|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/iversion.h> | 
|  | #include "ctree.h" | 
|  | #include "fs.h" | 
|  | #include "messages.h" | 
|  | #include "compression.h" | 
|  | #include "delalloc-space.h" | 
|  | #include "disk-io.h" | 
|  | #include "reflink.h" | 
|  | #include "transaction.h" | 
|  | #include "subpage.h" | 
|  | #include "accessors.h" | 
|  | #include "file-item.h" | 
|  | #include "file.h" | 
|  | #include "super.h" | 
|  |  | 
|  | #define BTRFS_MAX_DEDUPE_LEN	SZ_16M | 
|  |  | 
|  | static int clone_finish_inode_update(struct btrfs_trans_handle *trans, | 
|  | struct inode *inode, | 
|  | u64 endoff, | 
|  | const u64 destoff, | 
|  | const u64 olen, | 
|  | int no_time_update) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | inode_inc_iversion(inode); | 
|  | if (!no_time_update) { | 
|  | inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); | 
|  | } | 
|  | /* | 
|  | * We round up to the block size at eof when determining which | 
|  | * extents to clone above, but shouldn't round up the file size. | 
|  | */ | 
|  | if (endoff > destoff + olen) | 
|  | endoff = destoff + olen; | 
|  | if (endoff > inode->i_size) { | 
|  | i_size_write(inode, endoff); | 
|  | btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); | 
|  | } | 
|  |  | 
|  | ret = btrfs_update_inode(trans, BTRFS_I(inode)); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  | return btrfs_end_transaction(trans); | 
|  | } | 
|  |  | 
|  | static int copy_inline_to_page(struct btrfs_inode *inode, | 
|  | const u64 file_offset, | 
|  | char *inline_data, | 
|  | const u64 size, | 
|  | const u64 datal, | 
|  | const u8 comp_type) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | const u32 block_size = fs_info->sectorsize; | 
|  | const u64 range_end = file_offset + block_size - 1; | 
|  | const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0); | 
|  | char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0); | 
|  | struct extent_changeset *data_reserved = NULL; | 
|  | struct folio *folio = NULL; | 
|  | struct address_space *mapping = inode->vfs_inode.i_mapping; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(file_offset, block_size)); | 
|  |  | 
|  | /* | 
|  | * We have flushed and locked the ranges of the source and destination | 
|  | * inodes, we also have locked the inodes, so we are safe to do a | 
|  | * reservation here. Also we must not do the reservation while holding | 
|  | * a transaction open, otherwise we would deadlock. | 
|  | */ | 
|  | ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset, | 
|  | block_size); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | folio = __filemap_get_folio(mapping, file_offset >> PAGE_SHIFT, | 
|  | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, | 
|  | btrfs_alloc_write_mask(mapping)); | 
|  | if (IS_ERR(folio)) { | 
|  | ret = PTR_ERR(folio); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ret = set_folio_extent_mapped(folio); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | btrfs_clear_extent_bit(&inode->io_tree, file_offset, range_end, | 
|  | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, NULL); | 
|  | ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * After dirtying the page our caller will need to start a transaction, | 
|  | * and if we are low on metadata free space, that can cause flushing of | 
|  | * delalloc for all inodes in order to get metadata space released. | 
|  | * However we are holding the range locked for the whole duration of | 
|  | * the clone/dedupe operation, so we may deadlock if that happens and no | 
|  | * other task releases enough space. So mark this inode as not being | 
|  | * possible to flush to avoid such deadlock. We will clear that flag | 
|  | * when we finish cloning all extents, since a transaction is started | 
|  | * after finding each extent to clone. | 
|  | */ | 
|  | set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags); | 
|  |  | 
|  | if (comp_type == BTRFS_COMPRESS_NONE) { | 
|  | memcpy_to_folio(folio, offset_in_folio(folio, file_offset), data_start, | 
|  | datal); | 
|  | } else { | 
|  | ret = btrfs_decompress(comp_type, data_start, folio, | 
|  | offset_in_folio(folio, file_offset), | 
|  | inline_size, datal); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | flush_dcache_folio(folio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If our inline data is smaller then the block/page size, then the | 
|  | * remaining of the block/page is equivalent to zeroes. We had something | 
|  | * like the following done: | 
|  | * | 
|  | * $ xfs_io -f -c "pwrite -S 0xab 0 500" file | 
|  | * $ sync  # (or fsync) | 
|  | * $ xfs_io -c "falloc 0 4K" file | 
|  | * $ xfs_io -c "pwrite -S 0xcd 4K 4K" | 
|  | * | 
|  | * So what's in the range [500, 4095] corresponds to zeroes. | 
|  | */ | 
|  | if (datal < block_size) | 
|  | folio_zero_range(folio, datal, block_size - datal); | 
|  |  | 
|  | btrfs_folio_set_uptodate(fs_info, folio, file_offset, block_size); | 
|  | btrfs_folio_clear_checked(fs_info, folio, file_offset, block_size); | 
|  | btrfs_folio_set_dirty(fs_info, folio, file_offset, block_size); | 
|  | out_unlock: | 
|  | if (!IS_ERR(folio)) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | } | 
|  | if (ret) | 
|  | btrfs_delalloc_release_space(inode, data_reserved, file_offset, | 
|  | block_size, true); | 
|  | btrfs_delalloc_release_extents(inode, block_size); | 
|  | out: | 
|  | extent_changeset_free(data_reserved); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deal with cloning of inline extents. We try to copy the inline extent from | 
|  | * the source inode to destination inode when possible. When not possible we | 
|  | * copy the inline extent's data into the respective page of the inode. | 
|  | */ | 
|  | static int clone_copy_inline_extent(struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *new_key, | 
|  | const u64 drop_start, | 
|  | const u64 datal, | 
|  | const u64 size, | 
|  | const u8 comp_type, | 
|  | char *inline_data, | 
|  | struct btrfs_trans_handle **trans_out) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | const u64 aligned_end = ALIGN(new_key->offset + datal, | 
|  | fs_info->sectorsize); | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct btrfs_drop_extents_args drop_args = { 0 }; | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | if (new_key->offset > 0) { | 
|  | ret = copy_inline_to_page(inode, new_key->offset, | 
|  | inline_data, size, datal, comp_type); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = 0; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret > 0) { | 
|  | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret > 0) | 
|  | goto copy_inline_extent; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid == btrfs_ino(inode) && | 
|  | key.type == BTRFS_EXTENT_DATA_KEY) { | 
|  | /* | 
|  | * There's an implicit hole at file offset 0, copy the | 
|  | * inline extent's data to the page. | 
|  | */ | 
|  | ASSERT(key.offset > 0); | 
|  | goto copy_to_page; | 
|  | } | 
|  | } else if (i_size_read(&inode->vfs_inode) <= datal) { | 
|  | struct btrfs_file_extent_item *ei; | 
|  |  | 
|  | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | /* | 
|  | * If it's an inline extent replace it with the source inline | 
|  | * extent, otherwise copy the source inline extent data into | 
|  | * the respective page at the destination inode. | 
|  | */ | 
|  | if (btrfs_file_extent_type(path->nodes[0], ei) == | 
|  | BTRFS_FILE_EXTENT_INLINE) | 
|  | goto copy_inline_extent; | 
|  |  | 
|  | goto copy_to_page; | 
|  | } | 
|  |  | 
|  | copy_inline_extent: | 
|  | /* | 
|  | * We have no extent items, or we have an extent at offset 0 which may | 
|  | * or may not be inlined. All these cases are dealt the same way. | 
|  | */ | 
|  | if (i_size_read(&inode->vfs_inode) > datal) { | 
|  | /* | 
|  | * At the destination offset 0 we have either a hole, a regular | 
|  | * extent or an inline extent larger then the one we want to | 
|  | * clone. Deal with all these cases by copying the inline extent | 
|  | * data into the respective page at the destination inode. | 
|  | */ | 
|  | goto copy_to_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release path before starting a new transaction so we don't hold locks | 
|  | * that would confuse lockdep. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  | /* | 
|  | * If we end up here it means were copy the inline extent into a leaf | 
|  | * of the destination inode. We know we will drop or adjust at most one | 
|  | * extent item in the destination root. | 
|  | * | 
|  | * 1 unit - adjusting old extent (we may have to split it) | 
|  | * 1 unit - add new extent | 
|  | * 1 unit - inode update | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 3); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | goto out; | 
|  | } | 
|  | drop_args.path = path; | 
|  | drop_args.start = drop_start; | 
|  | drop_args.end = aligned_end; | 
|  | drop_args.drop_cache = true; | 
|  | ret = btrfs_drop_extents(trans, root, inode, &drop_args); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | ret = btrfs_insert_empty_item(trans, root, path, new_key, size); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | write_extent_buffer(path->nodes[0], inline_data, | 
|  | btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]), | 
|  | size); | 
|  | btrfs_update_inode_bytes(inode, datal, drop_args.bytes_found); | 
|  | btrfs_set_inode_full_sync(inode); | 
|  | ret = btrfs_inode_set_file_extent_range(inode, 0, aligned_end); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | out: | 
|  | if (!ret && !trans) { | 
|  | /* | 
|  | * No transaction here means we copied the inline extent into a | 
|  | * page of the destination inode. | 
|  | * | 
|  | * 1 unit to update inode item | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | } | 
|  | } | 
|  | if (ret && trans) | 
|  | btrfs_end_transaction(trans); | 
|  | if (!ret) | 
|  | *trans_out = trans; | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | copy_to_page: | 
|  | /* | 
|  | * Release our path because we don't need it anymore and also because | 
|  | * copy_inline_to_page() needs to reserve data and metadata, which may | 
|  | * need to flush delalloc when we are low on available space and | 
|  | * therefore cause a deadlock if writeback of an inline extent needs to | 
|  | * write to the same leaf or an ordered extent completion needs to write | 
|  | * to the same leaf. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = copy_inline_to_page(inode, new_key->offset, | 
|  | inline_data, size, datal, comp_type); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clone a range from inode file to another. | 
|  | * | 
|  | * @src:             Inode to clone from | 
|  | * @inode:           Inode to clone to | 
|  | * @off:             Offset within source to start clone from | 
|  | * @olen:            Original length, passed by user, of range to clone | 
|  | * @olen_aligned:    Block-aligned value of olen | 
|  | * @destoff:         Offset within @inode to start clone | 
|  | * @no_time_update:  Whether to update mtime/ctime on the target inode | 
|  | */ | 
|  | static int btrfs_clone(struct inode *src, struct inode *inode, | 
|  | const u64 off, const u64 olen, const u64 olen_aligned, | 
|  | const u64 destoff, int no_time_update) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
|  | struct btrfs_path *path = NULL; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_trans_handle *trans; | 
|  | char *buf = NULL; | 
|  | struct btrfs_key key; | 
|  | u32 nritems; | 
|  | int slot; | 
|  | int ret; | 
|  | const u64 len = olen_aligned; | 
|  | u64 last_dest_end = destoff; | 
|  | u64 prev_extent_end = off; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | kvfree(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | /* Clone data */ | 
|  | key.objectid = btrfs_ino(BTRFS_I(src)); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = off; | 
|  |  | 
|  | while (1) { | 
|  | struct btrfs_file_extent_item *extent; | 
|  | u64 extent_gen; | 
|  | int type; | 
|  | u32 size; | 
|  | struct btrfs_key new_key; | 
|  | u64 disko = 0, diskl = 0; | 
|  | u64 datao = 0, datal = 0; | 
|  | u8 comp; | 
|  | u64 drop_start; | 
|  |  | 
|  | /* Note the key will change type as we walk through the tree */ | 
|  | ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, | 
|  | 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | /* | 
|  | * First search, if no extent item that starts at offset off was | 
|  | * found but the previous item is an extent item, it's possible | 
|  | * it might overlap our target range, therefore process it. | 
|  | */ | 
|  | if (key.offset == off && ret > 0 && path->slots[0] > 0) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0] - 1); | 
|  | if (key.type == BTRFS_EXTENT_DATA_KEY) | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | process_slot: | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(BTRFS_I(src)->root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) | 
|  | break; | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.type > BTRFS_EXTENT_DATA_KEY || | 
|  | key.objectid != btrfs_ino(BTRFS_I(src))) | 
|  | break; | 
|  |  | 
|  | ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); | 
|  |  | 
|  | extent = btrfs_item_ptr(leaf, slot, | 
|  | struct btrfs_file_extent_item); | 
|  | extent_gen = btrfs_file_extent_generation(leaf, extent); | 
|  | comp = btrfs_file_extent_compression(leaf, extent); | 
|  | type = btrfs_file_extent_type(leaf, extent); | 
|  | if (type == BTRFS_FILE_EXTENT_REG || | 
|  | type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | disko = btrfs_file_extent_disk_bytenr(leaf, extent); | 
|  | diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); | 
|  | datao = btrfs_file_extent_offset(leaf, extent); | 
|  | datal = btrfs_file_extent_num_bytes(leaf, extent); | 
|  | } else if (type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | /* Take upper bound, may be compressed */ | 
|  | datal = btrfs_file_extent_ram_bytes(leaf, extent); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The first search might have left us at an extent item that | 
|  | * ends before our target range's start, can happen if we have | 
|  | * holes and NO_HOLES feature enabled. | 
|  | * | 
|  | * Subsequent searches may leave us on a file range we have | 
|  | * processed before - this happens due to a race with ordered | 
|  | * extent completion for a file range that is outside our source | 
|  | * range, but that range was part of a file extent item that | 
|  | * also covered a leading part of our source range. | 
|  | */ | 
|  | if (key.offset + datal <= prev_extent_end) { | 
|  | path->slots[0]++; | 
|  | goto process_slot; | 
|  | } else if (key.offset >= off + len) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | prev_extent_end = key.offset + datal; | 
|  | size = btrfs_item_size(leaf, slot); | 
|  | read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), | 
|  | size); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | memcpy(&new_key, &key, sizeof(new_key)); | 
|  | new_key.objectid = btrfs_ino(BTRFS_I(inode)); | 
|  | if (off <= key.offset) | 
|  | new_key.offset = key.offset + destoff - off; | 
|  | else | 
|  | new_key.offset = destoff; | 
|  |  | 
|  | /* | 
|  | * Deal with a hole that doesn't have an extent item that | 
|  | * represents it (NO_HOLES feature enabled). | 
|  | * This hole is either in the middle of the cloning range or at | 
|  | * the beginning (fully overlaps it or partially overlaps it). | 
|  | */ | 
|  | if (new_key.offset != last_dest_end) | 
|  | drop_start = last_dest_end; | 
|  | else | 
|  | drop_start = new_key.offset; | 
|  |  | 
|  | if (type == BTRFS_FILE_EXTENT_REG || | 
|  | type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | struct btrfs_replace_extent_info clone_info; | 
|  |  | 
|  | /* | 
|  | *    a  | --- range to clone ---|  b | 
|  | * | ------------- extent ------------- | | 
|  | */ | 
|  |  | 
|  | /* Subtract range b */ | 
|  | if (key.offset + datal > off + len) | 
|  | datal = off + len - key.offset; | 
|  |  | 
|  | /* Subtract range a */ | 
|  | if (off > key.offset) { | 
|  | datao += off - key.offset; | 
|  | datal -= off - key.offset; | 
|  | } | 
|  |  | 
|  | clone_info.disk_offset = disko; | 
|  | clone_info.disk_len = diskl; | 
|  | clone_info.data_offset = datao; | 
|  | clone_info.data_len = datal; | 
|  | clone_info.file_offset = new_key.offset; | 
|  | clone_info.extent_buf = buf; | 
|  | clone_info.is_new_extent = false; | 
|  | clone_info.update_times = !no_time_update; | 
|  | ret = btrfs_replace_file_extents(BTRFS_I(inode), path, | 
|  | drop_start, new_key.offset + datal - 1, | 
|  | &clone_info, &trans); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | ASSERT(type == BTRFS_FILE_EXTENT_INLINE); | 
|  | /* | 
|  | * Inline extents always have to start at file offset 0 | 
|  | * and can never be bigger then the sector size. We can | 
|  | * never clone only parts of an inline extent, since all | 
|  | * reflink operations must start at a sector size aligned | 
|  | * offset, and the length must be aligned too or end at | 
|  | * the i_size (which implies the whole inlined data). | 
|  | */ | 
|  | ASSERT(key.offset == 0); | 
|  | ASSERT(datal <= fs_info->sectorsize); | 
|  | if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) || | 
|  | WARN_ON(key.offset != 0) || | 
|  | WARN_ON(datal > fs_info->sectorsize)) { | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = clone_copy_inline_extent(BTRFS_I(inode), path, &new_key, | 
|  | drop_start, datal, size, | 
|  | comp, buf, &trans); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Whenever we share an extent we update the last_reflink_trans | 
|  | * of each inode to the current transaction. This is needed to | 
|  | * make sure fsync does not log multiple checksum items with | 
|  | * overlapping ranges (because some extent items might refer | 
|  | * only to sections of the original extent). For the destination | 
|  | * inode we do this regardless of the generation of the extents | 
|  | * or even if they are inline extents or explicit holes, to make | 
|  | * sure a full fsync does not skip them. For the source inode, | 
|  | * we only need to update last_reflink_trans in case it's a new | 
|  | * extent that is not a hole or an inline extent, to deal with | 
|  | * the checksums problem on fsync. | 
|  | */ | 
|  | if (extent_gen == trans->transid && disko > 0) | 
|  | BTRFS_I(src)->last_reflink_trans = trans->transid; | 
|  |  | 
|  | BTRFS_I(inode)->last_reflink_trans = trans->transid; | 
|  |  | 
|  | last_dest_end = ALIGN(new_key.offset + datal, | 
|  | fs_info->sectorsize); | 
|  | ret = clone_finish_inode_update(trans, inode, last_dest_end, | 
|  | destoff, olen, no_time_update); | 
|  | if (ret) | 
|  | goto out; | 
|  | if (new_key.offset + datal >= destoff + len) | 
|  | break; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | key.offset = prev_extent_end; | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | if (last_dest_end < destoff + len) { | 
|  | /* | 
|  | * We have an implicit hole that fully or partially overlaps our | 
|  | * cloning range at its end. This means that we either have the | 
|  | * NO_HOLES feature enabled or the implicit hole happened due to | 
|  | * mixing buffered and direct IO writes against this file. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * When using NO_HOLES and we are cloning a range that covers | 
|  | * only a hole (no extents) into a range beyond the current | 
|  | * i_size, punching a hole in the target range will not create | 
|  | * an extent map defining a hole, because the range starts at or | 
|  | * beyond current i_size. If the file previously had an i_size | 
|  | * greater than the new i_size set by this clone operation, we | 
|  | * need to make sure the next fsync is a full fsync, so that it | 
|  | * detects and logs a hole covering a range from the current | 
|  | * i_size to the new i_size. If the clone range covers extents, | 
|  | * besides a hole, then we know the full sync flag was already | 
|  | * set by previous calls to btrfs_replace_file_extents() that | 
|  | * replaced file extent items. | 
|  | */ | 
|  | if (last_dest_end >= i_size_read(inode)) | 
|  | btrfs_set_inode_full_sync(BTRFS_I(inode)); | 
|  |  | 
|  | ret = btrfs_replace_file_extents(BTRFS_I(inode), path, | 
|  | last_dest_end, destoff + len - 1, NULL, &trans); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = clone_finish_inode_update(trans, inode, destoff + len, | 
|  | destoff, olen, no_time_update); | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | kvfree(buf); | 
|  | clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_double_mmap_lock(struct btrfs_inode *inode1, struct btrfs_inode *inode2) | 
|  | { | 
|  | if (inode1 < inode2) | 
|  | swap(inode1, inode2); | 
|  | down_write(&inode1->i_mmap_lock); | 
|  | down_write_nested(&inode2->i_mmap_lock, SINGLE_DEPTH_NESTING); | 
|  | } | 
|  |  | 
|  | static void btrfs_double_mmap_unlock(struct btrfs_inode *inode1, struct btrfs_inode *inode2) | 
|  | { | 
|  | up_write(&inode1->i_mmap_lock); | 
|  | up_write(&inode2->i_mmap_lock); | 
|  | } | 
|  |  | 
|  | static int btrfs_extent_same_range(struct btrfs_inode *src, u64 loff, u64 len, | 
|  | struct btrfs_inode *dst, u64 dst_loff) | 
|  | { | 
|  | const u64 end = dst_loff + len - 1; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct btrfs_fs_info *fs_info = src->root->fs_info; | 
|  | const u64 bs = fs_info->sectorsize; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Lock destination range to serialize with concurrent readahead(), and | 
|  | * we are safe from concurrency with relocation of source extents | 
|  | * because we have already locked the inode's i_mmap_lock in exclusive | 
|  | * mode. | 
|  | */ | 
|  | btrfs_lock_extent(&dst->io_tree, dst_loff, end, &cached_state); | 
|  | ret = btrfs_clone(&src->vfs_inode, &dst->vfs_inode, loff, len, | 
|  | ALIGN(len, bs), dst_loff, 1); | 
|  | btrfs_unlock_extent(&dst->io_tree, dst_loff, end, &cached_state); | 
|  |  | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, | 
|  | struct inode *dst, u64 dst_loff) | 
|  | { | 
|  | int ret = 0; | 
|  | u64 i, tail_len, chunk_count; | 
|  | struct btrfs_root *root_dst = BTRFS_I(dst)->root; | 
|  |  | 
|  | spin_lock(&root_dst->root_item_lock); | 
|  | if (root_dst->send_in_progress) { | 
|  | btrfs_warn_rl(root_dst->fs_info, | 
|  | "cannot deduplicate to root %llu while send operations are using it (%d in progress)", | 
|  | btrfs_root_id(root_dst), | 
|  | root_dst->send_in_progress); | 
|  | spin_unlock(&root_dst->root_item_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  | root_dst->dedupe_in_progress++; | 
|  | spin_unlock(&root_dst->root_item_lock); | 
|  |  | 
|  | tail_len = olen % BTRFS_MAX_DEDUPE_LEN; | 
|  | chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); | 
|  |  | 
|  | for (i = 0; i < chunk_count; i++) { | 
|  | ret = btrfs_extent_same_range(BTRFS_I(src), loff, BTRFS_MAX_DEDUPE_LEN, | 
|  | BTRFS_I(dst), dst_loff); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | loff += BTRFS_MAX_DEDUPE_LEN; | 
|  | dst_loff += BTRFS_MAX_DEDUPE_LEN; | 
|  | } | 
|  |  | 
|  | if (tail_len > 0) | 
|  | ret = btrfs_extent_same_range(BTRFS_I(src), loff, tail_len, | 
|  | BTRFS_I(dst), dst_loff); | 
|  | out: | 
|  | spin_lock(&root_dst->root_item_lock); | 
|  | root_dst->dedupe_in_progress--; | 
|  | spin_unlock(&root_dst->root_item_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int btrfs_clone_files(struct file *file, struct file *file_src, | 
|  | u64 off, u64 olen, u64 destoff) | 
|  | { | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct inode *src = file_inode(file_src); | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
|  | int ret; | 
|  | int wb_ret; | 
|  | u64 len = olen; | 
|  | u64 bs = fs_info->sectorsize; | 
|  | u64 end; | 
|  |  | 
|  | /* | 
|  | * VFS's generic_remap_file_range_prep() protects us from cloning the | 
|  | * eof block into the middle of a file, which would result in corruption | 
|  | * if the file size is not blocksize aligned. So we don't need to check | 
|  | * for that case here. | 
|  | */ | 
|  | if (off + len == src->i_size) | 
|  | len = ALIGN(src->i_size, bs) - off; | 
|  |  | 
|  | if (destoff > inode->i_size) { | 
|  | const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); | 
|  |  | 
|  | ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff); | 
|  | if (ret) | 
|  | return ret; | 
|  | /* | 
|  | * We may have truncated the last block if the inode's size is | 
|  | * not sector size aligned, so we need to wait for writeback to | 
|  | * complete before proceeding further, otherwise we can race | 
|  | * with cloning and attempt to increment a reference to an | 
|  | * extent that no longer exists (writeback completed right after | 
|  | * we found the previous extent covering eof and before we | 
|  | * attempted to increment its reference count). | 
|  | */ | 
|  | ret = btrfs_wait_ordered_range(BTRFS_I(inode), wb_start, | 
|  | destoff - wb_start); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock destination range to serialize with concurrent readahead(), and | 
|  | * we are safe from concurrency with relocation of source extents | 
|  | * because we have already locked the inode's i_mmap_lock in exclusive | 
|  | * mode. | 
|  | */ | 
|  | end = destoff + len - 1; | 
|  | btrfs_lock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state); | 
|  | ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); | 
|  | btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state); | 
|  |  | 
|  | /* | 
|  | * We may have copied an inline extent into a page of the destination | 
|  | * range, so wait for writeback to complete before truncating pages | 
|  | * from the page cache. This is a rare case. | 
|  | */ | 
|  | wb_ret = btrfs_wait_ordered_range(BTRFS_I(inode), destoff, len); | 
|  | ret = ret ? ret : wb_ret; | 
|  | /* | 
|  | * Truncate page cache pages so that future reads will see the cloned | 
|  | * data immediately and not the previous data. | 
|  | */ | 
|  | truncate_inode_pages_range(&inode->i_data, | 
|  | round_down(destoff, PAGE_SIZE), | 
|  | round_up(destoff + len, PAGE_SIZE) - 1); | 
|  |  | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, | 
|  | struct file *file_out, loff_t pos_out, | 
|  | loff_t *len, unsigned int remap_flags) | 
|  | { | 
|  | struct btrfs_inode *inode_in = BTRFS_I(file_inode(file_in)); | 
|  | struct btrfs_inode *inode_out = BTRFS_I(file_inode(file_out)); | 
|  | u64 bs = inode_out->root->fs_info->sectorsize; | 
|  | u64 wb_len; | 
|  | int ret; | 
|  |  | 
|  | if (!(remap_flags & REMAP_FILE_DEDUP)) { | 
|  | struct btrfs_root *root_out = inode_out->root; | 
|  |  | 
|  | if (btrfs_root_readonly(root_out)) | 
|  | return -EROFS; | 
|  |  | 
|  | ASSERT(inode_in->vfs_inode.i_sb == inode_out->vfs_inode.i_sb); | 
|  | } | 
|  |  | 
|  | /* Don't make the dst file partly checksummed */ | 
|  | if ((inode_in->flags & BTRFS_INODE_NODATASUM) != | 
|  | (inode_out->flags & BTRFS_INODE_NODATASUM)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that the inodes are locked, we need to start writeback ourselves | 
|  | * and can not rely on the writeback from the VFS's generic helper | 
|  | * generic_remap_file_range_prep() because: | 
|  | * | 
|  | * 1) For compression we must call filemap_fdatawrite_range() range | 
|  | *    twice (btrfs_fdatawrite_range() does it for us), and the generic | 
|  | *    helper only calls it once; | 
|  | * | 
|  | * 2) filemap_fdatawrite_range(), called by the generic helper only | 
|  | *    waits for the writeback to complete, i.e. for IO to be done, and | 
|  | *    not for the ordered extents to complete. We need to wait for them | 
|  | *    to complete so that new file extent items are in the fs tree. | 
|  | */ | 
|  | if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) | 
|  | wb_len = ALIGN(inode_in->vfs_inode.i_size, bs) - ALIGN_DOWN(pos_in, bs); | 
|  | else | 
|  | wb_len = ALIGN(*len, bs); | 
|  |  | 
|  | /* | 
|  | * Workaround to make sure NOCOW buffered write reach disk as NOCOW. | 
|  | * | 
|  | * Btrfs' back references do not have a block level granularity, they | 
|  | * work at the whole extent level. | 
|  | * NOCOW buffered write without data space reserved may not be able | 
|  | * to fall back to CoW due to lack of data space, thus could cause | 
|  | * data loss. | 
|  | * | 
|  | * Here we take a shortcut by flushing the whole inode, so that all | 
|  | * nocow write should reach disk as nocow before we increase the | 
|  | * reference of the extent. We could do better by only flushing NOCOW | 
|  | * data, but that needs extra accounting. | 
|  | * | 
|  | * Also we don't need to check ASYNC_EXTENT, as async extent will be | 
|  | * CoWed anyway, not affecting nocow part. | 
|  | */ | 
|  | ret = filemap_flush(inode_in->vfs_inode.i_mapping); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), wb_len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), wb_len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, | 
|  | len, remap_flags); | 
|  | } | 
|  |  | 
|  | static bool file_sync_write(const struct file *file) | 
|  | { | 
|  | if (file->f_flags & (__O_SYNC | O_DSYNC)) | 
|  | return true; | 
|  | if (IS_SYNC(file_inode(file))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, | 
|  | struct file *dst_file, loff_t destoff, loff_t len, | 
|  | unsigned int remap_flags) | 
|  | { | 
|  | struct btrfs_inode *src_inode = BTRFS_I(file_inode(src_file)); | 
|  | struct btrfs_inode *dst_inode = BTRFS_I(file_inode(dst_file)); | 
|  | bool same_inode = dst_inode == src_inode; | 
|  | int ret; | 
|  |  | 
|  | if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (same_inode) { | 
|  | btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP); | 
|  | } else { | 
|  | lock_two_nondirectories(&src_inode->vfs_inode, &dst_inode->vfs_inode); | 
|  | btrfs_double_mmap_lock(src_inode, dst_inode); | 
|  | } | 
|  |  | 
|  | ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, | 
|  | &len, remap_flags); | 
|  | if (ret < 0 || len == 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (remap_flags & REMAP_FILE_DEDUP) | 
|  | ret = btrfs_extent_same(&src_inode->vfs_inode, off, len, | 
|  | &dst_inode->vfs_inode, destoff); | 
|  | else | 
|  | ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); | 
|  |  | 
|  | out_unlock: | 
|  | if (same_inode) { | 
|  | btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP); | 
|  | } else { | 
|  | btrfs_double_mmap_unlock(src_inode, dst_inode); | 
|  | unlock_two_nondirectories(&src_inode->vfs_inode, | 
|  | &dst_inode->vfs_inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If either the source or the destination file was opened with O_SYNC, | 
|  | * O_DSYNC or has the S_SYNC attribute, fsync both the destination and | 
|  | * source files/ranges, so that after a successful return (0) followed | 
|  | * by a power failure results in the reflinked data to be readable from | 
|  | * both files/ranges. | 
|  | */ | 
|  | if (ret == 0 && len > 0 && | 
|  | (file_sync_write(src_file) || file_sync_write(dst_file))) { | 
|  | ret = btrfs_sync_file(src_file, off, off + len - 1, 0); | 
|  | if (ret == 0) | 
|  | ret = btrfs_sync_file(dst_file, destoff, | 
|  | destoff + len - 1, 0); | 
|  | } | 
|  |  | 
|  | return ret < 0 ? ret : len; | 
|  | } |