| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com | 
 |  * Written by Alex Tomas <alex@clusterfs.com> | 
 |  * | 
 |  * Architecture independence: | 
 |  *   Copyright (c) 2005, Bull S.A. | 
 |  *   Written by Pierre Peiffer <pierre.peiffer@bull.net> | 
 |  */ | 
 |  | 
 | /* | 
 |  * Extents support for EXT4 | 
 |  * | 
 |  * TODO: | 
 |  *   - ext4*_error() should be used in some situations | 
 |  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate | 
 |  *   - smart tree reduction | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/time.h> | 
 | #include <linux/jbd2.h> | 
 | #include <linux/highuid.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/quotaops.h> | 
 | #include <linux/string.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/fiemap.h> | 
 | #include <linux/iomap.h> | 
 | #include <linux/sched/mm.h> | 
 | #include "ext4_jbd2.h" | 
 | #include "ext4_extents.h" | 
 | #include "xattr.h" | 
 |  | 
 | #include <trace/events/ext4.h> | 
 |  | 
 | /* | 
 |  * used by extent splitting. | 
 |  */ | 
 | #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \ | 
 | 					due to ENOSPC */ | 
 | #define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */ | 
 | #define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */ | 
 |  | 
 | #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */ | 
 | #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */ | 
 |  | 
 | static __le32 ext4_extent_block_csum(struct inode *inode, | 
 | 				     struct ext4_extent_header *eh) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	__u32 csum; | 
 |  | 
 | 	csum = ext4_chksum(ei->i_csum_seed, (__u8 *)eh, | 
 | 			   EXT4_EXTENT_TAIL_OFFSET(eh)); | 
 | 	return cpu_to_le32(csum); | 
 | } | 
 |  | 
 | static int ext4_extent_block_csum_verify(struct inode *inode, | 
 | 					 struct ext4_extent_header *eh) | 
 | { | 
 | 	struct ext4_extent_tail *et; | 
 |  | 
 | 	if (!ext4_has_feature_metadata_csum(inode->i_sb)) | 
 | 		return 1; | 
 |  | 
 | 	et = find_ext4_extent_tail(eh); | 
 | 	if (et->et_checksum != ext4_extent_block_csum(inode, eh)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void ext4_extent_block_csum_set(struct inode *inode, | 
 | 				       struct ext4_extent_header *eh) | 
 | { | 
 | 	struct ext4_extent_tail *et; | 
 |  | 
 | 	if (!ext4_has_feature_metadata_csum(inode->i_sb)) | 
 | 		return; | 
 |  | 
 | 	et = find_ext4_extent_tail(eh); | 
 | 	et->et_checksum = ext4_extent_block_csum(inode, eh); | 
 | } | 
 |  | 
 | static struct ext4_ext_path *ext4_split_extent_at(handle_t *handle, | 
 | 						  struct inode *inode, | 
 | 						  struct ext4_ext_path *path, | 
 | 						  ext4_lblk_t split, | 
 | 						  int split_flag, int flags); | 
 |  | 
 | static int ext4_ext_trunc_restart_fn(struct inode *inode, int *dropped) | 
 | { | 
 | 	/* | 
 | 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this | 
 | 	 * moment, get_block can be called only for blocks inside i_size since | 
 | 	 * page cache has been already dropped and writes are blocked by | 
 | 	 * i_rwsem. So we can safely drop the i_data_sem here. | 
 | 	 */ | 
 | 	BUG_ON(EXT4_JOURNAL(inode) == NULL); | 
 | 	ext4_discard_preallocations(inode); | 
 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 | 	*dropped = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void ext4_ext_path_brelse(struct ext4_ext_path *path) | 
 | { | 
 | 	brelse(path->p_bh); | 
 | 	path->p_bh = NULL; | 
 | } | 
 |  | 
 | static void ext4_ext_drop_refs(struct ext4_ext_path *path) | 
 | { | 
 | 	int depth, i; | 
 |  | 
 | 	if (IS_ERR_OR_NULL(path)) | 
 | 		return; | 
 | 	depth = path->p_depth; | 
 | 	for (i = 0; i <= depth; i++, path++) | 
 | 		ext4_ext_path_brelse(path); | 
 | } | 
 |  | 
 | void ext4_free_ext_path(struct ext4_ext_path *path) | 
 | { | 
 | 	if (IS_ERR_OR_NULL(path)) | 
 | 		return; | 
 | 	ext4_ext_drop_refs(path); | 
 | 	kfree(path); | 
 | } | 
 |  | 
 | /* | 
 |  * Make sure 'handle' has at least 'check_cred' credits. If not, restart | 
 |  * transaction with 'restart_cred' credits. The function drops i_data_sem | 
 |  * when restarting transaction and gets it after transaction is restarted. | 
 |  * | 
 |  * The function returns 0 on success, 1 if transaction had to be restarted, | 
 |  * and < 0 in case of fatal error. | 
 |  */ | 
 | int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode, | 
 | 				int check_cred, int restart_cred, | 
 | 				int revoke_cred) | 
 | { | 
 | 	int ret; | 
 | 	int dropped = 0; | 
 |  | 
 | 	ret = ext4_journal_ensure_credits_fn(handle, check_cred, restart_cred, | 
 | 		revoke_cred, ext4_ext_trunc_restart_fn(inode, &dropped)); | 
 | 	if (dropped) | 
 | 		down_write(&EXT4_I(inode)->i_data_sem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * could return: | 
 |  *  - EROFS | 
 |  *  - ENOMEM | 
 |  */ | 
 | static int ext4_ext_get_access(handle_t *handle, struct inode *inode, | 
 | 				struct ext4_ext_path *path) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	if (path->p_bh) { | 
 | 		/* path points to block */ | 
 | 		BUFFER_TRACE(path->p_bh, "get_write_access"); | 
 | 		err = ext4_journal_get_write_access(handle, inode->i_sb, | 
 | 						    path->p_bh, EXT4_JTR_NONE); | 
 | 		/* | 
 | 		 * The extent buffer's verified bit will be set again in | 
 | 		 * __ext4_ext_dirty(). We could leave an inconsistent | 
 | 		 * buffer if the extents updating procudure break off du | 
 | 		 * to some error happens, force to check it again. | 
 | 		 */ | 
 | 		if (!err) | 
 | 			clear_buffer_verified(path->p_bh); | 
 | 	} | 
 | 	/* path points to leaf/index in inode body */ | 
 | 	/* we use in-core data, no need to protect them */ | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * could return: | 
 |  *  - EROFS | 
 |  *  - ENOMEM | 
 |  *  - EIO | 
 |  */ | 
 | static int __ext4_ext_dirty(const char *where, unsigned int line, | 
 | 			    handle_t *handle, struct inode *inode, | 
 | 			    struct ext4_ext_path *path) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); | 
 | 	if (path->p_bh) { | 
 | 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); | 
 | 		/* path points to block */ | 
 | 		err = __ext4_handle_dirty_metadata(where, line, handle, | 
 | 						   inode, path->p_bh); | 
 | 		/* Extents updating done, re-set verified flag */ | 
 | 		if (!err) | 
 | 			set_buffer_verified(path->p_bh); | 
 | 	} else { | 
 | 		/* path points to leaf/index in inode body */ | 
 | 		err = ext4_mark_inode_dirty(handle, inode); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | #define ext4_ext_dirty(handle, inode, path) \ | 
 | 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) | 
 |  | 
 | static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, | 
 | 			      struct ext4_ext_path *path, | 
 | 			      ext4_lblk_t block) | 
 | { | 
 | 	if (path) { | 
 | 		int depth = path->p_depth; | 
 | 		struct ext4_extent *ex; | 
 |  | 
 | 		/* | 
 | 		 * Try to predict block placement assuming that we are | 
 | 		 * filling in a file which will eventually be | 
 | 		 * non-sparse --- i.e., in the case of libbfd writing | 
 | 		 * an ELF object sections out-of-order but in a way | 
 | 		 * the eventually results in a contiguous object or | 
 | 		 * executable file, or some database extending a table | 
 | 		 * space file.  However, this is actually somewhat | 
 | 		 * non-ideal if we are writing a sparse file such as | 
 | 		 * qemu or KVM writing a raw image file that is going | 
 | 		 * to stay fairly sparse, since it will end up | 
 | 		 * fragmenting the file system's free space.  Maybe we | 
 | 		 * should have some hueristics or some way to allow | 
 | 		 * userspace to pass a hint to file system, | 
 | 		 * especially if the latter case turns out to be | 
 | 		 * common. | 
 | 		 */ | 
 | 		ex = path[depth].p_ext; | 
 | 		if (ex) { | 
 | 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); | 
 | 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); | 
 |  | 
 | 			if (block > ext_block) | 
 | 				return ext_pblk + (block - ext_block); | 
 | 			else | 
 | 				return ext_pblk - (ext_block - block); | 
 | 		} | 
 |  | 
 | 		/* it looks like index is empty; | 
 | 		 * try to find starting block from index itself */ | 
 | 		if (path[depth].p_bh) | 
 | 			return path[depth].p_bh->b_blocknr; | 
 | 	} | 
 |  | 
 | 	/* OK. use inode's group */ | 
 | 	return ext4_inode_to_goal_block(inode); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocation for a meta data block | 
 |  */ | 
 | static ext4_fsblk_t | 
 | ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, | 
 | 			struct ext4_ext_path *path, | 
 | 			struct ext4_extent *ex, int *err, unsigned int flags) | 
 | { | 
 | 	ext4_fsblk_t goal, newblock; | 
 |  | 
 | 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); | 
 | 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags, | 
 | 					NULL, err); | 
 | 	return newblock; | 
 | } | 
 |  | 
 | static inline int ext4_ext_space_block(struct inode *inode, int check) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) | 
 | 			/ sizeof(struct ext4_extent); | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (!check && size > 6) | 
 | 		size = 6; | 
 | #endif | 
 | 	return size; | 
 | } | 
 |  | 
 | static inline int ext4_ext_space_block_idx(struct inode *inode, int check) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) | 
 | 			/ sizeof(struct ext4_extent_idx); | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (!check && size > 5) | 
 | 		size = 5; | 
 | #endif | 
 | 	return size; | 
 | } | 
 |  | 
 | static inline int ext4_ext_space_root(struct inode *inode, int check) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	size = sizeof(EXT4_I(inode)->i_data); | 
 | 	size -= sizeof(struct ext4_extent_header); | 
 | 	size /= sizeof(struct ext4_extent); | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (!check && size > 3) | 
 | 		size = 3; | 
 | #endif | 
 | 	return size; | 
 | } | 
 |  | 
 | static inline int ext4_ext_space_root_idx(struct inode *inode, int check) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	size = sizeof(EXT4_I(inode)->i_data); | 
 | 	size -= sizeof(struct ext4_extent_header); | 
 | 	size /= sizeof(struct ext4_extent_idx); | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (!check && size > 4) | 
 | 		size = 4; | 
 | #endif | 
 | 	return size; | 
 | } | 
 |  | 
 | static inline struct ext4_ext_path * | 
 | ext4_force_split_extent_at(handle_t *handle, struct inode *inode, | 
 | 			   struct ext4_ext_path *path, ext4_lblk_t lblk, | 
 | 			   int nofail) | 
 | { | 
 | 	int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); | 
 | 	int flags = EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO; | 
 |  | 
 | 	if (nofail) | 
 | 		flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL | EXT4_EX_NOFAIL; | 
 |  | 
 | 	return ext4_split_extent_at(handle, inode, path, lblk, unwritten ? | 
 | 			EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, | 
 | 			flags); | 
 | } | 
 |  | 
 | static int | 
 | ext4_ext_max_entries(struct inode *inode, int depth) | 
 | { | 
 | 	int max; | 
 |  | 
 | 	if (depth == ext_depth(inode)) { | 
 | 		if (depth == 0) | 
 | 			max = ext4_ext_space_root(inode, 1); | 
 | 		else | 
 | 			max = ext4_ext_space_root_idx(inode, 1); | 
 | 	} else { | 
 | 		if (depth == 0) | 
 | 			max = ext4_ext_space_block(inode, 1); | 
 | 		else | 
 | 			max = ext4_ext_space_block_idx(inode, 1); | 
 | 	} | 
 |  | 
 | 	return max; | 
 | } | 
 |  | 
 | static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) | 
 | { | 
 | 	ext4_fsblk_t block = ext4_ext_pblock(ext); | 
 | 	int len = ext4_ext_get_actual_len(ext); | 
 | 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); | 
 |  | 
 | 	/* | 
 | 	 * We allow neither: | 
 | 	 *  - zero length | 
 | 	 *  - overflow/wrap-around | 
 | 	 */ | 
 | 	if (lblock + len <= lblock) | 
 | 		return 0; | 
 | 	return ext4_inode_block_valid(inode, block, len); | 
 | } | 
 |  | 
 | static int ext4_valid_extent_idx(struct inode *inode, | 
 | 				struct ext4_extent_idx *ext_idx) | 
 | { | 
 | 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx); | 
 |  | 
 | 	return ext4_inode_block_valid(inode, block, 1); | 
 | } | 
 |  | 
 | static int ext4_valid_extent_entries(struct inode *inode, | 
 | 				     struct ext4_extent_header *eh, | 
 | 				     ext4_lblk_t lblk, ext4_fsblk_t *pblk, | 
 | 				     int depth) | 
 | { | 
 | 	unsigned short entries; | 
 | 	ext4_lblk_t lblock = 0; | 
 | 	ext4_lblk_t cur = 0; | 
 |  | 
 | 	if (eh->eh_entries == 0) | 
 | 		return 1; | 
 |  | 
 | 	entries = le16_to_cpu(eh->eh_entries); | 
 |  | 
 | 	if (depth == 0) { | 
 | 		/* leaf entries */ | 
 | 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); | 
 |  | 
 | 		/* | 
 | 		 * The logical block in the first entry should equal to | 
 | 		 * the number in the index block. | 
 | 		 */ | 
 | 		if (depth != ext_depth(inode) && | 
 | 		    lblk != le32_to_cpu(ext->ee_block)) | 
 | 			return 0; | 
 | 		while (entries) { | 
 | 			if (!ext4_valid_extent(inode, ext)) | 
 | 				return 0; | 
 |  | 
 | 			/* Check for overlapping extents */ | 
 | 			lblock = le32_to_cpu(ext->ee_block); | 
 | 			if (lblock < cur) { | 
 | 				*pblk = ext4_ext_pblock(ext); | 
 | 				return 0; | 
 | 			} | 
 | 			cur = lblock + ext4_ext_get_actual_len(ext); | 
 | 			ext++; | 
 | 			entries--; | 
 | 		} | 
 | 	} else { | 
 | 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); | 
 |  | 
 | 		/* | 
 | 		 * The logical block in the first entry should equal to | 
 | 		 * the number in the parent index block. | 
 | 		 */ | 
 | 		if (depth != ext_depth(inode) && | 
 | 		    lblk != le32_to_cpu(ext_idx->ei_block)) | 
 | 			return 0; | 
 | 		while (entries) { | 
 | 			if (!ext4_valid_extent_idx(inode, ext_idx)) | 
 | 				return 0; | 
 |  | 
 | 			/* Check for overlapping index extents */ | 
 | 			lblock = le32_to_cpu(ext_idx->ei_block); | 
 | 			if (lblock < cur) { | 
 | 				*pblk = ext4_idx_pblock(ext_idx); | 
 | 				return 0; | 
 | 			} | 
 | 			ext_idx++; | 
 | 			entries--; | 
 | 			cur = lblock + 1; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __ext4_ext_check(const char *function, unsigned int line, | 
 | 			    struct inode *inode, struct ext4_extent_header *eh, | 
 | 			    int depth, ext4_fsblk_t pblk, ext4_lblk_t lblk) | 
 | { | 
 | 	const char *error_msg; | 
 | 	int max = 0, err = -EFSCORRUPTED; | 
 |  | 
 | 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { | 
 | 		error_msg = "invalid magic"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { | 
 | 		error_msg = "unexpected eh_depth"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (unlikely(eh->eh_max == 0)) { | 
 | 		error_msg = "invalid eh_max"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	max = ext4_ext_max_entries(inode, depth); | 
 | 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) { | 
 | 		error_msg = "too large eh_max"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { | 
 | 		error_msg = "invalid eh_entries"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (unlikely((eh->eh_entries == 0) && (depth > 0))) { | 
 | 		error_msg = "eh_entries is 0 but eh_depth is > 0"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (!ext4_valid_extent_entries(inode, eh, lblk, &pblk, depth)) { | 
 | 		error_msg = "invalid extent entries"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (unlikely(depth > 32)) { | 
 | 		error_msg = "too large eh_depth"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	/* Verify checksum on non-root extent tree nodes */ | 
 | 	if (ext_depth(inode) != depth && | 
 | 	    !ext4_extent_block_csum_verify(inode, eh)) { | 
 | 		error_msg = "extent tree corrupted"; | 
 | 		err = -EFSBADCRC; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | corrupted: | 
 | 	ext4_error_inode_err(inode, function, line, 0, -err, | 
 | 			     "pblk %llu bad header/extent: %s - magic %x, " | 
 | 			     "entries %u, max %u(%u), depth %u(%u)", | 
 | 			     (unsigned long long) pblk, error_msg, | 
 | 			     le16_to_cpu(eh->eh_magic), | 
 | 			     le16_to_cpu(eh->eh_entries), | 
 | 			     le16_to_cpu(eh->eh_max), | 
 | 			     max, le16_to_cpu(eh->eh_depth), depth); | 
 | 	return err; | 
 | } | 
 |  | 
 | #define ext4_ext_check(inode, eh, depth, pblk)			\ | 
 | 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk), 0) | 
 |  | 
 | int ext4_ext_check_inode(struct inode *inode) | 
 | { | 
 | 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); | 
 | } | 
 |  | 
 | static void ext4_cache_extents(struct inode *inode, | 
 | 			       struct ext4_extent_header *eh) | 
 | { | 
 | 	struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); | 
 | 	ext4_lblk_t prev = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { | 
 | 		unsigned int status = EXTENT_STATUS_WRITTEN; | 
 | 		ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); | 
 | 		int len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 		if (prev && (prev != lblk)) | 
 | 			ext4_es_cache_extent(inode, prev, lblk - prev, ~0, | 
 | 					     EXTENT_STATUS_HOLE); | 
 |  | 
 | 		if (ext4_ext_is_unwritten(ex)) | 
 | 			status = EXTENT_STATUS_UNWRITTEN; | 
 | 		ext4_es_cache_extent(inode, lblk, len, | 
 | 				     ext4_ext_pblock(ex), status); | 
 | 		prev = lblk + len; | 
 | 	} | 
 | } | 
 |  | 
 | static struct buffer_head * | 
 | __read_extent_tree_block(const char *function, unsigned int line, | 
 | 			 struct inode *inode, struct ext4_extent_idx *idx, | 
 | 			 int depth, int flags) | 
 | { | 
 | 	struct buffer_head		*bh; | 
 | 	int				err; | 
 | 	gfp_t				gfp_flags = __GFP_MOVABLE | GFP_NOFS; | 
 | 	ext4_fsblk_t			pblk; | 
 |  | 
 | 	if (flags & EXT4_EX_NOFAIL) | 
 | 		gfp_flags |= __GFP_NOFAIL; | 
 |  | 
 | 	pblk = ext4_idx_pblock(idx); | 
 | 	bh = sb_getblk_gfp(inode->i_sb, pblk, gfp_flags); | 
 | 	if (unlikely(!bh)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (!bh_uptodate_or_lock(bh)) { | 
 | 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); | 
 | 		err = ext4_read_bh(bh, 0, NULL, false); | 
 | 		if (err < 0) | 
 | 			goto errout; | 
 | 	} | 
 | 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) | 
 | 		return bh; | 
 | 	err = __ext4_ext_check(function, line, inode, ext_block_hdr(bh), | 
 | 			       depth, pblk, le32_to_cpu(idx->ei_block)); | 
 | 	if (err) | 
 | 		goto errout; | 
 | 	set_buffer_verified(bh); | 
 | 	/* | 
 | 	 * If this is a leaf block, cache all of its entries | 
 | 	 */ | 
 | 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { | 
 | 		struct ext4_extent_header *eh = ext_block_hdr(bh); | 
 | 		ext4_cache_extents(inode, eh); | 
 | 	} | 
 | 	return bh; | 
 | errout: | 
 | 	put_bh(bh); | 
 | 	return ERR_PTR(err); | 
 |  | 
 | } | 
 |  | 
 | #define read_extent_tree_block(inode, idx, depth, flags)		\ | 
 | 	__read_extent_tree_block(__func__, __LINE__, (inode), (idx),	\ | 
 | 				 (depth), (flags)) | 
 |  | 
 | /* | 
 |  * This function is called to cache a file's extent information in the | 
 |  * extent status tree | 
 |  */ | 
 | int ext4_ext_precache(struct inode *inode) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	struct buffer_head *bh; | 
 | 	int i = 0, depth, ret = 0; | 
 |  | 
 | 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 		return 0;	/* not an extent-mapped inode */ | 
 |  | 
 | 	ext4_check_map_extents_env(inode); | 
 |  | 
 | 	down_read(&ei->i_data_sem); | 
 | 	depth = ext_depth(inode); | 
 |  | 
 | 	/* Don't cache anything if there are no external extent blocks */ | 
 | 	if (!depth) { | 
 | 		up_read(&ei->i_data_sem); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), | 
 | 		       GFP_NOFS); | 
 | 	if (path == NULL) { | 
 | 		up_read(&ei->i_data_sem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	path[0].p_hdr = ext_inode_hdr(inode); | 
 | 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); | 
 | 	while (i >= 0) { | 
 | 		/* | 
 | 		 * If this is a leaf block or we've reached the end of | 
 | 		 * the index block, go up | 
 | 		 */ | 
 | 		if ((i == depth) || | 
 | 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { | 
 | 			ext4_ext_path_brelse(path + i); | 
 | 			i--; | 
 | 			continue; | 
 | 		} | 
 | 		bh = read_extent_tree_block(inode, path[i].p_idx++, | 
 | 					    depth - i - 1, | 
 | 					    EXT4_EX_FORCE_CACHE); | 
 | 		if (IS_ERR(bh)) { | 
 | 			ret = PTR_ERR(bh); | 
 | 			break; | 
 | 		} | 
 | 		i++; | 
 | 		path[i].p_bh = bh; | 
 | 		path[i].p_hdr = ext_block_hdr(bh); | 
 | 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); | 
 | 	} | 
 | 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); | 
 | out: | 
 | 	up_read(&ei->i_data_sem); | 
 | 	ext4_free_ext_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef EXT_DEBUG | 
 | static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) | 
 | { | 
 | 	int k, l = path->p_depth; | 
 |  | 
 | 	ext_debug(inode, "path:"); | 
 | 	for (k = 0; k <= l; k++, path++) { | 
 | 		if (path->p_idx) { | 
 | 			ext_debug(inode, "  %d->%llu", | 
 | 				  le32_to_cpu(path->p_idx->ei_block), | 
 | 				  ext4_idx_pblock(path->p_idx)); | 
 | 		} else if (path->p_ext) { | 
 | 			ext_debug(inode, "  %d:[%d]%d:%llu ", | 
 | 				  le32_to_cpu(path->p_ext->ee_block), | 
 | 				  ext4_ext_is_unwritten(path->p_ext), | 
 | 				  ext4_ext_get_actual_len(path->p_ext), | 
 | 				  ext4_ext_pblock(path->p_ext)); | 
 | 		} else | 
 | 			ext_debug(inode, "  []"); | 
 | 	} | 
 | 	ext_debug(inode, "\n"); | 
 | } | 
 |  | 
 | static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) | 
 | { | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct ext4_extent *ex; | 
 | 	int i; | 
 |  | 
 | 	if (IS_ERR_OR_NULL(path)) | 
 | 		return; | 
 |  | 
 | 	eh = path[depth].p_hdr; | 
 | 	ex = EXT_FIRST_EXTENT(eh); | 
 |  | 
 | 	ext_debug(inode, "Displaying leaf extents\n"); | 
 |  | 
 | 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { | 
 | 		ext_debug(inode, "%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), | 
 | 			  ext4_ext_is_unwritten(ex), | 
 | 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); | 
 | 	} | 
 | 	ext_debug(inode, "\n"); | 
 | } | 
 |  | 
 | static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, | 
 | 			ext4_fsblk_t newblock, int level) | 
 | { | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_extent *ex; | 
 |  | 
 | 	if (depth != level) { | 
 | 		struct ext4_extent_idx *idx; | 
 | 		idx = path[level].p_idx; | 
 | 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { | 
 | 			ext_debug(inode, "%d: move %d:%llu in new index %llu\n", | 
 | 				  level, le32_to_cpu(idx->ei_block), | 
 | 				  ext4_idx_pblock(idx), newblock); | 
 | 			idx++; | 
 | 		} | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { | 
 | 		ext_debug(inode, "move %d:%llu:[%d]%d in new leaf %llu\n", | 
 | 				le32_to_cpu(ex->ee_block), | 
 | 				ext4_ext_pblock(ex), | 
 | 				ext4_ext_is_unwritten(ex), | 
 | 				ext4_ext_get_actual_len(ex), | 
 | 				newblock); | 
 | 		ex++; | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 | #define ext4_ext_show_path(inode, path) | 
 | #define ext4_ext_show_leaf(inode, path) | 
 | #define ext4_ext_show_move(inode, path, newblock, level) | 
 | #endif | 
 |  | 
 | /* | 
 |  * ext4_ext_binsearch_idx: | 
 |  * binary search for the closest index of the given block | 
 |  * the header must be checked before calling this | 
 |  */ | 
 | static void | 
 | ext4_ext_binsearch_idx(struct inode *inode, | 
 | 			struct ext4_ext_path *path, ext4_lblk_t block) | 
 | { | 
 | 	struct ext4_extent_header *eh = path->p_hdr; | 
 | 	struct ext4_extent_idx *r, *l, *m; | 
 |  | 
 |  | 
 | 	ext_debug(inode, "binsearch for %u(idx):  ", block); | 
 |  | 
 | 	l = EXT_FIRST_INDEX(eh) + 1; | 
 | 	r = EXT_LAST_INDEX(eh); | 
 | 	while (l <= r) { | 
 | 		m = l + (r - l) / 2; | 
 | 		ext_debug(inode, "%p(%u):%p(%u):%p(%u) ", l, | 
 | 			  le32_to_cpu(l->ei_block), m, le32_to_cpu(m->ei_block), | 
 | 			  r, le32_to_cpu(r->ei_block)); | 
 |  | 
 | 		if (block < le32_to_cpu(m->ei_block)) | 
 | 			r = m - 1; | 
 | 		else | 
 | 			l = m + 1; | 
 | 	} | 
 |  | 
 | 	path->p_idx = l - 1; | 
 | 	ext_debug(inode, "  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), | 
 | 		  ext4_idx_pblock(path->p_idx)); | 
 |  | 
 | #ifdef CHECK_BINSEARCH | 
 | 	{ | 
 | 		struct ext4_extent_idx *chix, *ix; | 
 | 		int k; | 
 |  | 
 | 		chix = ix = EXT_FIRST_INDEX(eh); | 
 | 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { | 
 | 			if (k != 0 && le32_to_cpu(ix->ei_block) <= | 
 | 			    le32_to_cpu(ix[-1].ei_block)) { | 
 | 				printk(KERN_DEBUG "k=%d, ix=0x%p, " | 
 | 				       "first=0x%p\n", k, | 
 | 				       ix, EXT_FIRST_INDEX(eh)); | 
 | 				printk(KERN_DEBUG "%u <= %u\n", | 
 | 				       le32_to_cpu(ix->ei_block), | 
 | 				       le32_to_cpu(ix[-1].ei_block)); | 
 | 			} | 
 | 			BUG_ON(k && le32_to_cpu(ix->ei_block) | 
 | 					   <= le32_to_cpu(ix[-1].ei_block)); | 
 | 			if (block < le32_to_cpu(ix->ei_block)) | 
 | 				break; | 
 | 			chix = ix; | 
 | 		} | 
 | 		BUG_ON(chix != path->p_idx); | 
 | 	} | 
 | #endif | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_binsearch: | 
 |  * binary search for closest extent of the given block | 
 |  * the header must be checked before calling this | 
 |  */ | 
 | static void | 
 | ext4_ext_binsearch(struct inode *inode, | 
 | 		struct ext4_ext_path *path, ext4_lblk_t block) | 
 | { | 
 | 	struct ext4_extent_header *eh = path->p_hdr; | 
 | 	struct ext4_extent *r, *l, *m; | 
 |  | 
 | 	if (eh->eh_entries == 0) { | 
 | 		/* | 
 | 		 * this leaf is empty: | 
 | 		 * we get such a leaf in split/add case | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ext_debug(inode, "binsearch for %u:  ", block); | 
 |  | 
 | 	l = EXT_FIRST_EXTENT(eh) + 1; | 
 | 	r = EXT_LAST_EXTENT(eh); | 
 |  | 
 | 	while (l <= r) { | 
 | 		m = l + (r - l) / 2; | 
 | 		ext_debug(inode, "%p(%u):%p(%u):%p(%u) ", l, | 
 | 			  le32_to_cpu(l->ee_block), m, le32_to_cpu(m->ee_block), | 
 | 			  r, le32_to_cpu(r->ee_block)); | 
 |  | 
 | 		if (block < le32_to_cpu(m->ee_block)) | 
 | 			r = m - 1; | 
 | 		else | 
 | 			l = m + 1; | 
 | 	} | 
 |  | 
 | 	path->p_ext = l - 1; | 
 | 	ext_debug(inode, "  -> %d:%llu:[%d]%d ", | 
 | 			le32_to_cpu(path->p_ext->ee_block), | 
 | 			ext4_ext_pblock(path->p_ext), | 
 | 			ext4_ext_is_unwritten(path->p_ext), | 
 | 			ext4_ext_get_actual_len(path->p_ext)); | 
 |  | 
 | #ifdef CHECK_BINSEARCH | 
 | 	{ | 
 | 		struct ext4_extent *chex, *ex; | 
 | 		int k; | 
 |  | 
 | 		chex = ex = EXT_FIRST_EXTENT(eh); | 
 | 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { | 
 | 			BUG_ON(k && le32_to_cpu(ex->ee_block) | 
 | 					  <= le32_to_cpu(ex[-1].ee_block)); | 
 | 			if (block < le32_to_cpu(ex->ee_block)) | 
 | 				break; | 
 | 			chex = ex; | 
 | 		} | 
 | 		BUG_ON(chex != path->p_ext); | 
 | 	} | 
 | #endif | 
 |  | 
 | } | 
 |  | 
 | void ext4_ext_tree_init(handle_t *handle, struct inode *inode) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 |  | 
 | 	eh = ext_inode_hdr(inode); | 
 | 	eh->eh_depth = 0; | 
 | 	eh->eh_entries = 0; | 
 | 	eh->eh_magic = EXT4_EXT_MAGIC; | 
 | 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); | 
 | 	eh->eh_generation = 0; | 
 | 	ext4_mark_inode_dirty(handle, inode); | 
 | } | 
 |  | 
 | struct ext4_ext_path * | 
 | ext4_find_extent(struct inode *inode, ext4_lblk_t block, | 
 | 		 struct ext4_ext_path *path, int flags) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct buffer_head *bh; | 
 | 	short int depth, i, ppos = 0; | 
 | 	int ret; | 
 | 	gfp_t gfp_flags = GFP_NOFS; | 
 |  | 
 | 	if (flags & EXT4_EX_NOFAIL) | 
 | 		gfp_flags |= __GFP_NOFAIL; | 
 |  | 
 | 	eh = ext_inode_hdr(inode); | 
 | 	depth = ext_depth(inode); | 
 | 	if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) { | 
 | 		EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d", | 
 | 				 depth); | 
 | 		ret = -EFSCORRUPTED; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	if (path) { | 
 | 		ext4_ext_drop_refs(path); | 
 | 		if (depth > path[0].p_maxdepth) { | 
 | 			kfree(path); | 
 | 			path = NULL; | 
 | 		} | 
 | 	} | 
 | 	if (!path) { | 
 | 		/* account possible depth increase */ | 
 | 		path = kcalloc(depth + 2, sizeof(struct ext4_ext_path), | 
 | 				gfp_flags); | 
 | 		if (unlikely(!path)) | 
 | 			return ERR_PTR(-ENOMEM); | 
 | 		path[0].p_maxdepth = depth + 1; | 
 | 	} | 
 | 	path[0].p_hdr = eh; | 
 | 	path[0].p_bh = NULL; | 
 |  | 
 | 	i = depth; | 
 | 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) | 
 | 		ext4_cache_extents(inode, eh); | 
 | 	/* walk through the tree */ | 
 | 	while (i) { | 
 | 		ext_debug(inode, "depth %d: num %d, max %d\n", | 
 | 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); | 
 |  | 
 | 		ext4_ext_binsearch_idx(inode, path + ppos, block); | 
 | 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); | 
 | 		path[ppos].p_depth = i; | 
 | 		path[ppos].p_ext = NULL; | 
 |  | 
 | 		bh = read_extent_tree_block(inode, path[ppos].p_idx, --i, flags); | 
 | 		if (IS_ERR(bh)) { | 
 | 			ret = PTR_ERR(bh); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		eh = ext_block_hdr(bh); | 
 | 		ppos++; | 
 | 		path[ppos].p_bh = bh; | 
 | 		path[ppos].p_hdr = eh; | 
 | 	} | 
 |  | 
 | 	path[ppos].p_depth = i; | 
 | 	path[ppos].p_ext = NULL; | 
 | 	path[ppos].p_idx = NULL; | 
 |  | 
 | 	/* find extent */ | 
 | 	ext4_ext_binsearch(inode, path + ppos, block); | 
 | 	/* if not an empty leaf */ | 
 | 	if (path[ppos].p_ext) | 
 | 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); | 
 |  | 
 | 	ext4_ext_show_path(inode, path); | 
 |  | 
 | 	return path; | 
 |  | 
 | err: | 
 | 	ext4_free_ext_path(path); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_insert_index: | 
 |  * insert new index [@logical;@ptr] into the block at @curp; | 
 |  * check where to insert: before @curp or after @curp | 
 |  */ | 
 | static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, | 
 | 				 struct ext4_ext_path *curp, | 
 | 				 int logical, ext4_fsblk_t ptr) | 
 | { | 
 | 	struct ext4_extent_idx *ix; | 
 | 	int len, err; | 
 |  | 
 | 	err = ext4_ext_get_access(handle, inode, curp); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "logical %d == ei_block %d!", | 
 | 				 logical, le32_to_cpu(curp->p_idx->ei_block)); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) | 
 | 			     >= le16_to_cpu(curp->p_hdr->eh_max))) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "eh_entries %d >= eh_max %d!", | 
 | 				 le16_to_cpu(curp->p_hdr->eh_entries), | 
 | 				 le16_to_cpu(curp->p_hdr->eh_max)); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) { | 
 | 		/* insert after */ | 
 | 		ext_debug(inode, "insert new index %d after: %llu\n", | 
 | 			  logical, ptr); | 
 | 		ix = curp->p_idx + 1; | 
 | 	} else { | 
 | 		/* insert before */ | 
 | 		ext_debug(inode, "insert new index %d before: %llu\n", | 
 | 			  logical, ptr); | 
 | 		ix = curp->p_idx; | 
 | 	} | 
 |  | 
 | 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { | 
 | 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; | 
 | 	BUG_ON(len < 0); | 
 | 	if (len > 0) { | 
 | 		ext_debug(inode, "insert new index %d: " | 
 | 				"move %d indices from 0x%p to 0x%p\n", | 
 | 				logical, len, ix, ix + 1); | 
 | 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); | 
 | 	} | 
 |  | 
 | 	ix->ei_block = cpu_to_le32(logical); | 
 | 	ext4_idx_store_pblock(ix, ptr); | 
 | 	le16_add_cpu(&curp->p_hdr->eh_entries, 1); | 
 |  | 
 | 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { | 
 | 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	err = ext4_ext_dirty(handle, inode, curp); | 
 | 	ext4_std_error(inode->i_sb, err); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_split: | 
 |  * inserts new subtree into the path, using free index entry | 
 |  * at depth @at: | 
 |  * - allocates all needed blocks (new leaf and all intermediate index blocks) | 
 |  * - makes decision where to split | 
 |  * - moves remaining extents and index entries (right to the split point) | 
 |  *   into the newly allocated blocks | 
 |  * - initializes subtree | 
 |  */ | 
 | static int ext4_ext_split(handle_t *handle, struct inode *inode, | 
 | 			  unsigned int flags, | 
 | 			  struct ext4_ext_path *path, | 
 | 			  struct ext4_extent *newext, int at) | 
 | { | 
 | 	struct buffer_head *bh = NULL; | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_extent_header *neh; | 
 | 	struct ext4_extent_idx *fidx; | 
 | 	int i = at, k, m, a; | 
 | 	ext4_fsblk_t newblock, oldblock; | 
 | 	__le32 border; | 
 | 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ | 
 | 	gfp_t gfp_flags = GFP_NOFS; | 
 | 	int err = 0; | 
 | 	size_t ext_size = 0; | 
 |  | 
 | 	if (flags & EXT4_EX_NOFAIL) | 
 | 		gfp_flags |= __GFP_NOFAIL; | 
 |  | 
 | 	/* make decision: where to split? */ | 
 | 	/* FIXME: now decision is simplest: at current extent */ | 
 |  | 
 | 	/* if current leaf will be split, then we should use | 
 | 	 * border from split point */ | 
 | 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { | 
 | 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 | 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { | 
 | 		border = path[depth].p_ext[1].ee_block; | 
 | 		ext_debug(inode, "leaf will be split." | 
 | 				" next leaf starts at %d\n", | 
 | 				  le32_to_cpu(border)); | 
 | 	} else { | 
 | 		border = newext->ee_block; | 
 | 		ext_debug(inode, "leaf will be added." | 
 | 				" next leaf starts at %d\n", | 
 | 				le32_to_cpu(border)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If error occurs, then we break processing | 
 | 	 * and mark filesystem read-only. index won't | 
 | 	 * be inserted and tree will be in consistent | 
 | 	 * state. Next mount will repair buffers too. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Get array to track all allocated blocks. | 
 | 	 * We need this to handle errors and free blocks | 
 | 	 * upon them. | 
 | 	 */ | 
 | 	ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), gfp_flags); | 
 | 	if (!ablocks) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* allocate all needed blocks */ | 
 | 	ext_debug(inode, "allocate %d blocks for indexes/leaf\n", depth - at); | 
 | 	for (a = 0; a < depth - at; a++) { | 
 | 		newblock = ext4_ext_new_meta_block(handle, inode, path, | 
 | 						   newext, &err, flags); | 
 | 		if (newblock == 0) | 
 | 			goto cleanup; | 
 | 		ablocks[a] = newblock; | 
 | 	} | 
 |  | 
 | 	/* initialize new leaf */ | 
 | 	newblock = ablocks[--a]; | 
 | 	if (unlikely(newblock == 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "newblock == 0!"); | 
 | 		err = -EFSCORRUPTED; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); | 
 | 	if (unlikely(!bh)) { | 
 | 		err = -ENOMEM; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	lock_buffer(bh); | 
 |  | 
 | 	err = ext4_journal_get_create_access(handle, inode->i_sb, bh, | 
 | 					     EXT4_JTR_NONE); | 
 | 	if (err) | 
 | 		goto cleanup; | 
 |  | 
 | 	neh = ext_block_hdr(bh); | 
 | 	neh->eh_entries = 0; | 
 | 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); | 
 | 	neh->eh_magic = EXT4_EXT_MAGIC; | 
 | 	neh->eh_depth = 0; | 
 | 	neh->eh_generation = 0; | 
 |  | 
 | 	/* move remainder of path[depth] to the new leaf */ | 
 | 	if (unlikely(path[depth].p_hdr->eh_entries != | 
 | 		     path[depth].p_hdr->eh_max)) { | 
 | 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", | 
 | 				 path[depth].p_hdr->eh_entries, | 
 | 				 path[depth].p_hdr->eh_max); | 
 | 		err = -EFSCORRUPTED; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	/* start copy from next extent */ | 
 | 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; | 
 | 	ext4_ext_show_move(inode, path, newblock, depth); | 
 | 	if (m) { | 
 | 		struct ext4_extent *ex; | 
 | 		ex = EXT_FIRST_EXTENT(neh); | 
 | 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); | 
 | 		le16_add_cpu(&neh->eh_entries, m); | 
 | 	} | 
 |  | 
 | 	/* zero out unused area in the extent block */ | 
 | 	ext_size = sizeof(struct ext4_extent_header) + | 
 | 		sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries); | 
 | 	memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); | 
 | 	ext4_extent_block_csum_set(inode, neh); | 
 | 	set_buffer_uptodate(bh); | 
 | 	unlock_buffer(bh); | 
 |  | 
 | 	err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 	if (err) | 
 | 		goto cleanup; | 
 | 	brelse(bh); | 
 | 	bh = NULL; | 
 |  | 
 | 	/* correct old leaf */ | 
 | 	if (m) { | 
 | 		err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto cleanup; | 
 | 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); | 
 | 		err = ext4_ext_dirty(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto cleanup; | 
 |  | 
 | 	} | 
 |  | 
 | 	/* create intermediate indexes */ | 
 | 	k = depth - at - 1; | 
 | 	if (unlikely(k < 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "k %d < 0!", k); | 
 | 		err = -EFSCORRUPTED; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	if (k) | 
 | 		ext_debug(inode, "create %d intermediate indices\n", k); | 
 | 	/* insert new index into current index block */ | 
 | 	/* current depth stored in i var */ | 
 | 	i = depth - 1; | 
 | 	while (k--) { | 
 | 		oldblock = newblock; | 
 | 		newblock = ablocks[--a]; | 
 | 		bh = sb_getblk(inode->i_sb, newblock); | 
 | 		if (unlikely(!bh)) { | 
 | 			err = -ENOMEM; | 
 | 			goto cleanup; | 
 | 		} | 
 | 		lock_buffer(bh); | 
 |  | 
 | 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh, | 
 | 						     EXT4_JTR_NONE); | 
 | 		if (err) | 
 | 			goto cleanup; | 
 |  | 
 | 		neh = ext_block_hdr(bh); | 
 | 		neh->eh_entries = cpu_to_le16(1); | 
 | 		neh->eh_magic = EXT4_EXT_MAGIC; | 
 | 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); | 
 | 		neh->eh_depth = cpu_to_le16(depth - i); | 
 | 		neh->eh_generation = 0; | 
 | 		fidx = EXT_FIRST_INDEX(neh); | 
 | 		fidx->ei_block = border; | 
 | 		ext4_idx_store_pblock(fidx, oldblock); | 
 |  | 
 | 		ext_debug(inode, "int.index at %d (block %llu): %u -> %llu\n", | 
 | 				i, newblock, le32_to_cpu(border), oldblock); | 
 |  | 
 | 		/* move remainder of path[i] to the new index block */ | 
 | 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != | 
 | 					EXT_LAST_INDEX(path[i].p_hdr))) { | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", | 
 | 					 le32_to_cpu(path[i].p_ext->ee_block)); | 
 | 			err = -EFSCORRUPTED; | 
 | 			goto cleanup; | 
 | 		} | 
 | 		/* start copy indexes */ | 
 | 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; | 
 | 		ext_debug(inode, "cur 0x%p, last 0x%p\n", path[i].p_idx, | 
 | 				EXT_MAX_INDEX(path[i].p_hdr)); | 
 | 		ext4_ext_show_move(inode, path, newblock, i); | 
 | 		if (m) { | 
 | 			memmove(++fidx, path[i].p_idx, | 
 | 				sizeof(struct ext4_extent_idx) * m); | 
 | 			le16_add_cpu(&neh->eh_entries, m); | 
 | 		} | 
 | 		/* zero out unused area in the extent block */ | 
 | 		ext_size = sizeof(struct ext4_extent_header) + | 
 | 		   (sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries)); | 
 | 		memset(bh->b_data + ext_size, 0, | 
 | 			inode->i_sb->s_blocksize - ext_size); | 
 | 		ext4_extent_block_csum_set(inode, neh); | 
 | 		set_buffer_uptodate(bh); | 
 | 		unlock_buffer(bh); | 
 |  | 
 | 		err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 		if (err) | 
 | 			goto cleanup; | 
 | 		brelse(bh); | 
 | 		bh = NULL; | 
 |  | 
 | 		/* correct old index */ | 
 | 		if (m) { | 
 | 			err = ext4_ext_get_access(handle, inode, path + i); | 
 | 			if (err) | 
 | 				goto cleanup; | 
 | 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m); | 
 | 			err = ext4_ext_dirty(handle, inode, path + i); | 
 | 			if (err) | 
 | 				goto cleanup; | 
 | 		} | 
 |  | 
 | 		i--; | 
 | 	} | 
 |  | 
 | 	/* insert new index */ | 
 | 	err = ext4_ext_insert_index(handle, inode, path + at, | 
 | 				    le32_to_cpu(border), newblock); | 
 |  | 
 | cleanup: | 
 | 	if (bh) { | 
 | 		if (buffer_locked(bh)) | 
 | 			unlock_buffer(bh); | 
 | 		brelse(bh); | 
 | 	} | 
 |  | 
 | 	if (err) { | 
 | 		/* free all allocated blocks in error case */ | 
 | 		for (i = 0; i < depth; i++) { | 
 | 			if (!ablocks[i]) | 
 | 				continue; | 
 | 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, | 
 | 					 EXT4_FREE_BLOCKS_METADATA); | 
 | 		} | 
 | 	} | 
 | 	kfree(ablocks); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_grow_indepth: | 
 |  * implements tree growing procedure: | 
 |  * - allocates new block | 
 |  * - moves top-level data (index block or leaf) into the new block | 
 |  * - initializes new top-level, creating index that points to the | 
 |  *   just created block | 
 |  */ | 
 | static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, | 
 | 				 unsigned int flags) | 
 | { | 
 | 	struct ext4_extent_header *neh; | 
 | 	struct buffer_head *bh; | 
 | 	ext4_fsblk_t newblock, goal = 0; | 
 | 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; | 
 | 	int err = 0; | 
 | 	size_t ext_size = 0; | 
 |  | 
 | 	/* Try to prepend new index to old one */ | 
 | 	if (ext_depth(inode)) | 
 | 		goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); | 
 | 	if (goal > le32_to_cpu(es->s_first_data_block)) { | 
 | 		flags |= EXT4_MB_HINT_TRY_GOAL; | 
 | 		goal--; | 
 | 	} else | 
 | 		goal = ext4_inode_to_goal_block(inode); | 
 | 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags, | 
 | 					NULL, &err); | 
 | 	if (newblock == 0) | 
 | 		return err; | 
 |  | 
 | 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); | 
 | 	if (unlikely(!bh)) | 
 | 		return -ENOMEM; | 
 | 	lock_buffer(bh); | 
 |  | 
 | 	err = ext4_journal_get_create_access(handle, inode->i_sb, bh, | 
 | 					     EXT4_JTR_NONE); | 
 | 	if (err) { | 
 | 		unlock_buffer(bh); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ext_size = sizeof(EXT4_I(inode)->i_data); | 
 | 	/* move top-level index/leaf into new block */ | 
 | 	memmove(bh->b_data, EXT4_I(inode)->i_data, ext_size); | 
 | 	/* zero out unused area in the extent block */ | 
 | 	memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); | 
 |  | 
 | 	/* set size of new block */ | 
 | 	neh = ext_block_hdr(bh); | 
 | 	/* old root could have indexes or leaves | 
 | 	 * so calculate e_max right way */ | 
 | 	if (ext_depth(inode)) | 
 | 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); | 
 | 	else | 
 | 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); | 
 | 	neh->eh_magic = EXT4_EXT_MAGIC; | 
 | 	ext4_extent_block_csum_set(inode, neh); | 
 | 	set_buffer_uptodate(bh); | 
 | 	set_buffer_verified(bh); | 
 | 	unlock_buffer(bh); | 
 |  | 
 | 	err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Update top-level index: num,max,pointer */ | 
 | 	neh = ext_inode_hdr(inode); | 
 | 	neh->eh_entries = cpu_to_le16(1); | 
 | 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); | 
 | 	if (neh->eh_depth == 0) { | 
 | 		/* Root extent block becomes index block */ | 
 | 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); | 
 | 		EXT_FIRST_INDEX(neh)->ei_block = | 
 | 			EXT_FIRST_EXTENT(neh)->ee_block; | 
 | 	} | 
 | 	ext_debug(inode, "new root: num %d(%d), lblock %d, ptr %llu\n", | 
 | 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), | 
 | 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), | 
 | 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh))); | 
 |  | 
 | 	le16_add_cpu(&neh->eh_depth, 1); | 
 | 	err = ext4_mark_inode_dirty(handle, inode); | 
 | out: | 
 | 	brelse(bh); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_create_new_leaf: | 
 |  * finds empty index and adds new leaf. | 
 |  * if no free index is found, then it requests in-depth growing. | 
 |  */ | 
 | static struct ext4_ext_path * | 
 | ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, | 
 | 			 unsigned int mb_flags, unsigned int gb_flags, | 
 | 			 struct ext4_ext_path *path, | 
 | 			 struct ext4_extent *newext) | 
 | { | 
 | 	struct ext4_ext_path *curp; | 
 | 	int depth, i, err = 0; | 
 | 	ext4_lblk_t ee_block = le32_to_cpu(newext->ee_block); | 
 |  | 
 | repeat: | 
 | 	i = depth = ext_depth(inode); | 
 |  | 
 | 	/* walk up to the tree and look for free index entry */ | 
 | 	curp = path + depth; | 
 | 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { | 
 | 		i--; | 
 | 		curp--; | 
 | 	} | 
 |  | 
 | 	/* we use already allocated block for index block, | 
 | 	 * so subsequent data blocks should be contiguous */ | 
 | 	if (EXT_HAS_FREE_INDEX(curp)) { | 
 | 		/* if we found index with free entry, then use that | 
 | 		 * entry: create all needed subtree and add new leaf */ | 
 | 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); | 
 | 		if (err) | 
 | 			goto errout; | 
 |  | 
 | 		/* refill path */ | 
 | 		path = ext4_find_extent(inode, ee_block, path, gb_flags); | 
 | 		return path; | 
 | 	} | 
 |  | 
 | 	/* tree is full, time to grow in depth */ | 
 | 	err = ext4_ext_grow_indepth(handle, inode, mb_flags); | 
 | 	if (err) | 
 | 		goto errout; | 
 |  | 
 | 	/* refill path */ | 
 | 	path = ext4_find_extent(inode, ee_block, path, gb_flags); | 
 | 	if (IS_ERR(path)) | 
 | 		return path; | 
 |  | 
 | 	/* | 
 | 	 * only first (depth 0 -> 1) produces free space; | 
 | 	 * in all other cases we have to split the grown tree | 
 | 	 */ | 
 | 	depth = ext_depth(inode); | 
 | 	if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { | 
 | 		/* now we need to split */ | 
 | 		goto repeat; | 
 | 	} | 
 |  | 
 | 	return path; | 
 |  | 
 | errout: | 
 | 	ext4_free_ext_path(path); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* | 
 |  * search the closest allocated block to the left for *logical | 
 |  * and returns it at @logical + it's physical address at @phys | 
 |  * if *logical is the smallest allocated block, the function | 
 |  * returns 0 at @phys | 
 |  * return value contains 0 (success) or error code | 
 |  */ | 
 | static int ext4_ext_search_left(struct inode *inode, | 
 | 				struct ext4_ext_path *path, | 
 | 				ext4_lblk_t *logical, ext4_fsblk_t *phys) | 
 | { | 
 | 	struct ext4_extent_idx *ix; | 
 | 	struct ext4_extent *ex; | 
 | 	int depth, ee_len; | 
 |  | 
 | 	if (unlikely(path == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 | 	depth = path->p_depth; | 
 | 	*phys = 0; | 
 |  | 
 | 	if (depth == 0 && path->p_ext == NULL) | 
 | 		return 0; | 
 |  | 
 | 	/* usually extent in the path covers blocks smaller | 
 | 	 * then *logical, but it can be that extent is the | 
 | 	 * first one in the file */ | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	if (*logical < le32_to_cpu(ex->ee_block)) { | 
 | 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", | 
 | 					 *logical, le32_to_cpu(ex->ee_block)); | 
 | 			return -EFSCORRUPTED; | 
 | 		} | 
 | 		while (--depth >= 0) { | 
 | 			ix = path[depth].p_idx; | 
 | 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { | 
 | 				EXT4_ERROR_INODE(inode, | 
 | 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", | 
 | 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0, | 
 | 				  le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block), | 
 | 				  depth); | 
 | 				return -EFSCORRUPTED; | 
 | 			} | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "logical %d < ee_block %d + ee_len %d!", | 
 | 				 *logical, le32_to_cpu(ex->ee_block), ee_len); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1; | 
 | 	*phys = ext4_ext_pblock(ex) + ee_len - 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Search the closest allocated block to the right for *logical | 
 |  * and returns it at @logical + it's physical address at @phys. | 
 |  * If not exists, return 0 and @phys is set to 0. We will return | 
 |  * 1 which means we found an allocated block and ret_ex is valid. | 
 |  * Or return a (< 0) error code. | 
 |  */ | 
 | static int ext4_ext_search_right(struct inode *inode, | 
 | 				 struct ext4_ext_path *path, | 
 | 				 ext4_lblk_t *logical, ext4_fsblk_t *phys, | 
 | 				 struct ext4_extent *ret_ex, int flags) | 
 | { | 
 | 	struct buffer_head *bh = NULL; | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct ext4_extent_idx *ix; | 
 | 	struct ext4_extent *ex; | 
 | 	int depth;	/* Note, NOT eh_depth; depth from top of tree */ | 
 | 	int ee_len; | 
 |  | 
 | 	if (unlikely(path == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 | 	depth = path->p_depth; | 
 | 	*phys = 0; | 
 |  | 
 | 	if (depth == 0 && path->p_ext == NULL) | 
 | 		return 0; | 
 |  | 
 | 	/* usually extent in the path covers blocks smaller | 
 | 	 * then *logical, but it can be that extent is the | 
 | 	 * first one in the file */ | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	if (*logical < le32_to_cpu(ex->ee_block)) { | 
 | 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "first_extent(path[%d].p_hdr) != ex", | 
 | 					 depth); | 
 | 			return -EFSCORRUPTED; | 
 | 		} | 
 | 		while (--depth >= 0) { | 
 | 			ix = path[depth].p_idx; | 
 | 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { | 
 | 				EXT4_ERROR_INODE(inode, | 
 | 						 "ix != EXT_FIRST_INDEX *logical %d!", | 
 | 						 *logical); | 
 | 				return -EFSCORRUPTED; | 
 | 			} | 
 | 		} | 
 | 		goto found_extent; | 
 | 	} | 
 |  | 
 | 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "logical %d < ee_block %d + ee_len %d!", | 
 | 				 *logical, le32_to_cpu(ex->ee_block), ee_len); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { | 
 | 		/* next allocated block in this leaf */ | 
 | 		ex++; | 
 | 		goto found_extent; | 
 | 	} | 
 |  | 
 | 	/* go up and search for index to the right */ | 
 | 	while (--depth >= 0) { | 
 | 		ix = path[depth].p_idx; | 
 | 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) | 
 | 			goto got_index; | 
 | 	} | 
 |  | 
 | 	/* we've gone up to the root and found no index to the right */ | 
 | 	return 0; | 
 |  | 
 | got_index: | 
 | 	/* we've found index to the right, let's | 
 | 	 * follow it and find the closest allocated | 
 | 	 * block to the right */ | 
 | 	ix++; | 
 | 	while (++depth < path->p_depth) { | 
 | 		/* subtract from p_depth to get proper eh_depth */ | 
 | 		bh = read_extent_tree_block(inode, ix, path->p_depth - depth, | 
 | 					    flags); | 
 | 		if (IS_ERR(bh)) | 
 | 			return PTR_ERR(bh); | 
 | 		eh = ext_block_hdr(bh); | 
 | 		ix = EXT_FIRST_INDEX(eh); | 
 | 		put_bh(bh); | 
 | 	} | 
 |  | 
 | 	bh = read_extent_tree_block(inode, ix, path->p_depth - depth, flags); | 
 | 	if (IS_ERR(bh)) | 
 | 		return PTR_ERR(bh); | 
 | 	eh = ext_block_hdr(bh); | 
 | 	ex = EXT_FIRST_EXTENT(eh); | 
 | found_extent: | 
 | 	*logical = le32_to_cpu(ex->ee_block); | 
 | 	*phys = ext4_ext_pblock(ex); | 
 | 	if (ret_ex) | 
 | 		*ret_ex = *ex; | 
 | 	if (bh) | 
 | 		put_bh(bh); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_next_allocated_block: | 
 |  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. | 
 |  * NOTE: it considers block number from index entry as | 
 |  * allocated block. Thus, index entries have to be consistent | 
 |  * with leaves. | 
 |  */ | 
 | ext4_lblk_t | 
 | ext4_ext_next_allocated_block(struct ext4_ext_path *path) | 
 | { | 
 | 	int depth; | 
 |  | 
 | 	BUG_ON(path == NULL); | 
 | 	depth = path->p_depth; | 
 |  | 
 | 	if (depth == 0 && path->p_ext == NULL) | 
 | 		return EXT_MAX_BLOCKS; | 
 |  | 
 | 	while (depth >= 0) { | 
 | 		struct ext4_ext_path *p = &path[depth]; | 
 |  | 
 | 		if (depth == path->p_depth) { | 
 | 			/* leaf */ | 
 | 			if (p->p_ext && p->p_ext != EXT_LAST_EXTENT(p->p_hdr)) | 
 | 				return le32_to_cpu(p->p_ext[1].ee_block); | 
 | 		} else { | 
 | 			/* index */ | 
 | 			if (p->p_idx != EXT_LAST_INDEX(p->p_hdr)) | 
 | 				return le32_to_cpu(p->p_idx[1].ei_block); | 
 | 		} | 
 | 		depth--; | 
 | 	} | 
 |  | 
 | 	return EXT_MAX_BLOCKS; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_next_leaf_block: | 
 |  * returns first allocated block from next leaf or EXT_MAX_BLOCKS | 
 |  */ | 
 | static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) | 
 | { | 
 | 	int depth; | 
 |  | 
 | 	BUG_ON(path == NULL); | 
 | 	depth = path->p_depth; | 
 |  | 
 | 	/* zero-tree has no leaf blocks at all */ | 
 | 	if (depth == 0) | 
 | 		return EXT_MAX_BLOCKS; | 
 |  | 
 | 	/* go to index block */ | 
 | 	depth--; | 
 |  | 
 | 	while (depth >= 0) { | 
 | 		if (path[depth].p_idx != | 
 | 				EXT_LAST_INDEX(path[depth].p_hdr)) | 
 | 			return (ext4_lblk_t) | 
 | 				le32_to_cpu(path[depth].p_idx[1].ei_block); | 
 | 		depth--; | 
 | 	} | 
 |  | 
 | 	return EXT_MAX_BLOCKS; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_correct_indexes: | 
 |  * if leaf gets modified and modified extent is first in the leaf, | 
 |  * then we have to correct all indexes above. | 
 |  * TODO: do we need to correct tree in all cases? | 
 |  */ | 
 | static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, | 
 | 				struct ext4_ext_path *path) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_extent *ex; | 
 | 	__le32 border; | 
 | 	int k, err = 0; | 
 |  | 
 | 	eh = path[depth].p_hdr; | 
 | 	ex = path[depth].p_ext; | 
 |  | 
 | 	if (unlikely(ex == NULL || eh == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "ex %p == NULL or eh %p == NULL", ex, eh); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	if (depth == 0) { | 
 | 		/* there is no tree at all */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (ex != EXT_FIRST_EXTENT(eh)) { | 
 | 		/* we correct tree if first leaf got modified only */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * TODO: we need correction if border is smaller than current one | 
 | 	 */ | 
 | 	k = depth - 1; | 
 | 	border = path[depth].p_ext->ee_block; | 
 | 	err = ext4_ext_get_access(handle, inode, path + k); | 
 | 	if (err) | 
 | 		return err; | 
 | 	path[k].p_idx->ei_block = border; | 
 | 	err = ext4_ext_dirty(handle, inode, path + k); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	while (k--) { | 
 | 		/* change all left-side indexes */ | 
 | 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) | 
 | 			break; | 
 | 		err = ext4_ext_get_access(handle, inode, path + k); | 
 | 		if (err) | 
 | 			goto clean; | 
 | 		path[k].p_idx->ei_block = border; | 
 | 		err = ext4_ext_dirty(handle, inode, path + k); | 
 | 		if (err) | 
 | 			goto clean; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | clean: | 
 | 	/* | 
 | 	 * The path[k].p_bh is either unmodified or with no verified bit | 
 | 	 * set (see ext4_ext_get_access()). So just clear the verified bit | 
 | 	 * of the successfully modified extents buffers, which will force | 
 | 	 * these extents to be checked to avoid using inconsistent data. | 
 | 	 */ | 
 | 	while (++k < depth) | 
 | 		clear_buffer_verified(path[k].p_bh); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int ext4_can_extents_be_merged(struct inode *inode, | 
 | 				      struct ext4_extent *ex1, | 
 | 				      struct ext4_extent *ex2) | 
 | { | 
 | 	unsigned short ext1_ee_len, ext2_ee_len; | 
 |  | 
 | 	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) | 
 | 		return 0; | 
 |  | 
 | 	ext1_ee_len = ext4_ext_get_actual_len(ex1); | 
 | 	ext2_ee_len = ext4_ext_get_actual_len(ex2); | 
 |  | 
 | 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != | 
 | 			le32_to_cpu(ex2->ee_block)) | 
 | 		return 0; | 
 |  | 
 | 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) | 
 | 		return 0; | 
 |  | 
 | 	if (ext4_ext_is_unwritten(ex1) && | 
 | 	    ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN) | 
 | 		return 0; | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (ext1_ee_len >= 4) | 
 | 		return 0; | 
 | #endif | 
 |  | 
 | 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This function tries to merge the "ex" extent to the next extent in the tree. | 
 |  * It always tries to merge towards right. If you want to merge towards | 
 |  * left, pass "ex - 1" as argument instead of "ex". | 
 |  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns | 
 |  * 1 if they got merged. | 
 |  */ | 
 | static int ext4_ext_try_to_merge_right(struct inode *inode, | 
 | 				 struct ext4_ext_path *path, | 
 | 				 struct ext4_extent *ex) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 | 	unsigned int depth, len; | 
 | 	int merge_done = 0, unwritten; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	BUG_ON(path[depth].p_hdr == NULL); | 
 | 	eh = path[depth].p_hdr; | 
 |  | 
 | 	while (ex < EXT_LAST_EXTENT(eh)) { | 
 | 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) | 
 | 			break; | 
 | 		/* merge with next extent! */ | 
 | 		unwritten = ext4_ext_is_unwritten(ex); | 
 | 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) | 
 | 				+ ext4_ext_get_actual_len(ex + 1)); | 
 | 		if (unwritten) | 
 | 			ext4_ext_mark_unwritten(ex); | 
 |  | 
 | 		if (ex + 1 < EXT_LAST_EXTENT(eh)) { | 
 | 			len = (EXT_LAST_EXTENT(eh) - ex - 1) | 
 | 				* sizeof(struct ext4_extent); | 
 | 			memmove(ex + 1, ex + 2, len); | 
 | 		} | 
 | 		le16_add_cpu(&eh->eh_entries, -1); | 
 | 		merge_done = 1; | 
 | 		WARN_ON(eh->eh_entries == 0); | 
 | 		if (!eh->eh_entries) | 
 | 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); | 
 | 	} | 
 |  | 
 | 	return merge_done; | 
 | } | 
 |  | 
 | /* | 
 |  * This function does a very simple check to see if we can collapse | 
 |  * an extent tree with a single extent tree leaf block into the inode. | 
 |  */ | 
 | static void ext4_ext_try_to_merge_up(handle_t *handle, | 
 | 				     struct inode *inode, | 
 | 				     struct ext4_ext_path *path) | 
 | { | 
 | 	size_t s; | 
 | 	unsigned max_root = ext4_ext_space_root(inode, 0); | 
 | 	ext4_fsblk_t blk; | 
 |  | 
 | 	if ((path[0].p_depth != 1) || | 
 | 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || | 
 | 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We need to modify the block allocation bitmap and the block | 
 | 	 * group descriptor to release the extent tree block.  If we | 
 | 	 * can't get the journal credits, give up. | 
 | 	 */ | 
 | 	if (ext4_journal_extend(handle, 2, | 
 | 			ext4_free_metadata_revoke_credits(inode->i_sb, 1))) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Copy the extent data up to the inode | 
 | 	 */ | 
 | 	blk = ext4_idx_pblock(path[0].p_idx); | 
 | 	s = le16_to_cpu(path[1].p_hdr->eh_entries) * | 
 | 		sizeof(struct ext4_extent_idx); | 
 | 	s += sizeof(struct ext4_extent_header); | 
 |  | 
 | 	path[1].p_maxdepth = path[0].p_maxdepth; | 
 | 	memcpy(path[0].p_hdr, path[1].p_hdr, s); | 
 | 	path[0].p_depth = 0; | 
 | 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + | 
 | 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); | 
 | 	path[0].p_hdr->eh_max = cpu_to_le16(max_root); | 
 |  | 
 | 	ext4_ext_path_brelse(path + 1); | 
 | 	ext4_free_blocks(handle, inode, NULL, blk, 1, | 
 | 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); | 
 | } | 
 |  | 
 | /* | 
 |  * This function tries to merge the @ex extent to neighbours in the tree, then | 
 |  * tries to collapse the extent tree into the inode. | 
 |  */ | 
 | static void ext4_ext_try_to_merge(handle_t *handle, | 
 | 				  struct inode *inode, | 
 | 				  struct ext4_ext_path *path, | 
 | 				  struct ext4_extent *ex) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 | 	unsigned int depth; | 
 | 	int merge_done = 0; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	BUG_ON(path[depth].p_hdr == NULL); | 
 | 	eh = path[depth].p_hdr; | 
 |  | 
 | 	if (ex > EXT_FIRST_EXTENT(eh)) | 
 | 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); | 
 |  | 
 | 	if (!merge_done) | 
 | 		(void) ext4_ext_try_to_merge_right(inode, path, ex); | 
 |  | 
 | 	ext4_ext_try_to_merge_up(handle, inode, path); | 
 | } | 
 |  | 
 | /* | 
 |  * check if a portion of the "newext" extent overlaps with an | 
 |  * existing extent. | 
 |  * | 
 |  * If there is an overlap discovered, it updates the length of the newext | 
 |  * such that there will be no overlap, and then returns 1. | 
 |  * If there is no overlap found, it returns 0. | 
 |  */ | 
 | static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, | 
 | 					   struct inode *inode, | 
 | 					   struct ext4_extent *newext, | 
 | 					   struct ext4_ext_path *path) | 
 | { | 
 | 	ext4_lblk_t b1, b2; | 
 | 	unsigned int depth, len1; | 
 | 	unsigned int ret = 0; | 
 |  | 
 | 	b1 = le32_to_cpu(newext->ee_block); | 
 | 	len1 = ext4_ext_get_actual_len(newext); | 
 | 	depth = ext_depth(inode); | 
 | 	if (!path[depth].p_ext) | 
 | 		goto out; | 
 | 	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); | 
 |  | 
 | 	/* | 
 | 	 * get the next allocated block if the extent in the path | 
 | 	 * is before the requested block(s) | 
 | 	 */ | 
 | 	if (b2 < b1) { | 
 | 		b2 = ext4_ext_next_allocated_block(path); | 
 | 		if (b2 == EXT_MAX_BLOCKS) | 
 | 			goto out; | 
 | 		b2 = EXT4_LBLK_CMASK(sbi, b2); | 
 | 	} | 
 |  | 
 | 	/* check for wrap through zero on extent logical start block*/ | 
 | 	if (b1 + len1 < b1) { | 
 | 		len1 = EXT_MAX_BLOCKS - b1; | 
 | 		newext->ee_len = cpu_to_le16(len1); | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	/* check for overlap */ | 
 | 	if (b1 + len1 > b2) { | 
 | 		newext->ee_len = cpu_to_le16(b2 - b1); | 
 | 		ret = 1; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_insert_extent: | 
 |  * tries to merge requested extent into the existing extent or | 
 |  * inserts requested extent as new one into the tree, | 
 |  * creating new leaf in the no-space case. | 
 |  */ | 
 | struct ext4_ext_path * | 
 | ext4_ext_insert_extent(handle_t *handle, struct inode *inode, | 
 | 		       struct ext4_ext_path *path, | 
 | 		       struct ext4_extent *newext, int gb_flags) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct ext4_extent *ex, *fex; | 
 | 	struct ext4_extent *nearex; /* nearest extent */ | 
 | 	int depth, len, err = 0; | 
 | 	ext4_lblk_t next; | 
 | 	int mb_flags = 0, unwritten; | 
 |  | 
 | 	if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) | 
 | 		mb_flags |= EXT4_MB_DELALLOC_RESERVED; | 
 | 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); | 
 | 		err = -EFSCORRUPTED; | 
 | 		goto errout; | 
 | 	} | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	eh = path[depth].p_hdr; | 
 | 	if (unlikely(path[depth].p_hdr == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); | 
 | 		err = -EFSCORRUPTED; | 
 | 		goto errout; | 
 | 	} | 
 |  | 
 | 	/* try to insert block into found extent and return */ | 
 | 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { | 
 |  | 
 | 		/* | 
 | 		 * Try to see whether we should rather test the extent on | 
 | 		 * right from ex, or from the left of ex. This is because | 
 | 		 * ext4_find_extent() can return either extent on the | 
 | 		 * left, or on the right from the searched position. This | 
 | 		 * will make merging more effective. | 
 | 		 */ | 
 | 		if (ex < EXT_LAST_EXTENT(eh) && | 
 | 		    (le32_to_cpu(ex->ee_block) + | 
 | 		    ext4_ext_get_actual_len(ex) < | 
 | 		    le32_to_cpu(newext->ee_block))) { | 
 | 			ex += 1; | 
 | 			goto prepend; | 
 | 		} else if ((ex > EXT_FIRST_EXTENT(eh)) && | 
 | 			   (le32_to_cpu(newext->ee_block) + | 
 | 			   ext4_ext_get_actual_len(newext) < | 
 | 			   le32_to_cpu(ex->ee_block))) | 
 | 			ex -= 1; | 
 |  | 
 | 		/* Try to append newex to the ex */ | 
 | 		if (ext4_can_extents_be_merged(inode, ex, newext)) { | 
 | 			ext_debug(inode, "append [%d]%d block to %u:[%d]%d" | 
 | 				  "(from %llu)\n", | 
 | 				  ext4_ext_is_unwritten(newext), | 
 | 				  ext4_ext_get_actual_len(newext), | 
 | 				  le32_to_cpu(ex->ee_block), | 
 | 				  ext4_ext_is_unwritten(ex), | 
 | 				  ext4_ext_get_actual_len(ex), | 
 | 				  ext4_ext_pblock(ex)); | 
 | 			err = ext4_ext_get_access(handle, inode, | 
 | 						  path + depth); | 
 | 			if (err) | 
 | 				goto errout; | 
 | 			unwritten = ext4_ext_is_unwritten(ex); | 
 | 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) | 
 | 					+ ext4_ext_get_actual_len(newext)); | 
 | 			if (unwritten) | 
 | 				ext4_ext_mark_unwritten(ex); | 
 | 			nearex = ex; | 
 | 			goto merge; | 
 | 		} | 
 |  | 
 | prepend: | 
 | 		/* Try to prepend newex to the ex */ | 
 | 		if (ext4_can_extents_be_merged(inode, newext, ex)) { | 
 | 			ext_debug(inode, "prepend %u[%d]%d block to %u:[%d]%d" | 
 | 				  "(from %llu)\n", | 
 | 				  le32_to_cpu(newext->ee_block), | 
 | 				  ext4_ext_is_unwritten(newext), | 
 | 				  ext4_ext_get_actual_len(newext), | 
 | 				  le32_to_cpu(ex->ee_block), | 
 | 				  ext4_ext_is_unwritten(ex), | 
 | 				  ext4_ext_get_actual_len(ex), | 
 | 				  ext4_ext_pblock(ex)); | 
 | 			err = ext4_ext_get_access(handle, inode, | 
 | 						  path + depth); | 
 | 			if (err) | 
 | 				goto errout; | 
 |  | 
 | 			unwritten = ext4_ext_is_unwritten(ex); | 
 | 			ex->ee_block = newext->ee_block; | 
 | 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); | 
 | 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) | 
 | 					+ ext4_ext_get_actual_len(newext)); | 
 | 			if (unwritten) | 
 | 				ext4_ext_mark_unwritten(ex); | 
 | 			nearex = ex; | 
 | 			goto merge; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	eh = path[depth].p_hdr; | 
 | 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) | 
 | 		goto has_space; | 
 |  | 
 | 	/* probably next leaf has space for us? */ | 
 | 	fex = EXT_LAST_EXTENT(eh); | 
 | 	next = EXT_MAX_BLOCKS; | 
 | 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) | 
 | 		next = ext4_ext_next_leaf_block(path); | 
 | 	if (next != EXT_MAX_BLOCKS) { | 
 | 		struct ext4_ext_path *npath; | 
 |  | 
 | 		ext_debug(inode, "next leaf block - %u\n", next); | 
 | 		npath = ext4_find_extent(inode, next, NULL, gb_flags); | 
 | 		if (IS_ERR(npath)) { | 
 | 			err = PTR_ERR(npath); | 
 | 			goto errout; | 
 | 		} | 
 | 		BUG_ON(npath->p_depth != path->p_depth); | 
 | 		eh = npath[depth].p_hdr; | 
 | 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { | 
 | 			ext_debug(inode, "next leaf isn't full(%d)\n", | 
 | 				  le16_to_cpu(eh->eh_entries)); | 
 | 			ext4_free_ext_path(path); | 
 | 			path = npath; | 
 | 			goto has_space; | 
 | 		} | 
 | 		ext_debug(inode, "next leaf has no free space(%d,%d)\n", | 
 | 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); | 
 | 		ext4_free_ext_path(npath); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * There is no free space in the found leaf. | 
 | 	 * We're gonna add a new leaf in the tree. | 
 | 	 */ | 
 | 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) | 
 | 		mb_flags |= EXT4_MB_USE_RESERVED; | 
 | 	path = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, | 
 | 					path, newext); | 
 | 	if (IS_ERR(path)) | 
 | 		return path; | 
 | 	depth = ext_depth(inode); | 
 | 	eh = path[depth].p_hdr; | 
 |  | 
 | has_space: | 
 | 	nearex = path[depth].p_ext; | 
 |  | 
 | 	err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 	if (err) | 
 | 		goto errout; | 
 |  | 
 | 	if (!nearex) { | 
 | 		/* there is no extent in this leaf, create first one */ | 
 | 		ext_debug(inode, "first extent in the leaf: %u:%llu:[%d]%d\n", | 
 | 				le32_to_cpu(newext->ee_block), | 
 | 				ext4_ext_pblock(newext), | 
 | 				ext4_ext_is_unwritten(newext), | 
 | 				ext4_ext_get_actual_len(newext)); | 
 | 		nearex = EXT_FIRST_EXTENT(eh); | 
 | 	} else { | 
 | 		if (le32_to_cpu(newext->ee_block) | 
 | 			   > le32_to_cpu(nearex->ee_block)) { | 
 | 			/* Insert after */ | 
 | 			ext_debug(inode, "insert %u:%llu:[%d]%d before: " | 
 | 					"nearest %p\n", | 
 | 					le32_to_cpu(newext->ee_block), | 
 | 					ext4_ext_pblock(newext), | 
 | 					ext4_ext_is_unwritten(newext), | 
 | 					ext4_ext_get_actual_len(newext), | 
 | 					nearex); | 
 | 			nearex++; | 
 | 		} else { | 
 | 			/* Insert before */ | 
 | 			BUG_ON(newext->ee_block == nearex->ee_block); | 
 | 			ext_debug(inode, "insert %u:%llu:[%d]%d after: " | 
 | 					"nearest %p\n", | 
 | 					le32_to_cpu(newext->ee_block), | 
 | 					ext4_ext_pblock(newext), | 
 | 					ext4_ext_is_unwritten(newext), | 
 | 					ext4_ext_get_actual_len(newext), | 
 | 					nearex); | 
 | 		} | 
 | 		len = EXT_LAST_EXTENT(eh) - nearex + 1; | 
 | 		if (len > 0) { | 
 | 			ext_debug(inode, "insert %u:%llu:[%d]%d: " | 
 | 					"move %d extents from 0x%p to 0x%p\n", | 
 | 					le32_to_cpu(newext->ee_block), | 
 | 					ext4_ext_pblock(newext), | 
 | 					ext4_ext_is_unwritten(newext), | 
 | 					ext4_ext_get_actual_len(newext), | 
 | 					len, nearex, nearex + 1); | 
 | 			memmove(nearex + 1, nearex, | 
 | 				len * sizeof(struct ext4_extent)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	le16_add_cpu(&eh->eh_entries, 1); | 
 | 	path[depth].p_ext = nearex; | 
 | 	nearex->ee_block = newext->ee_block; | 
 | 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); | 
 | 	nearex->ee_len = newext->ee_len; | 
 |  | 
 | merge: | 
 | 	/* try to merge extents */ | 
 | 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) | 
 | 		ext4_ext_try_to_merge(handle, inode, path, nearex); | 
 |  | 
 | 	/* time to correct all indexes above */ | 
 | 	err = ext4_ext_correct_indexes(handle, inode, path); | 
 | 	if (err) | 
 | 		goto errout; | 
 |  | 
 | 	err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | 	if (err) | 
 | 		goto errout; | 
 |  | 
 | 	return path; | 
 |  | 
 | errout: | 
 | 	ext4_free_ext_path(path); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static int ext4_fill_es_cache_info(struct inode *inode, | 
 | 				   ext4_lblk_t block, ext4_lblk_t num, | 
 | 				   struct fiemap_extent_info *fieinfo) | 
 | { | 
 | 	ext4_lblk_t next, end = block + num - 1; | 
 | 	struct extent_status es; | 
 | 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; | 
 | 	unsigned int flags; | 
 | 	int err; | 
 |  | 
 | 	while (block <= end) { | 
 | 		next = 0; | 
 | 		flags = 0; | 
 | 		if (!ext4_es_lookup_extent(inode, block, &next, &es)) | 
 | 			break; | 
 | 		if (ext4_es_is_unwritten(&es)) | 
 | 			flags |= FIEMAP_EXTENT_UNWRITTEN; | 
 | 		if (ext4_es_is_delayed(&es)) | 
 | 			flags |= (FIEMAP_EXTENT_DELALLOC | | 
 | 				  FIEMAP_EXTENT_UNKNOWN); | 
 | 		if (ext4_es_is_hole(&es)) | 
 | 			flags |= EXT4_FIEMAP_EXTENT_HOLE; | 
 | 		if (next == 0) | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 		if (flags & (FIEMAP_EXTENT_DELALLOC| | 
 | 			     EXT4_FIEMAP_EXTENT_HOLE)) | 
 | 			es.es_pblk = 0; | 
 | 		else | 
 | 			es.es_pblk = ext4_es_pblock(&es); | 
 | 		err = fiemap_fill_next_extent(fieinfo, | 
 | 				(__u64)es.es_lblk << blksize_bits, | 
 | 				(__u64)es.es_pblk << blksize_bits, | 
 | 				(__u64)es.es_len << blksize_bits, | 
 | 				flags); | 
 | 		if (next == 0) | 
 | 			break; | 
 | 		block = next; | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 		if (err == 1) | 
 | 			return 0; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ext4_ext_find_hole - find hole around given block according to the given path | 
 |  * @inode:	inode we lookup in | 
 |  * @path:	path in extent tree to @lblk | 
 |  * @lblk:	pointer to logical block around which we want to determine hole | 
 |  * | 
 |  * Determine hole length (and start if easily possible) around given logical | 
 |  * block. We don't try too hard to find the beginning of the hole but @path | 
 |  * actually points to extent before @lblk, we provide it. | 
 |  * | 
 |  * The function returns the length of a hole starting at @lblk. We update @lblk | 
 |  * to the beginning of the hole if we managed to find it. | 
 |  */ | 
 | static ext4_lblk_t ext4_ext_find_hole(struct inode *inode, | 
 | 				      struct ext4_ext_path *path, | 
 | 				      ext4_lblk_t *lblk) | 
 | { | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_lblk_t len; | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	if (ex == NULL) { | 
 | 		/* there is no extent yet, so gap is [0;-] */ | 
 | 		*lblk = 0; | 
 | 		len = EXT_MAX_BLOCKS; | 
 | 	} else if (*lblk < le32_to_cpu(ex->ee_block)) { | 
 | 		len = le32_to_cpu(ex->ee_block) - *lblk; | 
 | 	} else if (*lblk >= le32_to_cpu(ex->ee_block) | 
 | 			+ ext4_ext_get_actual_len(ex)) { | 
 | 		ext4_lblk_t next; | 
 |  | 
 | 		*lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); | 
 | 		next = ext4_ext_next_allocated_block(path); | 
 | 		BUG_ON(next == *lblk); | 
 | 		len = next - *lblk; | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 | 	return len; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_rm_idx: | 
 |  * removes index from the index block. | 
 |  */ | 
 | static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, | 
 | 			struct ext4_ext_path *path, int depth) | 
 | { | 
 | 	int err; | 
 | 	ext4_fsblk_t leaf; | 
 | 	int k = depth - 1; | 
 |  | 
 | 	/* free index block */ | 
 | 	leaf = ext4_idx_pblock(path[k].p_idx); | 
 | 	if (unlikely(path[k].p_hdr->eh_entries == 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr->eh_entries == 0", k); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 | 	err = ext4_ext_get_access(handle, inode, path + k); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (path[k].p_idx != EXT_LAST_INDEX(path[k].p_hdr)) { | 
 | 		int len = EXT_LAST_INDEX(path[k].p_hdr) - path[k].p_idx; | 
 | 		len *= sizeof(struct ext4_extent_idx); | 
 | 		memmove(path[k].p_idx, path[k].p_idx + 1, len); | 
 | 	} | 
 |  | 
 | 	le16_add_cpu(&path[k].p_hdr->eh_entries, -1); | 
 | 	err = ext4_ext_dirty(handle, inode, path + k); | 
 | 	if (err) | 
 | 		return err; | 
 | 	ext_debug(inode, "index is empty, remove it, free block %llu\n", leaf); | 
 | 	trace_ext4_ext_rm_idx(inode, leaf); | 
 |  | 
 | 	ext4_free_blocks(handle, inode, NULL, leaf, 1, | 
 | 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); | 
 |  | 
 | 	while (--k >= 0) { | 
 | 		if (path[k + 1].p_idx != EXT_FIRST_INDEX(path[k + 1].p_hdr)) | 
 | 			break; | 
 | 		err = ext4_ext_get_access(handle, inode, path + k); | 
 | 		if (err) | 
 | 			goto clean; | 
 | 		path[k].p_idx->ei_block = path[k + 1].p_idx->ei_block; | 
 | 		err = ext4_ext_dirty(handle, inode, path + k); | 
 | 		if (err) | 
 | 			goto clean; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | clean: | 
 | 	/* | 
 | 	 * The path[k].p_bh is either unmodified or with no verified bit | 
 | 	 * set (see ext4_ext_get_access()). So just clear the verified bit | 
 | 	 * of the successfully modified extents buffers, which will force | 
 | 	 * these extents to be checked to avoid using inconsistent data. | 
 | 	 */ | 
 | 	while (++k < depth) | 
 | 		clear_buffer_verified(path[k].p_bh); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_calc_credits_for_single_extent: | 
 |  * This routine returns max. credits that needed to insert an extent | 
 |  * to the extent tree. | 
 |  * When pass the actual path, the caller should calculate credits | 
 |  * under i_data_sem. | 
 |  */ | 
 | int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, | 
 | 						struct ext4_ext_path *path) | 
 | { | 
 | 	if (path) { | 
 | 		int depth = ext_depth(inode); | 
 | 		int ret = 0; | 
 |  | 
 | 		/* probably there is space in leaf? */ | 
 | 		if (le16_to_cpu(path[depth].p_hdr->eh_entries) | 
 | 				< le16_to_cpu(path[depth].p_hdr->eh_max)) { | 
 |  | 
 | 			/* | 
 | 			 *  There are some space in the leaf tree, no | 
 | 			 *  need to account for leaf block credit | 
 | 			 * | 
 | 			 *  bitmaps and block group descriptor blocks | 
 | 			 *  and other metadata blocks still need to be | 
 | 			 *  accounted. | 
 | 			 */ | 
 | 			/* 1 bitmap, 1 block group descriptor */ | 
 | 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ext4_chunk_trans_blocks(inode, nrblocks); | 
 | } | 
 |  | 
 | /* | 
 |  * How many index/leaf blocks need to change/allocate to add @extents extents? | 
 |  * | 
 |  * If we add a single extent, then in the worse case, each tree level | 
 |  * index/leaf need to be changed in case of the tree split. | 
 |  * | 
 |  * If more extents are inserted, they could cause the whole tree split more | 
 |  * than once, but this is really rare. | 
 |  */ | 
 | int ext4_ext_index_trans_blocks(struct inode *inode, int extents) | 
 | { | 
 | 	int index; | 
 |  | 
 | 	/* If we are converting the inline data, only one is needed here. */ | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Extent tree can change between the time we estimate credits and | 
 | 	 * the time we actually modify the tree. Assume the worst case. | 
 | 	 */ | 
 | 	if (extents <= 1) | 
 | 		index = (EXT4_MAX_EXTENT_DEPTH * 2) + extents; | 
 | 	else | 
 | 		index = (EXT4_MAX_EXTENT_DEPTH * 3) + | 
 | 			DIV_ROUND_UP(extents, ext4_ext_space_block(inode, 0)); | 
 |  | 
 | 	return index; | 
 | } | 
 |  | 
 | static inline int get_default_free_blocks_flags(struct inode *inode) | 
 | { | 
 | 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || | 
 | 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) | 
 | 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; | 
 | 	else if (ext4_should_journal_data(inode)) | 
 | 		return EXT4_FREE_BLOCKS_FORGET; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_rereserve_cluster - increment the reserved cluster count when | 
 |  *                          freeing a cluster with a pending reservation | 
 |  * | 
 |  * @inode - file containing the cluster | 
 |  * @lblk - logical block in cluster to be reserved | 
 |  * | 
 |  * Increments the reserved cluster count and adjusts quota in a bigalloc | 
 |  * file system when freeing a partial cluster containing at least one | 
 |  * delayed and unwritten block.  A partial cluster meeting that | 
 |  * requirement will have a pending reservation.  If so, the | 
 |  * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to | 
 |  * defer reserved and allocated space accounting to a subsequent call | 
 |  * to this function. | 
 |  */ | 
 | static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | 	dquot_reclaim_block(inode, EXT4_C2B(sbi, 1)); | 
 |  | 
 | 	spin_lock(&ei->i_block_reservation_lock); | 
 | 	ei->i_reserved_data_blocks++; | 
 | 	percpu_counter_add(&sbi->s_dirtyclusters_counter, 1); | 
 | 	spin_unlock(&ei->i_block_reservation_lock); | 
 |  | 
 | 	percpu_counter_add(&sbi->s_freeclusters_counter, 1); | 
 | 	ext4_remove_pending(inode, lblk); | 
 | } | 
 |  | 
 | static int ext4_remove_blocks(handle_t *handle, struct inode *inode, | 
 | 			      struct ext4_extent *ex, | 
 | 			      struct partial_cluster *partial, | 
 | 			      ext4_lblk_t from, ext4_lblk_t to) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	unsigned short ee_len = ext4_ext_get_actual_len(ex); | 
 | 	ext4_fsblk_t last_pblk, pblk; | 
 | 	ext4_lblk_t num; | 
 | 	int flags; | 
 |  | 
 | 	/* only extent tail removal is allowed */ | 
 | 	if (from < le32_to_cpu(ex->ee_block) || | 
 | 	    to != le32_to_cpu(ex->ee_block) + ee_len - 1) { | 
 | 		ext4_error(sbi->s_sb, | 
 | 			   "strange request: removal(2) %u-%u from %u:%u", | 
 | 			   from, to, le32_to_cpu(ex->ee_block), ee_len); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | #ifdef EXTENTS_STATS | 
 | 	spin_lock(&sbi->s_ext_stats_lock); | 
 | 	sbi->s_ext_blocks += ee_len; | 
 | 	sbi->s_ext_extents++; | 
 | 	if (ee_len < sbi->s_ext_min) | 
 | 		sbi->s_ext_min = ee_len; | 
 | 	if (ee_len > sbi->s_ext_max) | 
 | 		sbi->s_ext_max = ee_len; | 
 | 	if (ext_depth(inode) > sbi->s_depth_max) | 
 | 		sbi->s_depth_max = ext_depth(inode); | 
 | 	spin_unlock(&sbi->s_ext_stats_lock); | 
 | #endif | 
 |  | 
 | 	trace_ext4_remove_blocks(inode, ex, from, to, partial); | 
 |  | 
 | 	/* | 
 | 	 * if we have a partial cluster, and it's different from the | 
 | 	 * cluster of the last block in the extent, we free it | 
 | 	 */ | 
 | 	last_pblk = ext4_ext_pblock(ex) + ee_len - 1; | 
 |  | 
 | 	if (partial->state != initial && | 
 | 	    partial->pclu != EXT4_B2C(sbi, last_pblk)) { | 
 | 		if (partial->state == tofree) { | 
 | 			flags = get_default_free_blocks_flags(inode); | 
 | 			if (ext4_is_pending(inode, partial->lblk)) | 
 | 				flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; | 
 | 			ext4_free_blocks(handle, inode, NULL, | 
 | 					 EXT4_C2B(sbi, partial->pclu), | 
 | 					 sbi->s_cluster_ratio, flags); | 
 | 			if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) | 
 | 				ext4_rereserve_cluster(inode, partial->lblk); | 
 | 		} | 
 | 		partial->state = initial; | 
 | 	} | 
 |  | 
 | 	num = le32_to_cpu(ex->ee_block) + ee_len - from; | 
 | 	pblk = ext4_ext_pblock(ex) + ee_len - num; | 
 |  | 
 | 	/* | 
 | 	 * We free the partial cluster at the end of the extent (if any), | 
 | 	 * unless the cluster is used by another extent (partial_cluster | 
 | 	 * state is nofree).  If a partial cluster exists here, it must be | 
 | 	 * shared with the last block in the extent. | 
 | 	 */ | 
 | 	flags = get_default_free_blocks_flags(inode); | 
 |  | 
 | 	/* partial, left end cluster aligned, right end unaligned */ | 
 | 	if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) && | 
 | 	    (EXT4_LBLK_CMASK(sbi, to) >= from) && | 
 | 	    (partial->state != nofree)) { | 
 | 		if (ext4_is_pending(inode, to)) | 
 | 			flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; | 
 | 		ext4_free_blocks(handle, inode, NULL, | 
 | 				 EXT4_PBLK_CMASK(sbi, last_pblk), | 
 | 				 sbi->s_cluster_ratio, flags); | 
 | 		if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) | 
 | 			ext4_rereserve_cluster(inode, to); | 
 | 		partial->state = initial; | 
 | 		flags = get_default_free_blocks_flags(inode); | 
 | 	} | 
 |  | 
 | 	flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; | 
 |  | 
 | 	/* | 
 | 	 * For bigalloc file systems, we never free a partial cluster | 
 | 	 * at the beginning of the extent.  Instead, we check to see if we | 
 | 	 * need to free it on a subsequent call to ext4_remove_blocks, | 
 | 	 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. | 
 | 	 */ | 
 | 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; | 
 | 	ext4_free_blocks(handle, inode, NULL, pblk, num, flags); | 
 |  | 
 | 	/* reset the partial cluster if we've freed past it */ | 
 | 	if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk)) | 
 | 		partial->state = initial; | 
 |  | 
 | 	/* | 
 | 	 * If we've freed the entire extent but the beginning is not left | 
 | 	 * cluster aligned and is not marked as ineligible for freeing we | 
 | 	 * record the partial cluster at the beginning of the extent.  It | 
 | 	 * wasn't freed by the preceding ext4_free_blocks() call, and we | 
 | 	 * need to look farther to the left to determine if it's to be freed | 
 | 	 * (not shared with another extent). Else, reset the partial | 
 | 	 * cluster - we're either  done freeing or the beginning of the | 
 | 	 * extent is left cluster aligned. | 
 | 	 */ | 
 | 	if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) { | 
 | 		if (partial->state == initial) { | 
 | 			partial->pclu = EXT4_B2C(sbi, pblk); | 
 | 			partial->lblk = from; | 
 | 			partial->state = tofree; | 
 | 		} | 
 | 	} else { | 
 | 		partial->state = initial; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_rm_leaf() Removes the extents associated with the | 
 |  * blocks appearing between "start" and "end".  Both "start" | 
 |  * and "end" must appear in the same extent or EIO is returned. | 
 |  * | 
 |  * @handle: The journal handle | 
 |  * @inode:  The files inode | 
 |  * @path:   The path to the leaf | 
 |  * @partial_cluster: The cluster which we'll have to free if all extents | 
 |  *                   has been released from it.  However, if this value is | 
 |  *                   negative, it's a cluster just to the right of the | 
 |  *                   punched region and it must not be freed. | 
 |  * @start:  The first block to remove | 
 |  * @end:   The last block to remove | 
 |  */ | 
 | static int | 
 | ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, | 
 | 		 struct ext4_ext_path *path, | 
 | 		 struct partial_cluster *partial, | 
 | 		 ext4_lblk_t start, ext4_lblk_t end) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	int err = 0, correct_index = 0; | 
 | 	int depth = ext_depth(inode), credits, revoke_credits; | 
 | 	struct ext4_extent_header *eh; | 
 | 	ext4_lblk_t a, b; | 
 | 	unsigned num; | 
 | 	ext4_lblk_t ex_ee_block; | 
 | 	unsigned short ex_ee_len; | 
 | 	unsigned unwritten = 0; | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_fsblk_t pblk; | 
 |  | 
 | 	/* the header must be checked already in ext4_ext_remove_space() */ | 
 | 	ext_debug(inode, "truncate since %u in leaf to %u\n", start, end); | 
 | 	if (!path[depth].p_hdr) | 
 | 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); | 
 | 	eh = path[depth].p_hdr; | 
 | 	if (unlikely(path[depth].p_hdr == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 | 	/* find where to start removing */ | 
 | 	ex = path[depth].p_ext; | 
 | 	if (!ex) | 
 | 		ex = EXT_LAST_EXTENT(eh); | 
 |  | 
 | 	ex_ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ex_ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	trace_ext4_ext_rm_leaf(inode, start, ex, partial); | 
 |  | 
 | 	while (ex >= EXT_FIRST_EXTENT(eh) && | 
 | 			ex_ee_block + ex_ee_len > start) { | 
 |  | 
 | 		if (ext4_ext_is_unwritten(ex)) | 
 | 			unwritten = 1; | 
 | 		else | 
 | 			unwritten = 0; | 
 |  | 
 | 		ext_debug(inode, "remove ext %u:[%d]%d\n", ex_ee_block, | 
 | 			  unwritten, ex_ee_len); | 
 | 		path[depth].p_ext = ex; | 
 |  | 
 | 		a = max(ex_ee_block, start); | 
 | 		b = min(ex_ee_block + ex_ee_len - 1, end); | 
 |  | 
 | 		ext_debug(inode, "  border %u:%u\n", a, b); | 
 |  | 
 | 		/* If this extent is beyond the end of the hole, skip it */ | 
 | 		if (end < ex_ee_block) { | 
 | 			/* | 
 | 			 * We're going to skip this extent and move to another, | 
 | 			 * so note that its first cluster is in use to avoid | 
 | 			 * freeing it when removing blocks.  Eventually, the | 
 | 			 * right edge of the truncated/punched region will | 
 | 			 * be just to the left. | 
 | 			 */ | 
 | 			if (sbi->s_cluster_ratio > 1) { | 
 | 				pblk = ext4_ext_pblock(ex); | 
 | 				partial->pclu = EXT4_B2C(sbi, pblk); | 
 | 				partial->state = nofree; | 
 | 			} | 
 | 			ex--; | 
 | 			ex_ee_block = le32_to_cpu(ex->ee_block); | 
 | 			ex_ee_len = ext4_ext_get_actual_len(ex); | 
 | 			continue; | 
 | 		} else if (b != ex_ee_block + ex_ee_len - 1) { | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "can not handle truncate %u:%u " | 
 | 					 "on extent %u:%u", | 
 | 					 start, end, ex_ee_block, | 
 | 					 ex_ee_block + ex_ee_len - 1); | 
 | 			err = -EFSCORRUPTED; | 
 | 			goto out; | 
 | 		} else if (a != ex_ee_block) { | 
 | 			/* remove tail of the extent */ | 
 | 			num = a - ex_ee_block; | 
 | 		} else { | 
 | 			/* remove whole extent: excellent! */ | 
 | 			num = 0; | 
 | 		} | 
 | 		/* | 
 | 		 * 3 for leaf, sb, and inode plus 2 (bmap and group | 
 | 		 * descriptor) for each block group; assume two block | 
 | 		 * groups plus ex_ee_len/blocks_per_block_group for | 
 | 		 * the worst case | 
 | 		 */ | 
 | 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); | 
 | 		if (ex == EXT_FIRST_EXTENT(eh)) { | 
 | 			correct_index = 1; | 
 | 			credits += (ext_depth(inode)) + 1; | 
 | 		} | 
 | 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); | 
 | 		/* | 
 | 		 * We may end up freeing some index blocks and data from the | 
 | 		 * punched range. Note that partial clusters are accounted for | 
 | 		 * by ext4_free_data_revoke_credits(). | 
 | 		 */ | 
 | 		revoke_credits = | 
 | 			ext4_free_metadata_revoke_credits(inode->i_sb, | 
 | 							  ext_depth(inode)) + | 
 | 			ext4_free_data_revoke_credits(inode, b - a + 1); | 
 |  | 
 | 		err = ext4_datasem_ensure_credits(handle, inode, credits, | 
 | 						  credits, revoke_credits); | 
 | 		if (err) { | 
 | 			if (err > 0) | 
 | 				err = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		err = ext4_remove_blocks(handle, inode, ex, partial, a, b); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		if (num == 0) | 
 | 			/* this extent is removed; mark slot entirely unused */ | 
 | 			ext4_ext_store_pblock(ex, 0); | 
 |  | 
 | 		ex->ee_len = cpu_to_le16(num); | 
 | 		/* | 
 | 		 * Do not mark unwritten if all the blocks in the | 
 | 		 * extent have been removed. | 
 | 		 */ | 
 | 		if (unwritten && num) | 
 | 			ext4_ext_mark_unwritten(ex); | 
 | 		/* | 
 | 		 * If the extent was completely released, | 
 | 		 * we need to remove it from the leaf | 
 | 		 */ | 
 | 		if (num == 0) { | 
 | 			if (end != EXT_MAX_BLOCKS - 1) { | 
 | 				/* | 
 | 				 * For hole punching, we need to scoot all the | 
 | 				 * extents up when an extent is removed so that | 
 | 				 * we dont have blank extents in the middle | 
 | 				 */ | 
 | 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * | 
 | 					sizeof(struct ext4_extent)); | 
 |  | 
 | 				/* Now get rid of the one at the end */ | 
 | 				memset(EXT_LAST_EXTENT(eh), 0, | 
 | 					sizeof(struct ext4_extent)); | 
 | 			} | 
 | 			le16_add_cpu(&eh->eh_entries, -1); | 
 | 		} | 
 |  | 
 | 		err = ext4_ext_dirty(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		ext_debug(inode, "new extent: %u:%u:%llu\n", ex_ee_block, num, | 
 | 				ext4_ext_pblock(ex)); | 
 | 		ex--; | 
 | 		ex_ee_block = le32_to_cpu(ex->ee_block); | 
 | 		ex_ee_len = ext4_ext_get_actual_len(ex); | 
 | 	} | 
 |  | 
 | 	if (correct_index && eh->eh_entries) | 
 | 		err = ext4_ext_correct_indexes(handle, inode, path); | 
 |  | 
 | 	/* | 
 | 	 * If there's a partial cluster and at least one extent remains in | 
 | 	 * the leaf, free the partial cluster if it isn't shared with the | 
 | 	 * current extent.  If it is shared with the current extent | 
 | 	 * we reset the partial cluster because we've reached the start of the | 
 | 	 * truncated/punched region and we're done removing blocks. | 
 | 	 */ | 
 | 	if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) { | 
 | 		pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; | 
 | 		if (partial->pclu != EXT4_B2C(sbi, pblk)) { | 
 | 			int flags = get_default_free_blocks_flags(inode); | 
 |  | 
 | 			if (ext4_is_pending(inode, partial->lblk)) | 
 | 				flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; | 
 | 			ext4_free_blocks(handle, inode, NULL, | 
 | 					 EXT4_C2B(sbi, partial->pclu), | 
 | 					 sbi->s_cluster_ratio, flags); | 
 | 			if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) | 
 | 				ext4_rereserve_cluster(inode, partial->lblk); | 
 | 		} | 
 | 		partial->state = initial; | 
 | 	} | 
 |  | 
 | 	/* if this leaf is free, then we should | 
 | 	 * remove it from index block above */ | 
 | 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) | 
 | 		err = ext4_ext_rm_idx(handle, inode, path, depth); | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_more_to_rm: | 
 |  * returns 1 if current index has to be freed (even partial) | 
 |  */ | 
 | static int | 
 | ext4_ext_more_to_rm(struct ext4_ext_path *path) | 
 | { | 
 | 	BUG_ON(path->p_idx == NULL); | 
 |  | 
 | 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * if truncate on deeper level happened, it wasn't partial, | 
 | 	 * so we have to consider current index for truncation | 
 | 	 */ | 
 | 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, | 
 | 			  ext4_lblk_t end) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	struct partial_cluster partial; | 
 | 	handle_t *handle; | 
 | 	int i = 0, err = 0; | 
 | 	int flags = EXT4_EX_NOCACHE | EXT4_EX_NOFAIL; | 
 |  | 
 | 	partial.pclu = 0; | 
 | 	partial.lblk = 0; | 
 | 	partial.state = initial; | 
 |  | 
 | 	ext_debug(inode, "truncate since %u to %u\n", start, end); | 
 |  | 
 | 	/* probably first extent we're gonna free will be last in block */ | 
 | 	handle = ext4_journal_start_with_revoke(inode, EXT4_HT_TRUNCATE, | 
 | 			depth + 1, | 
 | 			ext4_free_metadata_revoke_credits(inode->i_sb, depth)); | 
 | 	if (IS_ERR(handle)) | 
 | 		return PTR_ERR(handle); | 
 |  | 
 | again: | 
 | 	trace_ext4_ext_remove_space(inode, start, end, depth); | 
 |  | 
 | 	/* | 
 | 	 * Check if we are removing extents inside the extent tree. If that | 
 | 	 * is the case, we are going to punch a hole inside the extent tree | 
 | 	 * so we have to check whether we need to split the extent covering | 
 | 	 * the last block to remove so we can easily remove the part of it | 
 | 	 * in ext4_ext_rm_leaf(). | 
 | 	 */ | 
 | 	if (end < EXT_MAX_BLOCKS - 1) { | 
 | 		struct ext4_extent *ex; | 
 | 		ext4_lblk_t ee_block, ex_end, lblk; | 
 | 		ext4_fsblk_t pblk; | 
 |  | 
 | 		/* find extent for or closest extent to this block */ | 
 | 		path = ext4_find_extent(inode, end, NULL, flags); | 
 | 		if (IS_ERR(path)) { | 
 | 			ext4_journal_stop(handle); | 
 | 			return PTR_ERR(path); | 
 | 		} | 
 | 		depth = ext_depth(inode); | 
 | 		/* Leaf not may not exist only if inode has no blocks at all */ | 
 | 		ex = path[depth].p_ext; | 
 | 		if (!ex) { | 
 | 			if (depth) { | 
 | 				EXT4_ERROR_INODE(inode, | 
 | 						 "path[%d].p_hdr == NULL", | 
 | 						 depth); | 
 | 				err = -EFSCORRUPTED; | 
 | 			} | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ee_block = le32_to_cpu(ex->ee_block); | 
 | 		ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; | 
 |  | 
 | 		/* | 
 | 		 * See if the last block is inside the extent, if so split | 
 | 		 * the extent at 'end' block so we can easily remove the | 
 | 		 * tail of the first part of the split extent in | 
 | 		 * ext4_ext_rm_leaf(). | 
 | 		 */ | 
 | 		if (end >= ee_block && end < ex_end) { | 
 |  | 
 | 			/* | 
 | 			 * If we're going to split the extent, note that | 
 | 			 * the cluster containing the block after 'end' is | 
 | 			 * in use to avoid freeing it when removing blocks. | 
 | 			 */ | 
 | 			if (sbi->s_cluster_ratio > 1) { | 
 | 				pblk = ext4_ext_pblock(ex) + end - ee_block + 1; | 
 | 				partial.pclu = EXT4_B2C(sbi, pblk); | 
 | 				partial.state = nofree; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Split the extent in two so that 'end' is the last | 
 | 			 * block in the first new extent. Also we should not | 
 | 			 * fail removing space due to ENOSPC so try to use | 
 | 			 * reserved block if that happens. | 
 | 			 */ | 
 | 			path = ext4_force_split_extent_at(handle, inode, path, | 
 | 							  end + 1, 1); | 
 | 			if (IS_ERR(path)) { | 
 | 				err = PTR_ERR(path); | 
 | 				goto out; | 
 | 			} | 
 | 		} else if (sbi->s_cluster_ratio > 1 && end >= ex_end && | 
 | 			   partial.state == initial) { | 
 | 			/* | 
 | 			 * If we're punching, there's an extent to the right. | 
 | 			 * If the partial cluster hasn't been set, set it to | 
 | 			 * that extent's first cluster and its state to nofree | 
 | 			 * so it won't be freed should it contain blocks to be | 
 | 			 * removed. If it's already set (tofree/nofree), we're | 
 | 			 * retrying and keep the original partial cluster info | 
 | 			 * so a cluster marked tofree as a result of earlier | 
 | 			 * extent removal is not lost. | 
 | 			 */ | 
 | 			lblk = ex_end + 1; | 
 | 			err = ext4_ext_search_right(inode, path, &lblk, &pblk, | 
 | 						    NULL, flags); | 
 | 			if (err < 0) | 
 | 				goto out; | 
 | 			if (pblk) { | 
 | 				partial.pclu = EXT4_B2C(sbi, pblk); | 
 | 				partial.state = nofree; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * We start scanning from right side, freeing all the blocks | 
 | 	 * after i_size and walking into the tree depth-wise. | 
 | 	 */ | 
 | 	depth = ext_depth(inode); | 
 | 	if (path) { | 
 | 		int k = i = depth; | 
 | 		while (--k > 0) | 
 | 			path[k].p_block = | 
 | 				le16_to_cpu(path[k].p_hdr->eh_entries)+1; | 
 | 	} else { | 
 | 		path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), | 
 | 			       GFP_NOFS | __GFP_NOFAIL); | 
 | 		if (path == NULL) { | 
 | 			ext4_journal_stop(handle); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		path[0].p_maxdepth = path[0].p_depth = depth; | 
 | 		path[0].p_hdr = ext_inode_hdr(inode); | 
 | 		i = 0; | 
 |  | 
 | 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { | 
 | 			err = -EFSCORRUPTED; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	err = 0; | 
 |  | 
 | 	while (i >= 0 && err == 0) { | 
 | 		if (i == depth) { | 
 | 			/* this is leaf block */ | 
 | 			err = ext4_ext_rm_leaf(handle, inode, path, | 
 | 					       &partial, start, end); | 
 | 			/* root level has p_bh == NULL, brelse() eats this */ | 
 | 			ext4_ext_path_brelse(path + i); | 
 | 			i--; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* this is index block */ | 
 | 		if (!path[i].p_hdr) { | 
 | 			ext_debug(inode, "initialize header\n"); | 
 | 			path[i].p_hdr = ext_block_hdr(path[i].p_bh); | 
 | 		} | 
 |  | 
 | 		if (!path[i].p_idx) { | 
 | 			/* this level hasn't been touched yet */ | 
 | 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); | 
 | 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; | 
 | 			ext_debug(inode, "init index ptr: hdr 0x%p, num %d\n", | 
 | 				  path[i].p_hdr, | 
 | 				  le16_to_cpu(path[i].p_hdr->eh_entries)); | 
 | 		} else { | 
 | 			/* we were already here, see at next index */ | 
 | 			path[i].p_idx--; | 
 | 		} | 
 |  | 
 | 		ext_debug(inode, "level %d - index, first 0x%p, cur 0x%p\n", | 
 | 				i, EXT_FIRST_INDEX(path[i].p_hdr), | 
 | 				path[i].p_idx); | 
 | 		if (ext4_ext_more_to_rm(path + i)) { | 
 | 			struct buffer_head *bh; | 
 | 			/* go to the next level */ | 
 | 			ext_debug(inode, "move to level %d (block %llu)\n", | 
 | 				  i + 1, ext4_idx_pblock(path[i].p_idx)); | 
 | 			memset(path + i + 1, 0, sizeof(*path)); | 
 | 			bh = read_extent_tree_block(inode, path[i].p_idx, | 
 | 						    depth - i - 1, flags); | 
 | 			if (IS_ERR(bh)) { | 
 | 				/* should we reset i_size? */ | 
 | 				err = PTR_ERR(bh); | 
 | 				break; | 
 | 			} | 
 | 			/* Yield here to deal with large extent trees. | 
 | 			 * Should be a no-op if we did IO above. */ | 
 | 			cond_resched(); | 
 | 			if (WARN_ON(i + 1 > depth)) { | 
 | 				err = -EFSCORRUPTED; | 
 | 				break; | 
 | 			} | 
 | 			path[i + 1].p_bh = bh; | 
 |  | 
 | 			/* save actual number of indexes since this | 
 | 			 * number is changed at the next iteration */ | 
 | 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); | 
 | 			i++; | 
 | 		} else { | 
 | 			/* we finished processing this index, go up */ | 
 | 			if (path[i].p_hdr->eh_entries == 0 && i > 0) { | 
 | 				/* index is empty, remove it; | 
 | 				 * handle must be already prepared by the | 
 | 				 * truncatei_leaf() */ | 
 | 				err = ext4_ext_rm_idx(handle, inode, path, i); | 
 | 			} | 
 | 			/* root level has p_bh == NULL, brelse() eats this */ | 
 | 			ext4_ext_path_brelse(path + i); | 
 | 			i--; | 
 | 			ext_debug(inode, "return to level %d\n", i); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial, | 
 | 					 path->p_hdr->eh_entries); | 
 |  | 
 | 	/* | 
 | 	 * if there's a partial cluster and we have removed the first extent | 
 | 	 * in the file, then we also free the partial cluster, if any | 
 | 	 */ | 
 | 	if (partial.state == tofree && err == 0) { | 
 | 		int flags = get_default_free_blocks_flags(inode); | 
 |  | 
 | 		if (ext4_is_pending(inode, partial.lblk)) | 
 | 			flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; | 
 | 		ext4_free_blocks(handle, inode, NULL, | 
 | 				 EXT4_C2B(sbi, partial.pclu), | 
 | 				 sbi->s_cluster_ratio, flags); | 
 | 		if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) | 
 | 			ext4_rereserve_cluster(inode, partial.lblk); | 
 | 		partial.state = initial; | 
 | 	} | 
 |  | 
 | 	/* TODO: flexible tree reduction should be here */ | 
 | 	if (path->p_hdr->eh_entries == 0) { | 
 | 		/* | 
 | 		 * truncate to zero freed all the tree, | 
 | 		 * so we need to correct eh_depth | 
 | 		 */ | 
 | 		err = ext4_ext_get_access(handle, inode, path); | 
 | 		if (err == 0) { | 
 | 			ext_inode_hdr(inode)->eh_depth = 0; | 
 | 			ext_inode_hdr(inode)->eh_max = | 
 | 				cpu_to_le16(ext4_ext_space_root(inode, 0)); | 
 | 			err = ext4_ext_dirty(handle, inode, path); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	ext4_free_ext_path(path); | 
 | 	path = NULL; | 
 | 	if (err == -EAGAIN) | 
 | 		goto again; | 
 | 	ext4_journal_stop(handle); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * called at mount time | 
 |  */ | 
 | void ext4_ext_init(struct super_block *sb) | 
 | { | 
 | 	/* | 
 | 	 * possible initialization would be here | 
 | 	 */ | 
 |  | 
 | 	if (ext4_has_feature_extents(sb)) { | 
 | #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) | 
 | 		printk(KERN_INFO "EXT4-fs: file extents enabled" | 
 | #ifdef AGGRESSIVE_TEST | 
 | 		       ", aggressive tests" | 
 | #endif | 
 | #ifdef CHECK_BINSEARCH | 
 | 		       ", check binsearch" | 
 | #endif | 
 | #ifdef EXTENTS_STATS | 
 | 		       ", stats" | 
 | #endif | 
 | 		       "\n"); | 
 | #endif | 
 | #ifdef EXTENTS_STATS | 
 | 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); | 
 | 		EXT4_SB(sb)->s_ext_min = 1 << 30; | 
 | 		EXT4_SB(sb)->s_ext_max = 0; | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * called at umount time | 
 |  */ | 
 | void ext4_ext_release(struct super_block *sb) | 
 | { | 
 | 	if (!ext4_has_feature_extents(sb)) | 
 | 		return; | 
 |  | 
 | #ifdef EXTENTS_STATS | 
 | 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { | 
 | 		struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", | 
 | 			sbi->s_ext_blocks, sbi->s_ext_extents, | 
 | 			sbi->s_ext_blocks / sbi->s_ext_extents); | 
 | 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", | 
 | 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) | 
 | { | 
 | 	ext4_lblk_t  ee_block; | 
 | 	ext4_fsblk_t ee_pblock; | 
 | 	unsigned int ee_len; | 
 |  | 
 | 	ee_block  = le32_to_cpu(ex->ee_block); | 
 | 	ee_len    = ext4_ext_get_actual_len(ex); | 
 | 	ee_pblock = ext4_ext_pblock(ex); | 
 |  | 
 | 	if (ee_len == 0) | 
 | 		return; | 
 |  | 
 | 	ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, | 
 | 			      EXTENT_STATUS_WRITTEN, false); | 
 | } | 
 |  | 
 | /* FIXME!! we need to try to merge to left or right after zero-out  */ | 
 | static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) | 
 | { | 
 | 	ext4_fsblk_t ee_pblock; | 
 | 	unsigned int ee_len; | 
 |  | 
 | 	ee_len    = ext4_ext_get_actual_len(ex); | 
 | 	ee_pblock = ext4_ext_pblock(ex); | 
 | 	return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, | 
 | 				  ee_len); | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_split_extent_at() splits an extent at given block. | 
 |  * | 
 |  * @handle: the journal handle | 
 |  * @inode: the file inode | 
 |  * @path: the path to the extent | 
 |  * @split: the logical block where the extent is splitted. | 
 |  * @split_flags: indicates if the extent could be zeroout if split fails, and | 
 |  *		 the states(init or unwritten) of new extents. | 
 |  * @flags: flags used to insert new extent to extent tree. | 
 |  * | 
 |  * | 
 |  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states | 
 |  * of which are determined by split_flag. | 
 |  * | 
 |  * There are two cases: | 
 |  *  a> the extent are splitted into two extent. | 
 |  *  b> split is not needed, and just mark the extent. | 
 |  * | 
 |  * Return an extent path pointer on success, or an error pointer on failure. | 
 |  */ | 
 | static struct ext4_ext_path *ext4_split_extent_at(handle_t *handle, | 
 | 						  struct inode *inode, | 
 | 						  struct ext4_ext_path *path, | 
 | 						  ext4_lblk_t split, | 
 | 						  int split_flag, int flags) | 
 | { | 
 | 	ext4_fsblk_t newblock; | 
 | 	ext4_lblk_t ee_block; | 
 | 	struct ext4_extent *ex, newex, orig_ex, zero_ex; | 
 | 	struct ext4_extent *ex2 = NULL; | 
 | 	unsigned int ee_len, depth; | 
 | 	int err = 0; | 
 |  | 
 | 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == | 
 | 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); | 
 |  | 
 | 	ext_debug(inode, "logical block %llu\n", (unsigned long long)split); | 
 |  | 
 | 	ext4_ext_show_leaf(inode, path); | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	newblock = split - ee_block + ext4_ext_pblock(ex); | 
 |  | 
 | 	BUG_ON(split < ee_block || split >= (ee_block + ee_len)); | 
 | 	BUG_ON(!ext4_ext_is_unwritten(ex) && | 
 | 	       split_flag & (EXT4_EXT_MAY_ZEROOUT | | 
 | 			     EXT4_EXT_MARK_UNWRIT1 | | 
 | 			     EXT4_EXT_MARK_UNWRIT2)); | 
 |  | 
 | 	err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (split == ee_block) { | 
 | 		/* | 
 | 		 * case b: block @split is the block that the extent begins with | 
 | 		 * then we just change the state of the extent, and splitting | 
 | 		 * is not needed. | 
 | 		 */ | 
 | 		if (split_flag & EXT4_EXT_MARK_UNWRIT2) | 
 | 			ext4_ext_mark_unwritten(ex); | 
 | 		else | 
 | 			ext4_ext_mark_initialized(ex); | 
 |  | 
 | 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) | 
 | 			ext4_ext_try_to_merge(handle, inode, path, ex); | 
 |  | 
 | 		err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* case a */ | 
 | 	memcpy(&orig_ex, ex, sizeof(orig_ex)); | 
 | 	ex->ee_len = cpu_to_le16(split - ee_block); | 
 | 	if (split_flag & EXT4_EXT_MARK_UNWRIT1) | 
 | 		ext4_ext_mark_unwritten(ex); | 
 |  | 
 | 	/* | 
 | 	 * path may lead to new leaf, not to original leaf any more | 
 | 	 * after ext4_ext_insert_extent() returns, | 
 | 	 */ | 
 | 	err = ext4_ext_dirty(handle, inode, path + depth); | 
 | 	if (err) | 
 | 		goto fix_extent_len; | 
 |  | 
 | 	ex2 = &newex; | 
 | 	ex2->ee_block = cpu_to_le32(split); | 
 | 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block)); | 
 | 	ext4_ext_store_pblock(ex2, newblock); | 
 | 	if (split_flag & EXT4_EXT_MARK_UNWRIT2) | 
 | 		ext4_ext_mark_unwritten(ex2); | 
 |  | 
 | 	path = ext4_ext_insert_extent(handle, inode, path, &newex, flags); | 
 | 	if (!IS_ERR(path)) | 
 | 		goto out; | 
 |  | 
 | 	err = PTR_ERR(path); | 
 | 	if (err != -ENOSPC && err != -EDQUOT && err != -ENOMEM) | 
 | 		return path; | 
 |  | 
 | 	/* | 
 | 	 * Get a new path to try to zeroout or fix the extent length. | 
 | 	 * Using EXT4_EX_NOFAIL guarantees that ext4_find_extent() | 
 | 	 * will not return -ENOMEM, otherwise -ENOMEM will cause a | 
 | 	 * retry in do_writepages(), and a WARN_ON may be triggered | 
 | 	 * in ext4_da_update_reserve_space() due to an incorrect | 
 | 	 * ee_len causing the i_reserved_data_blocks exception. | 
 | 	 */ | 
 | 	path = ext4_find_extent(inode, ee_block, NULL, flags | EXT4_EX_NOFAIL); | 
 | 	if (IS_ERR(path)) { | 
 | 		EXT4_ERROR_INODE(inode, "Failed split extent on %u, err %ld", | 
 | 				 split, PTR_ERR(path)); | 
 | 		return path; | 
 | 	} | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 |  | 
 | 	if (EXT4_EXT_MAY_ZEROOUT & split_flag) { | 
 | 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { | 
 | 			if (split_flag & EXT4_EXT_DATA_VALID1) { | 
 | 				err = ext4_ext_zeroout(inode, ex2); | 
 | 				zero_ex.ee_block = ex2->ee_block; | 
 | 				zero_ex.ee_len = cpu_to_le16( | 
 | 						ext4_ext_get_actual_len(ex2)); | 
 | 				ext4_ext_store_pblock(&zero_ex, | 
 | 						      ext4_ext_pblock(ex2)); | 
 | 			} else { | 
 | 				err = ext4_ext_zeroout(inode, ex); | 
 | 				zero_ex.ee_block = ex->ee_block; | 
 | 				zero_ex.ee_len = cpu_to_le16( | 
 | 						ext4_ext_get_actual_len(ex)); | 
 | 				ext4_ext_store_pblock(&zero_ex, | 
 | 						      ext4_ext_pblock(ex)); | 
 | 			} | 
 | 		} else { | 
 | 			err = ext4_ext_zeroout(inode, &orig_ex); | 
 | 			zero_ex.ee_block = orig_ex.ee_block; | 
 | 			zero_ex.ee_len = cpu_to_le16( | 
 | 						ext4_ext_get_actual_len(&orig_ex)); | 
 | 			ext4_ext_store_pblock(&zero_ex, | 
 | 					      ext4_ext_pblock(&orig_ex)); | 
 | 		} | 
 |  | 
 | 		if (!err) { | 
 | 			/* update the extent length and mark as initialized */ | 
 | 			ex->ee_len = cpu_to_le16(ee_len); | 
 | 			ext4_ext_try_to_merge(handle, inode, path, ex); | 
 | 			err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | 			if (!err) | 
 | 				/* update extent status tree */ | 
 | 				ext4_zeroout_es(inode, &zero_ex); | 
 | 			/* If we failed at this point, we don't know in which | 
 | 			 * state the extent tree exactly is so don't try to fix | 
 | 			 * length of the original extent as it may do even more | 
 | 			 * damage. | 
 | 			 */ | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | fix_extent_len: | 
 | 	ex->ee_len = orig_ex.ee_len; | 
 | 	/* | 
 | 	 * Ignore ext4_ext_dirty return value since we are already in error path | 
 | 	 * and err is a non-zero error code. | 
 | 	 */ | 
 | 	ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | out: | 
 | 	if (err) { | 
 | 		ext4_free_ext_path(path); | 
 | 		path = ERR_PTR(err); | 
 | 	} | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | 	return path; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_split_extent() splits an extent and mark extent which is covered | 
 |  * by @map as split_flags indicates | 
 |  * | 
 |  * It may result in splitting the extent into multiple extents (up to three) | 
 |  * There are three possibilities: | 
 |  *   a> There is no split required | 
 |  *   b> Splits in two extents: Split is happening at either end of the extent | 
 |  *   c> Splits in three extents: Somone is splitting in middle of the extent | 
 |  * | 
 |  */ | 
 | static struct ext4_ext_path *ext4_split_extent(handle_t *handle, | 
 | 					       struct inode *inode, | 
 | 					       struct ext4_ext_path *path, | 
 | 					       struct ext4_map_blocks *map, | 
 | 					       int split_flag, int flags, | 
 | 					       unsigned int *allocated) | 
 | { | 
 | 	ext4_lblk_t ee_block; | 
 | 	struct ext4_extent *ex; | 
 | 	unsigned int ee_len, depth; | 
 | 	int unwritten; | 
 | 	int split_flag1, flags1; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	unwritten = ext4_ext_is_unwritten(ex); | 
 |  | 
 | 	if (map->m_lblk + map->m_len < ee_block + ee_len) { | 
 | 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; | 
 | 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; | 
 | 		if (unwritten) | 
 | 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | | 
 | 				       EXT4_EXT_MARK_UNWRIT2; | 
 | 		if (split_flag & EXT4_EXT_DATA_VALID2) | 
 | 			split_flag1 |= EXT4_EXT_DATA_VALID1; | 
 | 		path = ext4_split_extent_at(handle, inode, path, | 
 | 				map->m_lblk + map->m_len, split_flag1, flags1); | 
 | 		if (IS_ERR(path)) | 
 | 			return path; | 
 | 		/* | 
 | 		 * Update path is required because previous ext4_split_extent_at | 
 | 		 * may result in split of original leaf or extent zeroout. | 
 | 		 */ | 
 | 		path = ext4_find_extent(inode, map->m_lblk, path, flags); | 
 | 		if (IS_ERR(path)) | 
 | 			return path; | 
 | 		depth = ext_depth(inode); | 
 | 		ex = path[depth].p_ext; | 
 | 		if (!ex) { | 
 | 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu", | 
 | 					(unsigned long) map->m_lblk); | 
 | 			ext4_free_ext_path(path); | 
 | 			return ERR_PTR(-EFSCORRUPTED); | 
 | 		} | 
 | 		unwritten = ext4_ext_is_unwritten(ex); | 
 | 	} | 
 |  | 
 | 	if (map->m_lblk >= ee_block) { | 
 | 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; | 
 | 		if (unwritten) { | 
 | 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1; | 
 | 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | | 
 | 						     EXT4_EXT_MARK_UNWRIT2); | 
 | 		} | 
 | 		path = ext4_split_extent_at(handle, inode, path, | 
 | 				map->m_lblk, split_flag1, flags); | 
 | 		if (IS_ERR(path)) | 
 | 			return path; | 
 | 	} | 
 |  | 
 | 	if (allocated) { | 
 | 		if (map->m_lblk + map->m_len > ee_block + ee_len) | 
 | 			*allocated = ee_len - (map->m_lblk - ee_block); | 
 | 		else | 
 | 			*allocated = map->m_len; | 
 | 	} | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | 	return path; | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called by ext4_ext_map_blocks() if someone tries to write | 
 |  * to an unwritten extent. It may result in splitting the unwritten | 
 |  * extent into multiple extents (up to three - one initialized and two | 
 |  * unwritten). | 
 |  * There are three possibilities: | 
 |  *   a> There is no split required: Entire extent should be initialized | 
 |  *   b> Splits in two extents: Write is happening at either end of the extent | 
 |  *   c> Splits in three extents: Somone is writing in middle of the extent | 
 |  * | 
 |  * Pre-conditions: | 
 |  *  - The extent pointed to by 'path' is unwritten. | 
 |  *  - The extent pointed to by 'path' contains a superset | 
 |  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len). | 
 |  * | 
 |  * Post-conditions on success: | 
 |  *  - the returned value is the number of blocks beyond map->l_lblk | 
 |  *    that are allocated and initialized. | 
 |  *    It is guaranteed to be >= map->m_len. | 
 |  */ | 
 | static struct ext4_ext_path * | 
 | ext4_ext_convert_to_initialized(handle_t *handle, struct inode *inode, | 
 | 			struct ext4_map_blocks *map, struct ext4_ext_path *path, | 
 | 			int flags, unsigned int *allocated) | 
 | { | 
 | 	struct ext4_sb_info *sbi; | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct ext4_map_blocks split_map; | 
 | 	struct ext4_extent zero_ex1, zero_ex2; | 
 | 	struct ext4_extent *ex, *abut_ex; | 
 | 	ext4_lblk_t ee_block, eof_block; | 
 | 	unsigned int ee_len, depth, map_len = map->m_len; | 
 | 	int err = 0; | 
 | 	int split_flag = EXT4_EXT_DATA_VALID2; | 
 | 	unsigned int max_zeroout = 0; | 
 |  | 
 | 	ext_debug(inode, "logical block %llu, max_blocks %u\n", | 
 | 		  (unsigned long long)map->m_lblk, map_len); | 
 |  | 
 | 	sbi = EXT4_SB(inode->i_sb); | 
 | 	eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1) | 
 | 			>> inode->i_sb->s_blocksize_bits; | 
 | 	if (eof_block < map->m_lblk + map_len) | 
 | 		eof_block = map->m_lblk + map_len; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	eh = path[depth].p_hdr; | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	zero_ex1.ee_len = 0; | 
 | 	zero_ex2.ee_len = 0; | 
 |  | 
 | 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); | 
 |  | 
 | 	/* Pre-conditions */ | 
 | 	BUG_ON(!ext4_ext_is_unwritten(ex)); | 
 | 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); | 
 |  | 
 | 	/* | 
 | 	 * Attempt to transfer newly initialized blocks from the currently | 
 | 	 * unwritten extent to its neighbor. This is much cheaper | 
 | 	 * than an insertion followed by a merge as those involve costly | 
 | 	 * memmove() calls. Transferring to the left is the common case in | 
 | 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) | 
 | 	 * followed by append writes. | 
 | 	 * | 
 | 	 * Limitations of the current logic: | 
 | 	 *  - L1: we do not deal with writes covering the whole extent. | 
 | 	 *    This would require removing the extent if the transfer | 
 | 	 *    is possible. | 
 | 	 *  - L2: we only attempt to merge with an extent stored in the | 
 | 	 *    same extent tree node. | 
 | 	 */ | 
 | 	*allocated = 0; | 
 | 	if ((map->m_lblk == ee_block) && | 
 | 		/* See if we can merge left */ | 
 | 		(map_len < ee_len) &&		/*L1*/ | 
 | 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/ | 
 | 		ext4_lblk_t prev_lblk; | 
 | 		ext4_fsblk_t prev_pblk, ee_pblk; | 
 | 		unsigned int prev_len; | 
 |  | 
 | 		abut_ex = ex - 1; | 
 | 		prev_lblk = le32_to_cpu(abut_ex->ee_block); | 
 | 		prev_len = ext4_ext_get_actual_len(abut_ex); | 
 | 		prev_pblk = ext4_ext_pblock(abut_ex); | 
 | 		ee_pblk = ext4_ext_pblock(ex); | 
 |  | 
 | 		/* | 
 | 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed | 
 | 		 * upon those conditions: | 
 | 		 * - C1: abut_ex is initialized, | 
 | 		 * - C2: abut_ex is logically abutting ex, | 
 | 		 * - C3: abut_ex is physically abutting ex, | 
 | 		 * - C4: abut_ex can receive the additional blocks without | 
 | 		 *   overflowing the (initialized) length limit. | 
 | 		 */ | 
 | 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/ | 
 | 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/ | 
 | 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/ | 
 | 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/ | 
 | 			err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 			if (err) | 
 | 				goto errout; | 
 |  | 
 | 			trace_ext4_ext_convert_to_initialized_fastpath(inode, | 
 | 				map, ex, abut_ex); | 
 |  | 
 | 			/* Shift the start of ex by 'map_len' blocks */ | 
 | 			ex->ee_block = cpu_to_le32(ee_block + map_len); | 
 | 			ext4_ext_store_pblock(ex, ee_pblk + map_len); | 
 | 			ex->ee_len = cpu_to_le16(ee_len - map_len); | 
 | 			ext4_ext_mark_unwritten(ex); /* Restore the flag */ | 
 |  | 
 | 			/* Extend abut_ex by 'map_len' blocks */ | 
 | 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len); | 
 |  | 
 | 			/* Result: number of initialized blocks past m_lblk */ | 
 | 			*allocated = map_len; | 
 | 		} | 
 | 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && | 
 | 		   (map_len < ee_len) &&	/*L1*/ | 
 | 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/ | 
 | 		/* See if we can merge right */ | 
 | 		ext4_lblk_t next_lblk; | 
 | 		ext4_fsblk_t next_pblk, ee_pblk; | 
 | 		unsigned int next_len; | 
 |  | 
 | 		abut_ex = ex + 1; | 
 | 		next_lblk = le32_to_cpu(abut_ex->ee_block); | 
 | 		next_len = ext4_ext_get_actual_len(abut_ex); | 
 | 		next_pblk = ext4_ext_pblock(abut_ex); | 
 | 		ee_pblk = ext4_ext_pblock(ex); | 
 |  | 
 | 		/* | 
 | 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed | 
 | 		 * upon those conditions: | 
 | 		 * - C1: abut_ex is initialized, | 
 | 		 * - C2: abut_ex is logically abutting ex, | 
 | 		 * - C3: abut_ex is physically abutting ex, | 
 | 		 * - C4: abut_ex can receive the additional blocks without | 
 | 		 *   overflowing the (initialized) length limit. | 
 | 		 */ | 
 | 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/ | 
 | 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/ | 
 | 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/ | 
 | 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/ | 
 | 			err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 			if (err) | 
 | 				goto errout; | 
 |  | 
 | 			trace_ext4_ext_convert_to_initialized_fastpath(inode, | 
 | 				map, ex, abut_ex); | 
 |  | 
 | 			/* Shift the start of abut_ex by 'map_len' blocks */ | 
 | 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); | 
 | 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len); | 
 | 			ex->ee_len = cpu_to_le16(ee_len - map_len); | 
 | 			ext4_ext_mark_unwritten(ex); /* Restore the flag */ | 
 |  | 
 | 			/* Extend abut_ex by 'map_len' blocks */ | 
 | 			abut_ex->ee_len = cpu_to_le16(next_len + map_len); | 
 |  | 
 | 			/* Result: number of initialized blocks past m_lblk */ | 
 | 			*allocated = map_len; | 
 | 		} | 
 | 	} | 
 | 	if (*allocated) { | 
 | 		/* Mark the block containing both extents as dirty */ | 
 | 		err = ext4_ext_dirty(handle, inode, path + depth); | 
 |  | 
 | 		/* Update path to point to the right extent */ | 
 | 		path[depth].p_ext = abut_ex; | 
 | 		if (err) | 
 | 			goto errout; | 
 | 		goto out; | 
 | 	} else | 
 | 		*allocated = ee_len - (map->m_lblk - ee_block); | 
 |  | 
 | 	WARN_ON(map->m_lblk < ee_block); | 
 | 	/* | 
 | 	 * It is safe to convert extent to initialized via explicit | 
 | 	 * zeroout only if extent is fully inside i_size or new_size. | 
 | 	 */ | 
 | 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; | 
 |  | 
 | 	if (EXT4_EXT_MAY_ZEROOUT & split_flag) | 
 | 		max_zeroout = sbi->s_extent_max_zeroout_kb >> | 
 | 			(inode->i_sb->s_blocksize_bits - 10); | 
 |  | 
 | 	/* | 
 | 	 * five cases: | 
 | 	 * 1. split the extent into three extents. | 
 | 	 * 2. split the extent into two extents, zeroout the head of the first | 
 | 	 *    extent. | 
 | 	 * 3. split the extent into two extents, zeroout the tail of the second | 
 | 	 *    extent. | 
 | 	 * 4. split the extent into two extents with out zeroout. | 
 | 	 * 5. no splitting needed, just possibly zeroout the head and / or the | 
 | 	 *    tail of the extent. | 
 | 	 */ | 
 | 	split_map.m_lblk = map->m_lblk; | 
 | 	split_map.m_len = map->m_len; | 
 |  | 
 | 	if (max_zeroout && (*allocated > split_map.m_len)) { | 
 | 		if (*allocated <= max_zeroout) { | 
 | 			/* case 3 or 5 */ | 
 | 			zero_ex1.ee_block = | 
 | 				 cpu_to_le32(split_map.m_lblk + | 
 | 					     split_map.m_len); | 
 | 			zero_ex1.ee_len = | 
 | 				cpu_to_le16(*allocated - split_map.m_len); | 
 | 			ext4_ext_store_pblock(&zero_ex1, | 
 | 				ext4_ext_pblock(ex) + split_map.m_lblk + | 
 | 				split_map.m_len - ee_block); | 
 | 			err = ext4_ext_zeroout(inode, &zero_ex1); | 
 | 			if (err) | 
 | 				goto fallback; | 
 | 			split_map.m_len = *allocated; | 
 | 		} | 
 | 		if (split_map.m_lblk - ee_block + split_map.m_len < | 
 | 								max_zeroout) { | 
 | 			/* case 2 or 5 */ | 
 | 			if (split_map.m_lblk != ee_block) { | 
 | 				zero_ex2.ee_block = ex->ee_block; | 
 | 				zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk - | 
 | 							ee_block); | 
 | 				ext4_ext_store_pblock(&zero_ex2, | 
 | 						      ext4_ext_pblock(ex)); | 
 | 				err = ext4_ext_zeroout(inode, &zero_ex2); | 
 | 				if (err) | 
 | 					goto fallback; | 
 | 			} | 
 |  | 
 | 			split_map.m_len += split_map.m_lblk - ee_block; | 
 | 			split_map.m_lblk = ee_block; | 
 | 			*allocated = map->m_len; | 
 | 		} | 
 | 	} | 
 |  | 
 | fallback: | 
 | 	path = ext4_split_extent(handle, inode, path, &split_map, split_flag, | 
 | 				 flags, NULL); | 
 | 	if (IS_ERR(path)) | 
 | 		return path; | 
 | out: | 
 | 	/* If we have gotten a failure, don't zero out status tree */ | 
 | 	ext4_zeroout_es(inode, &zero_ex1); | 
 | 	ext4_zeroout_es(inode, &zero_ex2); | 
 | 	return path; | 
 |  | 
 | errout: | 
 | 	ext4_free_ext_path(path); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called by ext4_ext_map_blocks() from | 
 |  * ext4_get_blocks_dio_write() when DIO to write | 
 |  * to an unwritten extent. | 
 |  * | 
 |  * Writing to an unwritten extent may result in splitting the unwritten | 
 |  * extent into multiple initialized/unwritten extents (up to three) | 
 |  * There are three possibilities: | 
 |  *   a> There is no split required: Entire extent should be unwritten | 
 |  *   b> Splits in two extents: Write is happening at either end of the extent | 
 |  *   c> Splits in three extents: Somone is writing in middle of the extent | 
 |  * | 
 |  * This works the same way in the case of initialized -> unwritten conversion. | 
 |  * | 
 |  * One of more index blocks maybe needed if the extent tree grow after | 
 |  * the unwritten extent split. To prevent ENOSPC occur at the IO | 
 |  * complete, we need to split the unwritten extent before DIO submit | 
 |  * the IO. The unwritten extent called at this time will be split | 
 |  * into three unwritten extent(at most). After IO complete, the part | 
 |  * being filled will be convert to initialized by the end_io callback function | 
 |  * via ext4_convert_unwritten_extents(). | 
 |  * | 
 |  * The size of unwritten extent to be written is passed to the caller via the | 
 |  * allocated pointer. Return an extent path pointer on success, or an error | 
 |  * pointer on failure. | 
 |  */ | 
 | static struct ext4_ext_path *ext4_split_convert_extents(handle_t *handle, | 
 | 					struct inode *inode, | 
 | 					struct ext4_map_blocks *map, | 
 | 					struct ext4_ext_path *path, | 
 | 					int flags, unsigned int *allocated) | 
 | { | 
 | 	ext4_lblk_t eof_block; | 
 | 	ext4_lblk_t ee_block; | 
 | 	struct ext4_extent *ex; | 
 | 	unsigned int ee_len; | 
 | 	int split_flag = 0, depth; | 
 |  | 
 | 	ext_debug(inode, "logical block %llu, max_blocks %u\n", | 
 | 		  (unsigned long long)map->m_lblk, map->m_len); | 
 |  | 
 | 	eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1) | 
 | 			>> inode->i_sb->s_blocksize_bits; | 
 | 	if (eof_block < map->m_lblk + map->m_len) | 
 | 		eof_block = map->m_lblk + map->m_len; | 
 | 	/* | 
 | 	 * It is safe to convert extent to initialized via explicit | 
 | 	 * zeroout only if extent is fully inside i_size or new_size. | 
 | 	 */ | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	/* Convert to unwritten */ | 
 | 	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { | 
 | 		split_flag |= EXT4_EXT_DATA_VALID1; | 
 | 	/* Convert to initialized */ | 
 | 	} else if (flags & EXT4_GET_BLOCKS_CONVERT) { | 
 | 		split_flag |= ee_block + ee_len <= eof_block ? | 
 | 			      EXT4_EXT_MAY_ZEROOUT : 0; | 
 | 		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); | 
 | 	} | 
 | 	flags |= EXT4_GET_BLOCKS_PRE_IO; | 
 | 	return ext4_split_extent(handle, inode, path, map, split_flag, flags, | 
 | 				 allocated); | 
 | } | 
 |  | 
 | static struct ext4_ext_path * | 
 | ext4_convert_unwritten_extents_endio(handle_t *handle, struct inode *inode, | 
 | 				     struct ext4_map_blocks *map, | 
 | 				     struct ext4_ext_path *path) | 
 | { | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_lblk_t ee_block; | 
 | 	unsigned int ee_len; | 
 | 	int depth; | 
 | 	int err = 0; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	ext_debug(inode, "logical block %llu, max_blocks %u\n", | 
 | 		  (unsigned long long)ee_block, ee_len); | 
 |  | 
 | 	/* If extent is larger than requested it is a clear sign that we still | 
 | 	 * have some extent state machine issues left. So extent_split is still | 
 | 	 * required. | 
 | 	 * TODO: Once all related issues will be fixed this situation should be | 
 | 	 * illegal. | 
 | 	 */ | 
 | 	if (ee_block != map->m_lblk || ee_len > map->m_len) { | 
 | #ifdef CONFIG_EXT4_DEBUG | 
 | 		ext4_warning(inode->i_sb, "Inode (%ld) finished: extent logical block %llu," | 
 | 			     " len %u; IO logical block %llu, len %u", | 
 | 			     inode->i_ino, (unsigned long long)ee_block, ee_len, | 
 | 			     (unsigned long long)map->m_lblk, map->m_len); | 
 | #endif | 
 | 		path = ext4_split_convert_extents(handle, inode, map, path, | 
 | 						EXT4_GET_BLOCKS_CONVERT, NULL); | 
 | 		if (IS_ERR(path)) | 
 | 			return path; | 
 |  | 
 | 		path = ext4_find_extent(inode, map->m_lblk, path, 0); | 
 | 		if (IS_ERR(path)) | 
 | 			return path; | 
 | 		depth = ext_depth(inode); | 
 | 		ex = path[depth].p_ext; | 
 | 	} | 
 |  | 
 | 	err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 	if (err) | 
 | 		goto errout; | 
 | 	/* first mark the extent as initialized */ | 
 | 	ext4_ext_mark_initialized(ex); | 
 |  | 
 | 	/* note: ext4_ext_correct_indexes() isn't needed here because | 
 | 	 * borders are not changed | 
 | 	 */ | 
 | 	ext4_ext_try_to_merge(handle, inode, path, ex); | 
 |  | 
 | 	/* Mark modified extent as dirty */ | 
 | 	err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | 	if (err) | 
 | 		goto errout; | 
 |  | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | 	return path; | 
 |  | 
 | errout: | 
 | 	ext4_free_ext_path(path); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static struct ext4_ext_path * | 
 | convert_initialized_extent(handle_t *handle, struct inode *inode, | 
 | 			   struct ext4_map_blocks *map, | 
 | 			   struct ext4_ext_path *path, | 
 | 			   unsigned int *allocated) | 
 | { | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_lblk_t ee_block; | 
 | 	unsigned int ee_len; | 
 | 	int depth; | 
 | 	int err = 0; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that the extent is no bigger than we support with | 
 | 	 * unwritten extent | 
 | 	 */ | 
 | 	if (map->m_len > EXT_UNWRITTEN_MAX_LEN) | 
 | 		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	ext_debug(inode, "logical block %llu, max_blocks %u\n", | 
 | 		  (unsigned long long)ee_block, ee_len); | 
 |  | 
 | 	if (ee_block != map->m_lblk || ee_len > map->m_len) { | 
 | 		path = ext4_split_convert_extents(handle, inode, map, path, | 
 | 				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN, NULL); | 
 | 		if (IS_ERR(path)) | 
 | 			return path; | 
 |  | 
 | 		path = ext4_find_extent(inode, map->m_lblk, path, 0); | 
 | 		if (IS_ERR(path)) | 
 | 			return path; | 
 | 		depth = ext_depth(inode); | 
 | 		ex = path[depth].p_ext; | 
 | 		if (!ex) { | 
 | 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu", | 
 | 					 (unsigned long) map->m_lblk); | 
 | 			err = -EFSCORRUPTED; | 
 | 			goto errout; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 	if (err) | 
 | 		goto errout; | 
 | 	/* first mark the extent as unwritten */ | 
 | 	ext4_ext_mark_unwritten(ex); | 
 |  | 
 | 	/* note: ext4_ext_correct_indexes() isn't needed here because | 
 | 	 * borders are not changed | 
 | 	 */ | 
 | 	ext4_ext_try_to_merge(handle, inode, path, ex); | 
 |  | 
 | 	/* Mark modified extent as dirty */ | 
 | 	err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | 	if (err) | 
 | 		goto errout; | 
 | 	ext4_ext_show_leaf(inode, path); | 
 |  | 
 | 	ext4_update_inode_fsync_trans(handle, inode, 1); | 
 |  | 
 | 	map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 	if (*allocated > map->m_len) | 
 | 		*allocated = map->m_len; | 
 | 	map->m_len = *allocated; | 
 | 	return path; | 
 |  | 
 | errout: | 
 | 	ext4_free_ext_path(path); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static struct ext4_ext_path * | 
 | ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, | 
 | 			struct ext4_map_blocks *map, | 
 | 			struct ext4_ext_path *path, int flags, | 
 | 			unsigned int *allocated, ext4_fsblk_t newblock) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	ext_debug(inode, "logical block %llu, max_blocks %u, flags 0x%x, allocated %u\n", | 
 | 		  (unsigned long long)map->m_lblk, map->m_len, flags, | 
 | 		  *allocated); | 
 | 	ext4_ext_show_leaf(inode, path); | 
 |  | 
 | 	/* | 
 | 	 * When writing into unwritten space, we should not fail to | 
 | 	 * allocate metadata blocks for the new extent block if needed. | 
 | 	 */ | 
 | 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; | 
 |  | 
 | 	trace_ext4_ext_handle_unwritten_extents(inode, map, flags, | 
 | 						*allocated, newblock); | 
 |  | 
 | 	/* get_block() before submitting IO, split the extent */ | 
 | 	if (flags & EXT4_GET_BLOCKS_PRE_IO) { | 
 | 		path = ext4_split_convert_extents(handle, inode, map, path, | 
 | 				flags | EXT4_GET_BLOCKS_CONVERT, allocated); | 
 | 		if (IS_ERR(path)) | 
 | 			return path; | 
 | 		/* | 
 | 		 * shouldn't get a 0 allocated when splitting an extent unless | 
 | 		 * m_len is 0 (bug) or extent has been corrupted | 
 | 		 */ | 
 | 		if (unlikely(*allocated == 0)) { | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "unexpected allocated == 0, m_len = %u", | 
 | 					 map->m_len); | 
 | 			err = -EFSCORRUPTED; | 
 | 			goto errout; | 
 | 		} | 
 | 		map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 		goto out; | 
 | 	} | 
 | 	/* IO end_io complete, convert the filled extent to written */ | 
 | 	if (flags & EXT4_GET_BLOCKS_CONVERT) { | 
 | 		path = ext4_convert_unwritten_extents_endio(handle, inode, | 
 | 							    map, path); | 
 | 		if (IS_ERR(path)) | 
 | 			return path; | 
 | 		ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 		goto map_out; | 
 | 	} | 
 | 	/* buffered IO cases */ | 
 | 	/* | 
 | 	 * repeat fallocate creation request | 
 | 	 * we already have an unwritten extent | 
 | 	 */ | 
 | 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { | 
 | 		map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 		goto map_out; | 
 | 	} | 
 |  | 
 | 	/* buffered READ or buffered write_begin() lookup */ | 
 | 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { | 
 | 		/* | 
 | 		 * We have blocks reserved already.  We | 
 | 		 * return allocated blocks so that delalloc | 
 | 		 * won't do block reservation for us.  But | 
 | 		 * the buffer head will be unmapped so that | 
 | 		 * a read from the block returns 0s. | 
 | 		 */ | 
 | 		map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 		goto out1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Default case when (flags & EXT4_GET_BLOCKS_CREATE) == 1. | 
 | 	 * For buffered writes, at writepage time, etc.  Convert a | 
 | 	 * discovered unwritten extent to written. | 
 | 	 */ | 
 | 	path = ext4_ext_convert_to_initialized(handle, inode, map, path, | 
 | 					       flags, allocated); | 
 | 	if (IS_ERR(path)) | 
 | 		return path; | 
 | 	ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 	/* | 
 | 	 * shouldn't get a 0 allocated when converting an unwritten extent | 
 | 	 * unless m_len is 0 (bug) or extent has been corrupted | 
 | 	 */ | 
 | 	if (unlikely(*allocated == 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "unexpected allocated == 0, m_len = %u", | 
 | 				 map->m_len); | 
 | 		err = -EFSCORRUPTED; | 
 | 		goto errout; | 
 | 	} | 
 |  | 
 | out: | 
 | 	map->m_flags |= EXT4_MAP_NEW; | 
 | map_out: | 
 | 	map->m_flags |= EXT4_MAP_MAPPED; | 
 | out1: | 
 | 	map->m_pblk = newblock; | 
 | 	if (*allocated > map->m_len) | 
 | 		*allocated = map->m_len; | 
 | 	map->m_len = *allocated; | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | 	return path; | 
 |  | 
 | errout: | 
 | 	ext4_free_ext_path(path); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* | 
 |  * get_implied_cluster_alloc - check to see if the requested | 
 |  * allocation (in the map structure) overlaps with a cluster already | 
 |  * allocated in an extent. | 
 |  *	@sb	The filesystem superblock structure | 
 |  *	@map	The requested lblk->pblk mapping | 
 |  *	@ex	The extent structure which might contain an implied | 
 |  *			cluster allocation | 
 |  * | 
 |  * This function is called by ext4_ext_map_blocks() after we failed to | 
 |  * find blocks that were already in the inode's extent tree.  Hence, | 
 |  * we know that the beginning of the requested region cannot overlap | 
 |  * the extent from the inode's extent tree.  There are three cases we | 
 |  * want to catch.  The first is this case: | 
 |  * | 
 |  *		 |--- cluster # N--| | 
 |  *    |--- extent ---|	|---- requested region ---| | 
 |  *			|==========| | 
 |  * | 
 |  * The second case that we need to test for is this one: | 
 |  * | 
 |  *   |--------- cluster # N ----------------| | 
 |  *	   |--- requested region --|   |------- extent ----| | 
 |  *	   |=======================| | 
 |  * | 
 |  * The third case is when the requested region lies between two extents | 
 |  * within the same cluster: | 
 |  *          |------------- cluster # N-------------| | 
 |  * |----- ex -----|                  |---- ex_right ----| | 
 |  *                  |------ requested region ------| | 
 |  *                  |================| | 
 |  * | 
 |  * In each of the above cases, we need to set the map->m_pblk and | 
 |  * map->m_len so it corresponds to the return the extent labelled as | 
 |  * "|====|" from cluster #N, since it is already in use for data in | 
 |  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to | 
 |  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated | 
 |  * as a new "allocated" block region.  Otherwise, we will return 0 and | 
 |  * ext4_ext_map_blocks() will then allocate one or more new clusters | 
 |  * by calling ext4_mb_new_blocks(). | 
 |  */ | 
 | static int get_implied_cluster_alloc(struct super_block *sb, | 
 | 				     struct ext4_map_blocks *map, | 
 | 				     struct ext4_extent *ex, | 
 | 				     struct ext4_ext_path *path) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); | 
 | 	ext4_lblk_t ex_cluster_start, ex_cluster_end; | 
 | 	ext4_lblk_t rr_cluster_start; | 
 | 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex); | 
 | 	unsigned short ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	/* The extent passed in that we are trying to match */ | 
 | 	ex_cluster_start = EXT4_B2C(sbi, ee_block); | 
 | 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); | 
 |  | 
 | 	/* The requested region passed into ext4_map_blocks() */ | 
 | 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); | 
 |  | 
 | 	if ((rr_cluster_start == ex_cluster_end) || | 
 | 	    (rr_cluster_start == ex_cluster_start)) { | 
 | 		if (rr_cluster_start == ex_cluster_end) | 
 | 			ee_start += ee_len - 1; | 
 | 		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; | 
 | 		map->m_len = min(map->m_len, | 
 | 				 (unsigned) sbi->s_cluster_ratio - c_offset); | 
 | 		/* | 
 | 		 * Check for and handle this case: | 
 | 		 * | 
 | 		 *   |--------- cluster # N-------------| | 
 | 		 *		       |------- extent ----| | 
 | 		 *	   |--- requested region ---| | 
 | 		 *	   |===========| | 
 | 		 */ | 
 |  | 
 | 		if (map->m_lblk < ee_block) | 
 | 			map->m_len = min(map->m_len, ee_block - map->m_lblk); | 
 |  | 
 | 		/* | 
 | 		 * Check for the case where there is already another allocated | 
 | 		 * block to the right of 'ex' but before the end of the cluster. | 
 | 		 * | 
 | 		 *          |------------- cluster # N-------------| | 
 | 		 * |----- ex -----|                  |---- ex_right ----| | 
 | 		 *                  |------ requested region ------| | 
 | 		 *                  |================| | 
 | 		 */ | 
 | 		if (map->m_lblk > ee_block) { | 
 | 			ext4_lblk_t next = ext4_ext_next_allocated_block(path); | 
 | 			map->m_len = min(map->m_len, next - map->m_lblk); | 
 | 		} | 
 |  | 
 | 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine hole length around the given logical block, first try to | 
 |  * locate and expand the hole from the given @path, and then adjust it | 
 |  * if it's partially or completely converted to delayed extents, insert | 
 |  * it into the extent cache tree if it's indeed a hole, finally return | 
 |  * the length of the determined extent. | 
 |  */ | 
 | static ext4_lblk_t ext4_ext_determine_insert_hole(struct inode *inode, | 
 | 						  struct ext4_ext_path *path, | 
 | 						  ext4_lblk_t lblk) | 
 | { | 
 | 	ext4_lblk_t hole_start, len; | 
 | 	struct extent_status es; | 
 |  | 
 | 	hole_start = lblk; | 
 | 	len = ext4_ext_find_hole(inode, path, &hole_start); | 
 | again: | 
 | 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start, | 
 | 				  hole_start + len - 1, &es); | 
 | 	if (!es.es_len) | 
 | 		goto insert_hole; | 
 |  | 
 | 	/* | 
 | 	 * There's a delalloc extent in the hole, handle it if the delalloc | 
 | 	 * extent is in front of, behind and straddle the queried range. | 
 | 	 */ | 
 | 	if (lblk >= es.es_lblk + es.es_len) { | 
 | 		/* | 
 | 		 * The delalloc extent is in front of the queried range, | 
 | 		 * find again from the queried start block. | 
 | 		 */ | 
 | 		len -= lblk - hole_start; | 
 | 		hole_start = lblk; | 
 | 		goto again; | 
 | 	} else if (in_range(lblk, es.es_lblk, es.es_len)) { | 
 | 		/* | 
 | 		 * The delalloc extent containing lblk, it must have been | 
 | 		 * added after ext4_map_blocks() checked the extent status | 
 | 		 * tree so we are not holding i_rwsem and delalloc info is | 
 | 		 * only stabilized by i_data_sem we are going to release | 
 | 		 * soon. Don't modify the extent status tree and report | 
 | 		 * extent as a hole, just adjust the length to the delalloc | 
 | 		 * extent's after lblk. | 
 | 		 */ | 
 | 		len = es.es_lblk + es.es_len - lblk; | 
 | 		return len; | 
 | 	} else { | 
 | 		/* | 
 | 		 * The delalloc extent is partially or completely behind | 
 | 		 * the queried range, update hole length until the | 
 | 		 * beginning of the delalloc extent. | 
 | 		 */ | 
 | 		len = min(es.es_lblk - hole_start, len); | 
 | 	} | 
 |  | 
 | insert_hole: | 
 | 	/* Put just found gap into cache to speed up subsequent requests */ | 
 | 	ext_debug(inode, " -> %u:%u\n", hole_start, len); | 
 | 	ext4_es_insert_extent(inode, hole_start, len, ~0, | 
 | 			      EXTENT_STATUS_HOLE, false); | 
 |  | 
 | 	/* Update hole_len to reflect hole size after lblk */ | 
 | 	if (hole_start != lblk) | 
 | 		len -= lblk - hole_start; | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | /* | 
 |  * Block allocation/map/preallocation routine for extents based files | 
 |  * | 
 |  * | 
 |  * Need to be called with | 
 |  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block | 
 |  * (ie, flags is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) | 
 |  * | 
 |  * return > 0, number of blocks already mapped/allocated | 
 |  *          if flags doesn't contain EXT4_GET_BLOCKS_CREATE and these are pre-allocated blocks | 
 |  *          	buffer head is unmapped | 
 |  *          otherwise blocks are mapped | 
 |  * | 
 |  * return = 0, if plain look up failed (blocks have not been allocated) | 
 |  *          buffer head is unmapped | 
 |  * | 
 |  * return < 0, error case. | 
 |  */ | 
 | int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, | 
 | 			struct ext4_map_blocks *map, int flags) | 
 | { | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	struct ext4_extent newex, *ex, ex2; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	ext4_fsblk_t newblock = 0, pblk; | 
 | 	int err = 0, depth; | 
 | 	unsigned int allocated = 0, offset = 0; | 
 | 	unsigned int allocated_clusters = 0; | 
 | 	struct ext4_allocation_request ar; | 
 | 	ext4_lblk_t cluster_offset; | 
 |  | 
 | 	ext_debug(inode, "blocks %u/%u requested\n", map->m_lblk, map->m_len); | 
 | 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); | 
 |  | 
 | 	/* find extent for this block */ | 
 | 	path = ext4_find_extent(inode, map->m_lblk, NULL, flags); | 
 | 	if (IS_ERR(path)) { | 
 | 		err = PTR_ERR(path); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	depth = ext_depth(inode); | 
 |  | 
 | 	/* | 
 | 	 * consistent leaf must not be empty; | 
 | 	 * this situation is possible, though, _during_ tree modification; | 
 | 	 * this is why assert can't be put in ext4_find_extent() | 
 | 	 */ | 
 | 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "bad extent address " | 
 | 				 "lblock: %lu, depth: %d pblock %lld", | 
 | 				 (unsigned long) map->m_lblk, depth, | 
 | 				 path[depth].p_block); | 
 | 		err = -EFSCORRUPTED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	if (ex) { | 
 | 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); | 
 | 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex); | 
 | 		unsigned short ee_len; | 
 |  | 
 |  | 
 | 		/* | 
 | 		 * unwritten extents are treated as holes, except that | 
 | 		 * we split out initialized portions during a write. | 
 | 		 */ | 
 | 		ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); | 
 |  | 
 | 		/* if found extent covers block, simply return it */ | 
 | 		if (in_range(map->m_lblk, ee_block, ee_len)) { | 
 | 			newblock = map->m_lblk - ee_block + ee_start; | 
 | 			/* number of remaining blocks in the extent */ | 
 | 			allocated = ee_len - (map->m_lblk - ee_block); | 
 | 			ext_debug(inode, "%u fit into %u:%d -> %llu\n", | 
 | 				  map->m_lblk, ee_block, ee_len, newblock); | 
 |  | 
 | 			/* | 
 | 			 * If the extent is initialized check whether the | 
 | 			 * caller wants to convert it to unwritten. | 
 | 			 */ | 
 | 			if ((!ext4_ext_is_unwritten(ex)) && | 
 | 			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { | 
 | 				path = convert_initialized_extent(handle, | 
 | 					inode, map, path, &allocated); | 
 | 				if (IS_ERR(path)) | 
 | 					err = PTR_ERR(path); | 
 | 				goto out; | 
 | 			} else if (!ext4_ext_is_unwritten(ex)) { | 
 | 				map->m_flags |= EXT4_MAP_MAPPED; | 
 | 				map->m_pblk = newblock; | 
 | 				if (allocated > map->m_len) | 
 | 					allocated = map->m_len; | 
 | 				map->m_len = allocated; | 
 | 				ext4_ext_show_leaf(inode, path); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			path = ext4_ext_handle_unwritten_extents( | 
 | 				handle, inode, map, path, flags, | 
 | 				&allocated, newblock); | 
 | 			if (IS_ERR(path)) | 
 | 				err = PTR_ERR(path); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * requested block isn't allocated yet; | 
 | 	 * we couldn't try to create block if flags doesn't contain EXT4_GET_BLOCKS_CREATE | 
 | 	 */ | 
 | 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { | 
 | 		ext4_lblk_t len; | 
 |  | 
 | 		len = ext4_ext_determine_insert_hole(inode, path, map->m_lblk); | 
 |  | 
 | 		map->m_pblk = 0; | 
 | 		map->m_len = min_t(unsigned int, map->m_len, len); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Okay, we need to do block allocation. | 
 | 	 */ | 
 | 	newex.ee_block = cpu_to_le32(map->m_lblk); | 
 | 	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); | 
 |  | 
 | 	/* | 
 | 	 * If we are doing bigalloc, check to see if the extent returned | 
 | 	 * by ext4_find_extent() implies a cluster we can use. | 
 | 	 */ | 
 | 	if (cluster_offset && ex && | 
 | 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { | 
 | 		ar.len = allocated = map->m_len; | 
 | 		newblock = map->m_pblk; | 
 | 		goto got_allocated_blocks; | 
 | 	} | 
 |  | 
 | 	/* find neighbour allocated blocks */ | 
 | 	ar.lleft = map->m_lblk; | 
 | 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	ar.lright = map->m_lblk; | 
 | 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, | 
 | 				    &ex2, flags); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* Check if the extent after searching to the right implies a | 
 | 	 * cluster we can use. */ | 
 | 	if ((sbi->s_cluster_ratio > 1) && err && | 
 | 	    get_implied_cluster_alloc(inode->i_sb, map, &ex2, path)) { | 
 | 		ar.len = allocated = map->m_len; | 
 | 		newblock = map->m_pblk; | 
 | 		err = 0; | 
 | 		goto got_allocated_blocks; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * See if request is beyond maximum number of blocks we can have in | 
 | 	 * a single extent. For an initialized extent this limit is | 
 | 	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is | 
 | 	 * EXT_UNWRITTEN_MAX_LEN. | 
 | 	 */ | 
 | 	if (map->m_len > EXT_INIT_MAX_LEN && | 
 | 	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) | 
 | 		map->m_len = EXT_INIT_MAX_LEN; | 
 | 	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && | 
 | 		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) | 
 | 		map->m_len = EXT_UNWRITTEN_MAX_LEN; | 
 |  | 
 | 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ | 
 | 	newex.ee_len = cpu_to_le16(map->m_len); | 
 | 	err = ext4_ext_check_overlap(sbi, inode, &newex, path); | 
 | 	if (err) | 
 | 		allocated = ext4_ext_get_actual_len(&newex); | 
 | 	else | 
 | 		allocated = map->m_len; | 
 |  | 
 | 	/* allocate new block */ | 
 | 	ar.inode = inode; | 
 | 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); | 
 | 	ar.logical = map->m_lblk; | 
 | 	/* | 
 | 	 * We calculate the offset from the beginning of the cluster | 
 | 	 * for the logical block number, since when we allocate a | 
 | 	 * physical cluster, the physical block should start at the | 
 | 	 * same offset from the beginning of the cluster.  This is | 
 | 	 * needed so that future calls to get_implied_cluster_alloc() | 
 | 	 * work correctly. | 
 | 	 */ | 
 | 	offset = EXT4_LBLK_COFF(sbi, map->m_lblk); | 
 | 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated); | 
 | 	ar.goal -= offset; | 
 | 	ar.logical -= offset; | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		ar.flags = EXT4_MB_HINT_DATA; | 
 | 	else | 
 | 		/* disable in-core preallocation for non-regular files */ | 
 | 		ar.flags = 0; | 
 | 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) | 
 | 		ar.flags |= EXT4_MB_HINT_NOPREALLOC; | 
 | 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) | 
 | 		ar.flags |= EXT4_MB_DELALLOC_RESERVED; | 
 | 	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) | 
 | 		ar.flags |= EXT4_MB_USE_RESERVED; | 
 | 	newblock = ext4_mb_new_blocks(handle, &ar, &err); | 
 | 	if (!newblock) | 
 | 		goto out; | 
 | 	allocated_clusters = ar.len; | 
 | 	ar.len = EXT4_C2B(sbi, ar.len) - offset; | 
 | 	ext_debug(inode, "allocate new block: goal %llu, found %llu/%u, requested %u\n", | 
 | 		  ar.goal, newblock, ar.len, allocated); | 
 | 	if (ar.len > allocated) | 
 | 		ar.len = allocated; | 
 |  | 
 | got_allocated_blocks: | 
 | 	/* try to insert new extent into found leaf and return */ | 
 | 	pblk = newblock + offset; | 
 | 	ext4_ext_store_pblock(&newex, pblk); | 
 | 	newex.ee_len = cpu_to_le16(ar.len); | 
 | 	/* Mark unwritten */ | 
 | 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { | 
 | 		ext4_ext_mark_unwritten(&newex); | 
 | 		map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 	} | 
 |  | 
 | 	path = ext4_ext_insert_extent(handle, inode, path, &newex, flags); | 
 | 	if (IS_ERR(path)) { | 
 | 		err = PTR_ERR(path); | 
 | 		if (allocated_clusters) { | 
 | 			int fb_flags = 0; | 
 |  | 
 | 			/* | 
 | 			 * free data blocks we just allocated. | 
 | 			 * not a good idea to call discard here directly, | 
 | 			 * but otherwise we'd need to call it every free(). | 
 | 			 */ | 
 | 			ext4_discard_preallocations(inode); | 
 | 			if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) | 
 | 				fb_flags = EXT4_FREE_BLOCKS_NO_QUOT_UPDATE; | 
 | 			ext4_free_blocks(handle, inode, NULL, newblock, | 
 | 					 EXT4_C2B(sbi, allocated_clusters), | 
 | 					 fb_flags); | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Cache the extent and update transaction to commit on fdatasync only | 
 | 	 * when it is _not_ an unwritten extent. | 
 | 	 */ | 
 | 	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) | 
 | 		ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 	else | 
 | 		ext4_update_inode_fsync_trans(handle, inode, 0); | 
 |  | 
 | 	map->m_flags |= (EXT4_MAP_NEW | EXT4_MAP_MAPPED); | 
 | 	map->m_pblk = pblk; | 
 | 	map->m_len = ar.len; | 
 | 	allocated = map->m_len; | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | out: | 
 | 	/* | 
 | 	 * We never use EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF with CREATE flag. | 
 | 	 * So we know that the depth used here is correct, since there was no | 
 | 	 * block allocation done if EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF is set. | 
 | 	 * If tomorrow we start using this QUERY flag with CREATE, then we will | 
 | 	 * need to re-calculate the depth as it might have changed due to block | 
 | 	 * allocation. | 
 | 	 */ | 
 | 	if (flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) { | 
 | 		WARN_ON_ONCE(flags & EXT4_GET_BLOCKS_CREATE); | 
 | 		if (!err && ex && (ex == EXT_LAST_EXTENT(path[depth].p_hdr))) | 
 | 			map->m_flags |= EXT4_MAP_QUERY_LAST_IN_LEAF; | 
 | 	} | 
 |  | 
 | 	ext4_free_ext_path(path); | 
 |  | 
 | 	trace_ext4_ext_map_blocks_exit(inode, flags, map, | 
 | 				       err ? err : allocated); | 
 | 	return err ? err : allocated; | 
 | } | 
 |  | 
 | int ext4_ext_truncate(handle_t *handle, struct inode *inode) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	ext4_lblk_t last_block; | 
 | 	int err = 0; | 
 |  | 
 | 	/* | 
 | 	 * TODO: optimization is possible here. | 
 | 	 * Probably we need not scan at all, | 
 | 	 * because page truncation is enough. | 
 | 	 */ | 
 |  | 
 | 	/* we have to know where to truncate from in crash case */ | 
 | 	EXT4_I(inode)->i_disksize = inode->i_size; | 
 | 	err = ext4_mark_inode_dirty(handle, inode); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	last_block = (inode->i_size + sb->s_blocksize - 1) | 
 | 			>> EXT4_BLOCK_SIZE_BITS(sb); | 
 | 	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); | 
 |  | 
 | retry_remove_space: | 
 | 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); | 
 | 	if (err == -ENOMEM) { | 
 | 		memalloc_retry_wait(GFP_ATOMIC); | 
 | 		goto retry_remove_space; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, | 
 | 				  ext4_lblk_t len, loff_t new_size, | 
 | 				  int flags) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	handle_t *handle; | 
 | 	int ret = 0, ret2 = 0, ret3 = 0; | 
 | 	int retries = 0; | 
 | 	int depth = 0; | 
 | 	struct ext4_map_blocks map; | 
 | 	unsigned int credits; | 
 | 	loff_t epos, old_size = i_size_read(inode); | 
 | 	unsigned int blkbits = inode->i_blkbits; | 
 | 	bool alloc_zero = false; | 
 |  | 
 | 	BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)); | 
 | 	map.m_lblk = offset; | 
 | 	map.m_len = len; | 
 | 	/* | 
 | 	 * Don't normalize the request if it can fit in one extent so | 
 | 	 * that it doesn't get unnecessarily split into multiple | 
 | 	 * extents. | 
 | 	 */ | 
 | 	if (len <= EXT_UNWRITTEN_MAX_LEN) | 
 | 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; | 
 |  | 
 | 	/* | 
 | 	 * Do the actual write zero during a running journal transaction | 
 | 	 * costs a lot. First allocate an unwritten extent and then | 
 | 	 * convert it to written after zeroing it out. | 
 | 	 */ | 
 | 	if (flags & EXT4_GET_BLOCKS_ZERO) { | 
 | 		flags &= ~EXT4_GET_BLOCKS_ZERO; | 
 | 		flags |= EXT4_GET_BLOCKS_UNWRIT_EXT; | 
 | 		alloc_zero = true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * credits to insert 1 extent into extent tree | 
 | 	 */ | 
 | 	credits = ext4_chunk_trans_blocks(inode, len); | 
 | 	depth = ext_depth(inode); | 
 |  | 
 | retry: | 
 | 	while (len) { | 
 | 		/* | 
 | 		 * Recalculate credits when extent tree depth changes. | 
 | 		 */ | 
 | 		if (depth != ext_depth(inode)) { | 
 | 			credits = ext4_chunk_trans_blocks(inode, len); | 
 | 			depth = ext_depth(inode); | 
 | 		} | 
 |  | 
 | 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, | 
 | 					    credits); | 
 | 		if (IS_ERR(handle)) { | 
 | 			ret = PTR_ERR(handle); | 
 | 			break; | 
 | 		} | 
 | 		ret = ext4_map_blocks(handle, inode, &map, flags); | 
 | 		if (ret <= 0) { | 
 | 			ext4_debug("inode #%lu: block %u: len %u: " | 
 | 				   "ext4_ext_map_blocks returned %d", | 
 | 				   inode->i_ino, map.m_lblk, | 
 | 				   map.m_len, ret); | 
 | 			ext4_mark_inode_dirty(handle, inode); | 
 | 			ext4_journal_stop(handle); | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * allow a full retry cycle for any remaining allocations | 
 | 		 */ | 
 | 		retries = 0; | 
 | 		epos = (loff_t)(map.m_lblk + ret) << blkbits; | 
 | 		inode_set_ctime_current(inode); | 
 | 		if (new_size) { | 
 | 			if (epos > new_size) | 
 | 				epos = new_size; | 
 | 			if (ext4_update_inode_size(inode, epos) & 0x1) | 
 | 				inode_set_mtime_to_ts(inode, | 
 | 						      inode_get_ctime(inode)); | 
 | 			if (epos > old_size) { | 
 | 				pagecache_isize_extended(inode, old_size, epos); | 
 | 				ext4_zero_partial_blocks(handle, inode, | 
 | 						     old_size, epos - old_size); | 
 | 			} | 
 | 		} | 
 | 		ret2 = ext4_mark_inode_dirty(handle, inode); | 
 | 		ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 		ret3 = ext4_journal_stop(handle); | 
 | 		ret2 = ret3 ? ret3 : ret2; | 
 | 		if (unlikely(ret2)) | 
 | 			break; | 
 |  | 
 | 		if (alloc_zero && | 
 | 		    (map.m_flags & (EXT4_MAP_MAPPED | EXT4_MAP_UNWRITTEN))) { | 
 | 			ret2 = ext4_issue_zeroout(inode, map.m_lblk, map.m_pblk, | 
 | 						  map.m_len); | 
 | 			if (likely(!ret2)) | 
 | 				ret2 = ext4_convert_unwritten_extents(NULL, | 
 | 					inode, (loff_t)map.m_lblk << blkbits, | 
 | 					(loff_t)map.m_len << blkbits); | 
 | 			if (ret2) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		map.m_lblk += ret; | 
 | 		map.m_len = len = len - ret; | 
 | 	} | 
 | 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) | 
 | 		goto retry; | 
 |  | 
 | 	return ret > 0 ? ret2 : ret; | 
 | } | 
 |  | 
 | static int ext4_collapse_range(struct file *file, loff_t offset, loff_t len); | 
 |  | 
 | static int ext4_insert_range(struct file *file, loff_t offset, loff_t len); | 
 |  | 
 | static long ext4_zero_range(struct file *file, loff_t offset, | 
 | 			    loff_t len, int mode) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	handle_t *handle = NULL; | 
 | 	loff_t new_size = 0; | 
 | 	loff_t end = offset + len; | 
 | 	ext4_lblk_t start_lblk, end_lblk; | 
 | 	unsigned int blocksize = i_blocksize(inode); | 
 | 	unsigned int blkbits = inode->i_blkbits; | 
 | 	int ret, flags, credits; | 
 |  | 
 | 	trace_ext4_zero_range(inode, offset, len, mode); | 
 | 	WARN_ON_ONCE(!inode_is_locked(inode)); | 
 |  | 
 | 	/* Indirect files do not support unwritten extents */ | 
 | 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (!(mode & FALLOC_FL_KEEP_SIZE) && | 
 | 	    (end > inode->i_size || end > EXT4_I(inode)->i_disksize)) { | 
 | 		new_size = end; | 
 | 		ret = inode_newsize_ok(inode, new_size); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; | 
 | 	/* Preallocate the range including the unaligned edges */ | 
 | 	if (!IS_ALIGNED(offset | end, blocksize)) { | 
 | 		ext4_lblk_t alloc_lblk = offset >> blkbits; | 
 | 		ext4_lblk_t len_lblk = EXT4_MAX_BLOCKS(len, offset, blkbits); | 
 |  | 
 | 		ret = ext4_alloc_file_blocks(file, alloc_lblk, len_lblk, | 
 | 					     new_size, flags); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	ret = ext4_update_disksize_before_punch(inode, offset, len); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Now release the pages and zero block aligned part of pages */ | 
 | 	ret = ext4_truncate_page_cache_block_range(inode, offset, end); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Zero range excluding the unaligned edges */ | 
 | 	start_lblk = EXT4_B_TO_LBLK(inode, offset); | 
 | 	end_lblk = end >> blkbits; | 
 | 	if (end_lblk > start_lblk) { | 
 | 		ext4_lblk_t zero_blks = end_lblk - start_lblk; | 
 |  | 
 | 		if (mode & FALLOC_FL_WRITE_ZEROES) | 
 | 			flags = EXT4_GET_BLOCKS_CREATE_ZERO | EXT4_EX_NOCACHE; | 
 | 		else | 
 | 			flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | | 
 | 				  EXT4_EX_NOCACHE); | 
 | 		ret = ext4_alloc_file_blocks(file, start_lblk, zero_blks, | 
 | 					     new_size, flags); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	/* Finish zeroing out if it doesn't contain partial block */ | 
 | 	if (IS_ALIGNED(offset | end, blocksize)) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * In worst case we have to writeout two nonadjacent unwritten | 
 | 	 * blocks and update the inode | 
 | 	 */ | 
 | 	credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; | 
 | 	if (ext4_should_journal_data(inode)) | 
 | 		credits += 2; | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); | 
 | 	if (IS_ERR(handle)) { | 
 | 		ret = PTR_ERR(handle); | 
 | 		ext4_std_error(inode->i_sb, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Zero out partial block at the edges of the range */ | 
 | 	ret = ext4_zero_partial_blocks(handle, inode, offset, len); | 
 | 	if (ret) | 
 | 		goto out_handle; | 
 |  | 
 | 	if (new_size) | 
 | 		ext4_update_inode_size(inode, new_size); | 
 | 	ret = ext4_mark_inode_dirty(handle, inode); | 
 | 	if (unlikely(ret)) | 
 | 		goto out_handle; | 
 |  | 
 | 	ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 	if (file->f_flags & O_SYNC) | 
 | 		ext4_handle_sync(handle); | 
 |  | 
 | out_handle: | 
 | 	ext4_journal_stop(handle); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static long ext4_do_fallocate(struct file *file, loff_t offset, | 
 | 			      loff_t len, int mode) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	loff_t end = offset + len; | 
 | 	loff_t new_size = 0; | 
 | 	ext4_lblk_t start_lblk, len_lblk; | 
 | 	int ret; | 
 |  | 
 | 	trace_ext4_fallocate_enter(inode, offset, len, mode); | 
 | 	WARN_ON_ONCE(!inode_is_locked(inode)); | 
 |  | 
 | 	start_lblk = offset >> inode->i_blkbits; | 
 | 	len_lblk = EXT4_MAX_BLOCKS(len, offset, inode->i_blkbits); | 
 |  | 
 | 	/* We only support preallocation for extent-based files only. */ | 
 | 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { | 
 | 		ret = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!(mode & FALLOC_FL_KEEP_SIZE) && | 
 | 	    (end > inode->i_size || end > EXT4_I(inode)->i_disksize)) { | 
 | 		new_size = end; | 
 | 		ret = inode_newsize_ok(inode, new_size); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ret = ext4_alloc_file_blocks(file, start_lblk, len_lblk, new_size, | 
 | 				     EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { | 
 | 		ret = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, | 
 | 					EXT4_I(inode)->i_sync_tid); | 
 | 	} | 
 | out: | 
 | 	trace_ext4_fallocate_exit(inode, offset, len_lblk, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * preallocate space for a file. This implements ext4's fallocate file | 
 |  * operation, which gets called from sys_fallocate system call. | 
 |  * For block-mapped files, posix_fallocate should fall back to the method | 
 |  * of writing zeroes to the required new blocks (the same behavior which is | 
 |  * expected for file systems which do not support fallocate() system call). | 
 |  */ | 
 | long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Encrypted inodes can't handle collapse range or insert | 
 | 	 * range since we would need to re-encrypt blocks with a | 
 | 	 * different IV or XTS tweak (which are based on the logical | 
 | 	 * block number). | 
 | 	 */ | 
 | 	if (IS_ENCRYPTED(inode) && | 
 | 	    (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) | 
 | 		return -EOPNOTSUPP; | 
 | 	/* | 
 | 	 * Don't allow writing zeroes if the underlying device does not | 
 | 	 * enable the unmap write zeroes operation. | 
 | 	 */ | 
 | 	if ((mode & FALLOC_FL_WRITE_ZEROES) && | 
 | 	    !bdev_write_zeroes_unmap_sectors(inode->i_sb->s_bdev)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* Return error if mode is not supported */ | 
 | 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | | 
 | 		     FALLOC_FL_ZERO_RANGE | FALLOC_FL_COLLAPSE_RANGE | | 
 | 		     FALLOC_FL_INSERT_RANGE | FALLOC_FL_WRITE_ZEROES)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	inode_lock(inode); | 
 | 	ret = ext4_convert_inline_data(inode); | 
 | 	if (ret) | 
 | 		goto out_inode_lock; | 
 |  | 
 | 	/* Wait all existing dio workers, newcomers will block on i_rwsem */ | 
 | 	inode_dio_wait(inode); | 
 |  | 
 | 	ret = file_modified(file); | 
 | 	if (ret) | 
 | 		goto out_inode_lock; | 
 |  | 
 | 	if ((mode & FALLOC_FL_MODE_MASK) == FALLOC_FL_ALLOCATE_RANGE) { | 
 | 		ret = ext4_do_fallocate(file, offset, len, mode); | 
 | 		goto out_inode_lock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Follow-up operations will drop page cache, hold invalidate lock | 
 | 	 * to prevent page faults from reinstantiating pages we have | 
 | 	 * released from page cache. | 
 | 	 */ | 
 | 	filemap_invalidate_lock(mapping); | 
 |  | 
 | 	ret = ext4_break_layouts(inode); | 
 | 	if (ret) | 
 | 		goto out_invalidate_lock; | 
 |  | 
 | 	switch (mode & FALLOC_FL_MODE_MASK) { | 
 | 	case FALLOC_FL_PUNCH_HOLE: | 
 | 		ret = ext4_punch_hole(file, offset, len); | 
 | 		break; | 
 | 	case FALLOC_FL_COLLAPSE_RANGE: | 
 | 		ret = ext4_collapse_range(file, offset, len); | 
 | 		break; | 
 | 	case FALLOC_FL_INSERT_RANGE: | 
 | 		ret = ext4_insert_range(file, offset, len); | 
 | 		break; | 
 | 	case FALLOC_FL_ZERO_RANGE: | 
 | 	case FALLOC_FL_WRITE_ZEROES: | 
 | 		ret = ext4_zero_range(file, offset, len, mode); | 
 | 		break; | 
 | 	default: | 
 | 		ret = -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | out_invalidate_lock: | 
 | 	filemap_invalidate_unlock(mapping); | 
 | out_inode_lock: | 
 | 	inode_unlock(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This function converts a range of blocks to written extents. The caller of | 
 |  * this function will pass the start offset and the size. all unwritten extents | 
 |  * within this range will be converted to written extents. | 
 |  * | 
 |  * This function is called from the direct IO end io call back function for | 
 |  * atomic writes, to convert the unwritten extents after IO is completed. | 
 |  * | 
 |  * Note that the requirement for atomic writes is that all conversion should | 
 |  * happen atomically in a single fs journal transaction. We mainly only allocate | 
 |  * unwritten extents either on a hole on a pre-exiting unwritten extent range in | 
 |  * ext4_map_blocks_atomic_write(). The only case where we can have multiple | 
 |  * unwritten extents in a range [offset, offset+len) is when there is a split | 
 |  * unwritten extent between two leaf nodes which was cached in extent status | 
 |  * cache during ext4_iomap_alloc() time. That will allow | 
 |  * ext4_map_blocks_atomic_write() to return the unwritten extent range w/o going | 
 |  * into the slow path. That means we might need a loop for conversion of this | 
 |  * unwritten extent split across leaf block within a single journal transaction. | 
 |  * Split extents across leaf nodes is a rare case, but let's still handle that | 
 |  * to meet the requirements of multi-fsblock atomic writes. | 
 |  * | 
 |  * Returns 0 on success. | 
 |  */ | 
 | int ext4_convert_unwritten_extents_atomic(handle_t *handle, struct inode *inode, | 
 | 					  loff_t offset, ssize_t len) | 
 | { | 
 | 	unsigned int max_blocks; | 
 | 	int ret = 0, ret2 = 0, ret3 = 0; | 
 | 	struct ext4_map_blocks map; | 
 | 	unsigned int blkbits = inode->i_blkbits; | 
 | 	unsigned int credits = 0; | 
 | 	int flags = EXT4_GET_BLOCKS_IO_CONVERT_EXT | EXT4_EX_NOCACHE; | 
 |  | 
 | 	map.m_lblk = offset >> blkbits; | 
 | 	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); | 
 |  | 
 | 	if (!handle) { | 
 | 		/* | 
 | 		 * TODO: An optimization can be added later by having an extent | 
 | 		 * status flag e.g. EXTENT_STATUS_SPLIT_LEAF. If we query that | 
 | 		 * it can tell if the extent in the cache is a split extent. | 
 | 		 * But for now let's assume pextents as 2 always. | 
 | 		 */ | 
 | 		credits = ext4_meta_trans_blocks(inode, max_blocks, 2); | 
 | 	} | 
 |  | 
 | 	if (credits) { | 
 | 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); | 
 | 		if (IS_ERR(handle)) { | 
 | 			ret = PTR_ERR(handle); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (ret >= 0 && ret < max_blocks) { | 
 | 		map.m_lblk += ret; | 
 | 		map.m_len = (max_blocks -= ret); | 
 | 		ret = ext4_map_blocks(handle, inode, &map, flags); | 
 | 		if (ret != max_blocks) | 
 | 			ext4_msg(inode->i_sb, KERN_INFO, | 
 | 				     "inode #%lu: block %u: len %u: " | 
 | 				     "split block mapping found for atomic write, " | 
 | 				     "ret = %d", | 
 | 				     inode->i_ino, map.m_lblk, | 
 | 				     map.m_len, ret); | 
 | 		if (ret <= 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	ret2 = ext4_mark_inode_dirty(handle, inode); | 
 |  | 
 | 	if (credits) { | 
 | 		ret3 = ext4_journal_stop(handle); | 
 | 		if (unlikely(ret3)) | 
 | 			ret2 = ret3; | 
 | 	} | 
 |  | 
 | 	if (ret <= 0 || ret2) | 
 | 		ext4_warning(inode->i_sb, | 
 | 			     "inode #%lu: block %u: len %u: " | 
 | 			     "returned %d or %d", | 
 | 			     inode->i_ino, map.m_lblk, | 
 | 			     map.m_len, ret, ret2); | 
 |  | 
 | 	return ret > 0 ? ret2 : ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This function convert a range of blocks to written extents | 
 |  * The caller of this function will pass the start offset and the size. | 
 |  * all unwritten extents within this range will be converted to | 
 |  * written extents. | 
 |  * | 
 |  * This function is called from the direct IO end io call back | 
 |  * function, to convert the fallocated extents after IO is completed. | 
 |  * Returns 0 on success. | 
 |  */ | 
 | int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, | 
 | 				   loff_t offset, ssize_t len) | 
 | { | 
 | 	unsigned int max_blocks; | 
 | 	int ret = 0, ret2 = 0, ret3 = 0; | 
 | 	struct ext4_map_blocks map; | 
 | 	unsigned int blkbits = inode->i_blkbits; | 
 | 	unsigned int credits = 0; | 
 |  | 
 | 	map.m_lblk = offset >> blkbits; | 
 | 	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); | 
 |  | 
 | 	if (!handle) { | 
 | 		/* | 
 | 		 * credits to insert 1 extent into extent tree | 
 | 		 */ | 
 | 		credits = ext4_chunk_trans_blocks(inode, max_blocks); | 
 | 	} | 
 | 	while (ret >= 0 && ret < max_blocks) { | 
 | 		map.m_lblk += ret; | 
 | 		map.m_len = (max_blocks -= ret); | 
 | 		if (credits) { | 
 | 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, | 
 | 						    credits); | 
 | 			if (IS_ERR(handle)) { | 
 | 				ret = PTR_ERR(handle); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		 * Do not cache any unrelated extents, as it does not hold the | 
 | 		 * i_rwsem or invalidate_lock, which could corrupt the extent | 
 | 		 * status tree. | 
 | 		 */ | 
 | 		ret = ext4_map_blocks(handle, inode, &map, | 
 | 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT | | 
 | 				      EXT4_EX_NOCACHE); | 
 | 		if (ret <= 0) | 
 | 			ext4_warning(inode->i_sb, | 
 | 				     "inode #%lu: block %u: len %u: " | 
 | 				     "ext4_ext_map_blocks returned %d", | 
 | 				     inode->i_ino, map.m_lblk, | 
 | 				     map.m_len, ret); | 
 | 		ret2 = ext4_mark_inode_dirty(handle, inode); | 
 | 		if (credits) { | 
 | 			ret3 = ext4_journal_stop(handle); | 
 | 			if (unlikely(ret3)) | 
 | 				ret2 = ret3; | 
 | 		} | 
 |  | 
 | 		if (ret <= 0 || ret2) | 
 | 			break; | 
 | 	} | 
 | 	return ret > 0 ? ret2 : ret; | 
 | } | 
 |  | 
 | int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end) | 
 | { | 
 | 	int ret = 0, err = 0; | 
 | 	struct ext4_io_end_vec *io_end_vec; | 
 |  | 
 | 	/* | 
 | 	 * This is somewhat ugly but the idea is clear: When transaction is | 
 | 	 * reserved, everything goes into it. Otherwise we rather start several | 
 | 	 * smaller transactions for conversion of each extent separately. | 
 | 	 */ | 
 | 	if (handle) { | 
 | 		handle = ext4_journal_start_reserved(handle, | 
 | 						     EXT4_HT_EXT_CONVERT); | 
 | 		if (IS_ERR(handle)) | 
 | 			return PTR_ERR(handle); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(io_end_vec, &io_end->list_vec, list) { | 
 | 		ret = ext4_convert_unwritten_extents(handle, io_end->inode, | 
 | 						     io_end_vec->offset, | 
 | 						     io_end_vec->size); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (handle) | 
 | 		err = ext4_journal_stop(handle); | 
 |  | 
 | 	return ret < 0 ? ret : err; | 
 | } | 
 |  | 
 | static int ext4_iomap_xattr_fiemap(struct inode *inode, struct iomap *iomap) | 
 | { | 
 | 	__u64 physical = 0; | 
 | 	__u64 length = 0; | 
 | 	int blockbits = inode->i_sb->s_blocksize_bits; | 
 | 	int error = 0; | 
 | 	u16 iomap_type; | 
 |  | 
 | 	/* in-inode? */ | 
 | 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { | 
 | 		struct ext4_iloc iloc; | 
 | 		int offset;	/* offset of xattr in inode */ | 
 |  | 
 | 		error = ext4_get_inode_loc(inode, &iloc); | 
 | 		if (error) | 
 | 			return error; | 
 | 		physical = (__u64)iloc.bh->b_blocknr << blockbits; | 
 | 		offset = EXT4_GOOD_OLD_INODE_SIZE + | 
 | 				EXT4_I(inode)->i_extra_isize; | 
 | 		physical += offset; | 
 | 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset; | 
 | 		brelse(iloc.bh); | 
 | 		iomap_type = IOMAP_INLINE; | 
 | 	} else if (EXT4_I(inode)->i_file_acl) { /* external block */ | 
 | 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; | 
 | 		length = inode->i_sb->s_blocksize; | 
 | 		iomap_type = IOMAP_MAPPED; | 
 | 	} else { | 
 | 		/* no in-inode or external block for xattr, so return -ENOENT */ | 
 | 		error = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	iomap->addr = physical; | 
 | 	iomap->offset = 0; | 
 | 	iomap->length = length; | 
 | 	iomap->type = iomap_type; | 
 | 	iomap->flags = 0; | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | static int ext4_iomap_xattr_begin(struct inode *inode, loff_t offset, | 
 | 				  loff_t length, unsigned flags, | 
 | 				  struct iomap *iomap, struct iomap *srcmap) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	error = ext4_iomap_xattr_fiemap(inode, iomap); | 
 | 	if (error == 0 && (offset >= iomap->length)) | 
 | 		error = -ENOENT; | 
 | 	return error; | 
 | } | 
 |  | 
 | static const struct iomap_ops ext4_iomap_xattr_ops = { | 
 | 	.iomap_begin		= ext4_iomap_xattr_begin, | 
 | }; | 
 |  | 
 | static int ext4_fiemap_check_ranges(struct inode *inode, u64 start, u64 *len) | 
 | { | 
 | 	u64 maxbytes = ext4_get_maxbytes(inode); | 
 |  | 
 | 	if (*len == 0) | 
 | 		return -EINVAL; | 
 | 	if (start > maxbytes) | 
 | 		return -EFBIG; | 
 |  | 
 | 	/* | 
 | 	 * Shrink request scope to what the fs can actually handle. | 
 | 	 */ | 
 | 	if (*len > maxbytes || (maxbytes - *len) < start) | 
 | 		*len = maxbytes - start; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
 | 		u64 start, u64 len) | 
 | { | 
 | 	int error = 0; | 
 |  | 
 | 	inode_lock_shared(inode); | 
 | 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { | 
 | 		error = ext4_ext_precache(inode); | 
 | 		if (error) | 
 | 			goto unlock; | 
 | 		fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For bitmap files the maximum size limit could be smaller than | 
 | 	 * s_maxbytes, so check len here manually instead of just relying on the | 
 | 	 * generic check. | 
 | 	 */ | 
 | 	error = ext4_fiemap_check_ranges(inode, start, &len); | 
 | 	if (error) | 
 | 		goto unlock; | 
 |  | 
 | 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { | 
 | 		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; | 
 | 		error = iomap_fiemap(inode, fieinfo, start, len, | 
 | 				     &ext4_iomap_xattr_ops); | 
 | 	} else { | 
 | 		error = iomap_fiemap(inode, fieinfo, start, len, | 
 | 				     &ext4_iomap_report_ops); | 
 | 	} | 
 | unlock: | 
 | 	inode_unlock_shared(inode); | 
 | 	return error; | 
 | } | 
 |  | 
 | int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
 | 		      __u64 start, __u64 len) | 
 | { | 
 | 	ext4_lblk_t start_blk, len_blks; | 
 | 	__u64 last_blk; | 
 | 	int error = 0; | 
 |  | 
 | 	if (ext4_has_inline_data(inode)) { | 
 | 		int has_inline; | 
 |  | 
 | 		down_read(&EXT4_I(inode)->xattr_sem); | 
 | 		has_inline = ext4_has_inline_data(inode); | 
 | 		up_read(&EXT4_I(inode)->xattr_sem); | 
 | 		if (has_inline) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { | 
 | 		inode_lock_shared(inode); | 
 | 		error = ext4_ext_precache(inode); | 
 | 		inode_unlock_shared(inode); | 
 | 		if (error) | 
 | 			return error; | 
 | 		fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE; | 
 | 	} | 
 |  | 
 | 	error = fiemap_prep(inode, fieinfo, start, &len, 0); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	error = ext4_fiemap_check_ranges(inode, start, &len); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	start_blk = start >> inode->i_sb->s_blocksize_bits; | 
 | 	last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; | 
 | 	if (last_blk >= EXT_MAX_BLOCKS) | 
 | 		last_blk = EXT_MAX_BLOCKS-1; | 
 | 	len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; | 
 |  | 
 | 	/* | 
 | 	 * Walk the extent tree gathering extent information | 
 | 	 * and pushing extents back to the user. | 
 | 	 */ | 
 | 	return ext4_fill_es_cache_info(inode, start_blk, len_blks, fieinfo); | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_shift_path_extents: | 
 |  * Shift the extents of a path structure lying between path[depth].p_ext | 
 |  * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells | 
 |  * if it is right shift or left shift operation. | 
 |  */ | 
 | static int | 
 | ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, | 
 | 			    struct inode *inode, handle_t *handle, | 
 | 			    enum SHIFT_DIRECTION SHIFT) | 
 | { | 
 | 	int depth, err = 0; | 
 | 	struct ext4_extent *ex_start, *ex_last; | 
 | 	bool update = false; | 
 | 	int credits, restart_credits; | 
 | 	depth = path->p_depth; | 
 |  | 
 | 	while (depth >= 0) { | 
 | 		if (depth == path->p_depth) { | 
 | 			ex_start = path[depth].p_ext; | 
 | 			if (!ex_start) | 
 | 				return -EFSCORRUPTED; | 
 |  | 
 | 			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); | 
 | 			/* leaf + sb + inode */ | 
 | 			credits = 3; | 
 | 			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) { | 
 | 				update = true; | 
 | 				/* extent tree + sb + inode */ | 
 | 				credits = depth + 2; | 
 | 			} | 
 |  | 
 | 			restart_credits = ext4_chunk_trans_extent(inode, 0); | 
 | 			err = ext4_datasem_ensure_credits(handle, inode, credits, | 
 | 					restart_credits, 0); | 
 | 			if (err) { | 
 | 				if (err > 0) | 
 | 					err = -EAGAIN; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 			if (err) | 
 | 				goto out; | 
 |  | 
 | 			while (ex_start <= ex_last) { | 
 | 				if (SHIFT == SHIFT_LEFT) { | 
 | 					le32_add_cpu(&ex_start->ee_block, | 
 | 						-shift); | 
 | 					/* Try to merge to the left. */ | 
 | 					if ((ex_start > | 
 | 					    EXT_FIRST_EXTENT(path[depth].p_hdr)) | 
 | 					    && | 
 | 					    ext4_ext_try_to_merge_right(inode, | 
 | 					    path, ex_start - 1)) | 
 | 						ex_last--; | 
 | 					else | 
 | 						ex_start++; | 
 | 				} else { | 
 | 					le32_add_cpu(&ex_last->ee_block, shift); | 
 | 					ext4_ext_try_to_merge_right(inode, path, | 
 | 						ex_last); | 
 | 					ex_last--; | 
 | 				} | 
 | 			} | 
 | 			err = ext4_ext_dirty(handle, inode, path + depth); | 
 | 			if (err) | 
 | 				goto out; | 
 |  | 
 | 			if (--depth < 0 || !update) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* Update index too */ | 
 | 		err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		if (SHIFT == SHIFT_LEFT) | 
 | 			le32_add_cpu(&path[depth].p_idx->ei_block, -shift); | 
 | 		else | 
 | 			le32_add_cpu(&path[depth].p_idx->ei_block, shift); | 
 | 		err = ext4_ext_dirty(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		/* we are done if current index is not a starting index */ | 
 | 		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) | 
 | 			break; | 
 |  | 
 | 		depth--; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_shift_extents: | 
 |  * All the extents which lies in the range from @start to the last allocated | 
 |  * block for the @inode are shifted either towards left or right (depending | 
 |  * upon @SHIFT) by @shift blocks. | 
 |  * On success, 0 is returned, error otherwise. | 
 |  */ | 
 | static int | 
 | ext4_ext_shift_extents(struct inode *inode, handle_t *handle, | 
 | 		       ext4_lblk_t start, ext4_lblk_t shift, | 
 | 		       enum SHIFT_DIRECTION SHIFT) | 
 | { | 
 | 	struct ext4_ext_path *path; | 
 | 	int ret = 0, depth; | 
 | 	struct ext4_extent *extent; | 
 | 	ext4_lblk_t stop, *iterator, ex_start, ex_end; | 
 | 	ext4_lblk_t tmp = EXT_MAX_BLOCKS; | 
 |  | 
 | 	/* Let path point to the last extent */ | 
 | 	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, | 
 | 				EXT4_EX_NOCACHE); | 
 | 	if (IS_ERR(path)) | 
 | 		return PTR_ERR(path); | 
 |  | 
 | 	depth = path->p_depth; | 
 | 	extent = path[depth].p_ext; | 
 | 	if (!extent) | 
 | 		goto out; | 
 |  | 
 | 	stop = le32_to_cpu(extent->ee_block); | 
 |  | 
 |        /* | 
 | 	* For left shifts, make sure the hole on the left is big enough to | 
 | 	* accommodate the shift.  For right shifts, make sure the last extent | 
 | 	* won't be shifted beyond EXT_MAX_BLOCKS. | 
 | 	*/ | 
 | 	if (SHIFT == SHIFT_LEFT) { | 
 | 		path = ext4_find_extent(inode, start - 1, path, | 
 | 					EXT4_EX_NOCACHE); | 
 | 		if (IS_ERR(path)) | 
 | 			return PTR_ERR(path); | 
 | 		depth = path->p_depth; | 
 | 		extent =  path[depth].p_ext; | 
 | 		if (extent) { | 
 | 			ex_start = le32_to_cpu(extent->ee_block); | 
 | 			ex_end = le32_to_cpu(extent->ee_block) + | 
 | 				ext4_ext_get_actual_len(extent); | 
 | 		} else { | 
 | 			ex_start = 0; | 
 | 			ex_end = 0; | 
 | 		} | 
 |  | 
 | 		if ((start == ex_start && shift > ex_start) || | 
 | 		    (shift > start - ex_end)) { | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		if (shift > EXT_MAX_BLOCKS - | 
 | 		    (stop + ext4_ext_get_actual_len(extent))) { | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In case of left shift, iterator points to start and it is increased | 
 | 	 * till we reach stop. In case of right shift, iterator points to stop | 
 | 	 * and it is decreased till we reach start. | 
 | 	 */ | 
 | again: | 
 | 	ret = 0; | 
 | 	if (SHIFT == SHIFT_LEFT) | 
 | 		iterator = &start; | 
 | 	else | 
 | 		iterator = &stop; | 
 |  | 
 | 	if (tmp != EXT_MAX_BLOCKS) | 
 | 		*iterator = tmp; | 
 |  | 
 | 	/* | 
 | 	 * Its safe to start updating extents.  Start and stop are unsigned, so | 
 | 	 * in case of right shift if extent with 0 block is reached, iterator | 
 | 	 * becomes NULL to indicate the end of the loop. | 
 | 	 */ | 
 | 	while (iterator && start <= stop) { | 
 | 		path = ext4_find_extent(inode, *iterator, path, | 
 | 					EXT4_EX_NOCACHE); | 
 | 		if (IS_ERR(path)) | 
 | 			return PTR_ERR(path); | 
 | 		depth = path->p_depth; | 
 | 		extent = path[depth].p_ext; | 
 | 		if (!extent) { | 
 | 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu", | 
 | 					 (unsigned long) *iterator); | 
 | 			return -EFSCORRUPTED; | 
 | 		} | 
 | 		if (SHIFT == SHIFT_LEFT && *iterator > | 
 | 		    le32_to_cpu(extent->ee_block)) { | 
 | 			/* Hole, move to the next extent */ | 
 | 			if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { | 
 | 				path[depth].p_ext++; | 
 | 			} else { | 
 | 				*iterator = ext4_ext_next_allocated_block(path); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		tmp = *iterator; | 
 | 		if (SHIFT == SHIFT_LEFT) { | 
 | 			extent = EXT_LAST_EXTENT(path[depth].p_hdr); | 
 | 			*iterator = le32_to_cpu(extent->ee_block) + | 
 | 					ext4_ext_get_actual_len(extent); | 
 | 		} else { | 
 | 			extent = EXT_FIRST_EXTENT(path[depth].p_hdr); | 
 | 			if (le32_to_cpu(extent->ee_block) > start) | 
 | 				*iterator = le32_to_cpu(extent->ee_block) - 1; | 
 | 			else if (le32_to_cpu(extent->ee_block) == start) | 
 | 				iterator = NULL; | 
 | 			else { | 
 | 				extent = EXT_LAST_EXTENT(path[depth].p_hdr); | 
 | 				while (le32_to_cpu(extent->ee_block) >= start) | 
 | 					extent--; | 
 |  | 
 | 				if (extent == EXT_LAST_EXTENT(path[depth].p_hdr)) | 
 | 					break; | 
 |  | 
 | 				extent++; | 
 | 				iterator = NULL; | 
 | 			} | 
 | 			path[depth].p_ext = extent; | 
 | 		} | 
 | 		ret = ext4_ext_shift_path_extents(path, shift, inode, | 
 | 				handle, SHIFT); | 
 | 		/* iterator can be NULL which means we should break */ | 
 | 		if (ret == -EAGAIN) | 
 | 			goto again; | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	ext4_free_ext_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_collapse_range: | 
 |  * This implements the fallocate's collapse range functionality for ext4 | 
 |  * Returns: 0 and non-zero on error. | 
 |  */ | 
 | static int ext4_collapse_range(struct file *file, loff_t offset, loff_t len) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	loff_t end = offset + len; | 
 | 	ext4_lblk_t start_lblk, end_lblk; | 
 | 	handle_t *handle; | 
 | 	unsigned int credits; | 
 | 	loff_t start, new_size; | 
 | 	int ret; | 
 |  | 
 | 	trace_ext4_collapse_range(inode, offset, len); | 
 | 	WARN_ON_ONCE(!inode_is_locked(inode)); | 
 |  | 
 | 	/* Currently just for extent based files */ | 
 | 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 		return -EOPNOTSUPP; | 
 | 	/* Collapse range works only on fs cluster size aligned regions. */ | 
 | 	if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 * There is no need to overlap collapse range with EOF, in which case | 
 | 	 * it is effectively a truncate operation | 
 | 	 */ | 
 | 	if (end >= inode->i_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Write tail of the last page before removed range and data that | 
 | 	 * will be shifted since they will get removed from the page cache | 
 | 	 * below. We are also protected from pages becoming dirty by | 
 | 	 * i_rwsem and invalidate_lock. | 
 | 	 * Need to round down offset to be aligned with page size boundary | 
 | 	 * for page size > block size. | 
 | 	 */ | 
 | 	start = round_down(offset, PAGE_SIZE); | 
 | 	ret = filemap_write_and_wait_range(mapping, start, offset); | 
 | 	if (!ret) | 
 | 		ret = filemap_write_and_wait_range(mapping, end, LLONG_MAX); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	truncate_pagecache(inode, start); | 
 |  | 
 | 	credits = ext4_chunk_trans_extent(inode, 0); | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); | 
 | 	if (IS_ERR(handle)) | 
 | 		return PTR_ERR(handle); | 
 |  | 
 | 	ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_FALLOC_RANGE, handle); | 
 |  | 
 | 	start_lblk = offset >> inode->i_blkbits; | 
 | 	end_lblk = (offset + len) >> inode->i_blkbits; | 
 |  | 
 | 	ext4_check_map_extents_env(inode); | 
 |  | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 | 	ext4_discard_preallocations(inode); | 
 | 	ext4_es_remove_extent(inode, start_lblk, EXT_MAX_BLOCKS - start_lblk); | 
 |  | 
 | 	ret = ext4_ext_remove_space(inode, start_lblk, end_lblk - 1); | 
 | 	if (ret) { | 
 | 		up_write(&EXT4_I(inode)->i_data_sem); | 
 | 		goto out_handle; | 
 | 	} | 
 | 	ext4_discard_preallocations(inode); | 
 |  | 
 | 	ret = ext4_ext_shift_extents(inode, handle, end_lblk, | 
 | 				     end_lblk - start_lblk, SHIFT_LEFT); | 
 | 	if (ret) { | 
 | 		up_write(&EXT4_I(inode)->i_data_sem); | 
 | 		goto out_handle; | 
 | 	} | 
 |  | 
 | 	new_size = inode->i_size - len; | 
 | 	i_size_write(inode, new_size); | 
 | 	EXT4_I(inode)->i_disksize = new_size; | 
 |  | 
 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 | 	ret = ext4_mark_inode_dirty(handle, inode); | 
 | 	if (ret) | 
 | 		goto out_handle; | 
 |  | 
 | 	ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 	if (IS_SYNC(inode)) | 
 | 		ext4_handle_sync(handle); | 
 |  | 
 | out_handle: | 
 | 	ext4_journal_stop(handle); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_insert_range: | 
 |  * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. | 
 |  * The data blocks starting from @offset to the EOF are shifted by @len | 
 |  * towards right to create a hole in the @inode. Inode size is increased | 
 |  * by len bytes. | 
 |  * Returns 0 on success, error otherwise. | 
 |  */ | 
 | static int ext4_insert_range(struct file *file, loff_t offset, loff_t len) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	handle_t *handle; | 
 | 	struct ext4_ext_path *path; | 
 | 	struct ext4_extent *extent; | 
 | 	ext4_lblk_t start_lblk, len_lblk, ee_start_lblk = 0; | 
 | 	unsigned int credits, ee_len; | 
 | 	int ret, depth, split_flag = 0; | 
 | 	loff_t start; | 
 |  | 
 | 	trace_ext4_insert_range(inode, offset, len); | 
 | 	WARN_ON_ONCE(!inode_is_locked(inode)); | 
 |  | 
 | 	/* Currently just for extent based files */ | 
 | 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 		return -EOPNOTSUPP; | 
 | 	/* Insert range works only on fs cluster size aligned regions. */ | 
 | 	if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) | 
 | 		return -EINVAL; | 
 | 	/* Offset must be less than i_size */ | 
 | 	if (offset >= inode->i_size) | 
 | 		return -EINVAL; | 
 | 	/* Check whether the maximum file size would be exceeded */ | 
 | 	if (len > inode->i_sb->s_maxbytes - inode->i_size) | 
 | 		return -EFBIG; | 
 |  | 
 | 	/* | 
 | 	 * Write out all dirty pages. Need to round down to align start offset | 
 | 	 * to page size boundary for page size > block size. | 
 | 	 */ | 
 | 	start = round_down(offset, PAGE_SIZE); | 
 | 	ret = filemap_write_and_wait_range(mapping, start, LLONG_MAX); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	truncate_pagecache(inode, start); | 
 |  | 
 | 	credits = ext4_chunk_trans_extent(inode, 0); | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); | 
 | 	if (IS_ERR(handle)) | 
 | 		return PTR_ERR(handle); | 
 |  | 
 | 	ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_FALLOC_RANGE, handle); | 
 |  | 
 | 	/* Expand file to avoid data loss if there is error while shifting */ | 
 | 	inode->i_size += len; | 
 | 	EXT4_I(inode)->i_disksize += len; | 
 | 	ret = ext4_mark_inode_dirty(handle, inode); | 
 | 	if (ret) | 
 | 		goto out_handle; | 
 |  | 
 | 	start_lblk = offset >> inode->i_blkbits; | 
 | 	len_lblk = len >> inode->i_blkbits; | 
 |  | 
 | 	ext4_check_map_extents_env(inode); | 
 |  | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 | 	ext4_discard_preallocations(inode); | 
 |  | 
 | 	path = ext4_find_extent(inode, start_lblk, NULL, 0); | 
 | 	if (IS_ERR(path)) { | 
 | 		up_write(&EXT4_I(inode)->i_data_sem); | 
 | 		ret = PTR_ERR(path); | 
 | 		goto out_handle; | 
 | 	} | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	extent = path[depth].p_ext; | 
 | 	if (extent) { | 
 | 		ee_start_lblk = le32_to_cpu(extent->ee_block); | 
 | 		ee_len = ext4_ext_get_actual_len(extent); | 
 |  | 
 | 		/* | 
 | 		 * If start_lblk is not the starting block of extent, split | 
 | 		 * the extent @start_lblk | 
 | 		 */ | 
 | 		if ((start_lblk > ee_start_lblk) && | 
 | 				(start_lblk < (ee_start_lblk + ee_len))) { | 
 | 			if (ext4_ext_is_unwritten(extent)) | 
 | 				split_flag = EXT4_EXT_MARK_UNWRIT1 | | 
 | 					EXT4_EXT_MARK_UNWRIT2; | 
 | 			path = ext4_split_extent_at(handle, inode, path, | 
 | 					start_lblk, split_flag, | 
 | 					EXT4_EX_NOCACHE | | 
 | 					EXT4_GET_BLOCKS_PRE_IO | | 
 | 					EXT4_GET_BLOCKS_METADATA_NOFAIL); | 
 | 		} | 
 |  | 
 | 		if (IS_ERR(path)) { | 
 | 			up_write(&EXT4_I(inode)->i_data_sem); | 
 | 			ret = PTR_ERR(path); | 
 | 			goto out_handle; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ext4_free_ext_path(path); | 
 | 	ext4_es_remove_extent(inode, start_lblk, EXT_MAX_BLOCKS - start_lblk); | 
 |  | 
 | 	/* | 
 | 	 * if start_lblk lies in a hole which is at start of file, use | 
 | 	 * ee_start_lblk to shift extents | 
 | 	 */ | 
 | 	ret = ext4_ext_shift_extents(inode, handle, | 
 | 		max(ee_start_lblk, start_lblk), len_lblk, SHIFT_RIGHT); | 
 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 | 	if (ret) | 
 | 		goto out_handle; | 
 |  | 
 | 	ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 	if (IS_SYNC(inode)) | 
 | 		ext4_handle_sync(handle); | 
 |  | 
 | out_handle: | 
 | 	ext4_journal_stop(handle); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * ext4_swap_extents() - Swap extents between two inodes | 
 |  * @handle: handle for this transaction | 
 |  * @inode1:	First inode | 
 |  * @inode2:	Second inode | 
 |  * @lblk1:	Start block for first inode | 
 |  * @lblk2:	Start block for second inode | 
 |  * @count:	Number of blocks to swap | 
 |  * @unwritten: Mark second inode's extents as unwritten after swap | 
 |  * @erp:	Pointer to save error value | 
 |  * | 
 |  * This helper routine does exactly what is promise "swap extents". All other | 
 |  * stuff such as page-cache locking consistency, bh mapping consistency or | 
 |  * extent's data copying must be performed by caller. | 
 |  * Locking: | 
 |  *		i_rwsem is held for both inodes | 
 |  * 		i_data_sem is locked for write for both inodes | 
 |  * Assumptions: | 
 |  *		All pages from requested range are locked for both inodes | 
 |  */ | 
 | int | 
 | ext4_swap_extents(handle_t *handle, struct inode *inode1, | 
 | 		  struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, | 
 | 		  ext4_lblk_t count, int unwritten, int *erp) | 
 | { | 
 | 	struct ext4_ext_path *path1 = NULL; | 
 | 	struct ext4_ext_path *path2 = NULL; | 
 | 	int replaced_count = 0; | 
 |  | 
 | 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); | 
 | 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); | 
 | 	BUG_ON(!inode_is_locked(inode1)); | 
 | 	BUG_ON(!inode_is_locked(inode2)); | 
 |  | 
 | 	ext4_es_remove_extent(inode1, lblk1, count); | 
 | 	ext4_es_remove_extent(inode2, lblk2, count); | 
 |  | 
 | 	while (count) { | 
 | 		struct ext4_extent *ex1, *ex2, tmp_ex; | 
 | 		ext4_lblk_t e1_blk, e2_blk; | 
 | 		int e1_len, e2_len, len; | 
 | 		int split = 0; | 
 |  | 
 | 		path1 = ext4_find_extent(inode1, lblk1, path1, EXT4_EX_NOCACHE); | 
 | 		if (IS_ERR(path1)) { | 
 | 			*erp = PTR_ERR(path1); | 
 | 			goto errout; | 
 | 		} | 
 | 		path2 = ext4_find_extent(inode2, lblk2, path2, EXT4_EX_NOCACHE); | 
 | 		if (IS_ERR(path2)) { | 
 | 			*erp = PTR_ERR(path2); | 
 | 			goto errout; | 
 | 		} | 
 | 		ex1 = path1[path1->p_depth].p_ext; | 
 | 		ex2 = path2[path2->p_depth].p_ext; | 
 | 		/* Do we have something to swap ? */ | 
 | 		if (unlikely(!ex2 || !ex1)) | 
 | 			goto errout; | 
 |  | 
 | 		e1_blk = le32_to_cpu(ex1->ee_block); | 
 | 		e2_blk = le32_to_cpu(ex2->ee_block); | 
 | 		e1_len = ext4_ext_get_actual_len(ex1); | 
 | 		e2_len = ext4_ext_get_actual_len(ex2); | 
 |  | 
 | 		/* Hole handling */ | 
 | 		if (!in_range(lblk1, e1_blk, e1_len) || | 
 | 		    !in_range(lblk2, e2_blk, e2_len)) { | 
 | 			ext4_lblk_t next1, next2; | 
 |  | 
 | 			/* if hole after extent, then go to next extent */ | 
 | 			next1 = ext4_ext_next_allocated_block(path1); | 
 | 			next2 = ext4_ext_next_allocated_block(path2); | 
 | 			/* If hole before extent, then shift to that extent */ | 
 | 			if (e1_blk > lblk1) | 
 | 				next1 = e1_blk; | 
 | 			if (e2_blk > lblk2) | 
 | 				next2 = e2_blk; | 
 | 			/* Do we have something to swap */ | 
 | 			if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) | 
 | 				goto errout; | 
 | 			/* Move to the rightest boundary */ | 
 | 			len = next1 - lblk1; | 
 | 			if (len < next2 - lblk2) | 
 | 				len = next2 - lblk2; | 
 | 			if (len > count) | 
 | 				len = count; | 
 | 			lblk1 += len; | 
 | 			lblk2 += len; | 
 | 			count -= len; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Prepare left boundary */ | 
 | 		if (e1_blk < lblk1) { | 
 | 			split = 1; | 
 | 			path1 = ext4_force_split_extent_at(handle, inode1, | 
 | 							   path1, lblk1, 0); | 
 | 			if (IS_ERR(path1)) { | 
 | 				*erp = PTR_ERR(path1); | 
 | 				goto errout; | 
 | 			} | 
 | 		} | 
 | 		if (e2_blk < lblk2) { | 
 | 			split = 1; | 
 | 			path2 = ext4_force_split_extent_at(handle, inode2, | 
 | 							   path2, lblk2, 0); | 
 | 			if (IS_ERR(path2)) { | 
 | 				*erp = PTR_ERR(path2); | 
 | 				goto errout; | 
 | 			} | 
 | 		} | 
 | 		/* ext4_split_extent_at() may result in leaf extent split, | 
 | 		 * path must to be revalidated. */ | 
 | 		if (split) | 
 | 			continue; | 
 |  | 
 | 		/* Prepare right boundary */ | 
 | 		len = count; | 
 | 		if (len > e1_blk + e1_len - lblk1) | 
 | 			len = e1_blk + e1_len - lblk1; | 
 | 		if (len > e2_blk + e2_len - lblk2) | 
 | 			len = e2_blk + e2_len - lblk2; | 
 |  | 
 | 		if (len != e1_len) { | 
 | 			split = 1; | 
 | 			path1 = ext4_force_split_extent_at(handle, inode1, | 
 | 							path1, lblk1 + len, 0); | 
 | 			if (IS_ERR(path1)) { | 
 | 				*erp = PTR_ERR(path1); | 
 | 				goto errout; | 
 | 			} | 
 | 		} | 
 | 		if (len != e2_len) { | 
 | 			split = 1; | 
 | 			path2 = ext4_force_split_extent_at(handle, inode2, | 
 | 							path2, lblk2 + len, 0); | 
 | 			if (IS_ERR(path2)) { | 
 | 				*erp = PTR_ERR(path2); | 
 | 				goto errout; | 
 | 			} | 
 | 		} | 
 | 		/* ext4_split_extent_at() may result in leaf extent split, | 
 | 		 * path must to be revalidated. */ | 
 | 		if (split) | 
 | 			continue; | 
 |  | 
 | 		BUG_ON(e2_len != e1_len); | 
 | 		*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); | 
 | 		if (unlikely(*erp)) | 
 | 			goto errout; | 
 | 		*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); | 
 | 		if (unlikely(*erp)) | 
 | 			goto errout; | 
 |  | 
 | 		/* Both extents are fully inside boundaries. Swap it now */ | 
 | 		tmp_ex = *ex1; | 
 | 		ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); | 
 | 		ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); | 
 | 		ex1->ee_len = cpu_to_le16(e2_len); | 
 | 		ex2->ee_len = cpu_to_le16(e1_len); | 
 | 		if (unwritten) | 
 | 			ext4_ext_mark_unwritten(ex2); | 
 | 		if (ext4_ext_is_unwritten(&tmp_ex)) | 
 | 			ext4_ext_mark_unwritten(ex1); | 
 |  | 
 | 		ext4_ext_try_to_merge(handle, inode2, path2, ex2); | 
 | 		ext4_ext_try_to_merge(handle, inode1, path1, ex1); | 
 | 		*erp = ext4_ext_dirty(handle, inode2, path2 + | 
 | 				      path2->p_depth); | 
 | 		if (unlikely(*erp)) | 
 | 			goto errout; | 
 | 		*erp = ext4_ext_dirty(handle, inode1, path1 + | 
 | 				      path1->p_depth); | 
 | 		/* | 
 | 		 * Looks scarry ah..? second inode already points to new blocks, | 
 | 		 * and it was successfully dirtied. But luckily error may happen | 
 | 		 * only due to journal error, so full transaction will be | 
 | 		 * aborted anyway. | 
 | 		 */ | 
 | 		if (unlikely(*erp)) | 
 | 			goto errout; | 
 |  | 
 | 		lblk1 += len; | 
 | 		lblk2 += len; | 
 | 		replaced_count += len; | 
 | 		count -= len; | 
 | 	} | 
 |  | 
 | errout: | 
 | 	ext4_free_ext_path(path1); | 
 | 	ext4_free_ext_path(path2); | 
 | 	return replaced_count; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_clu_mapped - determine whether any block in a logical cluster has | 
 |  *                   been mapped to a physical cluster | 
 |  * | 
 |  * @inode - file containing the logical cluster | 
 |  * @lclu - logical cluster of interest | 
 |  * | 
 |  * Returns 1 if any block in the logical cluster is mapped, signifying | 
 |  * that a physical cluster has been allocated for it.  Otherwise, | 
 |  * returns 0.  Can also return negative error codes.  Derived from | 
 |  * ext4_ext_map_blocks(). | 
 |  */ | 
 | int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	struct ext4_ext_path *path; | 
 | 	int depth, mapped = 0, err = 0; | 
 | 	struct ext4_extent *extent; | 
 | 	ext4_lblk_t first_lblk, first_lclu, last_lclu; | 
 |  | 
 | 	/* | 
 | 	 * if data can be stored inline, the logical cluster isn't | 
 | 	 * mapped - no physical clusters have been allocated, and the | 
 | 	 * file has no extents | 
 | 	 */ | 
 | 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) || | 
 | 	    ext4_has_inline_data(inode)) | 
 | 		return 0; | 
 |  | 
 | 	/* search for the extent closest to the first block in the cluster */ | 
 | 	path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0); | 
 | 	if (IS_ERR(path)) | 
 | 		return PTR_ERR(path); | 
 |  | 
 | 	depth = ext_depth(inode); | 
 |  | 
 | 	/* | 
 | 	 * A consistent leaf must not be empty.  This situation is possible, | 
 | 	 * though, _during_ tree modification, and it's why an assert can't | 
 | 	 * be put in ext4_find_extent(). | 
 | 	 */ | 
 | 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 		    "bad extent address - lblock: %lu, depth: %d, pblock: %lld", | 
 | 				 (unsigned long) EXT4_C2B(sbi, lclu), | 
 | 				 depth, path[depth].p_block); | 
 | 		err = -EFSCORRUPTED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	extent = path[depth].p_ext; | 
 |  | 
 | 	/* can't be mapped if the extent tree is empty */ | 
 | 	if (extent == NULL) | 
 | 		goto out; | 
 |  | 
 | 	first_lblk = le32_to_cpu(extent->ee_block); | 
 | 	first_lclu = EXT4_B2C(sbi, first_lblk); | 
 |  | 
 | 	/* | 
 | 	 * Three possible outcomes at this point - found extent spanning | 
 | 	 * the target cluster, to the left of the target cluster, or to the | 
 | 	 * right of the target cluster.  The first two cases are handled here. | 
 | 	 * The last case indicates the target cluster is not mapped. | 
 | 	 */ | 
 | 	if (lclu >= first_lclu) { | 
 | 		last_lclu = EXT4_B2C(sbi, first_lblk + | 
 | 				     ext4_ext_get_actual_len(extent) - 1); | 
 | 		if (lclu <= last_lclu) { | 
 | 			mapped = 1; | 
 | 		} else { | 
 | 			first_lblk = ext4_ext_next_allocated_block(path); | 
 | 			first_lclu = EXT4_B2C(sbi, first_lblk); | 
 | 			if (lclu == first_lclu) | 
 | 				mapped = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	ext4_free_ext_path(path); | 
 |  | 
 | 	return err ? err : mapped; | 
 | } | 
 |  | 
 | /* | 
 |  * Updates physical block address and unwritten status of extent | 
 |  * starting at lblk start and of len. If such an extent doesn't exist, | 
 |  * this function splits the extent tree appropriately to create an | 
 |  * extent like this.  This function is called in the fast commit | 
 |  * replay path.  Returns 0 on success and error on failure. | 
 |  */ | 
 | int ext4_ext_replay_update_ex(struct inode *inode, ext4_lblk_t start, | 
 | 			      int len, int unwritten, ext4_fsblk_t pblk) | 
 | { | 
 | 	struct ext4_ext_path *path; | 
 | 	struct ext4_extent *ex; | 
 | 	int ret; | 
 |  | 
 | 	path = ext4_find_extent(inode, start, NULL, 0); | 
 | 	if (IS_ERR(path)) | 
 | 		return PTR_ERR(path); | 
 | 	ex = path[path->p_depth].p_ext; | 
 | 	if (!ex) { | 
 | 		ret = -EFSCORRUPTED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (le32_to_cpu(ex->ee_block) != start || | 
 | 		ext4_ext_get_actual_len(ex) != len) { | 
 | 		/* We need to split this extent to match our extent first */ | 
 | 		down_write(&EXT4_I(inode)->i_data_sem); | 
 | 		path = ext4_force_split_extent_at(NULL, inode, path, start, 1); | 
 | 		up_write(&EXT4_I(inode)->i_data_sem); | 
 | 		if (IS_ERR(path)) { | 
 | 			ret = PTR_ERR(path); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		path = ext4_find_extent(inode, start, path, 0); | 
 | 		if (IS_ERR(path)) | 
 | 			return PTR_ERR(path); | 
 |  | 
 | 		ex = path[path->p_depth].p_ext; | 
 | 		WARN_ON(le32_to_cpu(ex->ee_block) != start); | 
 |  | 
 | 		if (ext4_ext_get_actual_len(ex) != len) { | 
 | 			down_write(&EXT4_I(inode)->i_data_sem); | 
 | 			path = ext4_force_split_extent_at(NULL, inode, path, | 
 | 							  start + len, 1); | 
 | 			up_write(&EXT4_I(inode)->i_data_sem); | 
 | 			if (IS_ERR(path)) { | 
 | 				ret = PTR_ERR(path); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			path = ext4_find_extent(inode, start, path, 0); | 
 | 			if (IS_ERR(path)) | 
 | 				return PTR_ERR(path); | 
 | 			ex = path[path->p_depth].p_ext; | 
 | 		} | 
 | 	} | 
 | 	if (unwritten) | 
 | 		ext4_ext_mark_unwritten(ex); | 
 | 	else | 
 | 		ext4_ext_mark_initialized(ex); | 
 | 	ext4_ext_store_pblock(ex, pblk); | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 | 	ret = ext4_ext_dirty(NULL, inode, &path[path->p_depth]); | 
 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 | out: | 
 | 	ext4_free_ext_path(path); | 
 | 	ext4_mark_inode_dirty(NULL, inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Try to shrink the extent tree */ | 
 | void ext4_ext_replay_shrink_inode(struct inode *inode, ext4_lblk_t end) | 
 | { | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_lblk_t old_cur, cur = 0; | 
 |  | 
 | 	while (cur < end) { | 
 | 		path = ext4_find_extent(inode, cur, NULL, 0); | 
 | 		if (IS_ERR(path)) | 
 | 			return; | 
 | 		ex = path[path->p_depth].p_ext; | 
 | 		if (!ex) { | 
 | 			ext4_free_ext_path(path); | 
 | 			ext4_mark_inode_dirty(NULL, inode); | 
 | 			return; | 
 | 		} | 
 | 		old_cur = cur; | 
 | 		cur = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); | 
 | 		if (cur <= old_cur) | 
 | 			cur = old_cur + 1; | 
 | 		ext4_ext_try_to_merge(NULL, inode, path, ex); | 
 | 		down_write(&EXT4_I(inode)->i_data_sem); | 
 | 		ext4_ext_dirty(NULL, inode, &path[path->p_depth]); | 
 | 		up_write(&EXT4_I(inode)->i_data_sem); | 
 | 		ext4_mark_inode_dirty(NULL, inode); | 
 | 		ext4_free_ext_path(path); | 
 | 	} | 
 | } | 
 |  | 
 | /* Check if *cur is a hole and if it is, skip it */ | 
 | static int skip_hole(struct inode *inode, ext4_lblk_t *cur) | 
 | { | 
 | 	int ret; | 
 | 	struct ext4_map_blocks map; | 
 |  | 
 | 	map.m_lblk = *cur; | 
 | 	map.m_len = ((inode->i_size) >> inode->i_sb->s_blocksize_bits) - *cur; | 
 |  | 
 | 	ret = ext4_map_blocks(NULL, inode, &map, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	if (ret != 0) | 
 | 		return 0; | 
 | 	*cur = *cur + map.m_len; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Count number of blocks used by this inode and update i_blocks */ | 
 | int ext4_ext_replay_set_iblocks(struct inode *inode) | 
 | { | 
 | 	struct ext4_ext_path *path = NULL, *path2 = NULL; | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_lblk_t cur = 0, end; | 
 | 	int numblks = 0, i, ret = 0; | 
 | 	ext4_fsblk_t cmp1, cmp2; | 
 | 	struct ext4_map_blocks map; | 
 |  | 
 | 	/* Determin the size of the file first */ | 
 | 	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, | 
 | 					EXT4_EX_NOCACHE); | 
 | 	if (IS_ERR(path)) | 
 | 		return PTR_ERR(path); | 
 | 	ex = path[path->p_depth].p_ext; | 
 | 	if (!ex) | 
 | 		goto out; | 
 | 	end = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	/* Count the number of data blocks */ | 
 | 	cur = 0; | 
 | 	while (cur < end) { | 
 | 		map.m_lblk = cur; | 
 | 		map.m_len = end - cur; | 
 | 		ret = ext4_map_blocks(NULL, inode, &map, 0); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret > 0) | 
 | 			numblks += ret; | 
 | 		cur = cur + map.m_len; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Count the number of extent tree blocks. We do it by looking up | 
 | 	 * two successive extents and determining the difference between | 
 | 	 * their paths. When path is different for 2 successive extents | 
 | 	 * we compare the blocks in the path at each level and increment | 
 | 	 * iblocks by total number of differences found. | 
 | 	 */ | 
 | 	cur = 0; | 
 | 	ret = skip_hole(inode, &cur); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	path = ext4_find_extent(inode, cur, path, 0); | 
 | 	if (IS_ERR(path)) | 
 | 		goto out; | 
 | 	numblks += path->p_depth; | 
 | 	while (cur < end) { | 
 | 		path = ext4_find_extent(inode, cur, path, 0); | 
 | 		if (IS_ERR(path)) | 
 | 			break; | 
 | 		ex = path[path->p_depth].p_ext; | 
 | 		if (!ex) | 
 | 			goto cleanup; | 
 |  | 
 | 		cur = max(cur + 1, le32_to_cpu(ex->ee_block) + | 
 | 					ext4_ext_get_actual_len(ex)); | 
 | 		ret = skip_hole(inode, &cur); | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		path2 = ext4_find_extent(inode, cur, path2, 0); | 
 | 		if (IS_ERR(path2)) | 
 | 			break; | 
 |  | 
 | 		for (i = 0; i <= max(path->p_depth, path2->p_depth); i++) { | 
 | 			cmp1 = cmp2 = 0; | 
 | 			if (i <= path->p_depth) | 
 | 				cmp1 = path[i].p_bh ? | 
 | 					path[i].p_bh->b_blocknr : 0; | 
 | 			if (i <= path2->p_depth) | 
 | 				cmp2 = path2[i].p_bh ? | 
 | 					path2[i].p_bh->b_blocknr : 0; | 
 | 			if (cmp1 != cmp2 && cmp2 != 0) | 
 | 				numblks++; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	inode->i_blocks = numblks << (inode->i_sb->s_blocksize_bits - 9); | 
 | 	ext4_mark_inode_dirty(NULL, inode); | 
 | cleanup: | 
 | 	ext4_free_ext_path(path); | 
 | 	ext4_free_ext_path(path2); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ext4_ext_clear_bb(struct inode *inode) | 
 | { | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_lblk_t cur = 0, end; | 
 | 	int j, ret = 0; | 
 | 	struct ext4_map_blocks map; | 
 |  | 
 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) | 
 | 		return 0; | 
 |  | 
 | 	/* Determin the size of the file first */ | 
 | 	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, | 
 | 					EXT4_EX_NOCACHE); | 
 | 	if (IS_ERR(path)) | 
 | 		return PTR_ERR(path); | 
 | 	ex = path[path->p_depth].p_ext; | 
 | 	if (!ex) | 
 | 		goto out; | 
 | 	end = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	cur = 0; | 
 | 	while (cur < end) { | 
 | 		map.m_lblk = cur; | 
 | 		map.m_len = end - cur; | 
 | 		ret = ext4_map_blocks(NULL, inode, &map, 0); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret > 0) { | 
 | 			path = ext4_find_extent(inode, map.m_lblk, path, 0); | 
 | 			if (!IS_ERR(path)) { | 
 | 				for (j = 0; j < path->p_depth; j++) { | 
 | 					ext4_mb_mark_bb(inode->i_sb, | 
 | 							path[j].p_block, 1, false); | 
 | 					ext4_fc_record_regions(inode->i_sb, inode->i_ino, | 
 | 							0, path[j].p_block, 1, 1); | 
 | 				} | 
 | 			} else { | 
 | 				path = NULL; | 
 | 			} | 
 | 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); | 
 | 			ext4_fc_record_regions(inode->i_sb, inode->i_ino, | 
 | 					map.m_lblk, map.m_pblk, map.m_len, 1); | 
 | 		} | 
 | 		cur = cur + map.m_len; | 
 | 	} | 
 |  | 
 | out: | 
 | 	ext4_free_ext_path(path); | 
 | 	return 0; | 
 | } |