info) | 
|  | lockdep_assert_held(&fs_info->commit_root_sem); | 
|  |  | 
|  | if (!ctx->use_path_cache) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Level -1 is used for the data extent, which is not reliable to cache | 
|  | * because its reference count can increase or decrease without us | 
|  | * realizing. We cache results only for extent buffers that lead from | 
|  | * the root node down to the leaf with the file extent item. | 
|  | */ | 
|  | ASSERT(level >= 0); | 
|  |  | 
|  | if (is_shared) | 
|  | gen = btrfs_get_last_root_drop_gen(fs_info); | 
|  | else | 
|  | gen = btrfs_root_last_snapshot(&root->root_item); | 
|  |  | 
|  | entry = &ctx->path_cache_entries[level]; | 
|  | entry->bytenr = bytenr; | 
|  | entry->is_shared = is_shared; | 
|  | entry->gen = gen; | 
|  |  | 
|  | /* | 
|  | * If we found an extent buffer is shared, set the cache result for all | 
|  | * extent buffers below it to true. As nodes in the path are COWed, | 
|  | * their sharedness is moved to their children, and if a leaf is COWed, | 
|  | * then the sharedness of a data extent becomes direct, the refcount of | 
|  | * data extent is increased in the extent item at the extent tree. | 
|  | */ | 
|  | if (is_shared) { | 
|  | for (int i = 0; i < level; i++) { | 
|  | entry = &ctx->path_cache_entries[i]; | 
|  | entry->is_shared = is_shared; | 
|  | entry->gen = gen; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this adds all existing backrefs (inline backrefs, backrefs and delayed | 
|  | * refs) for the given bytenr to the refs list, merges duplicates and resolves | 
|  | * indirect refs to their parent bytenr. | 
|  | * When roots are found, they're added to the roots list | 
|  | * | 
|  | * @ctx:     Backref walking context object, must be not NULL. | 
|  | * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a | 
|  | *           shared extent is detected. | 
|  | * | 
|  | * Otherwise this returns 0 for success and <0 for an error. | 
|  | * | 
|  | * FIXME some caching might speed things up | 
|  | */ | 
|  | static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, | 
|  | struct share_check *sc) | 
|  | { | 
|  | struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_delayed_ref_root *delayed_refs = NULL; | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | int info_level = 0; | 
|  | int ret; | 
|  | struct prelim_ref *ref; | 
|  | struct rb_node *node; | 
|  | struct extent_inode_elem *eie = NULL; | 
|  | struct preftrees preftrees = { | 
|  | .direct = PREFTREE_INIT, | 
|  | .indirect = PREFTREE_INIT, | 
|  | .indirect_missing_keys = PREFTREE_INIT | 
|  | }; | 
|  |  | 
|  | /* Roots ulist is not needed when using a sharedness check context. */ | 
|  | if (sc) | 
|  | ASSERT(ctx->roots == NULL); | 
|  |  | 
|  | key.objectid = ctx->bytenr; | 
|  | if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | if (!ctx->trans) { | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  | } | 
|  |  | 
|  | if (ctx->time_seq == BTRFS_SEQ_LAST) | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | again: | 
|  | head = NULL; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (unlikely(ret == 0)) { | 
|  | /* | 
|  | * Key with offset -1 found, there would have to exist an extent | 
|  | * item with such offset, but this is out of the valid range. | 
|  | */ | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && | 
|  | ctx->time_seq != BTRFS_SEQ_LAST) { | 
|  | /* | 
|  | * We have a specific time_seq we care about and trans which | 
|  | * means we have the path lock, we need to grab the ref head and | 
|  | * lock it so we have a consistent view of the refs at the given | 
|  | * time. | 
|  | */ | 
|  | delayed_refs = &ctx->trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs, | 
|  | ctx->bytenr); | 
|  | if (head) { | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | refcount_inc(&head->refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Mutex was contended, block until it's | 
|  | * released and try again | 
|  | */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | goto again; | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, | 
|  | &preftrees, sc); | 
|  | mutex_unlock(&head->mutex); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (path->slots[0]) { | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  |  | 
|  | path->slots[0]--; | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid == ctx->bytenr && | 
|  | (key.type == BTRFS_EXTENT_ITEM_KEY || | 
|  | key.type == BTRFS_METADATA_ITEM_KEY)) { | 
|  | ret = add_inline_refs(ctx, path, &info_level, | 
|  | &preftrees, sc); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = add_keyed_refs(ctx, root, path, info_level, | 
|  | &preftrees, sc); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have a share context and we reached here, it means the extent | 
|  | * is not directly shared (no multiple reference items for it), | 
|  | * otherwise we would have exited earlier with a return value of | 
|  | * BACKREF_FOUND_SHARED after processing delayed references or while | 
|  | * processing inline or keyed references from the extent tree. | 
|  | * The extent may however be indirectly shared through shared subtrees | 
|  | * as a result from creating snapshots, so we determine below what is | 
|  | * its parent node, in case we are dealing with a metadata extent, or | 
|  | * what's the leaf (or leaves), from a fs tree, that has a file extent | 
|  | * item pointing to it in case we are dealing with a data extent. | 
|  | */ | 
|  | ASSERT(extent_is_shared(sc) == 0); | 
|  |  | 
|  | /* | 
|  | * If we are here for a data extent and we have a share_check structure | 
|  | * it means the data extent is not directly shared (does not have | 
|  | * multiple reference items), so we have to check if a path in the fs | 
|  | * tree (going from the root node down to the leaf that has the file | 
|  | * extent item pointing to the data extent) is shared, that is, if any | 
|  | * of the extent buffers in the path is referenced by other trees. | 
|  | */ | 
|  | if (sc && ctx->bytenr == sc->data_bytenr) { | 
|  | /* | 
|  | * If our data extent is from a generation more recent than the | 
|  | * last generation used to snapshot the root, then we know that | 
|  | * it can not be shared through subtrees, so we can skip | 
|  | * resolving indirect references, there's no point in | 
|  | * determining the extent buffers for the path from the fs tree | 
|  | * root node down to the leaf that has the file extent item that | 
|  | * points to the data extent. | 
|  | */ | 
|  | if (sc->data_extent_gen > | 
|  | btrfs_root_last_snapshot(&sc->root->root_item)) { | 
|  | ret = BACKREF_FOUND_NOT_SHARED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are only determining if a data extent is shared or not | 
|  | * and the corresponding file extent item is located in the same | 
|  | * leaf as the previous file extent item, we can skip resolving | 
|  | * indirect references for a data extent, since the fs tree path | 
|  | * is the same (same leaf, so same path). We skip as long as the | 
|  | * cached result for the leaf is valid and only if there's only | 
|  | * one file extent item pointing to the data extent, because in | 
|  | * the case of multiple file extent items, they may be located | 
|  | * in different leaves and therefore we have multiple paths. | 
|  | */ | 
|  | if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && | 
|  | sc->self_ref_count == 1) { | 
|  | bool cached; | 
|  | bool is_shared; | 
|  |  | 
|  | cached = lookup_backref_shared_cache(sc->ctx, sc->root, | 
|  | sc->ctx->curr_leaf_bytenr, | 
|  | 0, &is_shared); | 
|  | if (cached) { | 
|  | if (is_shared) | 
|  | ret = BACKREF_FOUND_SHARED; | 
|  | else | 
|  | ret = BACKREF_FOUND_NOT_SHARED; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); | 
|  |  | 
|  | ret = resolve_indirect_refs(ctx, path, &preftrees, sc); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); | 
|  |  | 
|  | /* | 
|  | * This walks the tree of merged and resolved refs. Tree blocks are | 
|  | * read in as needed. Unique entries are added to the ulist, and | 
|  | * the list of found roots is updated. | 
|  | * | 
|  | * We release the entire tree in one go before returning. | 
|  | */ | 
|  | node = rb_first_cached(&preftrees.direct.root); | 
|  | while (node) { | 
|  | ref = rb_entry(node, struct prelim_ref, rbnode); | 
|  | node = rb_next(&ref->rbnode); | 
|  | /* | 
|  | * ref->count < 0 can happen here if there are delayed | 
|  | * refs with a node->action of BTRFS_DROP_DELAYED_REF. | 
|  | * prelim_ref_insert() relies on this when merging | 
|  | * identical refs to keep the overall count correct. | 
|  | * prelim_ref_insert() will merge only those refs | 
|  | * which compare identically.  Any refs having | 
|  | * e.g. different offsets would not be merged, | 
|  | * and would retain their original ref->count < 0. | 
|  | */ | 
|  | if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { | 
|  | /* no parent == root of tree */ | 
|  | ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | if (ref->count && ref->parent) { | 
|  | if (!ctx->skip_inode_ref_list && !ref->inode_list && | 
|  | ref->level == 0) { | 
|  | struct btrfs_tree_parent_check check = { 0 }; | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | check.level = ref->level; | 
|  |  | 
|  | eb = read_tree_block(ctx->fs_info, ref->parent, | 
|  | &check); | 
|  | if (IS_ERR(eb)) { | 
|  | ret = PTR_ERR(eb); | 
|  | goto out; | 
|  | } | 
|  | if (unlikely(!extent_buffer_uptodate(eb))) { | 
|  | free_extent_buffer(eb); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!path->skip_locking) | 
|  | btrfs_tree_read_lock(eb); | 
|  | ret = find_extent_in_eb(ctx, eb, &eie); | 
|  | if (!path->skip_locking) | 
|  | btrfs_tree_read_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || | 
|  | ret < 0) | 
|  | goto out; | 
|  | ref->inode_list = eie; | 
|  | /* | 
|  | * We transferred the list ownership to the ref, | 
|  | * so set to NULL to avoid a double free in case | 
|  | * an error happens after this. | 
|  | */ | 
|  | eie = NULL; | 
|  | } | 
|  | ret = ulist_add_merge_ptr(ctx->refs, ref->parent, | 
|  | ref->inode_list, | 
|  | (void **)&eie, GFP_NOFS); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (!ret && !ctx->skip_inode_ref_list) { | 
|  | /* | 
|  | * We've recorded that parent, so we must extend | 
|  | * its inode list here. | 
|  | * | 
|  | * However if there was corruption we may not | 
|  | * have found an eie, return an error in this | 
|  | * case. | 
|  | */ | 
|  | ASSERT(eie); | 
|  | if (unlikely(!eie)) { | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | while (eie->next) | 
|  | eie = eie->next; | 
|  | eie->next = ref->inode_list; | 
|  | } | 
|  | eie = NULL; | 
|  | /* | 
|  | * We have transferred the inode list ownership from | 
|  | * this ref to the ref we added to the 'refs' ulist. | 
|  | * So set this ref's inode list to NULL to avoid | 
|  | * use-after-free when our caller uses it or double | 
|  | * frees in case an error happens before we return. | 
|  | */ | 
|  | ref->inode_list = NULL; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | prelim_release(&preftrees.direct); | 
|  | prelim_release(&preftrees.indirect); | 
|  | prelim_release(&preftrees.indirect_missing_keys); | 
|  |  | 
|  | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) | 
|  | free_inode_elem_list(eie); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finds all leaves with a reference to the specified combination of | 
|  | * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are | 
|  | * added to the ulist at @ctx->refs, and that ulist is allocated by this | 
|  | * function. The caller should free the ulist with free_leaf_list() if | 
|  | * @ctx->ignore_extent_item_pos is false, otherwise a simple ulist_free() is | 
|  | * enough. | 
|  | * | 
|  | * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. | 
|  | */ | 
|  | int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ASSERT(ctx->refs == NULL); | 
|  |  | 
|  | ctx->refs = ulist_alloc(GFP_NOFS); | 
|  | if (!ctx->refs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = find_parent_nodes(ctx, NULL); | 
|  | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || | 
|  | (ret < 0 && ret != -ENOENT)) { | 
|  | free_leaf_list(ctx->refs); | 
|  | ctx->refs = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk all backrefs for a given extent to find all roots that reference this | 
|  | * extent. Walking a backref means finding all extents that reference this | 
|  | * extent and in turn walk the backrefs of those, too. Naturally this is a | 
|  | * recursive process, but here it is implemented in an iterative fashion: We | 
|  | * find all referencing extents for the extent in question and put them on a | 
|  | * list. In turn, we find all referencing extents for those, further appending | 
|  | * to the list. The way we iterate the list allows adding more elements after | 
|  | * the current while iterating. The process stops when we reach the end of the | 
|  | * list. | 
|  | * | 
|  | * Found roots are added to @ctx->roots, which is allocated by this function if | 
|  | * it points to NULL, in which case the caller is responsible for freeing it | 
|  | * after it's not needed anymore. | 
|  | * This function requires @ctx->refs to be NULL, as it uses it for allocating a | 
|  | * ulist to do temporary work, and frees it before returning. | 
|  | * | 
|  | * Returns 0 on success, < 0 on error. | 
|  | */ | 
|  | static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) | 
|  | { | 
|  | const u64 orig_bytenr = ctx->bytenr; | 
|  | const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list; | 
|  | bool roots_ulist_allocated = false; | 
|  | struct ulist_iterator uiter; | 
|  | int ret = 0; | 
|  |  | 
|  | ASSERT(ctx->refs == NULL); | 
|  |  | 
|  | ctx->refs = ulist_alloc(GFP_NOFS); | 
|  | if (!ctx->refs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!ctx->roots) { | 
|  | ctx->roots = ulist_alloc(GFP_NOFS); | 
|  | if (!ctx->roots) { | 
|  | ulist_free(ctx->refs); | 
|  | ctx->refs = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  | roots_ulist_allocated = true; | 
|  | } | 
|  |  | 
|  | ctx->skip_inode_ref_list = true; | 
|  |  | 
|  | ULIST_ITER_INIT(&uiter); | 
|  | while (1) { | 
|  | struct ulist_node *node; | 
|  |  | 
|  | ret = find_parent_nodes(ctx, NULL); | 
|  | if (ret < 0 && ret != -ENOENT) { | 
|  | if (roots_ulist_allocated) { | 
|  | ulist_free(ctx->roots); | 
|  | ctx->roots = NULL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | ret = 0; | 
|  | node = ulist_next(ctx->refs, &uiter); | 
|  | if (!node) | 
|  | break; | 
|  | ctx->bytenr = node->val; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | ulist_free(ctx->refs); | 
|  | ctx->refs = NULL; | 
|  | ctx->bytenr = orig_bytenr; | 
|  | ctx->skip_inode_ref_list = orig_skip_inode_ref_list; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, | 
|  | bool skip_commit_root_sem) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!ctx->trans && !skip_commit_root_sem) | 
|  | down_read(&ctx->fs_info->commit_root_sem); | 
|  | ret = btrfs_find_all_roots_safe(ctx); | 
|  | if (!ctx->trans && !skip_commit_root_sem) | 
|  | up_read(&ctx->fs_info->commit_root_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) | 
|  | { | 
|  | struct btrfs_backref_share_check_ctx *ctx; | 
|  |  | 
|  | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return NULL; | 
|  |  | 
|  | ulist_init(&ctx->refs); | 
|  |  | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) | 
|  | { | 
|  | if (!ctx) | 
|  | return; | 
|  |  | 
|  | ulist_release(&ctx->refs); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if a data extent is shared or not. | 
|  | * | 
|  | * @inode:       The inode whose extent we are checking. | 
|  | * @bytenr:      Logical bytenr of the extent we are checking. | 
|  | * @extent_gen:  Generation of the extent (file extent item) or 0 if it is | 
|  | *               not known. | 
|  | * @ctx:         A backref sharedness check context. | 
|  | * | 
|  | * btrfs_is_data_extent_shared uses the backref walking code but will short | 
|  | * circuit as soon as it finds a root or inode that doesn't match the | 
|  | * one passed in. This provides a significant performance benefit for | 
|  | * callers (such as fiemap) which want to know whether the extent is | 
|  | * shared but do not need a ref count. | 
|  | * | 
|  | * This attempts to attach to the running transaction in order to account for | 
|  | * delayed refs, but continues on even when no running transaction exists. | 
|  | * | 
|  | * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. | 
|  | */ | 
|  | int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, | 
|  | u64 extent_gen, | 
|  | struct btrfs_backref_share_check_ctx *ctx) | 
|  | { | 
|  | struct btrfs_backref_walk_ctx walk_ctx = { 0 }; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct ulist_iterator uiter; | 
|  | struct ulist_node *node; | 
|  | struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); | 
|  | int ret = 0; | 
|  | struct share_check shared = { | 
|  | .ctx = ctx, | 
|  | .root = root, | 
|  | .inum = btrfs_ino(inode), | 
|  | .data_bytenr = bytenr, | 
|  | .data_extent_gen = extent_gen, | 
|  | .share_count = 0, | 
|  | .self_ref_count = 0, | 
|  | .have_delayed_delete_refs = false, | 
|  | }; | 
|  | int level; | 
|  | bool leaf_cached; | 
|  | bool leaf_is_shared; | 
|  |  | 
|  | for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { | 
|  | if (ctx->prev_extents_cache[i].bytenr == bytenr) | 
|  | return ctx->prev_extents_cache[i].is_shared; | 
|  | } | 
|  |  | 
|  | ulist_init(&ctx->refs); | 
|  |  | 
|  | trans = btrfs_join_transaction_nostart(root); | 
|  | if (IS_ERR(trans)) { | 
|  | if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  | trans = NULL; | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | } else { | 
|  | btrfs_get_tree_mod_seq(fs_info, &elem); | 
|  | walk_ctx.time_seq = elem.seq; | 
|  | } | 
|  |  | 
|  | ctx->use_path_cache = true; | 
|  |  | 
|  | /* | 
|  | * We may have previously determined that the current leaf is shared. | 
|  | * If it is, then we have a data extent that is shared due to a shared | 
|  | * subtree (caused by snapshotting) and we don't need to check for data | 
|  | * backrefs. If the leaf is not shared, then we must do backref walking | 
|  | * to determine if the data extent is shared through reflinks. | 
|  | */ | 
|  | leaf_cached = lookup_backref_shared_cache(ctx, root, | 
|  | ctx->curr_leaf_bytenr, 0, | 
|  | &leaf_is_shared); | 
|  | if (leaf_cached && leaf_is_shared) { | 
|  | ret = 1; | 
|  | goto out_trans; | 
|  | } | 
|  |  | 
|  | walk_ctx.skip_inode_ref_list = true; | 
|  | walk_ctx.trans = trans; | 
|  | walk_ctx.fs_info = fs_info; | 
|  | walk_ctx.refs = &ctx->refs; | 
|  |  | 
|  | /* -1 means we are in the bytenr of the data extent. */ | 
|  | level = -1; | 
|  | ULIST_ITER_INIT(&uiter); | 
|  | while (1) { | 
|  | const unsigned long prev_ref_count = ctx->refs.nnodes; | 
|  |  | 
|  | walk_ctx.bytenr = bytenr; | 
|  | ret = find_parent_nodes(&walk_ctx, &shared); | 
|  | if (ret == BACKREF_FOUND_SHARED || | 
|  | ret == BACKREF_FOUND_NOT_SHARED) { | 
|  | /* If shared must return 1, otherwise return 0. */ | 
|  | ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; | 
|  | if (level >= 0) | 
|  | store_backref_shared_cache(ctx, root, bytenr, | 
|  | level, ret == 1); | 
|  | break; | 
|  | } | 
|  | if (ret < 0 && ret != -ENOENT) | 
|  | break; | 
|  | ret = 0; | 
|  |  | 
|  | /* | 
|  | * More than one extent buffer (bytenr) may have been added to | 
|  | * the ctx->refs ulist, in which case we have to check multiple | 
|  | * tree paths in case the first one is not shared, so we can not | 
|  | * use the path cache which is made for a single path. Multiple | 
|  | * extent buffers at the current level happen when: | 
|  | * | 
|  | * 1) level -1, the data extent: If our data extent was not | 
|  | *    directly shared (without multiple reference items), then | 
|  | *    it might have a single reference item with a count > 1 for | 
|  | *    the same offset, which means there are 2 (or more) file | 
|  | *    extent items that point to the data extent - this happens | 
|  | *    when a file extent item needs to be split and then one | 
|  | *    item gets moved to another leaf due to a b+tree leaf split | 
|  | *    when inserting some item. In this case the file extent | 
|  | *    items may be located in different leaves and therefore | 
|  | *    some of the leaves may be referenced through shared | 
|  | *    subtrees while others are not. Since our extent buffer | 
|  | *    cache only works for a single path (by far the most common | 
|  | *    case and simpler to deal with), we can not use it if we | 
|  | *    have multiple leaves (which implies multiple paths). | 
|  | * | 
|  | * 2) level >= 0, a tree node/leaf: We can have a mix of direct | 
|  | *    and indirect references on a b+tree node/leaf, so we have | 
|  | *    to check multiple paths, and the extent buffer (the | 
|  | *    current bytenr) may be shared or not. One example is | 
|  | *    during relocation as we may get a shared tree block ref | 
|  | *    (direct ref) and a non-shared tree block ref (indirect | 
|  | *    ref) for the same node/leaf. | 
|  | */ | 
|  | if ((ctx->refs.nnodes - prev_ref_count) > 1) | 
|  | ctx->use_path_cache = false; | 
|  |  | 
|  | if (level >= 0) | 
|  | store_backref_shared_cache(ctx, root, bytenr, | 
|  | level, false); | 
|  | node = ulist_next(&ctx->refs, &uiter); | 
|  | if (!node) | 
|  | break; | 
|  | bytenr = node->val; | 
|  | if (ctx->use_path_cache) { | 
|  | bool is_shared; | 
|  | bool cached; | 
|  |  | 
|  | level++; | 
|  | cached = lookup_backref_shared_cache(ctx, root, bytenr, | 
|  | level, &is_shared); | 
|  | if (cached) { | 
|  | ret = (is_shared ? 1 : 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | shared.share_count = 0; | 
|  | shared.have_delayed_delete_refs = false; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the path cache is disabled, then it means at some tree level we | 
|  | * got multiple parents due to a mix of direct and indirect backrefs or | 
|  | * multiple leaves with file extent items pointing to the same data | 
|  | * extent. We have to invalidate the cache and cache only the sharedness | 
|  | * result for the levels where we got only one node/reference. | 
|  | */ | 
|  | if (!ctx->use_path_cache) { | 
|  | int i = 0; | 
|  |  | 
|  | level--; | 
|  | if (ret >= 0 && level >= 0) { | 
|  | bytenr = ctx->path_cache_entries[level].bytenr; | 
|  | ctx->use_path_cache = true; | 
|  | store_backref_shared_cache(ctx, root, bytenr, level, ret); | 
|  | i = level + 1; | 
|  | } | 
|  |  | 
|  | for ( ; i < BTRFS_MAX_LEVEL; i++) | 
|  | ctx->path_cache_entries[i].bytenr = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cache the sharedness result for the data extent if we know our inode | 
|  | * has more than 1 file extent item that refers to the data extent. | 
|  | */ | 
|  | if (ret >= 0 && shared.self_ref_count > 1) { | 
|  | int slot = ctx->prev_extents_cache_slot; | 
|  |  | 
|  | ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; | 
|  | ctx->prev_extents_cache[slot].is_shared = (ret == 1); | 
|  |  | 
|  | slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; | 
|  | ctx->prev_extents_cache_slot = slot; | 
|  | } | 
|  |  | 
|  | out_trans: | 
|  | if (trans) { | 
|  | btrfs_put_tree_mod_seq(fs_info, &elem); | 
|  | btrfs_end_transaction(trans); | 
|  | } else { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | } | 
|  | out: | 
|  | ulist_release(&ctx->refs); | 
|  | ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, | 
|  | u64 start_off, struct btrfs_path *path, | 
|  | struct btrfs_inode_extref **ret_extref, | 
|  | u64 *found_off) | 
|  | { | 
|  | int ret, slot; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_inode_extref *extref; | 
|  | const struct extent_buffer *leaf; | 
|  | unsigned long ptr; | 
|  |  | 
|  | key.objectid = inode_objectid; | 
|  | key.type = BTRFS_INODE_EXTREF_KEY; | 
|  | key.offset = start_off; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | while (1) { | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | /* | 
|  | * If the item at offset is not found, | 
|  | * btrfs_search_slot will point us to the slot | 
|  | * where it should be inserted. In our case | 
|  | * that will be the slot directly before the | 
|  | * next INODE_REF_KEY_V2 item. In the case | 
|  | * that we're pointing to the last slot in a | 
|  | * leaf, we must move one leaf over. | 
|  | */ | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) { | 
|  | if (ret >= 1) | 
|  | ret = -ENOENT; | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | /* | 
|  | * Check that we're still looking at an extended ref key for | 
|  | * this particular objectid. If we have different | 
|  | * objectid or type then there are no more to be found | 
|  | * in the tree and we can exit. | 
|  | */ | 
|  | ret = -ENOENT; | 
|  | if (found_key.objectid != inode_objectid) | 
|  | break; | 
|  | if (found_key.type != BTRFS_INODE_EXTREF_KEY) | 
|  | break; | 
|  |  | 
|  | ret = 0; | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | extref = (struct btrfs_inode_extref *)ptr; | 
|  | *ret_extref = extref; | 
|  | if (found_off) | 
|  | *found_off = found_key.offset; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this iterates to turn a name (from iref/extref) into a full filesystem path. | 
|  | * Elements of the path are separated by '/' and the path is guaranteed to be | 
|  | * 0-terminated. the path is only given within the current file system. | 
|  | * Therefore, it never starts with a '/'. the caller is responsible to provide | 
|  | * "size" bytes in "dest". the dest buffer will be filled backwards. finally, | 
|  | * the start point of the resulting string is returned. this pointer is within | 
|  | * dest, normally. | 
|  | * in case the path buffer would overflow, the pointer is decremented further | 
|  | * as if output was written to the buffer, though no more output is actually | 
|  | * generated. that way, the caller can determine how much space would be | 
|  | * required for the path to fit into the buffer. in that case, the returned | 
|  | * value will be smaller than dest. callers must check this! | 
|  | */ | 
|  | char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, | 
|  | u32 name_len, unsigned long name_off, | 
|  | struct extent_buffer *eb_in, u64 parent, | 
|  | char *dest, u32 size) | 
|  | { | 
|  | int slot; | 
|  | u64 next_inum; | 
|  | int ret; | 
|  | s64 bytes_left = ((s64)size) - 1; | 
|  | struct extent_buffer *eb = eb_in; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_inode_ref *iref; | 
|  |  | 
|  | if (bytes_left >= 0) | 
|  | dest[bytes_left] = '\0'; | 
|  |  | 
|  | while (1) { | 
|  | bytes_left -= name_len; | 
|  | if (bytes_left >= 0) | 
|  | read_extent_buffer(eb, dest + bytes_left, | 
|  | name_off, name_len); | 
|  | if (eb != eb_in) { | 
|  | if (!path->skip_locking) | 
|  | btrfs_tree_read_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  | ret = btrfs_find_item(fs_root, path, parent, 0, | 
|  | BTRFS_INODE_REF_KEY, &found_key); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | next_inum = found_key.offset; | 
|  |  | 
|  | /* regular exit ahead */ | 
|  | if (parent == next_inum) | 
|  | break; | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | eb = path->nodes[0]; | 
|  | /* make sure we can use eb after releasing the path */ | 
|  | if (eb != eb_in) { | 
|  | path->nodes[0] = NULL; | 
|  | path->locks[0] = 0; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); | 
|  |  | 
|  | name_len = btrfs_inode_ref_name_len(eb, iref); | 
|  | name_off = (unsigned long)(iref + 1); | 
|  |  | 
|  | parent = next_inum; | 
|  | --bytes_left; | 
|  | if (bytes_left >= 0) | 
|  | dest[bytes_left] = '/'; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | return dest + bytes_left; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this makes the path point to (logical EXTENT_ITEM *) | 
|  | * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for | 
|  | * tree blocks and <0 on error. | 
|  | */ | 
|  | int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, | 
|  | struct btrfs_path *path, struct btrfs_key *found_key, | 
|  | u64 *flags_ret) | 
|  | { | 
|  | struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); | 
|  | int ret; | 
|  | u64 flags; | 
|  | u64 size = 0; | 
|  | const struct extent_buffer *eb; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | key.objectid = logical; | 
|  | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (unlikely(ret == 0)) { | 
|  | /* | 
|  | * Key with offset -1 found, there would have to exist an extent | 
|  | * item with such offset, but this is out of the valid range. | 
|  | */ | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | ret = btrfs_previous_extent_item(extent_root, path, 0); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | return ret; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); | 
|  | if (found_key->type == BTRFS_METADATA_ITEM_KEY) | 
|  | size = fs_info->nodesize; | 
|  | else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) | 
|  | size = found_key->offset; | 
|  |  | 
|  | if (found_key->objectid > logical || | 
|  | found_key->objectid + size <= logical) { | 
|  | btrfs_debug(fs_info, | 
|  | "logical %llu is not within any extent", logical); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  |  | 
|  | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(eb, ei); | 
|  |  | 
|  | btrfs_debug(fs_info, | 
|  | "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", | 
|  | logical, logical - found_key->objectid, found_key->objectid, | 
|  | found_key->offset, flags, btrfs_item_size(eb, path->slots[0])); | 
|  |  | 
|  | WARN_ON(!flags_ret); | 
|  | if (flags_ret) { | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
|  | *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; | 
|  | else if (flags & BTRFS_EXTENT_FLAG_DATA) | 
|  | *flags_ret = BTRFS_EXTENT_FLAG_DATA; | 
|  | else | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to iterate extent inline refs. ptr must point to a 0 value | 
|  | * for the first call and may be modified. it is used to track state. | 
|  | * if more refs exist, 0 is returned and the next call to | 
|  | * get_extent_inline_ref must pass the modified ptr parameter to get the | 
|  | * next ref. after the last ref was processed, 1 is returned. | 
|  | * returns <0 on error | 
|  | */ | 
|  | static int get_extent_inline_ref(unsigned long *ptr, | 
|  | const struct extent_buffer *eb, | 
|  | const struct btrfs_key *key, | 
|  | const struct btrfs_extent_item *ei, | 
|  | u32 item_size, | 
|  | struct btrfs_extent_inline_ref **out_eiref, | 
|  | int *out_type) | 
|  | { | 
|  | unsigned long end; | 
|  | u64 flags; | 
|  | struct btrfs_tree_block_info *info; | 
|  |  | 
|  | if (!*ptr) { | 
|  | /* first call */ | 
|  | flags = btrfs_extent_flags(eb, ei); | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | if (key->type == BTRFS_METADATA_ITEM_KEY) { | 
|  | /* a skinny metadata extent */ | 
|  | *out_eiref = | 
|  | (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  | } else { | 
|  | WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); | 
|  | info = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | *out_eiref = | 
|  | (struct btrfs_extent_inline_ref *)(info + 1); | 
|  | } | 
|  | } else { | 
|  | *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  | } | 
|  | *ptr = (unsigned long)*out_eiref; | 
|  | if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | end = (unsigned long)ei + item_size; | 
|  | *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); | 
|  | *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, | 
|  | BTRFS_REF_TYPE_ANY); | 
|  | if (unlikely(*out_type == BTRFS_REF_TYPE_INVALID)) | 
|  | return -EUCLEAN; | 
|  |  | 
|  | *ptr += btrfs_extent_inline_ref_size(*out_type); | 
|  | WARN_ON(*ptr > end); | 
|  | if (*ptr == end) | 
|  | return 1; /* last */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reads the tree block backref for an extent. tree level and root are returned | 
|  | * through out_level and out_root. ptr must point to a 0 value for the first | 
|  | * call and may be modified (see get_extent_inline_ref comment). | 
|  | * returns 0 if data was provided, 1 if there was no more data to provide or | 
|  | * <0 on error. | 
|  | */ | 
|  | int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, | 
|  | struct btrfs_key *key, struct btrfs_extent_item *ei, | 
|  | u32 item_size, u64 *out_root, u8 *out_level) | 
|  | { | 
|  | int ret; | 
|  | int type; | 
|  | struct btrfs_extent_inline_ref *eiref; | 
|  |  | 
|  | if (*ptr == (unsigned long)-1) | 
|  | return 1; | 
|  |  | 
|  | while (1) { | 
|  | ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, | 
|  | &eiref, &type); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (type == BTRFS_TREE_BLOCK_REF_KEY || | 
|  | type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | break; | 
|  |  | 
|  | if (ret == 1) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* we can treat both ref types equally here */ | 
|  | *out_root = btrfs_extent_inline_ref_offset(eb, eiref); | 
|  |  | 
|  | if (key->type == BTRFS_EXTENT_ITEM_KEY) { | 
|  | struct btrfs_tree_block_info *info; | 
|  |  | 
|  | info = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | *out_level = btrfs_tree_block_level(eb, info); | 
|  | } else { | 
|  | ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); | 
|  | *out_level = (u8)key->offset; | 
|  | } | 
|  |  | 
|  | if (ret == 1) | 
|  | *ptr = (unsigned long)-1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, | 
|  | struct extent_inode_elem *inode_list, | 
|  | u64 root, u64 extent_item_objectid, | 
|  | iterate_extent_inodes_t *iterate, void *ctx) | 
|  | { | 
|  | struct extent_inode_elem *eie; | 
|  | int ret = 0; | 
|  |  | 
|  | for (eie = inode_list; eie; eie = eie->next) { | 
|  | btrfs_debug(fs_info, | 
|  | "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", | 
|  | extent_item_objectid, eie->inum, | 
|  | eie->offset, root); | 
|  | ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); | 
|  | if (ret) { | 
|  | btrfs_debug(fs_info, | 
|  | "stopping iteration for %llu due to ret=%d", | 
|  | extent_item_objectid, ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calls iterate() for every inode that references the extent identified by | 
|  | * the given parameters. | 
|  | * when the iterator function returns a non-zero value, iteration stops. | 
|  | */ | 
|  | int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, | 
|  | bool search_commit_root, | 
|  | iterate_extent_inodes_t *iterate, void *user_ctx) | 
|  | { | 
|  | int ret; | 
|  | struct ulist *refs; | 
|  | struct ulist_node *ref_node; | 
|  | struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); | 
|  | struct ulist_iterator ref_uiter; | 
|  |  | 
|  | btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", | 
|  | ctx->bytenr); | 
|  |  | 
|  | ASSERT(ctx->trans == NULL); | 
|  | ASSERT(ctx->roots == NULL); | 
|  |  | 
|  | if (!search_commit_root) { | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | trans = btrfs_attach_transaction(ctx->fs_info->tree_root); | 
|  | if (IS_ERR(trans)) { | 
|  | if (PTR_ERR(trans) != -ENOENT && | 
|  | PTR_ERR(trans) != -EROFS) | 
|  | return PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | } | 
|  | ctx->trans = trans; | 
|  | } | 
|  |  | 
|  | if (ctx->trans) { | 
|  | btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); | 
|  | ctx->time_seq = seq_elem.seq; | 
|  | } else { | 
|  | down_read(&ctx->fs_info->commit_root_sem); | 
|  | } | 
|  |  | 
|  | ret = btrfs_find_all_leafs(ctx); | 
|  | if (ret) | 
|  | goto out; | 
|  | refs = ctx->refs; | 
|  | ctx->refs = NULL; | 
|  |  | 
|  | ULIST_ITER_INIT(&ref_uiter); | 
|  | while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { | 
|  | const u64 leaf_bytenr = ref_node->val; | 
|  | struct ulist_node *root_node; | 
|  | struct ulist_iterator root_uiter; | 
|  | struct extent_inode_elem *inode_list; | 
|  |  | 
|  | inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; | 
|  |  | 
|  | if (ctx->cache_lookup) { | 
|  | const u64 *root_ids; | 
|  | int root_count; | 
|  | bool cached; | 
|  |  | 
|  | cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, | 
|  | &root_ids, &root_count); | 
|  | if (cached) { | 
|  | for (int i = 0; i < root_count; i++) { | 
|  | ret = iterate_leaf_refs(ctx->fs_info, | 
|  | inode_list, | 
|  | root_ids[i], | 
|  | leaf_bytenr, | 
|  | iterate, | 
|  | user_ctx); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ctx->roots) { | 
|  | ctx->roots = ulist_alloc(GFP_NOFS); | 
|  | if (!ctx->roots) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->bytenr = leaf_bytenr; | 
|  | ret = btrfs_find_all_roots_safe(ctx); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (ctx->cache_store) | 
|  | ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); | 
|  |  | 
|  | ULIST_ITER_INIT(&root_uiter); | 
|  | while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { | 
|  | btrfs_debug(ctx->fs_info, | 
|  | "root %llu references leaf %llu, data list %#llx", | 
|  | root_node->val, ref_node->val, | 
|  | ref_node->aux); | 
|  | ret = iterate_leaf_refs(ctx->fs_info, inode_list, | 
|  | root_node->val, ctx->bytenr, | 
|  | iterate, user_ctx); | 
|  | } | 
|  | ulist_reinit(ctx->roots); | 
|  | } | 
|  |  | 
|  | free_leaf_list(refs); | 
|  | out: | 
|  | if (ctx->trans) { | 
|  | btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); | 
|  | btrfs_end_transaction(ctx->trans); | 
|  | ctx->trans = NULL; | 
|  | } else { | 
|  | up_read(&ctx->fs_info->commit_root_sem); | 
|  | } | 
|  |  | 
|  | ulist_free(ctx->roots); | 
|  | ctx->roots = NULL; | 
|  |  | 
|  | if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) | 
|  | ret = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) | 
|  | { | 
|  | struct btrfs_data_container *inodes = ctx; | 
|  | const size_t c = 3 * sizeof(u64); | 
|  |  | 
|  | if (inodes->bytes_left >= c) { | 
|  | inodes->bytes_left -= c; | 
|  | inodes->val[inodes->elem_cnt] = inum; | 
|  | inodes->val[inodes->elem_cnt + 1] = offset; | 
|  | inodes->val[inodes->elem_cnt + 2] = root; | 
|  | inodes->elem_cnt += 3; | 
|  | } else { | 
|  | inodes->bytes_missing += c - inodes->bytes_left; | 
|  | inodes->bytes_left = 0; | 
|  | inodes->elem_missed += 3; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, | 
|  | void *ctx, bool ignore_offset) | 
|  | { | 
|  | struct btrfs_backref_walk_ctx walk_ctx = { 0 }; | 
|  | int ret; | 
|  | u64 flags = 0; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); | 
|  | btrfs_free_path(path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
|  | return -EINVAL; | 
|  |  | 
|  | walk_ctx.bytenr = found_key.objectid; | 
|  | if (ignore_offset) | 
|  | walk_ctx.ignore_extent_item_pos = true; | 
|  | else | 
|  | walk_ctx.extent_item_pos = logical - found_key.objectid; | 
|  | walk_ctx.fs_info = fs_info; | 
|  |  | 
|  | return iterate_extent_inodes(&walk_ctx, false, build_ino_list, ctx); | 
|  | } | 
|  |  | 
|  | static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, | 
|  | struct extent_buffer *eb, struct inode_fs_paths *ipath); | 
|  |  | 
|  | static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) | 
|  | { | 
|  | int ret = 0; | 
|  | int slot; | 
|  | u32 cur; | 
|  | u32 len; | 
|  | u32 name_len; | 
|  | u64 parent = 0; | 
|  | int found = 0; | 
|  | struct btrfs_root *fs_root = ipath->fs_root; | 
|  | struct btrfs_path *path = ipath->btrfs_path; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_inode_ref *iref; | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | while (!ret) { | 
|  | ret = btrfs_find_item(fs_root, path, inum, | 
|  | parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, | 
|  | &found_key); | 
|  |  | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret) { | 
|  | ret = found ? 0 : -ENOENT; | 
|  | break; | 
|  | } | 
|  | ++found; | 
|  |  | 
|  | parent = found_key.offset; | 
|  | slot = path->slots[0]; | 
|  | eb = btrfs_clone_extent_buffer(path->nodes[0]); | 
|  | if (!eb) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); | 
|  |  | 
|  | for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { | 
|  | name_len = btrfs_inode_ref_name_len(eb, iref); | 
|  | /* path must be released before calling iterate()! */ | 
|  | btrfs_debug(fs_root->fs_info, | 
|  | "following ref at offset %u for inode %llu in tree %llu", | 
|  | cur, found_key.objectid, | 
|  | btrfs_root_id(fs_root)); | 
|  | ret = inode_to_path(parent, name_len, | 
|  | (unsigned long)(iref + 1), eb, ipath); | 
|  | if (ret) | 
|  | break; | 
|  | len = sizeof(*iref) + name_len; | 
|  | iref = (struct btrfs_inode_ref *)((char *)iref + len); | 
|  | } | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) | 
|  | { | 
|  | int ret; | 
|  | int slot; | 
|  | u64 offset = 0; | 
|  | u64 parent; | 
|  | int found = 0; | 
|  | struct btrfs_root *fs_root = ipath->fs_root; | 
|  | struct btrfs_path *path = ipath->btrfs_path; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_inode_extref *extref; | 
|  | u32 item_size; | 
|  | u32 cur_offset; | 
|  | unsigned long ptr; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, | 
|  | &offset); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret) { | 
|  | ret = found ? 0 : -ENOENT; | 
|  | break; | 
|  | } | 
|  | ++found; | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | eb = btrfs_clone_extent_buffer(path->nodes[0]); | 
|  | if (!eb) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | item_size = btrfs_item_size(eb, slot); | 
|  | ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | cur_offset = 0; | 
|  |  | 
|  | while (cur_offset < item_size) { | 
|  | u32 name_len; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *)(ptr + cur_offset); | 
|  | parent = btrfs_inode_extref_parent(eb, extref); | 
|  | name_len = btrfs_inode_extref_name_len(eb, extref); | 
|  | ret = inode_to_path(parent, name_len, | 
|  | (unsigned long)&extref->name, eb, ipath); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | cur_offset += btrfs_inode_extref_name_len(eb, extref); | 
|  | cur_offset += sizeof(*extref); | 
|  | } | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | offset++; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns 0 if the path could be dumped (probably truncated) | 
|  | * returns <0 in case of an error | 
|  | */ | 
|  | static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, | 
|  | struct extent_buffer *eb, struct inode_fs_paths *ipath) | 
|  | { | 
|  | char *fspath; | 
|  | char *fspath_min; | 
|  | int i = ipath->fspath->elem_cnt; | 
|  | const int s_ptr = sizeof(char *); | 
|  | u32 bytes_left; | 
|  |  | 
|  | bytes_left = ipath->fspath->bytes_left > s_ptr ? | 
|  | ipath->fspath->bytes_left - s_ptr : 0; | 
|  |  | 
|  | fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; | 
|  | fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, | 
|  | name_off, eb, inum, fspath_min, bytes_left); | 
|  | if (IS_ERR(fspath)) | 
|  | return PTR_ERR(fspath); | 
|  |  | 
|  | if (fspath > fspath_min) { | 
|  | ipath->fspath->val[i] = (u64)(unsigned long)fspath; | 
|  | ++ipath->fspath->elem_cnt; | 
|  | ipath->fspath->bytes_left = fspath - fspath_min; | 
|  | } else { | 
|  | ++ipath->fspath->elem_missed; | 
|  | ipath->fspath->bytes_missing += fspath_min - fspath; | 
|  | ipath->fspath->bytes_left = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this dumps all file system paths to the inode into the ipath struct, provided | 
|  | * is has been created large enough. each path is zero-terminated and accessed | 
|  | * from ipath->fspath->val[i]. | 
|  | * when it returns, there are ipath->fspath->elem_cnt number of paths available | 
|  | * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the | 
|  | * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, | 
|  | * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would | 
|  | * have been needed to return all paths. | 
|  | */ | 
|  | int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) | 
|  | { | 
|  | int ret; | 
|  | int found_refs = 0; | 
|  |  | 
|  | ret = iterate_inode_refs(inum, ipath); | 
|  | if (!ret) | 
|  | ++found_refs; | 
|  | else if (ret != -ENOENT) | 
|  | return ret; | 
|  |  | 
|  | ret = iterate_inode_extrefs(inum, ipath); | 
|  | if (ret == -ENOENT && found_refs) | 
|  | return 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btrfs_data_container *init_data_container(u32 total_bytes) | 
|  | { | 
|  | struct btrfs_data_container *data; | 
|  | size_t alloc_bytes; | 
|  |  | 
|  | alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); | 
|  | data = kvzalloc(alloc_bytes, GFP_KERNEL); | 
|  | if (!data) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (total_bytes >= sizeof(*data)) | 
|  | data->bytes_left = total_bytes - sizeof(*data); | 
|  | else | 
|  | data->bytes_missing = sizeof(*data) - total_bytes; | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocates space to return multiple file system paths for an inode. | 
|  | * total_bytes to allocate are passed, note that space usable for actual path | 
|  | * information will be total_bytes - sizeof(struct inode_fs_paths). | 
|  | * the returned pointer must be freed with free_ipath() in the end. | 
|  | */ | 
|  | struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct inode_fs_paths *ifp; | 
|  | struct btrfs_data_container *fspath; | 
|  |  | 
|  | fspath = init_data_container(total_bytes); | 
|  | if (IS_ERR(fspath)) | 
|  | return ERR_CAST(fspath); | 
|  |  | 
|  | ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); | 
|  | if (!ifp) { | 
|  | kvfree(fspath); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | ifp->btrfs_path = path; | 
|  | ifp->fspath = fspath; | 
|  | ifp->fs_root = fs_root; | 
|  |  | 
|  | return ifp; | 
|  | } | 
|  |  | 
|  | void free_ipath(struct inode_fs_paths *ipath) | 
|  | { | 
|  | if (!ipath) | 
|  | return; | 
|  | kvfree(ipath->fspath); | 
|  | kfree(ipath); | 
|  | } | 
|  |  | 
|  | struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_backref_iter *ret; | 
|  |  | 
|  | ret = kzalloc(sizeof(*ret), GFP_NOFS); | 
|  | if (!ret) | 
|  | return NULL; | 
|  |  | 
|  | ret->path = btrfs_alloc_path(); | 
|  | if (!ret->path) { | 
|  | kfree(ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Current backref iterator only supports iteration in commit root */ | 
|  | ret->path->search_commit_root = 1; | 
|  | ret->path->skip_locking = 1; | 
|  | ret->fs_info = fs_info; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter) | 
|  | { | 
|  | iter->bytenr = 0; | 
|  | iter->item_ptr = 0; | 
|  | iter->cur_ptr = 0; | 
|  | iter->end_ptr = 0; | 
|  | btrfs_release_path(iter->path); | 
|  | memset(&iter->cur_key, 0, sizeof(iter->cur_key)); | 
|  | } | 
|  |  | 
|  | int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = iter->fs_info; | 
|  | struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); | 
|  | struct btrfs_path *path = iter->path; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  | iter->bytenr = bytenr; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (unlikely(ret == 0)) { | 
|  | /* | 
|  | * Key with offset -1 found, there would have to exist an extent | 
|  | * item with such offset, but this is out of the valid range. | 
|  | */ | 
|  | ret = -EUCLEAN; | 
|  | goto release; | 
|  | } | 
|  | if (unlikely(path->slots[0] == 0)) { | 
|  | DEBUG_WARN(); | 
|  | ret = -EUCLEAN; | 
|  | goto release; | 
|  | } | 
|  | path->slots[0]--; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if ((key.type != BTRFS_EXTENT_ITEM_KEY && | 
|  | key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { | 
|  | ret = -ENOENT; | 
|  | goto release; | 
|  | } | 
|  | memcpy(&iter->cur_key, &key, sizeof(key)); | 
|  | iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]); | 
|  | iter->end_ptr = (u32)(iter->item_ptr + | 
|  | btrfs_item_size(path->nodes[0], path->slots[0])); | 
|  | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  |  | 
|  | /* | 
|  | * Only support iteration on tree backref yet. | 
|  | * | 
|  | * This is an extra precaution for non skinny-metadata, where | 
|  | * EXTENT_ITEM is also used for tree blocks, that we can only use | 
|  | * extent flags to determine if it's a tree block. | 
|  | */ | 
|  | if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { | 
|  | ret = -ENOTSUPP; | 
|  | goto release; | 
|  | } | 
|  | iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); | 
|  |  | 
|  | /* If there is no inline backref, go search for keyed backref */ | 
|  | if (iter->cur_ptr >= iter->end_ptr) { | 
|  | ret = btrfs_next_item(extent_root, path); | 
|  |  | 
|  | /* No inline nor keyed ref */ | 
|  | if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto release; | 
|  | } | 
|  | if (ret < 0) | 
|  | goto release; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, | 
|  | path->slots[0]); | 
|  | if (iter->cur_key.objectid != bytenr || | 
|  | (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && | 
|  | iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { | 
|  | ret = -ENOENT; | 
|  | goto release; | 
|  | } | 
|  | iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]); | 
|  | iter->item_ptr = iter->cur_ptr; | 
|  | iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( | 
|  | path->nodes[0], path->slots[0])); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | release: | 
|  | btrfs_backref_iter_release(iter); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter) | 
|  | { | 
|  | if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY || | 
|  | iter->cur_key.type == BTRFS_METADATA_ITEM_KEY) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Go to the next backref item of current bytenr, can be either inlined or | 
|  | * keyed. | 
|  | * | 
|  | * Caller needs to check whether it's inline ref or not by iter->cur_key. | 
|  | * | 
|  | * Return 0 if we get next backref without problem. | 
|  | * Return >0 if there is no extra backref for this bytenr. | 
|  | * Return <0 if there is something wrong happened. | 
|  | */ | 
|  | int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) | 
|  | { | 
|  | struct extent_buffer *eb = iter->path->nodes[0]; | 
|  | struct btrfs_root *extent_root; | 
|  | struct btrfs_path *path = iter->path; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  | u32 size; | 
|  |  | 
|  | if (btrfs_backref_iter_is_inline_ref(iter)) { | 
|  | /* We're still inside the inline refs */ | 
|  | ASSERT(iter->cur_ptr < iter->end_ptr); | 
|  |  | 
|  | if (btrfs_backref_has_tree_block_info(iter)) { | 
|  | /* First tree block info */ | 
|  | size = sizeof(struct btrfs_tree_block_info); | 
|  | } else { | 
|  | /* Use inline ref type to determine the size */ | 
|  | int type; | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *) | 
|  | ((unsigned long)iter->cur_ptr); | 
|  | type = btrfs_extent_inline_ref_type(eb, iref); | 
|  |  | 
|  | size = btrfs_extent_inline_ref_size(type); | 
|  | } | 
|  | iter->cur_ptr += size; | 
|  | if (iter->cur_ptr < iter->end_ptr) | 
|  | return 0; | 
|  |  | 
|  | /* All inline items iterated, fall through */ | 
|  | } | 
|  |  | 
|  | /* We're at keyed items, there is no inline item, go to the next one */ | 
|  | extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); | 
|  | ret = btrfs_next_item(extent_root, iter->path); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); | 
|  | if (iter->cur_key.objectid != iter->bytenr || | 
|  | (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && | 
|  | iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) | 
|  | return 1; | 
|  | iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]); | 
|  | iter->cur_ptr = iter->item_ptr; | 
|  | iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], | 
|  | path->slots[0]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_backref_cache *cache, bool is_reloc) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | cache->rb_root = RB_ROOT; | 
|  | for (i = 0; i < BTRFS_MAX_LEVEL; i++) | 
|  | INIT_LIST_HEAD(&cache->pending[i]); | 
|  | INIT_LIST_HEAD(&cache->pending_edge); | 
|  | INIT_LIST_HEAD(&cache->useless_node); | 
|  | cache->fs_info = fs_info; | 
|  | cache->is_reloc = is_reloc; | 
|  | } | 
|  |  | 
|  | struct btrfs_backref_node *btrfs_backref_alloc_node( | 
|  | struct btrfs_backref_cache *cache, u64 bytenr, int level) | 
|  | { | 
|  | struct btrfs_backref_node *node; | 
|  |  | 
|  | ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); | 
|  | node = kzalloc(sizeof(*node), GFP_NOFS); | 
|  | if (!node) | 
|  | return node; | 
|  |  | 
|  | INIT_LIST_HEAD(&node->list); | 
|  | INIT_LIST_HEAD(&node->upper); | 
|  | INIT_LIST_HEAD(&node->lower); | 
|  | RB_CLEAR_NODE(&node->rb_node); | 
|  | cache->nr_nodes++; | 
|  | node->level = level; | 
|  | node->bytenr = bytenr; | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | void btrfs_backref_free_node(struct btrfs_backref_cache *cache, | 
|  | struct btrfs_backref_node *node) | 
|  | { | 
|  | if (node) { | 
|  | ASSERT(list_empty(&node->list)); | 
|  | ASSERT(list_empty(&node->lower)); | 
|  | ASSERT(node->eb == NULL); | 
|  | cache->nr_nodes--; | 
|  | btrfs_put_root(node->root); | 
|  | kfree(node); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct btrfs_backref_edge *btrfs_backref_alloc_edge( | 
|  | struct btrfs_backref_cache *cache) | 
|  | { | 
|  | struct btrfs_backref_edge *edge; | 
|  |  | 
|  | edge = kzalloc(sizeof(*edge), GFP_NOFS); | 
|  | if (edge) | 
|  | cache->nr_edges++; | 
|  | return edge; | 
|  | } | 
|  |  | 
|  | void btrfs_backref_free_edge(struct btrfs_backref_cache *cache, | 
|  | struct btrfs_backref_edge *edge) | 
|  | { | 
|  | if (edge) { | 
|  | cache->nr_edges--; | 
|  | kfree(edge); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node) | 
|  | { | 
|  | if (node->locked) { | 
|  | btrfs_tree_unlock(node->eb); | 
|  | node->locked = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node) | 
|  | { | 
|  | if (node->eb) { | 
|  | btrfs_backref_unlock_node_buffer(node); | 
|  | free_extent_buffer(node->eb); | 
|  | node->eb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop the backref node from cache without cleaning up its children | 
|  | * edges. | 
|  | * | 
|  | * This can only be called on node without parent edges. | 
|  | * The children edges are still kept as is. | 
|  | */ | 
|  | void btrfs_backref_drop_node(struct btrfs_backref_cache *tree, | 
|  | struct btrfs_backref_node *node) | 
|  | { | 
|  | ASSERT(list_empty(&node->upper)); | 
|  |  | 
|  | btrfs_backref_drop_node_buffer(node); | 
|  | list_del_init(&node->list); | 
|  | list_del_init(&node->lower); | 
|  | if (!RB_EMPTY_NODE(&node->rb_node)) | 
|  | rb_erase(&node->rb_node, &tree->rb_root); | 
|  | btrfs_backref_free_node(tree, node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop the backref node from cache, also cleaning up all its | 
|  | * upper edges and any uncached nodes in the path. | 
|  | * | 
|  | * This cleanup happens bottom up, thus the node should either | 
|  | * be the lowest node in the cache or a detached node. | 
|  | */ | 
|  | void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, | 
|  | struct btrfs_backref_node *node) | 
|  | { | 
|  | struct btrfs_backref_edge *edge; | 
|  |  | 
|  | if (!node) | 
|  | return; | 
|  |  | 
|  | while (!list_empty(&node->upper)) { | 
|  | edge = list_first_entry(&node->upper, struct btrfs_backref_edge, | 
|  | list[LOWER]); | 
|  | list_del(&edge->list[LOWER]); | 
|  | list_del(&edge->list[UPPER]); | 
|  | btrfs_backref_free_edge(cache, edge); | 
|  | } | 
|  |  | 
|  | btrfs_backref_drop_node(cache, node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release all nodes/edges from current cache | 
|  | */ | 
|  | void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) | 
|  | { | 
|  | struct btrfs_backref_node *node; | 
|  |  | 
|  | while ((node = rb_entry_safe(rb_first(&cache->rb_root), | 
|  | struct btrfs_backref_node, rb_node))) | 
|  | btrfs_backref_cleanup_node(cache, node); | 
|  |  | 
|  | ASSERT(list_empty(&cache->pending_edge)); | 
|  | ASSERT(list_empty(&cache->useless_node)); | 
|  | ASSERT(!cache->nr_nodes); | 
|  | ASSERT(!cache->nr_edges); | 
|  | } | 
|  |  | 
|  | static void btrfs_backref_link_edge(struct btrfs_backref_edge *edge, | 
|  | struct btrfs_backref_node *lower, | 
|  | struct btrfs_backref_node *upper) | 
|  | { | 
|  | ASSERT(upper && lower && upper->level == lower->level + 1); | 
|  | edge->node[LOWER] = lower; | 
|  | edge->node[UPPER] = upper; | 
|  | list_add_tail(&edge->list[LOWER], &lower->upper); | 
|  | } | 
|  | /* | 
|  | * Handle direct tree backref | 
|  | * | 
|  | * Direct tree backref means, the backref item shows its parent bytenr | 
|  | * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). | 
|  | * | 
|  | * @ref_key:	The converted backref key. | 
|  | *		For keyed backref, it's the item key. | 
|  | *		For inlined backref, objectid is the bytenr, | 
|  | *		type is btrfs_inline_ref_type, offset is | 
|  | *		btrfs_inline_ref_offset. | 
|  | */ | 
|  | static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, | 
|  | struct btrfs_key *ref_key, | 
|  | struct btrfs_backref_node *cur) | 
|  | { | 
|  | struct btrfs_backref_edge *edge; | 
|  | struct btrfs_backref_node *upper; | 
|  | struct rb_node *rb_node; | 
|  |  | 
|  | ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); | 
|  |  | 
|  | /* Only reloc root uses backref pointing to itself */ | 
|  | if (ref_key->objectid == ref_key->offset) { | 
|  | struct btrfs_root *root; | 
|  |  | 
|  | cur->is_reloc_root = 1; | 
|  | /* Only reloc backref cache cares about a specific root */ | 
|  | if (cache->is_reloc) { | 
|  | root = find_reloc_root(cache->fs_info, cur->bytenr); | 
|  | if (!root) | 
|  | return -ENOENT; | 
|  | cur->root = root; | 
|  | } else { | 
|  | /* | 
|  | * For generic purpose backref cache, reloc root node | 
|  | * is useless. | 
|  | */ | 
|  | list_add(&cur->list, &cache->useless_node); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | edge = btrfs_backref_alloc_edge(cache); | 
|  | if (!edge) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); | 
|  | if (!rb_node) { | 
|  | /* Parent node not yet cached */ | 
|  | upper = btrfs_backref_alloc_node(cache, ref_key->offset, | 
|  | cur->level + 1); | 
|  | if (!upper) { | 
|  | btrfs_backref_free_edge(cache, edge); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Backrefs for the upper level block isn't cached, add the | 
|  | *  block to pending list | 
|  | */ | 
|  | list_add_tail(&edge->list[UPPER], &cache->pending_edge); | 
|  | } else { | 
|  | /* Parent node already cached */ | 
|  | upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); | 
|  | ASSERT(upper->checked); | 
|  | INIT_LIST_HEAD(&edge->list[UPPER]); | 
|  | } | 
|  | btrfs_backref_link_edge(edge, cur, upper); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle indirect tree backref | 
|  | * | 
|  | * Indirect tree backref means, we only know which tree the node belongs to. | 
|  | * We still need to do a tree search to find out the parents. This is for | 
|  | * TREE_BLOCK_REF backref (keyed or inlined). | 
|  | * | 
|  | * @trans:	Transaction handle. | 
|  | * @ref_key:	The same as @ref_key in  handle_direct_tree_backref() | 
|  | * @tree_key:	The first key of this tree block. | 
|  | * @path:	A clean (released) path, to avoid allocating path every time | 
|  | *		the function get called. | 
|  | */ | 
|  | static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_backref_cache *cache, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *ref_key, | 
|  | struct btrfs_key *tree_key, | 
|  | struct btrfs_backref_node *cur) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | struct btrfs_backref_node *upper; | 
|  | struct btrfs_backref_node *lower; | 
|  | struct btrfs_backref_edge *edge; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_root *root; | 
|  | struct rb_node *rb_node; | 
|  | int level; | 
|  | bool need_check = true; | 
|  | int ret; | 
|  |  | 
|  | root = btrfs_get_fs_root(fs_info, ref_key->offset, false); | 
|  | if (IS_ERR(root)) | 
|  | return PTR_ERR(root); | 
|  |  | 
|  | /* We shouldn't be using backref cache for non-shareable roots. */ | 
|  | if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) { | 
|  | btrfs_put_root(root); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | if (btrfs_root_level(&root->root_item) == cur->level) { | 
|  | /* Tree root */ | 
|  | ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); | 
|  | /* | 
|  | * For reloc backref cache, we may ignore reloc root.  But for | 
|  | * general purpose backref cache, we can't rely on | 
|  | * btrfs_should_ignore_reloc_root() as it may conflict with | 
|  | * current running relocation and lead to missing root. | 
|  | * | 
|  | * For general purpose backref cache, reloc root detection is | 
|  | * completely relying on direct backref (key->offset is parent | 
|  | * bytenr), thus only do such check for reloc cache. | 
|  | */ | 
|  | if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { | 
|  | btrfs_put_root(root); | 
|  | list_add(&cur->list, &cache->useless_node); | 
|  | } else { | 
|  | cur->root = root; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | level = cur->level + 1; | 
|  |  | 
|  | /* Search the tree to find parent blocks referring to the block */ | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  | path->lowest_level = level; | 
|  | ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); | 
|  | path->lowest_level = 0; | 
|  | if (ret < 0) { | 
|  | btrfs_put_root(root); | 
|  | return ret; | 
|  | } | 
|  | if (ret > 0 && path->slots[level] > 0) | 
|  | path->slots[level]--; | 
|  |  | 
|  | eb = path->nodes[level]; | 
|  | if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { | 
|  | btrfs_err(fs_info, | 
|  | "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", | 
|  | cur->bytenr, level - 1, btrfs_root_id(root), | 
|  | tree_key->objectid, tree_key->type, tree_key->offset); | 
|  | btrfs_put_root(root); | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | lower = cur; | 
|  |  | 
|  | /* Add all nodes and edges in the path */ | 
|  | for (; level < BTRFS_MAX_LEVEL; level++) { | 
|  | if (!path->nodes[level]) { | 
|  | ASSERT(btrfs_root_bytenr(&root->root_item) == | 
|  | lower->bytenr); | 
|  | /* Same as previous should_ignore_reloc_root() call */ | 
|  | if (btrfs_should_ignore_reloc_root(root) && | 
|  | cache->is_reloc) { | 
|  | btrfs_put_root(root); | 
|  | list_add(&lower->list, &cache->useless_node); | 
|  | } else { | 
|  | lower->root = root; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | edge = btrfs_backref_alloc_edge(cache); | 
|  | if (!edge) { | 
|  | btrfs_put_root(root); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | eb = path->nodes[level]; | 
|  | rb_node = rb_simple_search(&cache->rb_root, eb->start); | 
|  | if (!rb_node) { | 
|  | upper = btrfs_backref_alloc_node(cache, eb->start, | 
|  | lower->level + 1); | 
|  | if (!upper) { | 
|  | btrfs_put_root(root); | 
|  | btrfs_backref_free_edge(cache, edge); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | upper->owner = btrfs_header_owner(eb); | 
|  |  | 
|  | /* We shouldn't be using backref cache for non shareable roots. */ | 
|  | if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) { | 
|  | btrfs_put_root(root); | 
|  | btrfs_backref_free_edge(cache, edge); | 
|  | btrfs_backref_free_node(cache, upper); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we know the block isn't shared we can avoid | 
|  | * checking its backrefs. | 
|  | */ | 
|  | if (btrfs_block_can_be_shared(trans, root, eb)) | 
|  | upper->checked = 0; | 
|  | else | 
|  | upper->checked = 1; | 
|  |  | 
|  | /* | 
|  | * Add the block to pending list if we need to check its | 
|  | * backrefs, we only do this once while walking up a | 
|  | * tree as we will catch anything else later on. | 
|  | */ | 
|  | if (!upper->checked && need_check) { | 
|  | need_check = false; | 
|  | list_add_tail(&edge->list[UPPER], | 
|  | &cache->pending_edge); | 
|  | } else { | 
|  | if (upper->checked) | 
|  | need_check = true; | 
|  | INIT_LIST_HEAD(&edge->list[UPPER]); | 
|  | } | 
|  | } else { | 
|  | upper = rb_entry(rb_node, struct btrfs_backref_node, | 
|  | rb_node); | 
|  | ASSERT(upper->checked); | 
|  | INIT_LIST_HEAD(&edge->list[UPPER]); | 
|  | if (!upper->owner) | 
|  | upper->owner = btrfs_header_owner(eb); | 
|  | } | 
|  | btrfs_backref_link_edge(edge, lower, upper); | 
|  |  | 
|  | if (rb_node) { | 
|  | btrfs_put_root(root); | 
|  | break; | 
|  | } | 
|  | lower = upper; | 
|  | upper = NULL; | 
|  | } | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add backref node @cur into @cache. | 
|  | * | 
|  | * NOTE: Even if the function returned 0, @cur is not yet cached as its upper | 
|  | *	 links aren't yet bi-directional. Needs to finish such links. | 
|  | *	 Use btrfs_backref_finish_upper_links() to finish such linkage. | 
|  | * | 
|  | * @trans:	Transaction handle. | 
|  | * @path:	Released path for indirect tree backref lookup | 
|  | * @iter:	Released backref iter for extent tree search | 
|  | * @node_key:	The first key of the tree block | 
|  | */ | 
|  | int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_backref_cache *cache, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_backref_iter *iter, | 
|  | struct btrfs_key *node_key, | 
|  | struct btrfs_backref_node *cur) | 
|  | { | 
|  | struct btrfs_backref_edge *edge; | 
|  | struct btrfs_backref_node *exist; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_backref_iter_start(iter, cur->bytenr); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | /* | 
|  | * We skip the first btrfs_tree_block_info, as we don't use the key | 
|  | * stored in it, but fetch it from the tree block | 
|  | */ | 
|  | if (btrfs_backref_has_tree_block_info(iter)) { | 
|  | ret = btrfs_backref_iter_next(iter); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | /* No extra backref? This means the tree block is corrupted */ | 
|  | if (unlikely(ret > 0)) { | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | WARN_ON(cur->checked); | 
|  | if (!list_empty(&cur->upper)) { | 
|  | /* | 
|  | * The backref was added previously when processing backref of | 
|  | * type BTRFS_TREE_BLOCK_REF_KEY | 
|  | */ | 
|  | ASSERT(list_is_singular(&cur->upper)); | 
|  | edge = list_first_entry(&cur->upper, struct btrfs_backref_edge, | 
|  | list[LOWER]); | 
|  | ASSERT(list_empty(&edge->list[UPPER])); | 
|  | exist = edge->node[UPPER]; | 
|  | /* | 
|  | * Add the upper level block to pending list if we need check | 
|  | * its backrefs | 
|  | */ | 
|  | if (!exist->checked) | 
|  | list_add_tail(&edge->list[UPPER], &cache->pending_edge); | 
|  | } else { | 
|  | exist = NULL; | 
|  | } | 
|  |  | 
|  | for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_key key; | 
|  | int type; | 
|  |  | 
|  | cond_resched(); | 
|  | eb = iter->path->nodes[0]; | 
|  |  | 
|  | key.objectid = iter->bytenr; | 
|  | if (btrfs_backref_iter_is_inline_ref(iter)) { | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  |  | 
|  | /* Update key for inline backref */ | 
|  | iref = (struct btrfs_extent_inline_ref *) | 
|  | ((unsigned long)iter->cur_ptr); | 
|  | type = btrfs_get_extent_inline_ref_type(eb, iref, | 
|  | BTRFS_REF_TYPE_BLOCK); | 
|  | if (unlikely(type == BTRFS_REF_TYPE_INVALID)) { | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | key.type = type; | 
|  | key.offset = btrfs_extent_inline_ref_offset(eb, iref); | 
|  | } else { | 
|  | key.type = iter->cur_key.type; | 
|  | key.offset = iter->cur_key.offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parent node found and matches current inline ref, no need to | 
|  | * rebuild this node for this inline ref | 
|  | */ | 
|  | if (exist && | 
|  | ((key.type == BTRFS_TREE_BLOCK_REF_KEY && | 
|  | exist->owner == key.offset) || | 
|  | (key.type == BTRFS_SHARED_BLOCK_REF_KEY && | 
|  | exist->bytenr == key.offset))) { | 
|  | exist = NULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ | 
|  | if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
|  | ret = handle_direct_tree_backref(cache, &key, cur); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { | 
|  | /* | 
|  | * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref | 
|  | * offset means the root objectid. We need to search | 
|  | * the tree to get its parent bytenr. | 
|  | */ | 
|  | ret = handle_indirect_tree_backref(trans, cache, path, | 
|  | &key, node_key, cur); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * Unrecognized tree backref items (if it can pass tree-checker) | 
|  | * would be ignored. | 
|  | */ | 
|  | } | 
|  | ret = 0; | 
|  | cur->checked = 1; | 
|  | WARN_ON(exist); | 
|  | out: | 
|  | btrfs_backref_iter_release(iter); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finish the upwards linkage created by btrfs_backref_add_tree_node() | 
|  | */ | 
|  | int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, | 
|  | struct btrfs_backref_node *start) | 
|  | { | 
|  | struct list_head *useless_node = &cache->useless_node; | 
|  | struct btrfs_backref_edge *edge; | 
|  | struct rb_node *rb_node; | 
|  | LIST_HEAD(pending_edge); | 
|  |  | 
|  | ASSERT(start->checked); | 
|  |  | 
|  | rb_node = rb_simple_insert(&cache->rb_root, &start->simple_node); | 
|  | if (rb_node) | 
|  | btrfs_backref_panic(cache->fs_info, start->bytenr, -EEXIST); | 
|  |  | 
|  | /* | 
|  | * Use breadth first search to iterate all related edges. | 
|  | * | 
|  | * The starting points are all the edges of this node | 
|  | */ | 
|  | list_for_each_entry(edge, &start->upper, list[LOWER]) | 
|  | list_add_tail(&edge->list[UPPER], &pending_edge); | 
|  |  | 
|  | while (!list_empty(&pending_edge)) { | 
|  | struct btrfs_backref_node *upper; | 
|  | struct btrfs_backref_node *lower; | 
|  |  | 
|  | edge = list_first_entry(&pending_edge, | 
|  | struct btrfs_backref_edge, list[UPPER]); | 
|  | list_del_init(&edge->list[UPPER]); | 
|  | upper = edge->node[UPPER]; | 
|  | lower = edge->node[LOWER]; | 
|  |  | 
|  | /* Parent is detached, no need to keep any edges */ | 
|  | if (upper->detached) { | 
|  | list_del(&edge->list[LOWER]); | 
|  | btrfs_backref_free_edge(cache, edge); | 
|  |  | 
|  | /* Lower node is orphan, queue for cleanup */ | 
|  | if (list_empty(&lower->upper)) | 
|  | list_add(&lower->list, useless_node); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All new nodes added in current build_backref_tree() haven't | 
|  | * been linked to the cache rb tree. | 
|  | * So if we have upper->rb_node populated, this means a cache | 
|  | * hit. We only need to link the edge, as @upper and all its | 
|  | * parents have already been linked. | 
|  | */ | 
|  | if (!RB_EMPTY_NODE(&upper->rb_node)) { | 
|  | list_add_tail(&edge->list[UPPER], &upper->lower); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Sanity check, we shouldn't have any unchecked nodes */ | 
|  | if (unlikely(!upper->checked)) { | 
|  | DEBUG_WARN("we should not have any unchecked nodes"); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | rb_node = rb_simple_insert(&cache->rb_root, &upper->simple_node); | 
|  | if (unlikely(rb_node)) { | 
|  | btrfs_backref_panic(cache->fs_info, upper->bytenr, -EEXIST); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | list_add_tail(&edge->list[UPPER], &upper->lower); | 
|  |  | 
|  | /* | 
|  | * Also queue all the parent edges of this uncached node | 
|  | * to finish the upper linkage | 
|  | */ | 
|  | list_for_each_entry(edge, &upper->upper, list[LOWER]) | 
|  | list_add_tail(&edge->list[UPPER], &pending_edge); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, | 
|  | struct btrfs_backref_node *node) | 
|  | { | 
|  | struct btrfs_backref_node *lower; | 
|  | struct btrfs_backref_node *upper; | 
|  | struct btrfs_backref_edge *edge; | 
|  |  | 
|  | while (!list_empty(&cache->useless_node)) { | 
|  | lower = list_first_entry(&cache->useless_node, | 
|  | struct btrfs_backref_node, list); | 
|  | list_del_init(&lower->list); | 
|  | } | 
|  | while (!list_empty(&cache->pending_edge)) { | 
|  | edge = list_first_entry(&cache->pending_edge, | 
|  | struct btrfs_backref_edge, list[UPPER]); | 
|  | list_del(&edge->list[UPPER]); | 
|  | list_del(&edge->list[LOWER]); | 
|  | lower = edge->node[LOWER]; | 
|  | upper = edge->node[UPPER]; | 
|  | btrfs_backref_free_edge(cache, edge); | 
|  |  | 
|  | /* | 
|  | * Lower is no longer linked to any upper backref nodes and | 
|  | * isn't in the cache, we can free it ourselves. | 
|  | */ | 
|  | if (list_empty(&lower->upper) && | 
|  | RB_EMPTY_NODE(&lower->rb_node)) | 
|  | list_add(&lower->list, &cache->useless_node); | 
|  |  | 
|  | if (!RB_EMPTY_NODE(&upper->rb_node)) | 
|  | continue; | 
|  |  | 
|  | /* Add this guy's upper edges to the list to process */ | 
|  | list_for_each_entry(edge, &upper->upper, list[LOWER]) | 
|  | list_add_tail(&edge->list[UPPER], | 
|  | &cache->pending_edge); | 
|  | if (list_empty(&upper->upper)) | 
|  | list_add(&upper->list, &cache->useless_node); | 
|  | } | 
|  |  | 
|  | while (!list_empty(&cache->useless_node)) { | 
|  | lower = list_first_entry(&cache->useless_node, | 
|  | struct btrfs_backref_node, list); | 
|  | list_del_init(&lower->list); | 
|  | if (lower == node) | 
|  | node = NULL; | 
|  | btrfs_backref_drop_node(cache, lower); | 
|  | } | 
|  |  | 
|  | btrfs_backref_cleanup_node(cache, node); | 
|  | ASSERT(list_empty(&cache->useless_node) && | 
|  | list_empty(&cache->pending_edge)); | 
|  | } |