|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include "ctree.h" | 
|  | #include "volumes.h" | 
|  | #include "zoned.h" | 
|  | #include "disk-io.h" | 
|  | #include "block-group.h" | 
|  | #include "dev-replace.h" | 
|  | #include "space-info.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "bio.h" | 
|  | #include "transaction.h" | 
|  | #include "sysfs.h" | 
|  |  | 
|  | /* Maximum number of zones to report per blkdev_report_zones() call */ | 
|  | #define BTRFS_REPORT_NR_ZONES   4096 | 
|  | /* Invalid allocation pointer value for missing devices */ | 
|  | #define WP_MISSING_DEV ((u64)-1) | 
|  | /* Pseudo write pointer value for conventional zone */ | 
|  | #define WP_CONVENTIONAL ((u64)-2) | 
|  |  | 
|  | /* | 
|  | * Location of the first zone of superblock logging zone pairs. | 
|  | * | 
|  | * - primary superblock:    0B (zone 0) | 
|  | * - first copy:          512G (zone starting at that offset) | 
|  | * - second copy:           4T (zone starting at that offset) | 
|  | */ | 
|  | #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL) | 
|  | #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G) | 
|  | #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G) | 
|  |  | 
|  | #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) | 
|  | #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) | 
|  |  | 
|  | /* Number of superblock log zones */ | 
|  | #define BTRFS_NR_SB_LOG_ZONES 2 | 
|  |  | 
|  | /* Default number of max active zones when the device has no limits. */ | 
|  | #define BTRFS_DEFAULT_MAX_ACTIVE_ZONES	128 | 
|  |  | 
|  | /* | 
|  | * Minimum of active zones we need: | 
|  | * | 
|  | * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors | 
|  | * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group | 
|  | * - 1 zone for tree-log dedicated block group | 
|  | * - 1 zone for relocation | 
|  | */ | 
|  | #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5) | 
|  |  | 
|  | /* | 
|  | * Minimum / maximum supported zone size. Currently, SMR disks have a zone | 
|  | * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. | 
|  | * We do not expect the zone size to become larger than 8GiB or smaller than | 
|  | * 4MiB in the near future. | 
|  | */ | 
|  | #define BTRFS_MAX_ZONE_SIZE		SZ_8G | 
|  | #define BTRFS_MIN_ZONE_SIZE		SZ_4M | 
|  |  | 
|  | #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) | 
|  |  | 
|  | static void wait_eb_writebacks(struct btrfs_block_group *block_group); | 
|  | static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); | 
|  |  | 
|  | static inline bool sb_zone_is_full(const struct blk_zone *zone) | 
|  | { | 
|  | return (zone->cond == BLK_ZONE_COND_FULL) || | 
|  | (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); | 
|  | } | 
|  |  | 
|  | static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) | 
|  | { | 
|  | struct blk_zone *zones = data; | 
|  |  | 
|  | memcpy(&zones[idx], zone, sizeof(*zone)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, | 
|  | u64 *wp_ret) | 
|  | { | 
|  | bool empty[BTRFS_NR_SB_LOG_ZONES]; | 
|  | bool full[BTRFS_NR_SB_LOG_ZONES]; | 
|  | sector_t sector; | 
|  |  | 
|  | for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { | 
|  | ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); | 
|  | empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); | 
|  | full[i] = sb_zone_is_full(&zones[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Possible states of log buffer zones | 
|  | * | 
|  | *           Empty[0]  In use[0]  Full[0] | 
|  | * Empty[1]         *          0        1 | 
|  | * In use[1]        x          x        1 | 
|  | * Full[1]          0          0        C | 
|  | * | 
|  | * Log position: | 
|  | *   *: Special case, no superblock is written | 
|  | *   0: Use write pointer of zones[0] | 
|  | *   1: Use write pointer of zones[1] | 
|  | *   C: Compare super blocks from zones[0] and zones[1], use the latest | 
|  | *      one determined by generation | 
|  | *   x: Invalid state | 
|  | */ | 
|  |  | 
|  | if (empty[0] && empty[1]) { | 
|  | /* Special case to distinguish no superblock to read */ | 
|  | *wp_ret = zones[0].start << SECTOR_SHIFT; | 
|  | return -ENOENT; | 
|  | } else if (full[0] && full[1]) { | 
|  | /* Compare two super blocks */ | 
|  | struct address_space *mapping = bdev->bd_mapping; | 
|  | struct page *page[BTRFS_NR_SB_LOG_ZONES]; | 
|  | struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; | 
|  |  | 
|  | for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { | 
|  | u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; | 
|  | u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - | 
|  | BTRFS_SUPER_INFO_SIZE; | 
|  |  | 
|  | page[i] = read_cache_page_gfp(mapping, | 
|  | bytenr >> PAGE_SHIFT, GFP_NOFS); | 
|  | if (IS_ERR(page[i])) { | 
|  | if (i == 1) | 
|  | btrfs_release_disk_super(super[0]); | 
|  | return PTR_ERR(page[i]); | 
|  | } | 
|  | super[i] = page_address(page[i]); | 
|  | } | 
|  |  | 
|  | if (btrfs_super_generation(super[0]) > | 
|  | btrfs_super_generation(super[1])) | 
|  | sector = zones[1].start; | 
|  | else | 
|  | sector = zones[0].start; | 
|  |  | 
|  | for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) | 
|  | btrfs_release_disk_super(super[i]); | 
|  | } else if (!full[0] && (empty[1] || full[1])) { | 
|  | sector = zones[0].wp; | 
|  | } else if (full[0]) { | 
|  | sector = zones[1].wp; | 
|  | } else { | 
|  | return -EUCLEAN; | 
|  | } | 
|  | *wp_ret = sector << SECTOR_SHIFT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the first zone number of the superblock mirror | 
|  | */ | 
|  | static inline u32 sb_zone_number(int shift, int mirror) | 
|  | { | 
|  | u64 zone = U64_MAX; | 
|  |  | 
|  | ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); | 
|  | switch (mirror) { | 
|  | case 0: zone = 0; break; | 
|  | case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; | 
|  | case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; | 
|  | } | 
|  |  | 
|  | ASSERT(zone <= U32_MAX); | 
|  |  | 
|  | return (u32)zone; | 
|  | } | 
|  |  | 
|  | static inline sector_t zone_start_sector(u32 zone_number, | 
|  | struct block_device *bdev) | 
|  | { | 
|  | return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); | 
|  | } | 
|  |  | 
|  | static inline u64 zone_start_physical(u32 zone_number, | 
|  | struct btrfs_zoned_device_info *zone_info) | 
|  | { | 
|  | return (u64)zone_number << zone_info->zone_size_shift; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block | 
|  | * device into static sized chunks and fake a conventional zone on each of | 
|  | * them. | 
|  | */ | 
|  | static int emulate_report_zones(struct btrfs_device *device, u64 pos, | 
|  | struct blk_zone *zones, unsigned int nr_zones) | 
|  | { | 
|  | const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; | 
|  | sector_t bdev_size = bdev_nr_sectors(device->bdev); | 
|  | unsigned int i; | 
|  |  | 
|  | pos >>= SECTOR_SHIFT; | 
|  | for (i = 0; i < nr_zones; i++) { | 
|  | zones[i].start = i * zone_sectors + pos; | 
|  | zones[i].len = zone_sectors; | 
|  | zones[i].capacity = zone_sectors; | 
|  | zones[i].wp = zones[i].start + zone_sectors; | 
|  | zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; | 
|  | zones[i].cond = BLK_ZONE_COND_NOT_WP; | 
|  |  | 
|  | if (zones[i].wp >= bdev_size) { | 
|  | i++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, | 
|  | struct blk_zone *zones, unsigned int *nr_zones) | 
|  | { | 
|  | struct btrfs_zoned_device_info *zinfo = device->zone_info; | 
|  | int ret; | 
|  |  | 
|  | if (!*nr_zones) | 
|  | return 0; | 
|  |  | 
|  | if (!bdev_is_zoned(device->bdev)) { | 
|  | ret = emulate_report_zones(device, pos, zones, *nr_zones); | 
|  | *nr_zones = ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check cache */ | 
|  | if (zinfo->zone_cache) { | 
|  | unsigned int i; | 
|  | u32 zno; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); | 
|  | zno = pos >> zinfo->zone_size_shift; | 
|  | /* | 
|  | * We cannot report zones beyond the zone end. So, it is OK to | 
|  | * cap *nr_zones to at the end. | 
|  | */ | 
|  | *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); | 
|  |  | 
|  | for (i = 0; i < *nr_zones; i++) { | 
|  | struct blk_zone *zone_info; | 
|  |  | 
|  | zone_info = &zinfo->zone_cache[zno + i]; | 
|  | if (!zone_info->len) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == *nr_zones) { | 
|  | /* Cache hit on all the zones */ | 
|  | memcpy(zones, zinfo->zone_cache + zno, | 
|  | sizeof(*zinfo->zone_cache) * *nr_zones); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, | 
|  | copy_zone_info_cb, zones); | 
|  | if (ret < 0) { | 
|  | btrfs_err(device->fs_info, | 
|  | "zoned: failed to read zone %llu on %s (devid %llu)", | 
|  | pos, rcu_dereference(device->name), | 
|  | device->devid); | 
|  | return ret; | 
|  | } | 
|  | *nr_zones = ret; | 
|  | if (!ret) | 
|  | return -EIO; | 
|  |  | 
|  | /* Populate cache */ | 
|  | if (zinfo->zone_cache) { | 
|  | u32 zno = pos >> zinfo->zone_size_shift; | 
|  |  | 
|  | memcpy(zinfo->zone_cache + zno, zones, | 
|  | sizeof(*zinfo->zone_cache) * *nr_zones); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The emulated zone size is determined from the size of device extent */ | 
|  | static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_dev_extent *dext; | 
|  | int ret = 0; | 
|  |  | 
|  | key.objectid = 1; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | /* No dev extents at all? Not good */ | 
|  | if (ret > 0) | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); | 
|  | fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | int ret = 0; | 
|  |  | 
|  | /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ | 
|  | if (!btrfs_fs_incompat(fs_info, ZONED)) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | /* We can skip reading of zone info for missing devices */ | 
|  | if (!device->bdev) | 
|  | continue; | 
|  |  | 
|  | ret = btrfs_get_dev_zone_info(device, true); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_zoned_device_info *zone_info = NULL; | 
|  | struct block_device *bdev = device->bdev; | 
|  | unsigned int max_active_zones; | 
|  | unsigned int nactive; | 
|  | sector_t nr_sectors; | 
|  | sector_t sector = 0; | 
|  | struct blk_zone *zones = NULL; | 
|  | unsigned int i, nreported = 0, nr_zones; | 
|  | sector_t zone_sectors; | 
|  | char *model, *emulated; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not | 
|  | * yet be set. | 
|  | */ | 
|  | if (!btrfs_fs_incompat(fs_info, ZONED)) | 
|  | return 0; | 
|  |  | 
|  | if (device->zone_info) | 
|  | return 0; | 
|  |  | 
|  | zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); | 
|  | if (!zone_info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | device->zone_info = zone_info; | 
|  |  | 
|  | if (!bdev_is_zoned(bdev)) { | 
|  | if (!fs_info->zone_size) { | 
|  | ret = calculate_emulated_zone_size(fs_info); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ASSERT(fs_info->zone_size); | 
|  | zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; | 
|  | } else { | 
|  | zone_sectors = bdev_zone_sectors(bdev); | 
|  | } | 
|  |  | 
|  | ASSERT(is_power_of_two_u64(zone_sectors)); | 
|  | zone_info->zone_size = zone_sectors << SECTOR_SHIFT; | 
|  |  | 
|  | /* We reject devices with a zone size larger than 8GB */ | 
|  | if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: %s: zone size %llu larger than supported maximum %llu", | 
|  | rcu_dereference(device->name), | 
|  | zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: %s: zone size %llu smaller than supported minimum %u", | 
|  | rcu_dereference(device->name), | 
|  | zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nr_sectors = bdev_nr_sectors(bdev); | 
|  | zone_info->zone_size_shift = ilog2(zone_info->zone_size); | 
|  | zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); | 
|  | if (!IS_ALIGNED(nr_sectors, zone_sectors)) | 
|  | zone_info->nr_zones++; | 
|  |  | 
|  | max_active_zones = min_not_zero(bdev_max_active_zones(bdev), | 
|  | bdev_max_open_zones(bdev)); | 
|  | if (!max_active_zones && zone_info->nr_zones > BTRFS_DEFAULT_MAX_ACTIVE_ZONES) | 
|  | max_active_zones = BTRFS_DEFAULT_MAX_ACTIVE_ZONES; | 
|  | if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: %s: max active zones %u is too small, need at least %u active zones", | 
|  | rcu_dereference(device->name), max_active_zones, | 
|  | BTRFS_MIN_ACTIVE_ZONES); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | zone_info->max_active_zones = max_active_zones; | 
|  |  | 
|  | zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); | 
|  | if (!zone_info->seq_zones) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); | 
|  | if (!zone_info->empty_zones) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); | 
|  | if (!zone_info->active_zones) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); | 
|  | if (!zones) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable zone cache only for a zoned device. On a non-zoned device, we | 
|  | * fill the zone info with emulated CONVENTIONAL zones, so no need to | 
|  | * use the cache. | 
|  | */ | 
|  | if (populate_cache && bdev_is_zoned(device->bdev)) { | 
|  | zone_info->zone_cache = vcalloc(zone_info->nr_zones, | 
|  | sizeof(struct blk_zone)); | 
|  | if (!zone_info->zone_cache) { | 
|  | btrfs_err(device->fs_info, | 
|  | "zoned: failed to allocate zone cache for %s", | 
|  | rcu_dereference(device->name)); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get zones type */ | 
|  | nactive = 0; | 
|  | while (sector < nr_sectors) { | 
|  | nr_zones = BTRFS_REPORT_NR_ZONES; | 
|  | ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, | 
|  | &nr_zones); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < nr_zones; i++) { | 
|  | if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) | 
|  | __set_bit(nreported, zone_info->seq_zones); | 
|  | switch (zones[i].cond) { | 
|  | case BLK_ZONE_COND_EMPTY: | 
|  | __set_bit(nreported, zone_info->empty_zones); | 
|  | break; | 
|  | case BLK_ZONE_COND_IMP_OPEN: | 
|  | case BLK_ZONE_COND_EXP_OPEN: | 
|  | case BLK_ZONE_COND_CLOSED: | 
|  | __set_bit(nreported, zone_info->active_zones); | 
|  | nactive++; | 
|  | break; | 
|  | } | 
|  | nreported++; | 
|  | } | 
|  | sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; | 
|  | } | 
|  |  | 
|  | if (nreported != zone_info->nr_zones) { | 
|  | btrfs_err(device->fs_info, | 
|  | "inconsistent number of zones on %s (%u/%u)", | 
|  | rcu_dereference(device->name), nreported, | 
|  | zone_info->nr_zones); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (max_active_zones) { | 
|  | if (nactive > max_active_zones) { | 
|  | btrfs_err(device->fs_info, | 
|  | "zoned: %u active zones on %s exceeds max_active_zones %u", | 
|  | nactive, rcu_dereference(device->name), | 
|  | max_active_zones); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | atomic_set(&zone_info->active_zones_left, | 
|  | max_active_zones - nactive); | 
|  | set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); | 
|  | } | 
|  |  | 
|  | /* Validate superblock log */ | 
|  | nr_zones = BTRFS_NR_SB_LOG_ZONES; | 
|  | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
|  | u32 sb_zone; | 
|  | u64 sb_wp; | 
|  | int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; | 
|  |  | 
|  | sb_zone = sb_zone_number(zone_info->zone_size_shift, i); | 
|  | if (sb_zone + 1 >= zone_info->nr_zones) | 
|  | continue; | 
|  |  | 
|  | ret = btrfs_get_dev_zones(device, | 
|  | zone_start_physical(sb_zone, zone_info), | 
|  | &zone_info->sb_zones[sb_pos], | 
|  | &nr_zones); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { | 
|  | btrfs_err(device->fs_info, | 
|  | "zoned: failed to read super block log zone info at devid %llu zone %u", | 
|  | device->devid, sb_zone); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If zones[0] is conventional, always use the beginning of the | 
|  | * zone to record superblock. No need to validate in that case. | 
|  | */ | 
|  | if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == | 
|  | BLK_ZONE_TYPE_CONVENTIONAL) | 
|  | continue; | 
|  |  | 
|  | ret = sb_write_pointer(device->bdev, | 
|  | &zone_info->sb_zones[sb_pos], &sb_wp); | 
|  | if (ret != -ENOENT && ret) { | 
|  | btrfs_err(device->fs_info, | 
|  | "zoned: super block log zone corrupted devid %llu zone %u", | 
|  | device->devid, sb_zone); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | kvfree(zones); | 
|  |  | 
|  | if (bdev_is_zoned(bdev)) { | 
|  | model = "host-managed zoned"; | 
|  | emulated = ""; | 
|  | } else { | 
|  | model = "regular"; | 
|  | emulated = "emulated "; | 
|  | } | 
|  |  | 
|  | btrfs_info(fs_info, | 
|  | "%s block device %s, %u %szones of %llu bytes", | 
|  | model, rcu_dereference(device->name), zone_info->nr_zones, | 
|  | emulated, zone_info->zone_size); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | kvfree(zones); | 
|  | btrfs_destroy_dev_zone_info(device); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_destroy_dev_zone_info(struct btrfs_device *device) | 
|  | { | 
|  | struct btrfs_zoned_device_info *zone_info = device->zone_info; | 
|  |  | 
|  | if (!zone_info) | 
|  | return; | 
|  |  | 
|  | bitmap_free(zone_info->active_zones); | 
|  | bitmap_free(zone_info->seq_zones); | 
|  | bitmap_free(zone_info->empty_zones); | 
|  | vfree(zone_info->zone_cache); | 
|  | kfree(zone_info); | 
|  | device->zone_info = NULL; | 
|  | } | 
|  |  | 
|  | struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) | 
|  | { | 
|  | struct btrfs_zoned_device_info *zone_info; | 
|  |  | 
|  | zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); | 
|  | if (!zone_info) | 
|  | return NULL; | 
|  |  | 
|  | zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); | 
|  | if (!zone_info->seq_zones) | 
|  | goto out; | 
|  |  | 
|  | bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, | 
|  | zone_info->nr_zones); | 
|  |  | 
|  | zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); | 
|  | if (!zone_info->empty_zones) | 
|  | goto out; | 
|  |  | 
|  | bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, | 
|  | zone_info->nr_zones); | 
|  |  | 
|  | zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); | 
|  | if (!zone_info->active_zones) | 
|  | goto out; | 
|  |  | 
|  | bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, | 
|  | zone_info->nr_zones); | 
|  | zone_info->zone_cache = NULL; | 
|  |  | 
|  | return zone_info; | 
|  |  | 
|  | out: | 
|  | bitmap_free(zone_info->seq_zones); | 
|  | bitmap_free(zone_info->empty_zones); | 
|  | bitmap_free(zone_info->active_zones); | 
|  | kfree(zone_info); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone) | 
|  | { | 
|  | unsigned int nr_zones = 1; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); | 
|  | if (ret != 0 || !nr_zones) | 
|  | return ret ? ret : -EIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { | 
|  | if (device->bdev && bdev_is_zoned(device->bdev)) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: mode not enabled but zoned device found: %pg", | 
|  | device->bdev); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct queue_limits *lim = &fs_info->limits; | 
|  | struct btrfs_device *device; | 
|  | u64 zone_size = 0; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Host-Managed devices can't be used without the ZONED flag.  With the | 
|  | * ZONED all devices can be used, using zone emulation if required. | 
|  | */ | 
|  | if (!btrfs_fs_incompat(fs_info, ZONED)) | 
|  | return btrfs_check_for_zoned_device(fs_info); | 
|  |  | 
|  | blk_set_stacking_limits(lim); | 
|  |  | 
|  | list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { | 
|  | struct btrfs_zoned_device_info *zone_info = device->zone_info; | 
|  |  | 
|  | if (!device->bdev) | 
|  | continue; | 
|  |  | 
|  | if (!zone_size) { | 
|  | zone_size = zone_info->zone_size; | 
|  | } else if (zone_info->zone_size != zone_size) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: unequal block device zone sizes: have %llu found %llu", | 
|  | zone_info->zone_size, zone_size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With the zoned emulation, we can have non-zoned device on the | 
|  | * zoned mode. In this case, we don't have a valid max zone | 
|  | * append size. | 
|  | */ | 
|  | if (bdev_is_zoned(device->bdev)) | 
|  | blk_stack_limits(lim, bdev_limits(device->bdev), 0); | 
|  | } | 
|  |  | 
|  | ret = blk_validate_limits(lim); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "zoned: failed to validate queue limits"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * stripe_size is always aligned to BTRFS_STRIPE_LEN in | 
|  | * btrfs_create_chunk(). Since we want stripe_len == zone_size, | 
|  | * check the alignment here. | 
|  | */ | 
|  | if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: zone size %llu not aligned to stripe %u", | 
|  | zone_size, BTRFS_STRIPE_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { | 
|  | btrfs_err(fs_info, "zoned: mixed block groups not supported"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fs_info->zone_size = zone_size; | 
|  | /* | 
|  | * Also limit max_zone_append_size by max_segments * PAGE_SIZE. | 
|  | * Technically, we can have multiple pages per segment. But, since | 
|  | * we add the pages one by one to a bio, and cannot increase the | 
|  | * metadata reservation even if it increases the number of extents, it | 
|  | * is safe to stick with the limit. | 
|  | */ | 
|  | fs_info->max_zone_append_size = ALIGN_DOWN( | 
|  | min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, | 
|  | (u64)lim->max_sectors << SECTOR_SHIFT, | 
|  | (u64)lim->max_segments << PAGE_SHIFT), | 
|  | fs_info->sectorsize); | 
|  | fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; | 
|  |  | 
|  | fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size, | 
|  | fs_info->max_zone_append_size); | 
|  |  | 
|  | /* | 
|  | * Check mount options here, because we might change fs_info->zoned | 
|  | * from fs_info->zone_size. | 
|  | */ | 
|  | ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info, | 
|  | unsigned long long *mount_opt) | 
|  | { | 
|  | if (!btrfs_is_zoned(info)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Space cache writing is not COWed. Disable that to avoid write errors | 
|  | * in sequential zones. | 
|  | */ | 
|  | if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { | 
|  | btrfs_err(info, "zoned: space cache v1 is not supported"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { | 
|  | btrfs_err(info, "zoned: NODATACOW not supported"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { | 
|  | btrfs_info(info, | 
|  | "zoned: async discard ignored and disabled for zoned mode"); | 
|  | btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, | 
|  | int rw, u64 *bytenr_ret) | 
|  | { | 
|  | u64 wp; | 
|  | int ret; | 
|  |  | 
|  | if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { | 
|  | *bytenr_ret = zones[0].start << SECTOR_SHIFT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = sb_write_pointer(bdev, zones, &wp); | 
|  | if (ret != -ENOENT && ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (rw == WRITE) { | 
|  | struct blk_zone *reset = NULL; | 
|  |  | 
|  | if (wp == zones[0].start << SECTOR_SHIFT) | 
|  | reset = &zones[0]; | 
|  | else if (wp == zones[1].start << SECTOR_SHIFT) | 
|  | reset = &zones[1]; | 
|  |  | 
|  | if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { | 
|  | unsigned int nofs_flags; | 
|  |  | 
|  | ASSERT(sb_zone_is_full(reset)); | 
|  |  | 
|  | nofs_flags = memalloc_nofs_save(); | 
|  | ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, | 
|  | reset->start, reset->len); | 
|  | memalloc_nofs_restore(nofs_flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | reset->cond = BLK_ZONE_COND_EMPTY; | 
|  | reset->wp = reset->start; | 
|  | } | 
|  | } else if (ret != -ENOENT) { | 
|  | /* | 
|  | * For READ, we want the previous one. Move write pointer to | 
|  | * the end of a zone, if it is at the head of a zone. | 
|  | */ | 
|  | u64 zone_end = 0; | 
|  |  | 
|  | if (wp == zones[0].start << SECTOR_SHIFT) | 
|  | zone_end = zones[1].start + zones[1].capacity; | 
|  | else if (wp == zones[1].start << SECTOR_SHIFT) | 
|  | zone_end = zones[0].start + zones[0].capacity; | 
|  | if (zone_end) | 
|  | wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, | 
|  | BTRFS_SUPER_INFO_SIZE); | 
|  |  | 
|  | wp -= BTRFS_SUPER_INFO_SIZE; | 
|  | } | 
|  |  | 
|  | *bytenr_ret = wp; | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, | 
|  | u64 *bytenr_ret) | 
|  | { | 
|  | struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; | 
|  | sector_t zone_sectors; | 
|  | u32 sb_zone; | 
|  | int ret; | 
|  | u8 zone_sectors_shift; | 
|  | sector_t nr_sectors; | 
|  | u32 nr_zones; | 
|  |  | 
|  | if (!bdev_is_zoned(bdev)) { | 
|  | *bytenr_ret = btrfs_sb_offset(mirror); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ASSERT(rw == READ || rw == WRITE); | 
|  |  | 
|  | zone_sectors = bdev_zone_sectors(bdev); | 
|  | if (!is_power_of_2(zone_sectors)) | 
|  | return -EINVAL; | 
|  | zone_sectors_shift = ilog2(zone_sectors); | 
|  | nr_sectors = bdev_nr_sectors(bdev); | 
|  | nr_zones = nr_sectors >> zone_sectors_shift; | 
|  |  | 
|  | sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); | 
|  | if (sb_zone + 1 >= nr_zones) | 
|  | return -ENOENT; | 
|  |  | 
|  | ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), | 
|  | BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, | 
|  | zones); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret != BTRFS_NR_SB_LOG_ZONES) | 
|  | return -EIO; | 
|  |  | 
|  | return sb_log_location(bdev, zones, rw, bytenr_ret); | 
|  | } | 
|  |  | 
|  | int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, | 
|  | u64 *bytenr_ret) | 
|  | { | 
|  | struct btrfs_zoned_device_info *zinfo = device->zone_info; | 
|  | u32 zone_num; | 
|  |  | 
|  | /* | 
|  | * For a zoned filesystem on a non-zoned block device, use the same | 
|  | * super block locations as regular filesystem. Doing so, the super | 
|  | * block can always be retrieved and the zoned flag of the volume | 
|  | * detected from the super block information. | 
|  | */ | 
|  | if (!bdev_is_zoned(device->bdev)) { | 
|  | *bytenr_ret = btrfs_sb_offset(mirror); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); | 
|  | if (zone_num + 1 >= zinfo->nr_zones) | 
|  | return -ENOENT; | 
|  |  | 
|  | return sb_log_location(device->bdev, | 
|  | &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], | 
|  | rw, bytenr_ret); | 
|  | } | 
|  |  | 
|  | static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, | 
|  | int mirror) | 
|  | { | 
|  | u32 zone_num; | 
|  |  | 
|  | if (!zinfo) | 
|  | return false; | 
|  |  | 
|  | zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); | 
|  | if (zone_num + 1 >= zinfo->nr_zones) | 
|  | return false; | 
|  |  | 
|  | if (!test_bit(zone_num, zinfo->seq_zones)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) | 
|  | { | 
|  | struct btrfs_zoned_device_info *zinfo = device->zone_info; | 
|  | struct blk_zone *zone; | 
|  | int i; | 
|  |  | 
|  | if (!is_sb_log_zone(zinfo, mirror)) | 
|  | return 0; | 
|  |  | 
|  | zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; | 
|  | for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { | 
|  | /* Advance the next zone */ | 
|  | if (zone->cond == BLK_ZONE_COND_FULL) { | 
|  | zone++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (zone->cond == BLK_ZONE_COND_EMPTY) | 
|  | zone->cond = BLK_ZONE_COND_IMP_OPEN; | 
|  |  | 
|  | zone->wp += SUPER_INFO_SECTORS; | 
|  |  | 
|  | if (sb_zone_is_full(zone)) { | 
|  | /* | 
|  | * No room left to write new superblock. Since | 
|  | * superblock is written with REQ_SYNC, it is safe to | 
|  | * finish the zone now. | 
|  | * | 
|  | * If the write pointer is exactly at the capacity, | 
|  | * explicit ZONE_FINISH is not necessary. | 
|  | */ | 
|  | if (zone->wp != zone->start + zone->capacity) { | 
|  | unsigned int nofs_flags; | 
|  | int ret; | 
|  |  | 
|  | nofs_flags = memalloc_nofs_save(); | 
|  | ret = blkdev_zone_mgmt(device->bdev, | 
|  | REQ_OP_ZONE_FINISH, zone->start, | 
|  | zone->len); | 
|  | memalloc_nofs_restore(nofs_flags); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | zone->wp = zone->start + zone->len; | 
|  | zone->cond = BLK_ZONE_COND_FULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* All the zones are FULL. Should not reach here. */ | 
|  | DEBUG_WARN("unexpected state, all zones full"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) | 
|  | { | 
|  | unsigned int nofs_flags; | 
|  | sector_t zone_sectors; | 
|  | sector_t nr_sectors; | 
|  | u8 zone_sectors_shift; | 
|  | u32 sb_zone; | 
|  | u32 nr_zones; | 
|  | int ret; | 
|  |  | 
|  | zone_sectors = bdev_zone_sectors(bdev); | 
|  | zone_sectors_shift = ilog2(zone_sectors); | 
|  | nr_sectors = bdev_nr_sectors(bdev); | 
|  | nr_zones = nr_sectors >> zone_sectors_shift; | 
|  |  | 
|  | sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); | 
|  | if (sb_zone + 1 >= nr_zones) | 
|  | return -ENOENT; | 
|  |  | 
|  | nofs_flags = memalloc_nofs_save(); | 
|  | ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, | 
|  | zone_start_sector(sb_zone, bdev), | 
|  | zone_sectors * BTRFS_NR_SB_LOG_ZONES); | 
|  | memalloc_nofs_restore(nofs_flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find allocatable zones within a given region. | 
|  | * | 
|  | * @device:	the device to allocate a region on | 
|  | * @hole_start: the position of the hole to allocate the region | 
|  | * @num_bytes:	size of wanted region | 
|  | * @hole_end:	the end of the hole | 
|  | * @return:	position of allocatable zones | 
|  | * | 
|  | * Allocatable region should not contain any superblock locations. | 
|  | */ | 
|  | u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, | 
|  | u64 hole_end, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_zoned_device_info *zinfo = device->zone_info; | 
|  | const u8 shift = zinfo->zone_size_shift; | 
|  | u64 nzones = num_bytes >> shift; | 
|  | u64 pos = hole_start; | 
|  | u64 begin, end; | 
|  | bool have_sb; | 
|  | int i; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); | 
|  | ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); | 
|  |  | 
|  | while (pos < hole_end) { | 
|  | begin = pos >> shift; | 
|  | end = begin + nzones; | 
|  |  | 
|  | if (end > zinfo->nr_zones) | 
|  | return hole_end; | 
|  |  | 
|  | /* Check if zones in the region are all empty */ | 
|  | if (btrfs_dev_is_sequential(device, pos) && | 
|  | !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { | 
|  | pos += zinfo->zone_size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | have_sb = false; | 
|  | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
|  | u32 sb_zone; | 
|  | u64 sb_pos; | 
|  |  | 
|  | sb_zone = sb_zone_number(shift, i); | 
|  | if (!(end <= sb_zone || | 
|  | sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { | 
|  | have_sb = true; | 
|  | pos = zone_start_physical( | 
|  | sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* We also need to exclude regular superblock positions */ | 
|  | sb_pos = btrfs_sb_offset(i); | 
|  | if (!(pos + num_bytes <= sb_pos || | 
|  | sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { | 
|  | have_sb = true; | 
|  | pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, | 
|  | zinfo->zone_size); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!have_sb) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) | 
|  | { | 
|  | struct btrfs_zoned_device_info *zone_info = device->zone_info; | 
|  | unsigned int zno = (pos >> zone_info->zone_size_shift); | 
|  |  | 
|  | /* We can use any number of zones */ | 
|  | if (zone_info->max_active_zones == 0) | 
|  | return true; | 
|  |  | 
|  | if (!test_bit(zno, zone_info->active_zones)) { | 
|  | /* Active zone left? */ | 
|  | if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) | 
|  | return false; | 
|  | if (test_and_set_bit(zno, zone_info->active_zones)) { | 
|  | /* Someone already set the bit */ | 
|  | atomic_inc(&zone_info->active_zones_left); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) | 
|  | { | 
|  | struct btrfs_zoned_device_info *zone_info = device->zone_info; | 
|  | unsigned int zno = (pos >> zone_info->zone_size_shift); | 
|  |  | 
|  | /* We can use any number of zones */ | 
|  | if (zone_info->max_active_zones == 0) | 
|  | return; | 
|  |  | 
|  | if (test_and_clear_bit(zno, zone_info->active_zones)) | 
|  | atomic_inc(&zone_info->active_zones_left); | 
|  | } | 
|  |  | 
|  | int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, | 
|  | u64 length, u64 *bytes) | 
|  | { | 
|  | unsigned int nofs_flags; | 
|  | int ret; | 
|  |  | 
|  | *bytes = 0; | 
|  | nofs_flags = memalloc_nofs_save(); | 
|  | ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, | 
|  | physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT); | 
|  | memalloc_nofs_restore(nofs_flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | *bytes = length; | 
|  | while (length) { | 
|  | btrfs_dev_set_zone_empty(device, physical); | 
|  | btrfs_dev_clear_active_zone(device, physical); | 
|  | physical += device->zone_info->zone_size; | 
|  | length -= device->zone_info->zone_size; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) | 
|  | { | 
|  | struct btrfs_zoned_device_info *zinfo = device->zone_info; | 
|  | const u8 shift = zinfo->zone_size_shift; | 
|  | unsigned long begin = start >> shift; | 
|  | unsigned long nbits = size >> shift; | 
|  | u64 pos; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(start, zinfo->zone_size)); | 
|  | ASSERT(IS_ALIGNED(size, zinfo->zone_size)); | 
|  |  | 
|  | if (begin + nbits > zinfo->nr_zones) | 
|  | return -ERANGE; | 
|  |  | 
|  | /* All the zones are conventional */ | 
|  | if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) | 
|  | return 0; | 
|  |  | 
|  | /* All the zones are sequential and empty */ | 
|  | if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && | 
|  | bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) | 
|  | return 0; | 
|  |  | 
|  | for (pos = start; pos < start + size; pos += zinfo->zone_size) { | 
|  | u64 reset_bytes; | 
|  |  | 
|  | if (!btrfs_dev_is_sequential(device, pos) || | 
|  | btrfs_dev_is_empty_zone(device, pos)) | 
|  | continue; | 
|  |  | 
|  | /* Free regions should be empty */ | 
|  | btrfs_warn( | 
|  | device->fs_info, | 
|  | "zoned: resetting device %s (devid %llu) zone %llu for allocation", | 
|  | rcu_dereference(device->name), device->devid, pos >> shift); | 
|  | WARN_ON_ONCE(1); | 
|  |  | 
|  | ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, | 
|  | &reset_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate an allocation pointer from the extent allocation information | 
|  | * for a block group consist of conventional zones. It is pointed to the | 
|  | * end of the highest addressed extent in the block group as an allocation | 
|  | * offset. | 
|  | */ | 
|  | static int calculate_alloc_pointer(struct btrfs_block_group *cache, | 
|  | u64 *offset_ret, bool new) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | struct btrfs_root *root; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | int ret; | 
|  | u64 length; | 
|  |  | 
|  | /* | 
|  | * Avoid  tree lookups for a new block group, there's no use for it. | 
|  | * It must always be 0. | 
|  | * | 
|  | * Also, we have a lock chain of extent buffer lock -> chunk mutex. | 
|  | * For new a block group, this function is called from | 
|  | * btrfs_make_block_group() which is already taking the chunk mutex. | 
|  | * Thus, we cannot call calculate_alloc_pointer() which takes extent | 
|  | * buffer locks to avoid deadlock. | 
|  | */ | 
|  | if (new) { | 
|  | *offset_ret = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = cache->start + cache->length; | 
|  | key.type = 0; | 
|  | key.offset = 0; | 
|  |  | 
|  | root = btrfs_extent_root(fs_info, key.objectid); | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | /* We should not find the exact match */ | 
|  | if (!ret) | 
|  | ret = -EUCLEAN; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_previous_extent_item(root, path, cache->start); | 
|  | if (ret) { | 
|  | if (ret == 1) { | 
|  | ret = 0; | 
|  | *offset_ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); | 
|  |  | 
|  | if (found_key.type == BTRFS_EXTENT_ITEM_KEY) | 
|  | length = found_key.offset; | 
|  | else | 
|  | length = fs_info->nodesize; | 
|  |  | 
|  | if (!(found_key.objectid >= cache->start && | 
|  | found_key.objectid + length <= cache->start + cache->length)) { | 
|  | return -EUCLEAN; | 
|  | } | 
|  | *offset_ret = found_key.objectid + length - cache->start; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct zone_info { | 
|  | u64 physical; | 
|  | u64 capacity; | 
|  | u64 alloc_offset; | 
|  | }; | 
|  |  | 
|  | static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, | 
|  | struct zone_info *info, unsigned long *active, | 
|  | struct btrfs_chunk_map *map, bool new) | 
|  | { | 
|  | struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; | 
|  | struct btrfs_device *device; | 
|  | int dev_replace_is_ongoing = 0; | 
|  | unsigned int nofs_flag; | 
|  | struct blk_zone zone; | 
|  | int ret; | 
|  |  | 
|  | info->physical = map->stripes[zone_idx].physical; | 
|  |  | 
|  | down_read(&dev_replace->rwsem); | 
|  | device = map->stripes[zone_idx].dev; | 
|  |  | 
|  | if (!device->bdev) { | 
|  | up_read(&dev_replace->rwsem); | 
|  | info->alloc_offset = WP_MISSING_DEV; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Consider a zone as active if we can allow any number of active zones. */ | 
|  | if (!device->zone_info->max_active_zones) | 
|  | __set_bit(zone_idx, active); | 
|  |  | 
|  | if (!btrfs_dev_is_sequential(device, info->physical)) { | 
|  | up_read(&dev_replace->rwsem); | 
|  | info->alloc_offset = WP_CONVENTIONAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ASSERT(!new || btrfs_dev_is_empty_zone(device, info->physical)); | 
|  |  | 
|  | /* This zone will be used for allocation, so mark this zone non-empty. */ | 
|  | btrfs_dev_clear_zone_empty(device, info->physical); | 
|  |  | 
|  | dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); | 
|  | if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) | 
|  | btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); | 
|  |  | 
|  | /* | 
|  | * The group is mapped to a sequential zone. Get the zone write pointer | 
|  | * to determine the allocation offset within the zone. | 
|  | */ | 
|  | WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); | 
|  |  | 
|  | if (new) { | 
|  | sector_t capacity; | 
|  |  | 
|  | capacity = bdev_zone_capacity(device->bdev, info->physical >> SECTOR_SHIFT); | 
|  | up_read(&dev_replace->rwsem); | 
|  | info->alloc_offset = 0; | 
|  | info->capacity = capacity << SECTOR_SHIFT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | ret = btrfs_get_dev_zone(device, info->physical, &zone); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | if (ret) { | 
|  | up_read(&dev_replace->rwsem); | 
|  | if (ret != -EIO && ret != -EOPNOTSUPP) | 
|  | return ret; | 
|  | info->alloc_offset = WP_MISSING_DEV; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: unexpected conventional zone %llu on device %s (devid %llu)", | 
|  | zone.start << SECTOR_SHIFT, rcu_dereference(device->name), | 
|  | device->devid); | 
|  | up_read(&dev_replace->rwsem); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | info->capacity = (zone.capacity << SECTOR_SHIFT); | 
|  |  | 
|  | switch (zone.cond) { | 
|  | case BLK_ZONE_COND_OFFLINE: | 
|  | case BLK_ZONE_COND_READONLY: | 
|  | btrfs_err(fs_info, | 
|  | "zoned: offline/readonly zone %llu on device %s (devid %llu)", | 
|  | (info->physical >> device->zone_info->zone_size_shift), | 
|  | rcu_dereference(device->name), device->devid); | 
|  | info->alloc_offset = WP_MISSING_DEV; | 
|  | break; | 
|  | case BLK_ZONE_COND_EMPTY: | 
|  | info->alloc_offset = 0; | 
|  | break; | 
|  | case BLK_ZONE_COND_FULL: | 
|  | info->alloc_offset = info->capacity; | 
|  | break; | 
|  | default: | 
|  | /* Partially used zone. */ | 
|  | info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); | 
|  | __set_bit(zone_idx, active); | 
|  | break; | 
|  | } | 
|  |  | 
|  | up_read(&dev_replace->rwsem); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_load_block_group_single(struct btrfs_block_group *bg, | 
|  | struct zone_info *info, | 
|  | unsigned long *active) | 
|  | { | 
|  | if (info->alloc_offset == WP_MISSING_DEV) { | 
|  | btrfs_err(bg->fs_info, | 
|  | "zoned: cannot recover write pointer for zone %llu", | 
|  | info->physical); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | bg->alloc_offset = info->alloc_offset; | 
|  | bg->zone_capacity = info->capacity; | 
|  | if (test_bit(0, active)) | 
|  | set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, | 
|  | struct btrfs_chunk_map *map, | 
|  | struct zone_info *zone_info, | 
|  | unsigned long *active, | 
|  | u64 last_alloc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bg->fs_info; | 
|  |  | 
|  | if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { | 
|  | btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); | 
|  |  | 
|  | if (zone_info[0].alloc_offset == WP_MISSING_DEV) { | 
|  | btrfs_err(bg->fs_info, | 
|  | "zoned: cannot recover write pointer for zone %llu", | 
|  | zone_info[0].physical); | 
|  | return -EIO; | 
|  | } | 
|  | if (zone_info[1].alloc_offset == WP_MISSING_DEV) { | 
|  | btrfs_err(bg->fs_info, | 
|  | "zoned: cannot recover write pointer for zone %llu", | 
|  | zone_info[1].physical); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (zone_info[0].alloc_offset == WP_CONVENTIONAL) | 
|  | zone_info[0].alloc_offset = last_alloc; | 
|  |  | 
|  | if (zone_info[1].alloc_offset == WP_CONVENTIONAL) | 
|  | zone_info[1].alloc_offset = last_alloc; | 
|  |  | 
|  | if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) { | 
|  | btrfs_err(bg->fs_info, | 
|  | "zoned: write pointer offset mismatch of zones in DUP profile"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (test_bit(0, active) != test_bit(1, active)) { | 
|  | if (!btrfs_zone_activate(bg)) | 
|  | return -EIO; | 
|  | } else if (test_bit(0, active)) { | 
|  | set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); | 
|  | } | 
|  |  | 
|  | bg->alloc_offset = zone_info[0].alloc_offset; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, | 
|  | struct btrfs_chunk_map *map, | 
|  | struct zone_info *zone_info, | 
|  | unsigned long *active, | 
|  | u64 last_alloc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bg->fs_info; | 
|  | int i; | 
|  |  | 
|  | if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { | 
|  | btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", | 
|  | btrfs_bg_type_to_raid_name(map->type)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* In case a device is missing we have a cap of 0, so don't use it. */ | 
|  | bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | if (zone_info[i].alloc_offset == WP_MISSING_DEV) | 
|  | continue; | 
|  |  | 
|  | if (zone_info[i].alloc_offset == WP_CONVENTIONAL) | 
|  | zone_info[i].alloc_offset = last_alloc; | 
|  |  | 
|  | if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && | 
|  | !btrfs_test_opt(fs_info, DEGRADED)) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: write pointer offset mismatch of zones in %s profile", | 
|  | btrfs_bg_type_to_raid_name(map->type)); | 
|  | return -EIO; | 
|  | } | 
|  | if (test_bit(0, active) != test_bit(i, active)) { | 
|  | if (!btrfs_test_opt(fs_info, DEGRADED) && | 
|  | !btrfs_zone_activate(bg)) { | 
|  | return -EIO; | 
|  | } | 
|  | } else { | 
|  | if (test_bit(0, active)) | 
|  | set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (zone_info[0].alloc_offset != WP_MISSING_DEV) | 
|  | bg->alloc_offset = zone_info[0].alloc_offset; | 
|  | else | 
|  | bg->alloc_offset = zone_info[i - 1].alloc_offset; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, | 
|  | struct btrfs_chunk_map *map, | 
|  | struct zone_info *zone_info, | 
|  | unsigned long *active, | 
|  | u64 last_alloc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bg->fs_info; | 
|  |  | 
|  | if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { | 
|  | btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", | 
|  | btrfs_bg_type_to_raid_name(map->type)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < map->num_stripes; i++) { | 
|  | if (zone_info[i].alloc_offset == WP_MISSING_DEV) | 
|  | continue; | 
|  |  | 
|  | if (zone_info[i].alloc_offset == WP_CONVENTIONAL) { | 
|  | u64 stripe_nr, full_stripe_nr; | 
|  | u64 stripe_offset; | 
|  | int stripe_index; | 
|  |  | 
|  | stripe_nr = div64_u64(last_alloc, map->stripe_size); | 
|  | stripe_offset = stripe_nr * map->stripe_size; | 
|  | full_stripe_nr = div_u64(stripe_nr, map->num_stripes); | 
|  | div_u64_rem(stripe_nr, map->num_stripes, &stripe_index); | 
|  |  | 
|  | zone_info[i].alloc_offset = | 
|  | full_stripe_nr * map->stripe_size; | 
|  |  | 
|  | if (stripe_index > i) | 
|  | zone_info[i].alloc_offset += map->stripe_size; | 
|  | else if (stripe_index == i) | 
|  | zone_info[i].alloc_offset += | 
|  | (last_alloc - stripe_offset); | 
|  | } | 
|  |  | 
|  | if (test_bit(0, active) != test_bit(i, active)) { | 
|  | if (!btrfs_zone_activate(bg)) | 
|  | return -EIO; | 
|  | } else { | 
|  | if (test_bit(0, active)) | 
|  | set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); | 
|  | } | 
|  | bg->zone_capacity += zone_info[i].capacity; | 
|  | bg->alloc_offset += zone_info[i].alloc_offset; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, | 
|  | struct btrfs_chunk_map *map, | 
|  | struct zone_info *zone_info, | 
|  | unsigned long *active, | 
|  | u64 last_alloc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bg->fs_info; | 
|  |  | 
|  | if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { | 
|  | btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", | 
|  | btrfs_bg_type_to_raid_name(map->type)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < map->num_stripes; i++) { | 
|  | if (zone_info[i].alloc_offset == WP_MISSING_DEV) | 
|  | continue; | 
|  |  | 
|  | if (test_bit(0, active) != test_bit(i, active)) { | 
|  | if (!btrfs_zone_activate(bg)) | 
|  | return -EIO; | 
|  | } else { | 
|  | if (test_bit(0, active)) | 
|  | set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); | 
|  | } | 
|  |  | 
|  | if (zone_info[i].alloc_offset == WP_CONVENTIONAL) { | 
|  | u64 stripe_nr, full_stripe_nr; | 
|  | u64 stripe_offset; | 
|  | int stripe_index; | 
|  |  | 
|  | stripe_nr = div64_u64(last_alloc, map->stripe_size); | 
|  | stripe_offset = stripe_nr * map->stripe_size; | 
|  | full_stripe_nr = div_u64(stripe_nr, | 
|  | map->num_stripes / map->sub_stripes); | 
|  | div_u64_rem(stripe_nr, | 
|  | (map->num_stripes / map->sub_stripes), | 
|  | &stripe_index); | 
|  |  | 
|  | zone_info[i].alloc_offset = | 
|  | full_stripe_nr * map->stripe_size; | 
|  |  | 
|  | if (stripe_index > (i / map->sub_stripes)) | 
|  | zone_info[i].alloc_offset += map->stripe_size; | 
|  | else if (stripe_index == (i / map->sub_stripes)) | 
|  | zone_info[i].alloc_offset += | 
|  | (last_alloc - stripe_offset); | 
|  | } | 
|  |  | 
|  | if ((i % map->sub_stripes) == 0) { | 
|  | bg->zone_capacity += zone_info[i].capacity; | 
|  | bg->alloc_offset += zone_info[i].alloc_offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | struct btrfs_chunk_map *map; | 
|  | u64 logical = cache->start; | 
|  | u64 length = cache->length; | 
|  | struct zone_info *zone_info = NULL; | 
|  | int ret; | 
|  | int i; | 
|  | unsigned long *active = NULL; | 
|  | u64 last_alloc = 0; | 
|  | u32 num_sequential = 0, num_conventional = 0; | 
|  | u64 profile; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return 0; | 
|  |  | 
|  | /* Sanity check */ | 
|  | if (!IS_ALIGNED(length, fs_info->zone_size)) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: block group %llu len %llu unaligned to zone size %llu", | 
|  | logical, length, fs_info->zone_size); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | map = btrfs_find_chunk_map(fs_info, logical, length); | 
|  | if (!map) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache->physical_map = map; | 
|  |  | 
|  | zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); | 
|  | if (!zone_info) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | active = bitmap_zalloc(map->num_stripes, GFP_NOFS); | 
|  | if (!active) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map, new); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (zone_info[i].alloc_offset == WP_CONVENTIONAL) | 
|  | num_conventional++; | 
|  | else | 
|  | num_sequential++; | 
|  | } | 
|  |  | 
|  | if (num_sequential > 0) | 
|  | set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); | 
|  |  | 
|  | if (num_conventional > 0) { | 
|  | /* Zone capacity is always zone size in emulation */ | 
|  | cache->zone_capacity = cache->length; | 
|  | ret = calculate_alloc_pointer(cache, &last_alloc, new); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: failed to determine allocation offset of bg %llu", | 
|  | cache->start); | 
|  | goto out; | 
|  | } else if (map->num_stripes == num_conventional) { | 
|  | cache->alloc_offset = last_alloc; | 
|  | set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; | 
|  | switch (profile) { | 
|  | case 0: /* single */ | 
|  | ret = btrfs_load_block_group_single(cache, &zone_info[0], active); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_DUP: | 
|  | ret = btrfs_load_block_group_dup(cache, map, zone_info, active, | 
|  | last_alloc); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_RAID1: | 
|  | case BTRFS_BLOCK_GROUP_RAID1C3: | 
|  | case BTRFS_BLOCK_GROUP_RAID1C4: | 
|  | ret = btrfs_load_block_group_raid1(cache, map, zone_info, | 
|  | active, last_alloc); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_RAID0: | 
|  | ret = btrfs_load_block_group_raid0(cache, map, zone_info, | 
|  | active, last_alloc); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_RAID10: | 
|  | ret = btrfs_load_block_group_raid10(cache, map, zone_info, | 
|  | active, last_alloc); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_RAID5: | 
|  | case BTRFS_BLOCK_GROUP_RAID6: | 
|  | default: | 
|  | btrfs_err(fs_info, "zoned: profile %s not yet supported", | 
|  | btrfs_bg_type_to_raid_name(map->type)); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 && | 
|  | profile != BTRFS_BLOCK_GROUP_RAID10) { | 
|  | /* | 
|  | * Detected broken write pointer.  Make this block group | 
|  | * unallocatable by setting the allocation pointer at the end of | 
|  | * allocatable region. Relocating this block group will fix the | 
|  | * mismatch. | 
|  | * | 
|  | * Currently, we cannot handle RAID0 or RAID10 case like this | 
|  | * because we don't have a proper zone_capacity value. But, | 
|  | * reading from this block group won't work anyway by a missing | 
|  | * stripe. | 
|  | */ | 
|  | cache->alloc_offset = cache->zone_capacity; | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* Reject non SINGLE data profiles without RST */ | 
|  | if ((map->type & BTRFS_BLOCK_GROUP_DATA) && | 
|  | (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && | 
|  | !fs_info->stripe_root) { | 
|  | btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", | 
|  | btrfs_bg_type_to_raid_name(map->type)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (cache->alloc_offset > cache->zone_capacity) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", | 
|  | cache->alloc_offset, cache->zone_capacity, | 
|  | cache->start); | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | /* An extent is allocated after the write pointer */ | 
|  | if (!ret && num_conventional && last_alloc > cache->alloc_offset) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: got wrong write pointer in BG %llu: %llu > %llu", | 
|  | logical, last_alloc, cache->alloc_offset); | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | cache->meta_write_pointer = cache->alloc_offset + cache->start; | 
|  | if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { | 
|  | btrfs_get_block_group(cache); | 
|  | spin_lock(&fs_info->zone_active_bgs_lock); | 
|  | list_add_tail(&cache->active_bg_list, | 
|  | &fs_info->zone_active_bgs); | 
|  | spin_unlock(&fs_info->zone_active_bgs_lock); | 
|  | } | 
|  | } else { | 
|  | btrfs_free_chunk_map(cache->physical_map); | 
|  | cache->physical_map = NULL; | 
|  | } | 
|  | bitmap_free(active); | 
|  | kfree(zone_info); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) | 
|  | { | 
|  | u64 unusable, free; | 
|  |  | 
|  | if (!btrfs_is_zoned(cache->fs_info)) | 
|  | return; | 
|  |  | 
|  | WARN_ON(cache->bytes_super != 0); | 
|  | unusable = (cache->alloc_offset - cache->used) + | 
|  | (cache->length - cache->zone_capacity); | 
|  | free = cache->zone_capacity - cache->alloc_offset; | 
|  |  | 
|  | /* We only need ->free_space in ALLOC_SEQ block groups */ | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | cache->free_space_ctl->free_space = free; | 
|  | cache->zone_unusable = unusable; | 
|  | } | 
|  |  | 
|  | bool btrfs_use_zone_append(struct btrfs_bio *bbio) | 
|  | { | 
|  | u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); | 
|  | struct btrfs_inode *inode = bbio->inode; | 
|  | struct btrfs_fs_info *fs_info = bbio->fs_info; | 
|  | struct btrfs_block_group *cache; | 
|  | bool ret = false; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return false; | 
|  |  | 
|  | if (!inode || !is_data_inode(inode)) | 
|  | return false; | 
|  |  | 
|  | if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the | 
|  | * extent layout the relocation code has. | 
|  | * Furthermore we have set aside own block-group from which only the | 
|  | * relocation "process" can allocate and make sure only one process at a | 
|  | * time can add pages to an extent that gets relocated, so it's safe to | 
|  | * use regular REQ_OP_WRITE for this special case. | 
|  | */ | 
|  | if (btrfs_is_data_reloc_root(inode->root)) | 
|  | return false; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, start); | 
|  | ASSERT(cache); | 
|  | if (!cache) | 
|  | return false; | 
|  |  | 
|  | ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_record_physical_zoned(struct btrfs_bio *bbio) | 
|  | { | 
|  | const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; | 
|  | struct btrfs_ordered_sum *sum = bbio->sums; | 
|  |  | 
|  | if (physical < bbio->orig_physical) | 
|  | sum->logical -= bbio->orig_physical - physical; | 
|  | else | 
|  | sum->logical += physical - bbio->orig_physical; | 
|  | } | 
|  |  | 
|  | static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, | 
|  | u64 logical) | 
|  | { | 
|  | struct extent_map_tree *em_tree = &ordered->inode->extent_tree; | 
|  | struct extent_map *em; | 
|  |  | 
|  | ordered->disk_bytenr = logical; | 
|  |  | 
|  | write_lock(&em_tree->lock); | 
|  | em = btrfs_search_extent_mapping(em_tree, ordered->file_offset, | 
|  | ordered->num_bytes); | 
|  | /* The em should be a new COW extent, thus it should not have an offset. */ | 
|  | ASSERT(em->offset == 0); | 
|  | em->disk_bytenr = logical; | 
|  | btrfs_free_extent_map(em); | 
|  | write_unlock(&em_tree->lock); | 
|  | } | 
|  |  | 
|  | static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, | 
|  | u64 logical, u64 len) | 
|  | { | 
|  | struct btrfs_ordered_extent *new; | 
|  |  | 
|  | if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && | 
|  | btrfs_split_extent_map(ordered->inode, ordered->file_offset, | 
|  | ordered->num_bytes, len, logical)) | 
|  | return false; | 
|  |  | 
|  | new = btrfs_split_ordered_extent(ordered, len); | 
|  | if (IS_ERR(new)) | 
|  | return false; | 
|  | new->disk_bytenr = logical; | 
|  | btrfs_finish_one_ordered(new); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) | 
|  | { | 
|  | struct btrfs_inode *inode = ordered->inode; | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_ordered_sum *sum; | 
|  | u64 logical, len; | 
|  |  | 
|  | /* | 
|  | * Write to pre-allocated region is for the data relocation, and so | 
|  | * it should use WRITE operation. No split/rewrite are necessary. | 
|  | */ | 
|  | if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) | 
|  | return; | 
|  |  | 
|  | ASSERT(!list_empty(&ordered->list)); | 
|  | /* The ordered->list can be empty in the above pre-alloc case. */ | 
|  | sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); | 
|  | logical = sum->logical; | 
|  | len = sum->len; | 
|  |  | 
|  | while (len < ordered->disk_num_bytes) { | 
|  | sum = list_next_entry(sum, list); | 
|  | if (sum->logical == logical + len) { | 
|  | len += sum->len; | 
|  | continue; | 
|  | } | 
|  | if (!btrfs_zoned_split_ordered(ordered, logical, len)) { | 
|  | set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); | 
|  | btrfs_err(fs_info, "failed to split ordered extent"); | 
|  | goto out; | 
|  | } | 
|  | logical = sum->logical; | 
|  | len = sum->len; | 
|  | } | 
|  |  | 
|  | if (ordered->disk_bytenr != logical) | 
|  | btrfs_rewrite_logical_zoned(ordered, logical); | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures | 
|  | * were allocated by btrfs_alloc_dummy_sum only to record the logical | 
|  | * addresses and don't contain actual checksums.  We thus must free them | 
|  | * here so that we don't attempt to log the csums later. | 
|  | */ | 
|  | if ((inode->flags & BTRFS_INODE_NODATASUM) || | 
|  | test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) { | 
|  | while ((sum = list_first_entry_or_null(&ordered->list, | 
|  | typeof(*sum), list))) { | 
|  | list_del(&sum->list); | 
|  | kfree(sum); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, | 
|  | struct btrfs_block_group **active_bg) | 
|  | { | 
|  | const struct writeback_control *wbc = ctx->wbc; | 
|  | struct btrfs_block_group *block_group = ctx->zoned_bg; | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  |  | 
|  | if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) | 
|  | return true; | 
|  |  | 
|  | if (fs_info->treelog_bg == block_group->start) { | 
|  | if (!btrfs_zone_activate(block_group)) { | 
|  | int ret_fin = btrfs_zone_finish_one_bg(fs_info); | 
|  |  | 
|  | if (ret_fin != 1 || !btrfs_zone_activate(block_group)) | 
|  | return false; | 
|  | } | 
|  | } else if (*active_bg != block_group) { | 
|  | struct btrfs_block_group *tgt = *active_bg; | 
|  |  | 
|  | /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ | 
|  | lockdep_assert_held(&fs_info->zoned_meta_io_lock); | 
|  |  | 
|  | if (tgt) { | 
|  | /* | 
|  | * If there is an unsent IO left in the allocated area, | 
|  | * we cannot wait for them as it may cause a deadlock. | 
|  | */ | 
|  | if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { | 
|  | if (wbc->sync_mode == WB_SYNC_NONE || | 
|  | (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Pivot active metadata/system block group. */ | 
|  | btrfs_zoned_meta_io_unlock(fs_info); | 
|  | wait_eb_writebacks(tgt); | 
|  | do_zone_finish(tgt, true); | 
|  | btrfs_zoned_meta_io_lock(fs_info); | 
|  | if (*active_bg == tgt) { | 
|  | btrfs_put_block_group(tgt); | 
|  | *active_bg = NULL; | 
|  | } | 
|  | } | 
|  | if (!btrfs_zone_activate(block_group)) | 
|  | return false; | 
|  | if (*active_bg != block_group) { | 
|  | ASSERT(*active_bg == NULL); | 
|  | *active_bg = block_group; | 
|  | btrfs_get_block_group(block_group); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if @ctx->eb is aligned to the write pointer. | 
|  | * | 
|  | * Return: | 
|  | *   0:        @ctx->eb is at the write pointer. You can write it. | 
|  | *   -EAGAIN:  There is a hole. The caller should handle the case. | 
|  | *   -EBUSY:   There is a hole, but the caller can just bail out. | 
|  | */ | 
|  | int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_eb_write_context *ctx) | 
|  | { | 
|  | const struct writeback_control *wbc = ctx->wbc; | 
|  | const struct extent_buffer *eb = ctx->eb; | 
|  | struct btrfs_block_group *block_group = ctx->zoned_bg; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return 0; | 
|  |  | 
|  | if (block_group) { | 
|  | if (block_group->start > eb->start || | 
|  | block_group->start + block_group->length <= eb->start) { | 
|  | btrfs_put_block_group(block_group); | 
|  | block_group = NULL; | 
|  | ctx->zoned_bg = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!block_group) { | 
|  | block_group = btrfs_lookup_block_group(fs_info, eb->start); | 
|  | if (!block_group) | 
|  | return 0; | 
|  | ctx->zoned_bg = block_group; | 
|  | } | 
|  |  | 
|  | if (block_group->meta_write_pointer == eb->start) { | 
|  | struct btrfs_block_group **tgt; | 
|  |  | 
|  | if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) | 
|  | return 0; | 
|  |  | 
|  | if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | tgt = &fs_info->active_system_bg; | 
|  | else | 
|  | tgt = &fs_info->active_meta_bg; | 
|  | if (check_bg_is_active(ctx, tgt)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since we may release fs_info->zoned_meta_io_lock, someone can already | 
|  | * start writing this eb. In that case, we can just bail out. | 
|  | */ | 
|  | if (block_group->meta_write_pointer > eb->start) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* If for_sync, this hole will be filled with transaction commit. */ | 
|  | if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) | 
|  | return -EAGAIN; | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) | 
|  | { | 
|  | if (!btrfs_dev_is_sequential(device, physical)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, | 
|  | length >> SECTOR_SHIFT, GFP_NOFS, 0); | 
|  | } | 
|  |  | 
|  | static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, | 
|  | struct blk_zone *zone) | 
|  | { | 
|  | struct btrfs_io_context *bioc = NULL; | 
|  | u64 mapped_length = PAGE_SIZE; | 
|  | unsigned int nofs_flag; | 
|  | int nmirrors; | 
|  | int i, ret; | 
|  |  | 
|  | ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, | 
|  | &mapped_length, &bioc, NULL, NULL); | 
|  | if (ret || !bioc || mapped_length < PAGE_SIZE) { | 
|  | ret = -EIO; | 
|  | goto out_put_bioc; | 
|  | } | 
|  |  | 
|  | if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | ret = -EINVAL; | 
|  | goto out_put_bioc; | 
|  | } | 
|  |  | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | nmirrors = (int)bioc->num_stripes; | 
|  | for (i = 0; i < nmirrors; i++) { | 
|  | u64 physical = bioc->stripes[i].physical; | 
|  | struct btrfs_device *dev = bioc->stripes[i].dev; | 
|  |  | 
|  | /* Missing device */ | 
|  | if (!dev->bdev) | 
|  | continue; | 
|  |  | 
|  | ret = btrfs_get_dev_zone(dev, physical, zone); | 
|  | /* Failing device */ | 
|  | if (ret == -EIO || ret == -EOPNOTSUPP) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | out_put_bioc: | 
|  | btrfs_put_bioc(bioc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by | 
|  | * filling zeros between @physical_pos to a write pointer of dev-replace | 
|  | * source device. | 
|  | */ | 
|  | int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, | 
|  | u64 physical_start, u64 physical_pos) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = tgt_dev->fs_info; | 
|  | struct blk_zone zone; | 
|  | u64 length; | 
|  | u64 wp; | 
|  | int ret; | 
|  |  | 
|  | if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) | 
|  | return 0; | 
|  |  | 
|  | ret = read_zone_info(fs_info, logical, &zone); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); | 
|  |  | 
|  | if (physical_pos == wp) | 
|  | return 0; | 
|  |  | 
|  | if (physical_pos > wp) | 
|  | return -EUCLEAN; | 
|  |  | 
|  | length = wp - physical_pos; | 
|  | return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Activate block group and underlying device zones | 
|  | * | 
|  | * @block_group: the block group to activate | 
|  | * | 
|  | * Return: true on success, false otherwise | 
|  | */ | 
|  | bool btrfs_zone_activate(struct btrfs_block_group *block_group) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_chunk_map *map; | 
|  | struct btrfs_device *device; | 
|  | u64 physical; | 
|  | const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); | 
|  | bool ret; | 
|  | int i; | 
|  |  | 
|  | if (!btrfs_is_zoned(block_group->fs_info)) | 
|  | return true; | 
|  |  | 
|  | map = block_group->physical_map; | 
|  |  | 
|  | spin_lock(&fs_info->zone_active_bgs_lock); | 
|  | spin_lock(&block_group->lock); | 
|  | if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { | 
|  | ret = true; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) { | 
|  | /* The caller should check if the block group is full. */ | 
|  | if (WARN_ON_ONCE(btrfs_zoned_bg_is_full(block_group))) { | 
|  | ret = false; | 
|  | goto out_unlock; | 
|  | } | 
|  | } else { | 
|  | /* Since it is already written, it should have been active. */ | 
|  | WARN_ON_ONCE(block_group->meta_write_pointer != block_group->start); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_zoned_device_info *zinfo; | 
|  | int reserved = 0; | 
|  |  | 
|  | device = map->stripes[i].dev; | 
|  | physical = map->stripes[i].physical; | 
|  | zinfo = device->zone_info; | 
|  |  | 
|  | if (!device->bdev) | 
|  | continue; | 
|  |  | 
|  | if (zinfo->max_active_zones == 0) | 
|  | continue; | 
|  |  | 
|  | if (is_data) | 
|  | reserved = zinfo->reserved_active_zones; | 
|  | /* | 
|  | * For the data block group, leave active zones for one | 
|  | * metadata block group and one system block group. | 
|  | */ | 
|  | if (atomic_read(&zinfo->active_zones_left) <= reserved) { | 
|  | ret = false; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (!btrfs_dev_set_active_zone(device, physical)) { | 
|  | /* Cannot activate the zone */ | 
|  | ret = false; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (!is_data) | 
|  | zinfo->reserved_active_zones--; | 
|  | } | 
|  |  | 
|  | /* Successfully activated all the zones */ | 
|  | set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | /* For the active block group list */ | 
|  | btrfs_get_block_group(block_group); | 
|  | list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); | 
|  | spin_unlock(&fs_info->zone_active_bgs_lock); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&block_group->lock); | 
|  | spin_unlock(&fs_info->zone_active_bgs_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void wait_eb_writebacks(struct btrfs_block_group *block_group) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | const u64 end = block_group->start + block_group->length; | 
|  | struct extent_buffer *eb; | 
|  | unsigned long index, start = (block_group->start >> fs_info->nodesize_bits); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | xa_for_each_start(&fs_info->buffer_tree, index, eb, start) { | 
|  | if (eb->start < block_group->start) | 
|  | continue; | 
|  | if (eb->start >= end) | 
|  | break; | 
|  | rcu_read_unlock(); | 
|  | wait_on_extent_buffer_writeback(eb); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int call_zone_finish(struct btrfs_block_group *block_group, | 
|  | struct btrfs_io_stripe *stripe) | 
|  | { | 
|  | struct btrfs_device *device = stripe->dev; | 
|  | const u64 physical = stripe->physical; | 
|  | struct btrfs_zoned_device_info *zinfo = device->zone_info; | 
|  | int ret; | 
|  |  | 
|  | if (!device->bdev) | 
|  | return 0; | 
|  |  | 
|  | if (zinfo->max_active_zones == 0) | 
|  | return 0; | 
|  |  | 
|  | if (btrfs_dev_is_sequential(device, physical)) { | 
|  | unsigned int nofs_flags; | 
|  |  | 
|  | nofs_flags = memalloc_nofs_save(); | 
|  | ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, | 
|  | physical >> SECTOR_SHIFT, | 
|  | zinfo->zone_size >> SECTOR_SHIFT); | 
|  | memalloc_nofs_restore(nofs_flags); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) | 
|  | zinfo->reserved_active_zones++; | 
|  | btrfs_dev_clear_active_zone(device, physical); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_chunk_map *map; | 
|  | const bool is_metadata = (block_group->flags & | 
|  | (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); | 
|  | struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { | 
|  | spin_unlock(&block_group->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check if we have unwritten allocated space */ | 
|  | if (is_metadata && | 
|  | block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { | 
|  | spin_unlock(&block_group->lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are sure that the block group is full (= no more room left for | 
|  | * new allocation) and the IO for the last usable block is completed, we | 
|  | * don't need to wait for the other IOs. This holds because we ensure | 
|  | * the sequential IO submissions using the ZONE_APPEND command for data | 
|  | * and block_group->meta_write_pointer for metadata. | 
|  | */ | 
|  | if (!fully_written) { | 
|  | if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { | 
|  | spin_unlock(&block_group->lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | ret = btrfs_inc_block_group_ro(block_group, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Ensure all writes in this block group finish */ | 
|  | btrfs_wait_block_group_reservations(block_group); | 
|  | /* No need to wait for NOCOW writers. Zoned mode does not allow that */ | 
|  | btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group); | 
|  | /* Wait for extent buffers to be written. */ | 
|  | if (is_metadata) | 
|  | wait_eb_writebacks(block_group); | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  |  | 
|  | /* | 
|  | * Bail out if someone already deactivated the block group, or | 
|  | * allocated space is left in the block group. | 
|  | */ | 
|  | if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, | 
|  | &block_group->runtime_flags)) { | 
|  | spin_unlock(&block_group->lock); | 
|  | btrfs_dec_block_group_ro(block_group); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (block_group->reserved || | 
|  | test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, | 
|  | &block_group->runtime_flags)) { | 
|  | spin_unlock(&block_group->lock); | 
|  | btrfs_dec_block_group_ro(block_group); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); | 
|  | block_group->alloc_offset = block_group->zone_capacity; | 
|  | if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) | 
|  | block_group->meta_write_pointer = block_group->start + | 
|  | block_group->zone_capacity; | 
|  | block_group->free_space_ctl->free_space = 0; | 
|  | btrfs_clear_treelog_bg(block_group); | 
|  | btrfs_clear_data_reloc_bg(block_group); | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | down_read(&dev_replace->rwsem); | 
|  | map = block_group->physical_map; | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  |  | 
|  | ret = call_zone_finish(block_group, &map->stripes[i]); | 
|  | if (ret) { | 
|  | up_read(&dev_replace->rwsem); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | up_read(&dev_replace->rwsem); | 
|  |  | 
|  | if (!fully_written) | 
|  | btrfs_dec_block_group_ro(block_group); | 
|  |  | 
|  | spin_lock(&fs_info->zone_active_bgs_lock); | 
|  | ASSERT(!list_empty(&block_group->active_bg_list)); | 
|  | list_del_init(&block_group->active_bg_list); | 
|  | spin_unlock(&fs_info->zone_active_bgs_lock); | 
|  |  | 
|  | /* For active_bg_list */ | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_zone_finish(struct btrfs_block_group *block_group) | 
|  | { | 
|  | if (!btrfs_is_zoned(block_group->fs_info)) | 
|  | return 0; | 
|  |  | 
|  | return do_zone_finish(block_group, false); | 
|  | } | 
|  |  | 
|  | bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = fs_devices->fs_info; | 
|  | struct btrfs_device *device; | 
|  | bool ret = false; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return true; | 
|  |  | 
|  | if (test_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags)) | 
|  | return false; | 
|  |  | 
|  | /* Check if there is a device with active zones left */ | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | spin_lock(&fs_info->zone_active_bgs_lock); | 
|  | list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { | 
|  | struct btrfs_zoned_device_info *zinfo = device->zone_info; | 
|  | int reserved = 0; | 
|  |  | 
|  | if (!device->bdev) | 
|  | continue; | 
|  |  | 
|  | if (!zinfo->max_active_zones) { | 
|  | ret = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | reserved = zinfo->reserved_active_zones; | 
|  |  | 
|  | switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { | 
|  | case 0: /* single */ | 
|  | ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_DUP: | 
|  | ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); | 
|  | break; | 
|  | } | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | spin_unlock(&fs_info->zone_active_bgs_lock); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | if (!ret) | 
|  | set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) | 
|  | { | 
|  | struct btrfs_block_group *block_group; | 
|  | u64 min_alloc_bytes; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, logical); | 
|  | ASSERT(block_group); | 
|  |  | 
|  | /* No MIXED_BG on zoned btrfs. */ | 
|  | if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | min_alloc_bytes = fs_info->sectorsize; | 
|  | else | 
|  | min_alloc_bytes = fs_info->nodesize; | 
|  |  | 
|  | /* Bail out if we can allocate more data from this block group. */ | 
|  | if (logical + length + min_alloc_bytes <= | 
|  | block_group->start + block_group->zone_capacity) | 
|  | goto out; | 
|  |  | 
|  | do_zone_finish(block_group, true); | 
|  |  | 
|  | out: | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  |  | 
|  | static void btrfs_zone_finish_endio_workfn(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_block_group *bg = | 
|  | container_of(work, struct btrfs_block_group, zone_finish_work); | 
|  |  | 
|  | wait_on_extent_buffer_writeback(bg->last_eb); | 
|  | free_extent_buffer(bg->last_eb); | 
|  | btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); | 
|  | btrfs_put_block_group(bg); | 
|  | } | 
|  |  | 
|  | void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, | 
|  | struct extent_buffer *eb) | 
|  | { | 
|  | if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || | 
|  | eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { | 
|  | btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", | 
|  | bg->start); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* For the work */ | 
|  | btrfs_get_block_group(bg); | 
|  | refcount_inc(&eb->refs); | 
|  | bg->last_eb = eb; | 
|  | INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); | 
|  | queue_work(system_unbound_wq, &bg->zone_finish_work); | 
|  | } | 
|  |  | 
|  | void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bg->fs_info; | 
|  |  | 
|  | spin_lock(&fs_info->relocation_bg_lock); | 
|  | if (fs_info->data_reloc_bg == bg->start) | 
|  | fs_info->data_reloc_bg = 0; | 
|  | spin_unlock(&fs_info->relocation_bg_lock); | 
|  | } | 
|  |  | 
|  | void btrfs_zoned_reserve_data_reloc_bg(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; | 
|  | struct btrfs_space_info *space_info = data_sinfo; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_block_group *bg; | 
|  | struct list_head *bg_list; | 
|  | u64 alloc_flags; | 
|  | bool first = true; | 
|  | bool did_chunk_alloc = false; | 
|  | int index; | 
|  | int ret; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return; | 
|  |  | 
|  | if (fs_info->data_reloc_bg) | 
|  | return; | 
|  |  | 
|  | if (sb_rdonly(fs_info->sb)) | 
|  | return; | 
|  |  | 
|  | alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags); | 
|  | index = btrfs_bg_flags_to_raid_index(alloc_flags); | 
|  |  | 
|  | /* Scan the data space_info to find empty block groups. Take the second one. */ | 
|  | again: | 
|  | bg_list = &space_info->block_groups[index]; | 
|  | list_for_each_entry(bg, bg_list, list) { | 
|  | if (bg->alloc_offset != 0) | 
|  | continue; | 
|  |  | 
|  | if (first) { | 
|  | first = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (space_info == data_sinfo) { | 
|  | /* Migrate the block group to the data relocation space_info. */ | 
|  | struct btrfs_space_info *reloc_sinfo = data_sinfo->sub_group[0]; | 
|  | int factor; | 
|  |  | 
|  | ASSERT(reloc_sinfo->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC); | 
|  | factor = btrfs_bg_type_to_factor(bg->flags); | 
|  |  | 
|  | down_write(&space_info->groups_sem); | 
|  | list_del_init(&bg->list); | 
|  | /* We can assume this as we choose the second empty one. */ | 
|  | ASSERT(!list_empty(&space_info->block_groups[index])); | 
|  | up_write(&space_info->groups_sem); | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | space_info->total_bytes -= bg->length; | 
|  | space_info->disk_total -= bg->length * factor; | 
|  | /* There is no allocation ever happened. */ | 
|  | ASSERT(bg->used == 0); | 
|  | ASSERT(bg->zone_unusable == 0); | 
|  | /* No super block in a block group on the zoned setup. */ | 
|  | ASSERT(bg->bytes_super == 0); | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | bg->space_info = reloc_sinfo; | 
|  | if (reloc_sinfo->block_group_kobjs[index] == NULL) | 
|  | btrfs_sysfs_add_block_group_type(bg); | 
|  |  | 
|  | btrfs_add_bg_to_space_info(fs_info, bg); | 
|  | } | 
|  |  | 
|  | fs_info->data_reloc_bg = bg->start; | 
|  | set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &bg->runtime_flags); | 
|  | btrfs_zone_activate(bg); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (did_chunk_alloc) | 
|  | return; | 
|  |  | 
|  | trans = btrfs_join_transaction(fs_info->tree_root); | 
|  | if (IS_ERR(trans)) | 
|  | return; | 
|  |  | 
|  | /* Allocate new BG in the data relocation space_info. */ | 
|  | space_info = data_sinfo->sub_group[0]; | 
|  | ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC); | 
|  | ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE); | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret == 1) { | 
|  | /* | 
|  | * We allocated a new block group in the data relocation space_info. We | 
|  | * can take that one. | 
|  | */ | 
|  | first = false; | 
|  | did_chunk_alloc = true; | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | if (device->zone_info) { | 
|  | vfree(device->zone_info->zone_cache); | 
|  | device->zone_info->zone_cache = NULL; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | } | 
|  |  | 
|  | bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | u64 total = btrfs_super_total_bytes(fs_info->super_copy); | 
|  | u64 used = 0; | 
|  | u64 factor; | 
|  |  | 
|  | ASSERT(btrfs_is_zoned(fs_info)); | 
|  |  | 
|  | if (fs_info->bg_reclaim_threshold == 0) | 
|  | return false; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | if (!device->bdev) | 
|  | continue; | 
|  |  | 
|  | used += device->bytes_used; | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | factor = div64_u64(used * 100, total); | 
|  | return factor >= fs_info->bg_reclaim_threshold; | 
|  | } | 
|  |  | 
|  | void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, | 
|  | u64 length) | 
|  | { | 
|  | struct btrfs_block_group *block_group; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, logical); | 
|  | /* It should be called on a previous data relocation block group. */ | 
|  | ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) | 
|  | goto out; | 
|  |  | 
|  | /* All relocation extents are written. */ | 
|  | if (block_group->start + block_group->alloc_offset == logical + length) { | 
|  | /* | 
|  | * Now, release this block group for further allocations and | 
|  | * zone finish. | 
|  | */ | 
|  | clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, | 
|  | &block_group->runtime_flags); | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock(&block_group->lock); | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  |  | 
|  | int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_group *block_group; | 
|  | struct btrfs_block_group *min_bg = NULL; | 
|  | u64 min_avail = U64_MAX; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&fs_info->zone_active_bgs_lock); | 
|  | list_for_each_entry(block_group, &fs_info->zone_active_bgs, | 
|  | active_bg_list) { | 
|  | u64 avail; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->reserved || block_group->alloc_offset == 0 || | 
|  | !(block_group->flags & BTRFS_BLOCK_GROUP_DATA) || | 
|  | test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { | 
|  | spin_unlock(&block_group->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | avail = block_group->zone_capacity - block_group->alloc_offset; | 
|  | if (min_avail > avail) { | 
|  | if (min_bg) | 
|  | btrfs_put_block_group(min_bg); | 
|  | min_bg = block_group; | 
|  | min_avail = avail; | 
|  | btrfs_get_block_group(min_bg); | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  | } | 
|  | spin_unlock(&fs_info->zone_active_bgs_lock); | 
|  |  | 
|  | if (!min_bg) | 
|  | return 0; | 
|  |  | 
|  | ret = btrfs_zone_finish(min_bg); | 
|  | btrfs_put_block_group(min_bg); | 
|  |  | 
|  | return ret < 0 ? ret : 1; | 
|  | } | 
|  |  | 
|  | int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | bool do_finish) | 
|  | { | 
|  | struct btrfs_block_group *bg; | 
|  | int index; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) | 
|  | return 0; | 
|  |  | 
|  | for (;;) { | 
|  | int ret; | 
|  | bool need_finish = false; | 
|  |  | 
|  | down_read(&space_info->groups_sem); | 
|  | for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { | 
|  | list_for_each_entry(bg, &space_info->block_groups[index], | 
|  | list) { | 
|  | if (!spin_trylock(&bg->lock)) | 
|  | continue; | 
|  | if (btrfs_zoned_bg_is_full(bg) || | 
|  | test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, | 
|  | &bg->runtime_flags)) { | 
|  | spin_unlock(&bg->lock); | 
|  | continue; | 
|  | } | 
|  | spin_unlock(&bg->lock); | 
|  |  | 
|  | if (btrfs_zone_activate(bg)) { | 
|  | up_read(&space_info->groups_sem); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | need_finish = true; | 
|  | } | 
|  | } | 
|  | up_read(&space_info->groups_sem); | 
|  |  | 
|  | if (!do_finish || !need_finish) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_zone_finish_one_bg(fs_info); | 
|  | if (ret == 0) | 
|  | break; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve zones for one metadata block group, one tree-log block group, and one | 
|  | * system block group. | 
|  | */ | 
|  | void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_block_group *block_group; | 
|  | struct btrfs_device *device; | 
|  | /* Reserve zones for normal SINGLE metadata and tree-log block group. */ | 
|  | unsigned int metadata_reserve = 2; | 
|  | /* Reserve a zone for SINGLE system block group. */ | 
|  | unsigned int system_reserve = 1; | 
|  |  | 
|  | if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This function is called from the mount context. So, there is no | 
|  | * parallel process touching the bits. No need for read_seqretry(). | 
|  | */ | 
|  | if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) | 
|  | metadata_reserve = 4; | 
|  | if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) | 
|  | system_reserve = 2; | 
|  |  | 
|  | /* Apply the reservation on all the devices. */ | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | if (!device->bdev) | 
|  | continue; | 
|  |  | 
|  | device->zone_info->reserved_active_zones = | 
|  | metadata_reserve + system_reserve; | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | /* Release reservation for currently active block groups. */ | 
|  | spin_lock(&fs_info->zone_active_bgs_lock); | 
|  | list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { | 
|  | struct btrfs_chunk_map *map = block_group->physical_map; | 
|  |  | 
|  | if (!(block_group->flags & | 
|  | (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) | 
|  | continue; | 
|  |  | 
|  | for (int i = 0; i < map->num_stripes; i++) | 
|  | map->stripes[i].dev->zone_info->reserved_active_zones--; | 
|  | } | 
|  | spin_unlock(&fs_info->zone_active_bgs_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the zones of unused block groups from @space_info->bytes_zone_unusable. | 
|  | * | 
|  | * @space_info:	the space to work on | 
|  | * @num_bytes:	targeting reclaim bytes | 
|  | * | 
|  | * This one resets the zones of a block group, so we can reuse the region | 
|  | * without removing the block group. On the other hand, btrfs_delete_unused_bgs() | 
|  | * just removes a block group and frees up the underlying zones. So, we still | 
|  | * need to allocate a new block group to reuse the zones. | 
|  | * | 
|  | * Resetting is faster than deleting/recreating a block group. It is similar | 
|  | * to freeing the logical space on the regular mode. However, we cannot change | 
|  | * the block group's profile with this operation. | 
|  | */ | 
|  | int btrfs_reset_unused_block_groups(struct btrfs_space_info *space_info, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = space_info->fs_info; | 
|  | const sector_t zone_size_sectors = fs_info->zone_size >> SECTOR_SHIFT; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return 0; | 
|  |  | 
|  | while (num_bytes > 0) { | 
|  | struct btrfs_chunk_map *map; | 
|  | struct btrfs_block_group *bg = NULL; | 
|  | bool found = false; | 
|  | u64 reclaimed = 0; | 
|  |  | 
|  | /* | 
|  | * Here, we choose a fully zone_unusable block group. It's | 
|  | * technically possible to reset a partly zone_unusable block | 
|  | * group, which still has some free space left. However, | 
|  | * handling that needs to cope with the allocation side, which | 
|  | * makes the logic more complex. So, let's handle the easy case | 
|  | * for now. | 
|  | */ | 
|  | spin_lock(&fs_info->unused_bgs_lock); | 
|  | list_for_each_entry(bg, &fs_info->unused_bgs, bg_list) { | 
|  | if ((bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != space_info->flags) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Use trylock to avoid locking order violation. In | 
|  | * btrfs_reclaim_bgs_work(), the lock order is | 
|  | * &bg->lock -> &fs_info->unused_bgs_lock. We skip a | 
|  | * block group if we cannot take its lock. | 
|  | */ | 
|  | if (!spin_trylock(&bg->lock)) | 
|  | continue; | 
|  | if (btrfs_is_block_group_used(bg) || bg->zone_unusable < bg->length) { | 
|  | spin_unlock(&bg->lock); | 
|  | continue; | 
|  | } | 
|  | spin_unlock(&bg->lock); | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | if (!found) { | 
|  | spin_unlock(&fs_info->unused_bgs_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | list_del_init(&bg->bg_list); | 
|  | btrfs_put_block_group(bg); | 
|  | spin_unlock(&fs_info->unused_bgs_lock); | 
|  |  | 
|  | /* | 
|  | * Since the block group is fully zone_unusable and we cannot | 
|  | * allocate from this block group anymore, we don't need to set | 
|  | * this block group read-only. | 
|  | */ | 
|  |  | 
|  | down_read(&fs_info->dev_replace.rwsem); | 
|  | map = bg->physical_map; | 
|  | for (int i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_io_stripe *stripe = &map->stripes[i]; | 
|  | unsigned int nofs_flags; | 
|  | int ret; | 
|  |  | 
|  | nofs_flags = memalloc_nofs_save(); | 
|  | ret = blkdev_zone_mgmt(stripe->dev->bdev, REQ_OP_ZONE_RESET, | 
|  | stripe->physical >> SECTOR_SHIFT, | 
|  | zone_size_sectors); | 
|  | memalloc_nofs_restore(nofs_flags); | 
|  |  | 
|  | if (ret) { | 
|  | up_read(&fs_info->dev_replace.rwsem); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | up_read(&fs_info->dev_replace.rwsem); | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&bg->lock); | 
|  | ASSERT(!btrfs_is_block_group_used(bg)); | 
|  | if (bg->ro) { | 
|  | spin_unlock(&bg->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | reclaimed = bg->alloc_offset; | 
|  | bg->zone_unusable = bg->length - bg->zone_capacity; | 
|  | bg->alloc_offset = 0; | 
|  | /* | 
|  | * This holds because we currently reset fully used then freed | 
|  | * block group. | 
|  | */ | 
|  | ASSERT(reclaimed == bg->zone_capacity); | 
|  | bg->free_space_ctl->free_space += reclaimed; | 
|  | space_info->bytes_zone_unusable -= reclaimed; | 
|  | spin_unlock(&bg->lock); | 
|  | btrfs_return_free_space(space_info, reclaimed); | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | if (num_bytes <= reclaimed) | 
|  | break; | 
|  | num_bytes -= reclaimed; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |