|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/fs/pnode.c | 
|  | * | 
|  | * (C) Copyright IBM Corporation 2005. | 
|  | *	Author : Ram Pai (linuxram@us.ibm.com) | 
|  | */ | 
|  | #include <linux/mnt_namespace.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <uapi/linux/mount.h> | 
|  | #include "internal.h" | 
|  | #include "pnode.h" | 
|  |  | 
|  | /* return the next shared peer mount of @p */ | 
|  | static inline struct mount *next_peer(struct mount *p) | 
|  | { | 
|  | return list_entry(p->mnt_share.next, struct mount, mnt_share); | 
|  | } | 
|  |  | 
|  | static inline struct mount *first_slave(struct mount *p) | 
|  | { | 
|  | return hlist_entry(p->mnt_slave_list.first, struct mount, mnt_slave); | 
|  | } | 
|  |  | 
|  | static inline struct mount *next_slave(struct mount *p) | 
|  | { | 
|  | return hlist_entry(p->mnt_slave.next, struct mount, mnt_slave); | 
|  | } | 
|  |  | 
|  | /* locks: namespace_shared && is_mounted(mnt) */ | 
|  | static struct mount *get_peer_under_root(struct mount *mnt, | 
|  | struct mnt_namespace *ns, | 
|  | const struct path *root) | 
|  | { | 
|  | struct mount *m = mnt; | 
|  |  | 
|  | do { | 
|  | /* Check the namespace first for optimization */ | 
|  | if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) | 
|  | return m; | 
|  |  | 
|  | m = next_peer(m); | 
|  | } while (m != mnt); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get ID of closest dominating peer group having a representative | 
|  | * under the given root. | 
|  | * | 
|  | * locks: namespace_shared | 
|  | */ | 
|  | int get_dominating_id(struct mount *mnt, const struct path *root) | 
|  | { | 
|  | struct mount *m; | 
|  |  | 
|  | for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { | 
|  | struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); | 
|  | if (d) | 
|  | return d->mnt_group_id; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool will_be_unmounted(struct mount *m) | 
|  | { | 
|  | return m->mnt.mnt_flags & MNT_UMOUNT; | 
|  | } | 
|  |  | 
|  | static void transfer_propagation(struct mount *mnt, struct mount *to) | 
|  | { | 
|  | struct hlist_node *p = NULL, *n; | 
|  | struct mount *m; | 
|  |  | 
|  | hlist_for_each_entry_safe(m, n, &mnt->mnt_slave_list, mnt_slave) { | 
|  | m->mnt_master = to; | 
|  | if (!to) | 
|  | hlist_del_init(&m->mnt_slave); | 
|  | else | 
|  | p = &m->mnt_slave; | 
|  | } | 
|  | if (p) | 
|  | hlist_splice_init(&mnt->mnt_slave_list, p, &to->mnt_slave_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * EXCL[namespace_sem] | 
|  | */ | 
|  | void change_mnt_propagation(struct mount *mnt, int type) | 
|  | { | 
|  | struct mount *m = mnt->mnt_master; | 
|  |  | 
|  | if (type == MS_SHARED) { | 
|  | set_mnt_shared(mnt); | 
|  | return; | 
|  | } | 
|  | if (IS_MNT_SHARED(mnt)) { | 
|  | if (list_empty(&mnt->mnt_share)) { | 
|  | mnt_release_group_id(mnt); | 
|  | } else { | 
|  | m = next_peer(mnt); | 
|  | list_del_init(&mnt->mnt_share); | 
|  | mnt->mnt_group_id = 0; | 
|  | } | 
|  | CLEAR_MNT_SHARED(mnt); | 
|  | transfer_propagation(mnt, m); | 
|  | } | 
|  | hlist_del_init(&mnt->mnt_slave); | 
|  | if (type == MS_SLAVE) { | 
|  | mnt->mnt_master = m; | 
|  | if (m) | 
|  | hlist_add_head(&mnt->mnt_slave, &m->mnt_slave_list); | 
|  | } else { | 
|  | mnt->mnt_master = NULL; | 
|  | if (type == MS_UNBINDABLE) | 
|  | mnt->mnt_t_flags |= T_UNBINDABLE; | 
|  | else | 
|  | mnt->mnt_t_flags &= ~T_UNBINDABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct mount *trace_transfers(struct mount *m) | 
|  | { | 
|  | while (1) { | 
|  | struct mount *next = next_peer(m); | 
|  |  | 
|  | if (next != m) { | 
|  | list_del_init(&m->mnt_share); | 
|  | m->mnt_group_id = 0; | 
|  | m->mnt_master = next; | 
|  | } else { | 
|  | if (IS_MNT_SHARED(m)) | 
|  | mnt_release_group_id(m); | 
|  | next = m->mnt_master; | 
|  | } | 
|  | hlist_del_init(&m->mnt_slave); | 
|  | CLEAR_MNT_SHARED(m); | 
|  | SET_MNT_MARK(m); | 
|  |  | 
|  | if (!next || !will_be_unmounted(next)) | 
|  | return next; | 
|  | if (IS_MNT_MARKED(next)) | 
|  | return next->mnt_master; | 
|  | m = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_destinations(struct mount *m, struct mount *master) | 
|  | { | 
|  | struct mount *next; | 
|  |  | 
|  | while ((next = m->mnt_master) != master) { | 
|  | m->mnt_master = master; | 
|  | m = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | void bulk_make_private(struct list_head *set) | 
|  | { | 
|  | struct mount *m; | 
|  |  | 
|  | list_for_each_entry(m, set, mnt_list) | 
|  | if (!IS_MNT_MARKED(m)) | 
|  | set_destinations(m, trace_transfers(m)); | 
|  |  | 
|  | list_for_each_entry(m, set, mnt_list) { | 
|  | transfer_propagation(m, m->mnt_master); | 
|  | m->mnt_master = NULL; | 
|  | CLEAR_MNT_MARK(m); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct mount *__propagation_next(struct mount *m, | 
|  | struct mount *origin) | 
|  | { | 
|  | while (1) { | 
|  | struct mount *master = m->mnt_master; | 
|  |  | 
|  | if (master == origin->mnt_master) { | 
|  | struct mount *next = next_peer(m); | 
|  | return (next == origin) ? NULL : next; | 
|  | } else if (m->mnt_slave.next) | 
|  | return next_slave(m); | 
|  |  | 
|  | /* back at master */ | 
|  | m = master; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get the next mount in the propagation tree. | 
|  | * @m: the mount seen last | 
|  | * @origin: the original mount from where the tree walk initiated | 
|  | * | 
|  | * Note that peer groups form contiguous segments of slave lists. | 
|  | * We rely on that in get_source() to be able to find out if | 
|  | * vfsmount found while iterating with propagation_next() is | 
|  | * a peer of one we'd found earlier. | 
|  | */ | 
|  | static struct mount *propagation_next(struct mount *m, | 
|  | struct mount *origin) | 
|  | { | 
|  | /* are there any slaves of this mount? */ | 
|  | if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) | 
|  | return first_slave(m); | 
|  |  | 
|  | return __propagation_next(m, origin); | 
|  | } | 
|  |  | 
|  | static struct mount *skip_propagation_subtree(struct mount *m, | 
|  | struct mount *origin) | 
|  | { | 
|  | /* | 
|  | * Advance m past everything that gets propagation from it. | 
|  | */ | 
|  | struct mount *p = __propagation_next(m, origin); | 
|  |  | 
|  | while (p && peers(m, p)) | 
|  | p = __propagation_next(p, origin); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct mount *next_group(struct mount *m, struct mount *origin) | 
|  | { | 
|  | while (1) { | 
|  | while (1) { | 
|  | struct mount *next; | 
|  | if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) | 
|  | return first_slave(m); | 
|  | next = next_peer(m); | 
|  | if (m->mnt_group_id == origin->mnt_group_id) { | 
|  | if (next == origin) | 
|  | return NULL; | 
|  | } else if (m->mnt_slave.next != &next->mnt_slave) | 
|  | break; | 
|  | m = next; | 
|  | } | 
|  | /* m is the last peer */ | 
|  | while (1) { | 
|  | struct mount *master = m->mnt_master; | 
|  | if (m->mnt_slave.next) | 
|  | return next_slave(m); | 
|  | m = next_peer(master); | 
|  | if (master->mnt_group_id == origin->mnt_group_id) | 
|  | break; | 
|  | if (master->mnt_slave.next == &m->mnt_slave) | 
|  | break; | 
|  | m = master; | 
|  | } | 
|  | if (m == origin) | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool need_secondary(struct mount *m, struct mountpoint *dest_mp) | 
|  | { | 
|  | /* skip ones added by this propagate_mnt() */ | 
|  | if (IS_MNT_NEW(m)) | 
|  | return false; | 
|  | /* skip if mountpoint isn't visible in m */ | 
|  | if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) | 
|  | return false; | 
|  | /* skip if m is in the anon_ns */ | 
|  | if (is_anon_ns(m->mnt_ns)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct mount *find_master(struct mount *m, | 
|  | struct mount *last_copy, | 
|  | struct mount *original) | 
|  | { | 
|  | struct mount *p; | 
|  |  | 
|  | // ascend until there's a copy for something with the same master | 
|  | for (;;) { | 
|  | p = m->mnt_master; | 
|  | if (!p || IS_MNT_MARKED(p)) | 
|  | break; | 
|  | m = p; | 
|  | } | 
|  | while (!peers(last_copy, original)) { | 
|  | struct mount *parent = last_copy->mnt_parent; | 
|  | if (parent->mnt_master == p) { | 
|  | if (!peers(parent, m)) | 
|  | last_copy = last_copy->mnt_master; | 
|  | break; | 
|  | } | 
|  | last_copy = last_copy->mnt_master; | 
|  | } | 
|  | return last_copy; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * propagate_mnt() - create secondary copies for tree attachment | 
|  | * @dest_mnt:    destination mount. | 
|  | * @dest_mp:     destination mountpoint. | 
|  | * @source_mnt:  source mount. | 
|  | * @tree_list:   list of secondaries to be attached. | 
|  | * | 
|  | * Create secondary copies for attaching a tree with root @source_mnt | 
|  | * at mount @dest_mnt with mountpoint @dest_mp.  Link all new mounts | 
|  | * into a propagation graph.  Set mountpoints for all secondaries, | 
|  | * link their roots into @tree_list via ->mnt_hash. | 
|  | */ | 
|  | int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, | 
|  | struct mount *source_mnt, struct hlist_head *tree_list) | 
|  | { | 
|  | struct mount *m, *n, *copy, *this; | 
|  | int err = 0, type; | 
|  |  | 
|  | if (dest_mnt->mnt_master) | 
|  | SET_MNT_MARK(dest_mnt->mnt_master); | 
|  |  | 
|  | /* iterate over peer groups, depth first */ | 
|  | for (m = dest_mnt; m && !err; m = next_group(m, dest_mnt)) { | 
|  | if (m == dest_mnt) { // have one for dest_mnt itself | 
|  | copy = source_mnt; | 
|  | type = CL_MAKE_SHARED; | 
|  | n = next_peer(m); | 
|  | if (n == m) | 
|  | continue; | 
|  | } else { | 
|  | type = CL_SLAVE; | 
|  | /* beginning of peer group among the slaves? */ | 
|  | if (IS_MNT_SHARED(m)) | 
|  | type |= CL_MAKE_SHARED; | 
|  | n = m; | 
|  | } | 
|  | do { | 
|  | if (!need_secondary(n, dest_mp)) | 
|  | continue; | 
|  | if (type & CL_SLAVE) // first in this peer group | 
|  | copy = find_master(n, copy, source_mnt); | 
|  | this = copy_tree(copy, copy->mnt.mnt_root, type); | 
|  | if (IS_ERR(this)) { | 
|  | err = PTR_ERR(this); | 
|  | break; | 
|  | } | 
|  | scoped_guard(mount_locked_reader) | 
|  | mnt_set_mountpoint(n, dest_mp, this); | 
|  | if (n->mnt_master) | 
|  | SET_MNT_MARK(n->mnt_master); | 
|  | copy = this; | 
|  | hlist_add_head(&this->mnt_hash, tree_list); | 
|  | err = count_mounts(n->mnt_ns, this); | 
|  | if (err) | 
|  | break; | 
|  | type = CL_MAKE_SHARED; | 
|  | } while ((n = next_peer(n)) != m); | 
|  | } | 
|  |  | 
|  | hlist_for_each_entry(n, tree_list, mnt_hash) { | 
|  | m = n->mnt_parent; | 
|  | if (m->mnt_master) | 
|  | CLEAR_MNT_MARK(m->mnt_master); | 
|  | } | 
|  | if (dest_mnt->mnt_master) | 
|  | CLEAR_MNT_MARK(dest_mnt->mnt_master); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return true if the refcount is greater than count | 
|  | */ | 
|  | static inline int do_refcount_check(struct mount *mnt, int count) | 
|  | { | 
|  | return mnt_get_count(mnt) > count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * propagation_would_overmount - check whether propagation from @from | 
|  | *                               would overmount @to | 
|  | * @from: shared mount | 
|  | * @to:   mount to check | 
|  | * @mp:   future mountpoint of @to on @from | 
|  | * | 
|  | * If @from propagates mounts to @to, @from and @to must either be peers | 
|  | * or one of the masters in the hierarchy of masters of @to must be a | 
|  | * peer of @from. | 
|  | * | 
|  | * If the root of the @to mount is equal to the future mountpoint @mp of | 
|  | * the @to mount on @from then @to will be overmounted by whatever is | 
|  | * propagated to it. | 
|  | * | 
|  | * Context: This function expects namespace_lock() to be held and that | 
|  | *          @mp is stable. | 
|  | * Return: If @from overmounts @to, true is returned, false if not. | 
|  | */ | 
|  | bool propagation_would_overmount(const struct mount *from, | 
|  | const struct mount *to, | 
|  | const struct mountpoint *mp) | 
|  | { | 
|  | if (!IS_MNT_SHARED(from)) | 
|  | return false; | 
|  |  | 
|  | if (to->mnt.mnt_root != mp->m_dentry) | 
|  | return false; | 
|  |  | 
|  | for (const struct mount *m = to; m; m = m->mnt_master) { | 
|  | if (peers(from, m)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check if the mount 'mnt' can be unmounted successfully. | 
|  | * @mnt: the mount to be checked for unmount | 
|  | * NOTE: unmounting 'mnt' would naturally propagate to all | 
|  | * other mounts its parent propagates to. | 
|  | * Check if any of these mounts that **do not have submounts** | 
|  | * have more references than 'refcnt'. If so return busy. | 
|  | * | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | int propagate_mount_busy(struct mount *mnt, int refcnt) | 
|  | { | 
|  | struct mount *parent = mnt->mnt_parent; | 
|  |  | 
|  | /* | 
|  | * quickly check if the current mount can be unmounted. | 
|  | * If not, we don't have to go checking for all other | 
|  | * mounts | 
|  | */ | 
|  | if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) | 
|  | return 1; | 
|  |  | 
|  | if (mnt == parent) | 
|  | return 0; | 
|  |  | 
|  | for (struct mount *m = propagation_next(parent, parent); m; | 
|  | m = propagation_next(m, parent)) { | 
|  | struct list_head *head; | 
|  | struct mount *child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); | 
|  |  | 
|  | if (!child) | 
|  | continue; | 
|  |  | 
|  | head = &child->mnt_mounts; | 
|  | if (!list_empty(head)) { | 
|  | /* | 
|  | * a mount that covers child completely wouldn't prevent | 
|  | * it being pulled out; any other would. | 
|  | */ | 
|  | if (!list_is_singular(head) || !child->overmount) | 
|  | continue; | 
|  | } | 
|  | if (do_refcount_check(child, 1)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear MNT_LOCKED when it can be shown to be safe. | 
|  | * | 
|  | * mount_lock lock must be held for write | 
|  | */ | 
|  | void propagate_mount_unlock(struct mount *mnt) | 
|  | { | 
|  | struct mount *parent = mnt->mnt_parent; | 
|  | struct mount *m, *child; | 
|  |  | 
|  | BUG_ON(parent == mnt); | 
|  |  | 
|  | for (m = propagation_next(parent, parent); m; | 
|  | m = propagation_next(m, parent)) { | 
|  | child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); | 
|  | if (child) | 
|  | child->mnt.mnt_flags &= ~MNT_LOCKED; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool is_candidate(struct mount *m) | 
|  | { | 
|  | return m->mnt_t_flags & T_UMOUNT_CANDIDATE; | 
|  | } | 
|  |  | 
|  | static void umount_one(struct mount *m, struct list_head *to_umount) | 
|  | { | 
|  | m->mnt.mnt_flags |= MNT_UMOUNT; | 
|  | list_del_init(&m->mnt_child); | 
|  | move_from_ns(m); | 
|  | list_add_tail(&m->mnt_list, to_umount); | 
|  | } | 
|  |  | 
|  | static void remove_from_candidate_list(struct mount *m) | 
|  | { | 
|  | m->mnt_t_flags &= ~(T_MARKED | T_UMOUNT_CANDIDATE); | 
|  | list_del_init(&m->mnt_list); | 
|  | } | 
|  |  | 
|  | static void gather_candidates(struct list_head *set, | 
|  | struct list_head *candidates) | 
|  | { | 
|  | struct mount *m, *p, *q; | 
|  |  | 
|  | list_for_each_entry(m, set, mnt_list) { | 
|  | if (is_candidate(m)) | 
|  | continue; | 
|  | m->mnt_t_flags |= T_UMOUNT_CANDIDATE; | 
|  | p = m->mnt_parent; | 
|  | q = propagation_next(p, p); | 
|  | while (q) { | 
|  | struct mount *child = __lookup_mnt(&q->mnt, | 
|  | m->mnt_mountpoint); | 
|  | if (child) { | 
|  | /* | 
|  | * We might've already run into this one.  That | 
|  | * must've happened on earlier iteration of the | 
|  | * outer loop; in that case we can skip those | 
|  | * parents that get propagation from q - there | 
|  | * will be nothing new on those as well. | 
|  | */ | 
|  | if (is_candidate(child)) { | 
|  | q = skip_propagation_subtree(q, p); | 
|  | continue; | 
|  | } | 
|  | child->mnt_t_flags |= T_UMOUNT_CANDIDATE; | 
|  | if (!will_be_unmounted(child)) | 
|  | list_add(&child->mnt_list, candidates); | 
|  | } | 
|  | q = propagation_next(q, p); | 
|  | } | 
|  | } | 
|  | list_for_each_entry(m, set, mnt_list) | 
|  | m->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We know that some child of @m can't be unmounted.  In all places where the | 
|  | * chain of descent of @m has child not overmounting the root of parent, | 
|  | * the parent can't be unmounted either. | 
|  | */ | 
|  | static void trim_ancestors(struct mount *m) | 
|  | { | 
|  | struct mount *p; | 
|  |  | 
|  | for (p = m->mnt_parent; is_candidate(p); m = p, p = p->mnt_parent) { | 
|  | if (IS_MNT_MARKED(m))	// all candidates beneath are overmounts | 
|  | return; | 
|  | SET_MNT_MARK(m); | 
|  | if (m != p->overmount) | 
|  | p->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find and exclude all umount candidates forbidden by @m | 
|  | * (see Documentation/filesystems/propagate_umount.txt) | 
|  | * If we can immediately tell that @m is OK to unmount (unlocked | 
|  | * and all children are already committed to unmounting) commit | 
|  | * to unmounting it. | 
|  | * Only @m itself might be taken from the candidates list; | 
|  | * anything found by trim_ancestors() is marked non-candidate | 
|  | * and left on the list. | 
|  | */ | 
|  | static void trim_one(struct mount *m, struct list_head *to_umount) | 
|  | { | 
|  | bool remove_this = false, found = false, umount_this = false; | 
|  | struct mount *n; | 
|  |  | 
|  | if (!is_candidate(m)) { // trim_ancestors() left it on list | 
|  | remove_from_candidate_list(m); | 
|  | return; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(n, &m->mnt_mounts, mnt_child) { | 
|  | if (!is_candidate(n)) { | 
|  | found = true; | 
|  | if (n != m->overmount) { | 
|  | remove_this = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (found) { | 
|  | trim_ancestors(m); | 
|  | } else if (!IS_MNT_LOCKED(m) && list_empty(&m->mnt_mounts)) { | 
|  | remove_this = true; | 
|  | umount_this = true; | 
|  | } | 
|  | if (remove_this) { | 
|  | remove_from_candidate_list(m); | 
|  | if (umount_this) | 
|  | umount_one(m, to_umount); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handle_locked(struct mount *m, struct list_head *to_umount) | 
|  | { | 
|  | struct mount *cutoff = m, *p; | 
|  |  | 
|  | if (!is_candidate(m)) { // trim_ancestors() left it on list | 
|  | remove_from_candidate_list(m); | 
|  | return; | 
|  | } | 
|  | for (p = m; is_candidate(p); p = p->mnt_parent) { | 
|  | remove_from_candidate_list(p); | 
|  | if (!IS_MNT_LOCKED(p)) | 
|  | cutoff = p->mnt_parent; | 
|  | } | 
|  | if (will_be_unmounted(p)) | 
|  | cutoff = p; | 
|  | while (m != cutoff) { | 
|  | umount_one(m, to_umount); | 
|  | m = m->mnt_parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @m is not to going away, and it overmounts the top of a stack of mounts | 
|  | * that are going away.  We know that all of those are fully overmounted | 
|  | * by the one above (@m being the topmost of the chain), so @m can be slid | 
|  | * in place where the bottom of the stack is attached. | 
|  | * | 
|  | * NOTE: here we temporarily violate a constraint - two mounts end up with | 
|  | * the same parent and mountpoint; that will be remedied as soon as we | 
|  | * return from propagate_umount() - its caller (umount_tree()) will detach | 
|  | * the stack from the parent it (and now @m) is attached to.  umount_tree() | 
|  | * might choose to keep unmounted pieces stuck to each other, but it always | 
|  | * detaches them from the mounts that remain in the tree. | 
|  | */ | 
|  | static void reparent(struct mount *m) | 
|  | { | 
|  | struct mount *p = m; | 
|  | struct mountpoint *mp; | 
|  |  | 
|  | do { | 
|  | mp = p->mnt_mp; | 
|  | p = p->mnt_parent; | 
|  | } while (will_be_unmounted(p)); | 
|  |  | 
|  | mnt_change_mountpoint(p, mp, m); | 
|  | mnt_notify_add(m); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * propagate_umount - apply propagation rules to the set of mounts for umount() | 
|  | * @set: the list of mounts to be unmounted. | 
|  | * | 
|  | * Collect all mounts that receive propagation from the mount in @set and have | 
|  | * no obstacles to being unmounted.  Add these additional mounts to the set. | 
|  | * | 
|  | * See Documentation/filesystems/propagate_umount.txt if you do anything in | 
|  | * this area. | 
|  | * | 
|  | * Locks held: | 
|  | * mount_lock (write_seqlock), namespace_sem (exclusive). | 
|  | */ | 
|  | void propagate_umount(struct list_head *set) | 
|  | { | 
|  | struct mount *m, *p; | 
|  | LIST_HEAD(to_umount);	// committed to unmounting | 
|  | LIST_HEAD(candidates);	// undecided umount candidates | 
|  |  | 
|  | // collect all candidates | 
|  | gather_candidates(set, &candidates); | 
|  |  | 
|  | // reduce the set until it's non-shifting | 
|  | list_for_each_entry_safe(m, p, &candidates, mnt_list) | 
|  | trim_one(m, &to_umount); | 
|  |  | 
|  | // ... and non-revealing | 
|  | while (!list_empty(&candidates)) { | 
|  | m = list_first_entry(&candidates,struct mount, mnt_list); | 
|  | handle_locked(m, &to_umount); | 
|  | } | 
|  |  | 
|  | // now to_umount consists of all acceptable candidates | 
|  | // deal with reparenting of surviving overmounts on those | 
|  | list_for_each_entry(m, &to_umount, mnt_list) { | 
|  | struct mount *over = m->overmount; | 
|  | if (over && !will_be_unmounted(over)) | 
|  | reparent(over); | 
|  | } | 
|  |  | 
|  | // and fold them into the set | 
|  | list_splice_tail_init(&to_umount, set); | 
|  | } |