| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Filesystem-level keyring for fscrypt | 
 |  * | 
 |  * Copyright 2019 Google LLC | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file implements management of fscrypt master keys in the | 
 |  * filesystem-level keyring, including the ioctls: | 
 |  * | 
 |  * - FS_IOC_ADD_ENCRYPTION_KEY | 
 |  * - FS_IOC_REMOVE_ENCRYPTION_KEY | 
 |  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS | 
 |  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS | 
 |  * | 
 |  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more | 
 |  * information about these ioctls. | 
 |  */ | 
 |  | 
 | #include <crypto/skcipher.h> | 
 | #include <linux/export.h> | 
 | #include <linux/key-type.h> | 
 | #include <linux/once.h> | 
 | #include <linux/random.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/unaligned.h> | 
 |  | 
 | #include "fscrypt_private.h" | 
 |  | 
 | /* The master encryption keys for a filesystem (->s_master_keys) */ | 
 | struct fscrypt_keyring { | 
 | 	/* | 
 | 	 * Lock that protects ->key_hashtable.  It does *not* protect the | 
 | 	 * fscrypt_master_key structs themselves. | 
 | 	 */ | 
 | 	spinlock_t lock; | 
 |  | 
 | 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ | 
 | 	struct hlist_head key_hashtable[128]; | 
 | }; | 
 |  | 
 | static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) | 
 | { | 
 | 	memzero_explicit(secret, sizeof(*secret)); | 
 | } | 
 |  | 
 | static void move_master_key_secret(struct fscrypt_master_key_secret *dst, | 
 | 				   struct fscrypt_master_key_secret *src) | 
 | { | 
 | 	memcpy(dst, src, sizeof(*dst)); | 
 | 	memzero_explicit(src, sizeof(*src)); | 
 | } | 
 |  | 
 | static void fscrypt_free_master_key(struct rcu_head *head) | 
 | { | 
 | 	struct fscrypt_master_key *mk = | 
 | 		container_of(head, struct fscrypt_master_key, mk_rcu_head); | 
 | 	/* | 
 | 	 * The master key secret and any embedded subkeys should have already | 
 | 	 * been wiped when the last active reference to the fscrypt_master_key | 
 | 	 * struct was dropped; doing it here would be unnecessarily late. | 
 | 	 * Nevertheless, use kfree_sensitive() in case anything was missed. | 
 | 	 */ | 
 | 	kfree_sensitive(mk); | 
 | } | 
 |  | 
 | void fscrypt_put_master_key(struct fscrypt_master_key *mk) | 
 | { | 
 | 	if (!refcount_dec_and_test(&mk->mk_struct_refs)) | 
 | 		return; | 
 | 	/* | 
 | 	 * No structural references left, so free ->mk_users, and also free the | 
 | 	 * fscrypt_master_key struct itself after an RCU grace period ensures | 
 | 	 * that concurrent keyring lookups can no longer find it. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0); | 
 | 	if (mk->mk_users) { | 
 | 		/* Clear the keyring so the quota gets released right away. */ | 
 | 		keyring_clear(mk->mk_users); | 
 | 		key_put(mk->mk_users); | 
 | 		mk->mk_users = NULL; | 
 | 	} | 
 | 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); | 
 | } | 
 |  | 
 | void fscrypt_put_master_key_activeref(struct super_block *sb, | 
 | 				      struct fscrypt_master_key *mk) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	if (!refcount_dec_and_test(&mk->mk_active_refs)) | 
 | 		return; | 
 | 	/* | 
 | 	 * No active references left, so complete the full removal of this | 
 | 	 * fscrypt_master_key struct by removing it from the keyring and | 
 | 	 * destroying any subkeys embedded in it. | 
 | 	 */ | 
 |  | 
 | 	if (WARN_ON_ONCE(!sb->s_master_keys)) | 
 | 		return; | 
 | 	spin_lock(&sb->s_master_keys->lock); | 
 | 	hlist_del_rcu(&mk->mk_node); | 
 | 	spin_unlock(&sb->s_master_keys->lock); | 
 |  | 
 | 	/* | 
 | 	 * ->mk_active_refs == 0 implies that ->mk_present is false and | 
 | 	 * ->mk_decrypted_inodes is empty. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(mk->mk_present); | 
 | 	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes)); | 
 |  | 
 | 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { | 
 | 		fscrypt_destroy_prepared_key( | 
 | 				sb, &mk->mk_direct_keys[i]); | 
 | 		fscrypt_destroy_prepared_key( | 
 | 				sb, &mk->mk_iv_ino_lblk_64_keys[i]); | 
 | 		fscrypt_destroy_prepared_key( | 
 | 				sb, &mk->mk_iv_ino_lblk_32_keys[i]); | 
 | 	} | 
 | 	memzero_explicit(&mk->mk_ino_hash_key, | 
 | 			 sizeof(mk->mk_ino_hash_key)); | 
 | 	mk->mk_ino_hash_key_initialized = false; | 
 |  | 
 | 	/* Drop the structural ref associated with the active refs. */ | 
 | 	fscrypt_put_master_key(mk); | 
 | } | 
 |  | 
 | /* | 
 |  * This transitions the key state from present to incompletely removed, and then | 
 |  * potentially to absent (depending on whether inodes remain). | 
 |  */ | 
 | static void fscrypt_initiate_key_removal(struct super_block *sb, | 
 | 					 struct fscrypt_master_key *mk) | 
 | { | 
 | 	WRITE_ONCE(mk->mk_present, false); | 
 | 	wipe_master_key_secret(&mk->mk_secret); | 
 | 	fscrypt_put_master_key_activeref(sb, mk); | 
 | } | 
 |  | 
 | static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) | 
 | { | 
 | 	if (spec->__reserved) | 
 | 		return false; | 
 | 	return master_key_spec_len(spec) != 0; | 
 | } | 
 |  | 
 | static int fscrypt_user_key_instantiate(struct key *key, | 
 | 					struct key_preparsed_payload *prep) | 
 | { | 
 | 	/* | 
 | 	 * We just charge FSCRYPT_MAX_RAW_KEY_SIZE bytes to the user's key quota | 
 | 	 * for each key, regardless of the exact key size.  The amount of memory | 
 | 	 * actually used is greater than the size of the raw key anyway. | 
 | 	 */ | 
 | 	return key_payload_reserve(key, FSCRYPT_MAX_RAW_KEY_SIZE); | 
 | } | 
 |  | 
 | static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) | 
 | { | 
 | 	seq_puts(m, key->description); | 
 | } | 
 |  | 
 | /* | 
 |  * Type of key in ->mk_users.  Each key of this type represents a particular | 
 |  * user who has added a particular master key. | 
 |  * | 
 |  * Note that the name of this key type really should be something like | 
 |  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen | 
 |  * mainly for simplicity of presentation in /proc/keys when read by a non-root | 
 |  * user.  And it is expected to be rare that a key is actually added by multiple | 
 |  * users, since users should keep their encryption keys confidential. | 
 |  */ | 
 | static struct key_type key_type_fscrypt_user = { | 
 | 	.name			= ".fscrypt", | 
 | 	.instantiate		= fscrypt_user_key_instantiate, | 
 | 	.describe		= fscrypt_user_key_describe, | 
 | }; | 
 |  | 
 | #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\ | 
 | 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ | 
 | 	 CONST_STRLEN("-users") + 1) | 
 |  | 
 | #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\ | 
 | 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) | 
 |  | 
 | static void format_mk_users_keyring_description( | 
 | 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], | 
 | 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) | 
 | { | 
 | 	sprintf(description, "fscrypt-%*phN-users", | 
 | 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); | 
 | } | 
 |  | 
 | static void format_mk_user_description( | 
 | 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], | 
 | 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) | 
 | { | 
 |  | 
 | 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, | 
 | 		mk_identifier, __kuid_val(current_fsuid())); | 
 | } | 
 |  | 
 | /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */ | 
 | static int allocate_filesystem_keyring(struct super_block *sb) | 
 | { | 
 | 	struct fscrypt_keyring *keyring; | 
 |  | 
 | 	if (sb->s_master_keys) | 
 | 		return 0; | 
 |  | 
 | 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); | 
 | 	if (!keyring) | 
 | 		return -ENOMEM; | 
 | 	spin_lock_init(&keyring->lock); | 
 | 	/* | 
 | 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). | 
 | 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that | 
 | 	 * concurrent tasks can ACQUIRE it. | 
 | 	 */ | 
 | 	smp_store_release(&sb->s_master_keys, keyring); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Release all encryption keys that have been added to the filesystem, along | 
 |  * with the keyring that contains them. | 
 |  * | 
 |  * This is called at unmount time, after all potentially-encrypted inodes have | 
 |  * been evicted.  The filesystem's underlying block device(s) are still | 
 |  * available at this time; this is important because after user file accesses | 
 |  * have been allowed, this function may need to evict keys from the keyslots of | 
 |  * an inline crypto engine, which requires the block device(s). | 
 |  */ | 
 | void fscrypt_destroy_keyring(struct super_block *sb) | 
 | { | 
 | 	struct fscrypt_keyring *keyring = sb->s_master_keys; | 
 | 	size_t i; | 
 |  | 
 | 	if (!keyring) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { | 
 | 		struct hlist_head *bucket = &keyring->key_hashtable[i]; | 
 | 		struct fscrypt_master_key *mk; | 
 | 		struct hlist_node *tmp; | 
 |  | 
 | 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { | 
 | 			/* | 
 | 			 * Since all potentially-encrypted inodes were already | 
 | 			 * evicted, every key remaining in the keyring should | 
 | 			 * have an empty inode list, and should only still be in | 
 | 			 * the keyring due to the single active ref associated | 
 | 			 * with ->mk_present.  There should be no structural | 
 | 			 * refs beyond the one associated with the active ref. | 
 | 			 */ | 
 | 			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1); | 
 | 			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1); | 
 | 			WARN_ON_ONCE(!mk->mk_present); | 
 | 			fscrypt_initiate_key_removal(sb, mk); | 
 | 		} | 
 | 	} | 
 | 	kfree_sensitive(keyring); | 
 | 	sb->s_master_keys = NULL; | 
 | } | 
 |  | 
 | static struct hlist_head * | 
 | fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, | 
 | 		       const struct fscrypt_key_specifier *mk_spec) | 
 | { | 
 | 	/* | 
 | 	 * Since key specifiers should be "random" values, it is sufficient to | 
 | 	 * use a trivial hash function that just takes the first several bits of | 
 | 	 * the key specifier. | 
 | 	 */ | 
 | 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); | 
 |  | 
 | 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the specified master key struct in ->s_master_keys and take a structural | 
 |  * ref to it.  The structural ref guarantees that the key struct continues to | 
 |  * exist, but it does *not* guarantee that ->s_master_keys continues to contain | 
 |  * the key struct.  The structural ref needs to be dropped by | 
 |  * fscrypt_put_master_key().  Returns NULL if the key struct is not found. | 
 |  */ | 
 | struct fscrypt_master_key * | 
 | fscrypt_find_master_key(struct super_block *sb, | 
 | 			const struct fscrypt_key_specifier *mk_spec) | 
 | { | 
 | 	struct fscrypt_keyring *keyring; | 
 | 	struct hlist_head *bucket; | 
 | 	struct fscrypt_master_key *mk; | 
 |  | 
 | 	/* | 
 | 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). | 
 | 	 * I.e., another task can publish ->s_master_keys concurrently, | 
 | 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here | 
 | 	 * to safely ACQUIRE the memory the other task published. | 
 | 	 */ | 
 | 	keyring = smp_load_acquire(&sb->s_master_keys); | 
 | 	if (keyring == NULL) | 
 | 		return NULL; /* No keyring yet, so no keys yet. */ | 
 |  | 
 | 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); | 
 | 	rcu_read_lock(); | 
 | 	switch (mk_spec->type) { | 
 | 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: | 
 | 		hlist_for_each_entry_rcu(mk, bucket, mk_node) { | 
 | 			if (mk->mk_spec.type == | 
 | 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && | 
 | 			    memcmp(mk->mk_spec.u.descriptor, | 
 | 				   mk_spec->u.descriptor, | 
 | 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && | 
 | 			    refcount_inc_not_zero(&mk->mk_struct_refs)) | 
 | 				goto out; | 
 | 		} | 
 | 		break; | 
 | 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: | 
 | 		hlist_for_each_entry_rcu(mk, bucket, mk_node) { | 
 | 			if (mk->mk_spec.type == | 
 | 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && | 
 | 			    memcmp(mk->mk_spec.u.identifier, | 
 | 				   mk_spec->u.identifier, | 
 | 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && | 
 | 			    refcount_inc_not_zero(&mk->mk_struct_refs)) | 
 | 				goto out; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	mk = NULL; | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return mk; | 
 | } | 
 |  | 
 | static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) | 
 | { | 
 | 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; | 
 | 	struct key *keyring; | 
 |  | 
 | 	format_mk_users_keyring_description(description, | 
 | 					    mk->mk_spec.u.identifier); | 
 | 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, | 
 | 				current_cred(), KEY_POS_SEARCH | | 
 | 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, | 
 | 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); | 
 | 	if (IS_ERR(keyring)) | 
 | 		return PTR_ERR(keyring); | 
 |  | 
 | 	mk->mk_users = keyring; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the current user's "key" in the master key's ->mk_users. | 
 |  * Returns ERR_PTR(-ENOKEY) if not found. | 
 |  */ | 
 | static struct key *find_master_key_user(struct fscrypt_master_key *mk) | 
 | { | 
 | 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; | 
 | 	key_ref_t keyref; | 
 |  | 
 | 	format_mk_user_description(description, mk->mk_spec.u.identifier); | 
 |  | 
 | 	/* | 
 | 	 * We need to mark the keyring reference as "possessed" so that we | 
 | 	 * acquire permission to search it, via the KEY_POS_SEARCH permission. | 
 | 	 */ | 
 | 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), | 
 | 				&key_type_fscrypt_user, description, false); | 
 | 	if (IS_ERR(keyref)) { | 
 | 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */ | 
 | 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ | 
 | 			keyref = ERR_PTR(-ENOKEY); | 
 | 		return ERR_CAST(keyref); | 
 | 	} | 
 | 	return key_ref_to_ptr(keyref); | 
 | } | 
 |  | 
 | /* | 
 |  * Give the current user a "key" in ->mk_users.  This charges the user's quota | 
 |  * and marks the master key as added by the current user, so that it cannot be | 
 |  * removed by another user with the key.  Either ->mk_sem must be held for | 
 |  * write, or the master key must be still undergoing initialization. | 
 |  */ | 
 | static int add_master_key_user(struct fscrypt_master_key *mk) | 
 | { | 
 | 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; | 
 | 	struct key *mk_user; | 
 | 	int err; | 
 |  | 
 | 	format_mk_user_description(description, mk->mk_spec.u.identifier); | 
 | 	mk_user = key_alloc(&key_type_fscrypt_user, description, | 
 | 			    current_fsuid(), current_gid(), current_cred(), | 
 | 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); | 
 | 	if (IS_ERR(mk_user)) | 
 | 		return PTR_ERR(mk_user); | 
 |  | 
 | 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); | 
 | 	key_put(mk_user); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove the current user's "key" from ->mk_users. | 
 |  * ->mk_sem must be held for write. | 
 |  * | 
 |  * Returns 0 if removed, -ENOKEY if not found, or another -errno code. | 
 |  */ | 
 | static int remove_master_key_user(struct fscrypt_master_key *mk) | 
 | { | 
 | 	struct key *mk_user; | 
 | 	int err; | 
 |  | 
 | 	mk_user = find_master_key_user(mk); | 
 | 	if (IS_ERR(mk_user)) | 
 | 		return PTR_ERR(mk_user); | 
 | 	err = key_unlink(mk->mk_users, mk_user); | 
 | 	key_put(mk_user); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and | 
 |  * insert it into sb->s_master_keys. | 
 |  */ | 
 | static int add_new_master_key(struct super_block *sb, | 
 | 			      struct fscrypt_master_key_secret *secret, | 
 | 			      const struct fscrypt_key_specifier *mk_spec) | 
 | { | 
 | 	struct fscrypt_keyring *keyring = sb->s_master_keys; | 
 | 	struct fscrypt_master_key *mk; | 
 | 	int err; | 
 |  | 
 | 	mk = kzalloc(sizeof(*mk), GFP_KERNEL); | 
 | 	if (!mk) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	init_rwsem(&mk->mk_sem); | 
 | 	refcount_set(&mk->mk_struct_refs, 1); | 
 | 	mk->mk_spec = *mk_spec; | 
 |  | 
 | 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes); | 
 | 	spin_lock_init(&mk->mk_decrypted_inodes_lock); | 
 |  | 
 | 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { | 
 | 		err = allocate_master_key_users_keyring(mk); | 
 | 		if (err) | 
 | 			goto out_put; | 
 | 		err = add_master_key_user(mk); | 
 | 		if (err) | 
 | 			goto out_put; | 
 | 	} | 
 |  | 
 | 	move_master_key_secret(&mk->mk_secret, secret); | 
 | 	mk->mk_present = true; | 
 | 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */ | 
 |  | 
 | 	spin_lock(&keyring->lock); | 
 | 	hlist_add_head_rcu(&mk->mk_node, | 
 | 			   fscrypt_mk_hash_bucket(keyring, mk_spec)); | 
 | 	spin_unlock(&keyring->lock); | 
 | 	return 0; | 
 |  | 
 | out_put: | 
 | 	fscrypt_put_master_key(mk); | 
 | 	return err; | 
 | } | 
 |  | 
 | #define KEY_DEAD	1 | 
 |  | 
 | static int add_existing_master_key(struct fscrypt_master_key *mk, | 
 | 				   struct fscrypt_master_key_secret *secret) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * If the current user is already in ->mk_users, then there's nothing to | 
 | 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is | 
 | 	 * applicable for v1 policy keys, which have NULL ->mk_users.) | 
 | 	 */ | 
 | 	if (mk->mk_users) { | 
 | 		struct key *mk_user = find_master_key_user(mk); | 
 |  | 
 | 		if (mk_user != ERR_PTR(-ENOKEY)) { | 
 | 			if (IS_ERR(mk_user)) | 
 | 				return PTR_ERR(mk_user); | 
 | 			key_put(mk_user); | 
 | 			return 0; | 
 | 		} | 
 | 		err = add_master_key_user(mk); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	/* If the key is incompletely removed, make it present again. */ | 
 | 	if (!mk->mk_present) { | 
 | 		if (!refcount_inc_not_zero(&mk->mk_active_refs)) { | 
 | 			/* | 
 | 			 * Raced with the last active ref being dropped, so the | 
 | 			 * key has become, or is about to become, "absent". | 
 | 			 * Therefore, we need to allocate a new key struct. | 
 | 			 */ | 
 | 			return KEY_DEAD; | 
 | 		} | 
 | 		move_master_key_secret(&mk->mk_secret, secret); | 
 | 		WRITE_ONCE(mk->mk_present, true); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_add_master_key(struct super_block *sb, | 
 | 			     struct fscrypt_master_key_secret *secret, | 
 | 			     const struct fscrypt_key_specifier *mk_spec) | 
 | { | 
 | 	static DEFINE_MUTEX(fscrypt_add_key_mutex); | 
 | 	struct fscrypt_master_key *mk; | 
 | 	int err; | 
 |  | 
 | 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ | 
 |  | 
 | 	mk = fscrypt_find_master_key(sb, mk_spec); | 
 | 	if (!mk) { | 
 | 		/* Didn't find the key in ->s_master_keys.  Add it. */ | 
 | 		err = allocate_filesystem_keyring(sb); | 
 | 		if (!err) | 
 | 			err = add_new_master_key(sb, secret, mk_spec); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Found the key in ->s_master_keys.  Add the user to ->mk_users | 
 | 		 * if needed, and make the key "present" again if possible. | 
 | 		 */ | 
 | 		down_write(&mk->mk_sem); | 
 | 		err = add_existing_master_key(mk, secret); | 
 | 		up_write(&mk->mk_sem); | 
 | 		if (err == KEY_DEAD) { | 
 | 			/* | 
 | 			 * We found a key struct, but it's already been fully | 
 | 			 * removed.  Ignore the old struct and add a new one. | 
 | 			 * fscrypt_add_key_mutex means we don't need to worry | 
 | 			 * about concurrent adds. | 
 | 			 */ | 
 | 			err = add_new_master_key(sb, secret, mk_spec); | 
 | 		} | 
 | 		fscrypt_put_master_key(mk); | 
 | 	} | 
 | 	mutex_unlock(&fscrypt_add_key_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int add_master_key(struct super_block *sb, | 
 | 			  struct fscrypt_master_key_secret *secret, | 
 | 			  struct fscrypt_key_specifier *key_spec) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { | 
 | 		u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]; | 
 | 		u8 *kdf_key = secret->bytes; | 
 | 		unsigned int kdf_key_size = secret->size; | 
 | 		u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY; | 
 |  | 
 | 		/* | 
 | 		 * For raw keys, the fscrypt master key is used directly as the | 
 | 		 * fscrypt KDF key.  For hardware-wrapped keys, we have to pass | 
 | 		 * the master key to the hardware to derive the KDF key, which | 
 | 		 * is then only used to derive non-file-contents subkeys. | 
 | 		 */ | 
 | 		if (secret->is_hw_wrapped) { | 
 | 			err = fscrypt_derive_sw_secret(sb, secret->bytes, | 
 | 						       secret->size, sw_secret); | 
 | 			if (err) | 
 | 				return err; | 
 | 			kdf_key = sw_secret; | 
 | 			kdf_key_size = sizeof(sw_secret); | 
 | 			/* | 
 | 			 * To avoid weird behavior if someone manages to | 
 | 			 * determine sw_secret and add it as a raw key, ensure | 
 | 			 * that hardware-wrapped keys and raw keys will have | 
 | 			 * different key identifiers by deriving their key | 
 | 			 * identifiers using different KDF contexts. | 
 | 			 */ | 
 | 			keyid_kdf_ctx = | 
 | 				HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY; | 
 | 		} | 
 | 		fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size); | 
 | 		/* | 
 | 		 * Now that the KDF context is initialized, the raw KDF key is | 
 | 		 * no longer needed. | 
 | 		 */ | 
 | 		memzero_explicit(kdf_key, kdf_key_size); | 
 |  | 
 | 		/* Calculate the key identifier */ | 
 | 		fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0, | 
 | 				    key_spec->u.identifier, | 
 | 				    FSCRYPT_KEY_IDENTIFIER_SIZE); | 
 | 	} | 
 | 	return do_add_master_key(sb, secret, key_spec); | 
 | } | 
 |  | 
 | /* | 
 |  * Validate the size of an fscrypt master key being added.  Note that this is | 
 |  * just an initial check, as we don't know which ciphers will be used yet. | 
 |  * There is a stricter size check later when the key is actually used by a file. | 
 |  */ | 
 | static inline bool fscrypt_valid_key_size(size_t size, u32 add_key_flags) | 
 | { | 
 | 	u32 max_size = (add_key_flags & FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) ? | 
 | 		       FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : | 
 | 		       FSCRYPT_MAX_RAW_KEY_SIZE; | 
 |  | 
 | 	return size >= FSCRYPT_MIN_KEY_SIZE && size <= max_size; | 
 | } | 
 |  | 
 | static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) | 
 | { | 
 | 	const struct fscrypt_provisioning_key_payload *payload = prep->data; | 
 |  | 
 | 	if (prep->datalen < sizeof(*payload)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!fscrypt_valid_key_size(prep->datalen - sizeof(*payload), | 
 | 				    payload->flags)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && | 
 | 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (payload->flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) | 
 | 		return -EINVAL; | 
 |  | 
 | 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); | 
 | 	if (!prep->payload.data[0]) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	prep->quotalen = prep->datalen; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void fscrypt_provisioning_key_free_preparse( | 
 | 					struct key_preparsed_payload *prep) | 
 | { | 
 | 	kfree_sensitive(prep->payload.data[0]); | 
 | } | 
 |  | 
 | static void fscrypt_provisioning_key_describe(const struct key *key, | 
 | 					      struct seq_file *m) | 
 | { | 
 | 	seq_puts(m, key->description); | 
 | 	if (key_is_positive(key)) { | 
 | 		const struct fscrypt_provisioning_key_payload *payload = | 
 | 			key->payload.data[0]; | 
 |  | 
 | 		seq_printf(m, ": %u [%u]", key->datalen, payload->type); | 
 | 	} | 
 | } | 
 |  | 
 | static void fscrypt_provisioning_key_destroy(struct key *key) | 
 | { | 
 | 	kfree_sensitive(key->payload.data[0]); | 
 | } | 
 |  | 
 | static struct key_type key_type_fscrypt_provisioning = { | 
 | 	.name			= "fscrypt-provisioning", | 
 | 	.preparse		= fscrypt_provisioning_key_preparse, | 
 | 	.free_preparse		= fscrypt_provisioning_key_free_preparse, | 
 | 	.instantiate		= generic_key_instantiate, | 
 | 	.describe		= fscrypt_provisioning_key_describe, | 
 | 	.destroy		= fscrypt_provisioning_key_destroy, | 
 | }; | 
 |  | 
 | /* | 
 |  * Retrieve the key from the Linux keyring key specified by 'key_id', and store | 
 |  * it into 'secret'. | 
 |  * | 
 |  * The key must be of type "fscrypt-provisioning" and must have the 'type' and | 
 |  * 'flags' field of the payload set to the given values, indicating that the key | 
 |  * is intended for use for the specified purpose.  We don't use the "logon" key | 
 |  * type because there's no way to completely restrict the use of such keys; they | 
 |  * can be used by any kernel API that accepts "logon" keys and doesn't require a | 
 |  * specific service prefix. | 
 |  * | 
 |  * The ability to specify the key via Linux keyring key is intended for cases | 
 |  * where userspace needs to re-add keys after the filesystem is unmounted and | 
 |  * re-mounted.  Most users should just provide the key directly instead. | 
 |  */ | 
 | static int get_keyring_key(u32 key_id, u32 type, u32 flags, | 
 | 			   struct fscrypt_master_key_secret *secret) | 
 | { | 
 | 	key_ref_t ref; | 
 | 	struct key *key; | 
 | 	const struct fscrypt_provisioning_key_payload *payload; | 
 | 	int err; | 
 |  | 
 | 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); | 
 | 	if (IS_ERR(ref)) | 
 | 		return PTR_ERR(ref); | 
 | 	key = key_ref_to_ptr(ref); | 
 |  | 
 | 	if (key->type != &key_type_fscrypt_provisioning) | 
 | 		goto bad_key; | 
 | 	payload = key->payload.data[0]; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. | 
 | 	 * Similarly, don't allow hardware-wrapped keys to be used as | 
 | 	 * non-hardware-wrapped keys and vice versa. | 
 | 	 */ | 
 | 	if (payload->type != type || payload->flags != flags) | 
 | 		goto bad_key; | 
 |  | 
 | 	secret->size = key->datalen - sizeof(*payload); | 
 | 	memcpy(secret->bytes, payload->raw, secret->size); | 
 | 	err = 0; | 
 | 	goto out_put; | 
 |  | 
 | bad_key: | 
 | 	err = -EKEYREJECTED; | 
 | out_put: | 
 | 	key_ref_put(ref); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Add a master encryption key to the filesystem, causing all files which were | 
 |  * encrypted with it to appear "unlocked" (decrypted) when accessed. | 
 |  * | 
 |  * When adding a key for use by v1 encryption policies, this ioctl is | 
 |  * privileged, and userspace must provide the 'key_descriptor'. | 
 |  * | 
 |  * When adding a key for use by v2+ encryption policies, this ioctl is | 
 |  * unprivileged.  This is needed, in general, to allow non-root users to use | 
 |  * encryption without encountering the visibility problems of process-subscribed | 
 |  * keyrings and the inability to properly remove keys.  This works by having | 
 |  * each key identified by its cryptographically secure hash --- the | 
 |  * 'key_identifier'.  The cryptographic hash ensures that a malicious user | 
 |  * cannot add the wrong key for a given identifier.  Furthermore, each added key | 
 |  * is charged to the appropriate user's quota for the keyrings service, which | 
 |  * prevents a malicious user from adding too many keys.  Finally, we forbid a | 
 |  * user from removing a key while other users have added it too, which prevents | 
 |  * a user who knows another user's key from causing a denial-of-service by | 
 |  * removing it at an inopportune time.  (We tolerate that a user who knows a key | 
 |  * can prevent other users from removing it.) | 
 |  * | 
 |  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of | 
 |  * Documentation/filesystems/fscrypt.rst. | 
 |  */ | 
 | int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) | 
 | { | 
 | 	struct super_block *sb = file_inode(filp)->i_sb; | 
 | 	struct fscrypt_add_key_arg __user *uarg = _uarg; | 
 | 	struct fscrypt_add_key_arg arg; | 
 | 	struct fscrypt_master_key_secret secret; | 
 | 	int err; | 
 |  | 
 | 	if (copy_from_user(&arg, uarg, sizeof(arg))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!valid_key_spec(&arg.key_spec)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Only root can add keys that are identified by an arbitrary descriptor | 
 | 	 * rather than by a cryptographic hash --- since otherwise a malicious | 
 | 	 * user could add the wrong key. | 
 | 	 */ | 
 | 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && | 
 | 	    !capable(CAP_SYS_ADMIN)) | 
 | 		return -EACCES; | 
 |  | 
 | 	memset(&secret, 0, sizeof(secret)); | 
 |  | 
 | 	if (arg.flags) { | 
 | 		if (arg.flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) | 
 | 			return -EINVAL; | 
 | 		if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) | 
 | 			return -EINVAL; | 
 | 		secret.is_hw_wrapped = true; | 
 | 	} | 
 |  | 
 | 	if (arg.key_id) { | 
 | 		if (arg.raw_size != 0) | 
 | 			return -EINVAL; | 
 | 		err = get_keyring_key(arg.key_id, arg.key_spec.type, arg.flags, | 
 | 				      &secret); | 
 | 		if (err) | 
 | 			goto out_wipe_secret; | 
 | 	} else { | 
 | 		if (!fscrypt_valid_key_size(arg.raw_size, arg.flags)) | 
 | 			return -EINVAL; | 
 | 		secret.size = arg.raw_size; | 
 | 		err = -EFAULT; | 
 | 		if (copy_from_user(secret.bytes, uarg->raw, secret.size)) | 
 | 			goto out_wipe_secret; | 
 | 	} | 
 |  | 
 | 	err = add_master_key(sb, &secret, &arg.key_spec); | 
 | 	if (err) | 
 | 		goto out_wipe_secret; | 
 |  | 
 | 	/* Return the key identifier to userspace, if applicable */ | 
 | 	err = -EFAULT; | 
 | 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && | 
 | 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, | 
 | 			 FSCRYPT_KEY_IDENTIFIER_SIZE)) | 
 | 		goto out_wipe_secret; | 
 | 	err = 0; | 
 | out_wipe_secret: | 
 | 	wipe_master_key_secret(&secret); | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); | 
 |  | 
 | static void | 
 | fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) | 
 | { | 
 | 	static u8 test_key[FSCRYPT_MAX_RAW_KEY_SIZE]; | 
 |  | 
 | 	get_random_once(test_key, sizeof(test_key)); | 
 |  | 
 | 	memset(secret, 0, sizeof(*secret)); | 
 | 	secret->size = sizeof(test_key); | 
 | 	memcpy(secret->bytes, test_key, sizeof(test_key)); | 
 | } | 
 |  | 
 | void fscrypt_get_test_dummy_key_identifier( | 
 | 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) | 
 | { | 
 | 	struct fscrypt_master_key_secret secret; | 
 |  | 
 | 	fscrypt_get_test_dummy_secret(&secret); | 
 | 	fscrypt_init_hkdf(&secret.hkdf, secret.bytes, secret.size); | 
 | 	fscrypt_hkdf_expand(&secret.hkdf, | 
 | 			    HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY, NULL, 0, | 
 | 			    key_identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); | 
 | 	wipe_master_key_secret(&secret); | 
 | } | 
 |  | 
 | /** | 
 |  * fscrypt_add_test_dummy_key() - add the test dummy encryption key | 
 |  * @sb: the filesystem instance to add the key to | 
 |  * @key_spec: the key specifier of the test dummy encryption key | 
 |  * | 
 |  * Add the key for the test_dummy_encryption mount option to the filesystem.  To | 
 |  * prevent misuse of this mount option, a per-boot random key is used instead of | 
 |  * a hardcoded one.  This makes it so that any encrypted files created using | 
 |  * this option won't be accessible after a reboot. | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | int fscrypt_add_test_dummy_key(struct super_block *sb, | 
 | 			       struct fscrypt_key_specifier *key_spec) | 
 | { | 
 | 	struct fscrypt_master_key_secret secret; | 
 | 	int err; | 
 |  | 
 | 	fscrypt_get_test_dummy_secret(&secret); | 
 | 	err = add_master_key(sb, &secret, key_spec); | 
 | 	wipe_master_key_secret(&secret); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that the current user has added a master key with the given identifier | 
 |  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting | 
 |  * their files using some other user's key which they don't actually know. | 
 |  * Cryptographically this isn't much of a problem, but the semantics of this | 
 |  * would be a bit weird, so it's best to just forbid it. | 
 |  * | 
 |  * The system administrator (CAP_FOWNER) can override this, which should be | 
 |  * enough for any use cases where encryption policies are being set using keys | 
 |  * that were chosen ahead of time but aren't available at the moment. | 
 |  * | 
 |  * Note that the key may have already removed by the time this returns, but | 
 |  * that's okay; we just care whether the key was there at some point. | 
 |  * | 
 |  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code | 
 |  */ | 
 | int fscrypt_verify_key_added(struct super_block *sb, | 
 | 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) | 
 | { | 
 | 	struct fscrypt_key_specifier mk_spec; | 
 | 	struct fscrypt_master_key *mk; | 
 | 	struct key *mk_user; | 
 | 	int err; | 
 |  | 
 | 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; | 
 | 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); | 
 |  | 
 | 	mk = fscrypt_find_master_key(sb, &mk_spec); | 
 | 	if (!mk) { | 
 | 		err = -ENOKEY; | 
 | 		goto out; | 
 | 	} | 
 | 	down_read(&mk->mk_sem); | 
 | 	mk_user = find_master_key_user(mk); | 
 | 	if (IS_ERR(mk_user)) { | 
 | 		err = PTR_ERR(mk_user); | 
 | 	} else { | 
 | 		key_put(mk_user); | 
 | 		err = 0; | 
 | 	} | 
 | 	up_read(&mk->mk_sem); | 
 | 	fscrypt_put_master_key(mk); | 
 | out: | 
 | 	if (err == -ENOKEY && capable(CAP_FOWNER)) | 
 | 		err = 0; | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Try to evict the inode's dentries from the dentry cache.  If the inode is a | 
 |  * directory, then it can have at most one dentry; however, that dentry may be | 
 |  * pinned by child dentries, so first try to evict the children too. | 
 |  */ | 
 | static void shrink_dcache_inode(struct inode *inode) | 
 | { | 
 | 	struct dentry *dentry; | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode)) { | 
 | 		dentry = d_find_any_alias(inode); | 
 | 		if (dentry) { | 
 | 			shrink_dcache_parent(dentry); | 
 | 			dput(dentry); | 
 | 		} | 
 | 	} | 
 | 	d_prune_aliases(inode); | 
 | } | 
 |  | 
 | static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) | 
 | { | 
 | 	struct fscrypt_inode_info *ci; | 
 | 	struct inode *inode; | 
 | 	struct inode *toput_inode = NULL; | 
 |  | 
 | 	spin_lock(&mk->mk_decrypted_inodes_lock); | 
 |  | 
 | 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { | 
 | 		inode = ci->ci_inode; | 
 | 		spin_lock(&inode->i_lock); | 
 | 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			continue; | 
 | 		} | 
 | 		__iget(inode); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		spin_unlock(&mk->mk_decrypted_inodes_lock); | 
 |  | 
 | 		shrink_dcache_inode(inode); | 
 | 		iput(toput_inode); | 
 | 		toput_inode = inode; | 
 |  | 
 | 		spin_lock(&mk->mk_decrypted_inodes_lock); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&mk->mk_decrypted_inodes_lock); | 
 | 	iput(toput_inode); | 
 | } | 
 |  | 
 | static int check_for_busy_inodes(struct super_block *sb, | 
 | 				 struct fscrypt_master_key *mk) | 
 | { | 
 | 	struct list_head *pos; | 
 | 	size_t busy_count = 0; | 
 | 	unsigned long ino; | 
 | 	char ino_str[50] = ""; | 
 |  | 
 | 	spin_lock(&mk->mk_decrypted_inodes_lock); | 
 |  | 
 | 	list_for_each(pos, &mk->mk_decrypted_inodes) | 
 | 		busy_count++; | 
 |  | 
 | 	if (busy_count == 0) { | 
 | 		spin_unlock(&mk->mk_decrypted_inodes_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	{ | 
 | 		/* select an example file to show for debugging purposes */ | 
 | 		struct inode *inode = | 
 | 			list_first_entry(&mk->mk_decrypted_inodes, | 
 | 					 struct fscrypt_inode_info, | 
 | 					 ci_master_key_link)->ci_inode; | 
 | 		ino = inode->i_ino; | 
 | 	} | 
 | 	spin_unlock(&mk->mk_decrypted_inodes_lock); | 
 |  | 
 | 	/* If the inode is currently being created, ino may still be 0. */ | 
 | 	if (ino) | 
 | 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); | 
 |  | 
 | 	fscrypt_warn(NULL, | 
 | 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s", | 
 | 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), | 
 | 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, | 
 | 		     ino_str); | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | static int try_to_lock_encrypted_files(struct super_block *sb, | 
 | 				       struct fscrypt_master_key *mk) | 
 | { | 
 | 	int err1; | 
 | 	int err2; | 
 |  | 
 | 	/* | 
 | 	 * An inode can't be evicted while it is dirty or has dirty pages. | 
 | 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. | 
 | 	 * | 
 | 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but | 
 | 	 * it works, and it's more important to minimize the amount of caches we | 
 | 	 * drop than the amount of data we sync.  Also, unprivileged users can | 
 | 	 * already call sync_filesystem() via sys_syncfs() or sys_sync(). | 
 | 	 */ | 
 | 	down_read(&sb->s_umount); | 
 | 	err1 = sync_filesystem(sb); | 
 | 	up_read(&sb->s_umount); | 
 | 	/* If a sync error occurs, still try to evict as much as possible. */ | 
 |  | 
 | 	/* | 
 | 	 * Inodes are pinned by their dentries, so we have to evict their | 
 | 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill | 
 | 	 * and inappropriate for use by unprivileged users.  So instead go | 
 | 	 * through the inodes' alias lists and try to evict each dentry. | 
 | 	 */ | 
 | 	evict_dentries_for_decrypted_inodes(mk); | 
 |  | 
 | 	/* | 
 | 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in | 
 | 	 * the list; any inodes for which that dropped the last reference will | 
 | 	 * have been evicted due to fscrypt_drop_inode() detecting the key | 
 | 	 * removal and telling the VFS to evict the inode.  So to finish, we | 
 | 	 * just need to check whether any inodes couldn't be evicted. | 
 | 	 */ | 
 | 	err2 = check_for_busy_inodes(sb, mk); | 
 |  | 
 | 	return err1 ?: err2; | 
 | } | 
 |  | 
 | /* | 
 |  * Try to remove an fscrypt master encryption key. | 
 |  * | 
 |  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's | 
 |  * claim to the key, then removes the key itself if no other users have claims. | 
 |  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the | 
 |  * key itself. | 
 |  * | 
 |  * To "remove the key itself", first we transition the key to the "incompletely | 
 |  * removed" state, so that no more inodes can be unlocked with it.  Then we try | 
 |  * to evict all cached inodes that had been unlocked with the key. | 
 |  * | 
 |  * If all inodes were evicted, then we unlink the fscrypt_master_key from the | 
 |  * keyring.  Otherwise it remains in the keyring in the "incompletely removed" | 
 |  * state where it tracks the list of remaining inodes.  Userspace can execute | 
 |  * the ioctl again later to retry eviction, or alternatively can re-add the key. | 
 |  * | 
 |  * For more details, see the "Removing keys" section of | 
 |  * Documentation/filesystems/fscrypt.rst. | 
 |  */ | 
 | static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) | 
 | { | 
 | 	struct super_block *sb = file_inode(filp)->i_sb; | 
 | 	struct fscrypt_remove_key_arg __user *uarg = _uarg; | 
 | 	struct fscrypt_remove_key_arg arg; | 
 | 	struct fscrypt_master_key *mk; | 
 | 	u32 status_flags = 0; | 
 | 	int err; | 
 | 	bool inodes_remain; | 
 |  | 
 | 	if (copy_from_user(&arg, uarg, sizeof(arg))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!valid_key_spec(&arg.key_spec)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Only root can add and remove keys that are identified by an arbitrary | 
 | 	 * descriptor rather than by a cryptographic hash. | 
 | 	 */ | 
 | 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && | 
 | 	    !capable(CAP_SYS_ADMIN)) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* Find the key being removed. */ | 
 | 	mk = fscrypt_find_master_key(sb, &arg.key_spec); | 
 | 	if (!mk) | 
 | 		return -ENOKEY; | 
 | 	down_write(&mk->mk_sem); | 
 |  | 
 | 	/* If relevant, remove current user's (or all users) claim to the key */ | 
 | 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { | 
 | 		if (all_users) | 
 | 			err = keyring_clear(mk->mk_users); | 
 | 		else | 
 | 			err = remove_master_key_user(mk); | 
 | 		if (err) { | 
 | 			up_write(&mk->mk_sem); | 
 | 			goto out_put_key; | 
 | 		} | 
 | 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) { | 
 | 			/* | 
 | 			 * Other users have still added the key too.  We removed | 
 | 			 * the current user's claim to the key, but we still | 
 | 			 * can't remove the key itself. | 
 | 			 */ | 
 | 			status_flags |= | 
 | 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; | 
 | 			err = 0; | 
 | 			up_write(&mk->mk_sem); | 
 | 			goto out_put_key; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* No user claims remaining.  Initiate removal of the key. */ | 
 | 	err = -ENOKEY; | 
 | 	if (mk->mk_present) { | 
 | 		fscrypt_initiate_key_removal(sb, mk); | 
 | 		err = 0; | 
 | 	} | 
 | 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0; | 
 | 	up_write(&mk->mk_sem); | 
 |  | 
 | 	if (inodes_remain) { | 
 | 		/* Some inodes still reference this key; try to evict them. */ | 
 | 		err = try_to_lock_encrypted_files(sb, mk); | 
 | 		if (err == -EBUSY) { | 
 | 			status_flags |= | 
 | 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; | 
 | 			err = 0; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * We return 0 if we successfully did something: removed a claim to the | 
 | 	 * key, initiated removal of the key, or tried locking the files again. | 
 | 	 * Users need to check the informational status flags if they care | 
 | 	 * whether the key has been fully removed including all files locked. | 
 | 	 */ | 
 | out_put_key: | 
 | 	fscrypt_put_master_key(mk); | 
 | 	if (err == 0) | 
 | 		err = put_user(status_flags, &uarg->removal_status_flags); | 
 | 	return err; | 
 | } | 
 |  | 
 | int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) | 
 | { | 
 | 	return do_remove_key(filp, uarg, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); | 
 |  | 
 | int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) | 
 | { | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EACCES; | 
 | 	return do_remove_key(filp, uarg, true); | 
 | } | 
 | EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); | 
 |  | 
 | /* | 
 |  * Retrieve the status of an fscrypt master encryption key. | 
 |  * | 
 |  * We set ->status to indicate whether the key is absent, present, or | 
 |  * incompletely removed.  (For an explanation of what these statuses mean and | 
 |  * how they are represented internally, see struct fscrypt_master_key.)  This | 
 |  * field allows applications to easily determine the status of an encrypted | 
 |  * directory without using a hack such as trying to open a regular file in it | 
 |  * (which can confuse the "incompletely removed" status with absent or present). | 
 |  * | 
 |  * In addition, for v2 policy keys we allow applications to determine, via | 
 |  * ->status_flags and ->user_count, whether the key has been added by the | 
 |  * current user, by other users, or by both.  Most applications should not need | 
 |  * this, since ordinarily only one user should know a given key.  However, if a | 
 |  * secret key is shared by multiple users, applications may wish to add an | 
 |  * already-present key to prevent other users from removing it.  This ioctl can | 
 |  * be used to check whether that really is the case before the work is done to | 
 |  * add the key --- which might e.g. require prompting the user for a passphrase. | 
 |  * | 
 |  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of | 
 |  * Documentation/filesystems/fscrypt.rst. | 
 |  */ | 
 | int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) | 
 | { | 
 | 	struct super_block *sb = file_inode(filp)->i_sb; | 
 | 	struct fscrypt_get_key_status_arg arg; | 
 | 	struct fscrypt_master_key *mk; | 
 | 	int err; | 
 |  | 
 | 	if (copy_from_user(&arg, uarg, sizeof(arg))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!valid_key_spec(&arg.key_spec)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	arg.status_flags = 0; | 
 | 	arg.user_count = 0; | 
 | 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); | 
 |  | 
 | 	mk = fscrypt_find_master_key(sb, &arg.key_spec); | 
 | 	if (!mk) { | 
 | 		arg.status = FSCRYPT_KEY_STATUS_ABSENT; | 
 | 		err = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	down_read(&mk->mk_sem); | 
 |  | 
 | 	if (!mk->mk_present) { | 
 | 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ? | 
 | 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : | 
 | 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; | 
 | 		err = 0; | 
 | 		goto out_release_key; | 
 | 	} | 
 |  | 
 | 	arg.status = FSCRYPT_KEY_STATUS_PRESENT; | 
 | 	if (mk->mk_users) { | 
 | 		struct key *mk_user; | 
 |  | 
 | 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; | 
 | 		mk_user = find_master_key_user(mk); | 
 | 		if (!IS_ERR(mk_user)) { | 
 | 			arg.status_flags |= | 
 | 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; | 
 | 			key_put(mk_user); | 
 | 		} else if (mk_user != ERR_PTR(-ENOKEY)) { | 
 | 			err = PTR_ERR(mk_user); | 
 | 			goto out_release_key; | 
 | 		} | 
 | 	} | 
 | 	err = 0; | 
 | out_release_key: | 
 | 	up_read(&mk->mk_sem); | 
 | 	fscrypt_put_master_key(mk); | 
 | out: | 
 | 	if (!err && copy_to_user(uarg, &arg, sizeof(arg))) | 
 | 		err = -EFAULT; | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); | 
 |  | 
 | int __init fscrypt_init_keyring(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = register_key_type(&key_type_fscrypt_user); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = register_key_type(&key_type_fscrypt_provisioning); | 
 | 	if (err) | 
 | 		goto err_unregister_fscrypt_user; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_unregister_fscrypt_user: | 
 | 	unregister_key_type(&key_type_fscrypt_user); | 
 | 	return err; | 
 | } |