|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		Implementation of the Transmission Control Protocol(TCP). | 
|  | * | 
|  | * Authors:	Ross Biro | 
|  | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
|  | *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
|  | *		Florian La Roche, <flla@stud.uni-sb.de> | 
|  | *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
|  | *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
|  | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
|  | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | *		Jorge Cwik, <jorge@laser.satlink.net> | 
|  | */ | 
|  |  | 
|  | #include <net/tcp.h> | 
|  | #include <net/xfrm.h> | 
|  | #include <net/busy_poll.h> | 
|  | #include <net/rstreason.h> | 
|  |  | 
|  | static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) | 
|  | { | 
|  | if (seq == s_win) | 
|  | return true; | 
|  | if (after(end_seq, s_win) && before(seq, e_win)) | 
|  | return true; | 
|  | return seq == e_win && seq == end_seq; | 
|  | } | 
|  |  | 
|  | static enum tcp_tw_status | 
|  | tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw, | 
|  | const struct sk_buff *skb, int mib_idx) | 
|  | { | 
|  | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); | 
|  |  | 
|  | if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx, | 
|  | &tcptw->tw_last_oow_ack_time)) { | 
|  | /* Send ACK. Note, we do not put the bucket, | 
|  | * it will be released by caller. | 
|  | */ | 
|  | return TCP_TW_ACK_OOW; | 
|  | } | 
|  |  | 
|  | /* We are rate-limiting, so just release the tw sock and drop skb. */ | 
|  | inet_twsk_put(tw); | 
|  | return TCP_TW_SUCCESS; | 
|  | } | 
|  |  | 
|  | static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq, | 
|  | u32 rcv_nxt) | 
|  | { | 
|  | #ifdef CONFIG_TCP_AO | 
|  | struct tcp_ao_info *ao; | 
|  |  | 
|  | ao = rcu_dereference(tcptw->ao_info); | 
|  | if (unlikely(ao && seq < rcv_nxt)) | 
|  | WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1); | 
|  | #endif | 
|  | WRITE_ONCE(tcptw->tw_rcv_nxt, seq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * * Main purpose of TIME-WAIT state is to close connection gracefully, | 
|  | *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN | 
|  | *   (and, probably, tail of data) and one or more our ACKs are lost. | 
|  | * * What is TIME-WAIT timeout? It is associated with maximal packet | 
|  | *   lifetime in the internet, which results in wrong conclusion, that | 
|  | *   it is set to catch "old duplicate segments" wandering out of their path. | 
|  | *   It is not quite correct. This timeout is calculated so that it exceeds | 
|  | *   maximal retransmission timeout enough to allow to lose one (or more) | 
|  | *   segments sent by peer and our ACKs. This time may be calculated from RTO. | 
|  | * * When TIME-WAIT socket receives RST, it means that another end | 
|  | *   finally closed and we are allowed to kill TIME-WAIT too. | 
|  | * * Second purpose of TIME-WAIT is catching old duplicate segments. | 
|  | *   Well, certainly it is pure paranoia, but if we load TIME-WAIT | 
|  | *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. | 
|  | * * If we invented some more clever way to catch duplicates | 
|  | *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. | 
|  | * | 
|  | * The algorithm below is based on FORMAL INTERPRETATION of RFCs. | 
|  | * When you compare it to RFCs, please, read section SEGMENT ARRIVES | 
|  | * from the very beginning. | 
|  | * | 
|  | * NOTE. With recycling (and later with fin-wait-2) TW bucket | 
|  | * is _not_ stateless. It means, that strictly speaking we must | 
|  | * spinlock it. I do not want! Well, probability of misbehaviour | 
|  | * is ridiculously low and, seems, we could use some mb() tricks | 
|  | * to avoid misread sequence numbers, states etc.  --ANK | 
|  | * | 
|  | * We don't need to initialize tmp_out.sack_ok as we don't use the results | 
|  | */ | 
|  | enum tcp_tw_status | 
|  | tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, | 
|  | const struct tcphdr *th, u32 *tw_isn, | 
|  | enum skb_drop_reason *drop_reason) | 
|  | { | 
|  | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); | 
|  | u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt); | 
|  | struct tcp_options_received tmp_opt; | 
|  | bool paws_reject = false; | 
|  | int ts_recent_stamp; | 
|  |  | 
|  | tmp_opt.saw_tstamp = 0; | 
|  | ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp); | 
|  | if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) { | 
|  | tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL); | 
|  |  | 
|  | if (tmp_opt.saw_tstamp) { | 
|  | if (tmp_opt.rcv_tsecr) | 
|  | tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset; | 
|  | tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent); | 
|  | tmp_opt.ts_recent_stamp	= ts_recent_stamp; | 
|  | paws_reject = tcp_paws_reject(&tmp_opt, th->rst); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) { | 
|  | /* Just repeat all the checks of tcp_rcv_state_process() */ | 
|  |  | 
|  | /* Out of window, send ACK */ | 
|  | if (paws_reject || | 
|  | !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | 
|  | rcv_nxt, | 
|  | rcv_nxt + tcptw->tw_rcv_wnd)) | 
|  | return tcp_timewait_check_oow_rate_limit( | 
|  | tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2); | 
|  |  | 
|  | if (th->rst) | 
|  | goto kill; | 
|  |  | 
|  | if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt)) | 
|  | return TCP_TW_RST; | 
|  |  | 
|  | /* Dup ACK? */ | 
|  | if (!th->ack || | 
|  | !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) || | 
|  | TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { | 
|  | inet_twsk_put(tw); | 
|  | return TCP_TW_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* New data or FIN. If new data arrive after half-duplex close, | 
|  | * reset. | 
|  | */ | 
|  | if (!th->fin || | 
|  | TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1) | 
|  | return TCP_TW_RST; | 
|  |  | 
|  | /* FIN arrived, enter true time-wait state. */ | 
|  | WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT); | 
|  | twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq, | 
|  | rcv_nxt); | 
|  |  | 
|  | if (tmp_opt.saw_tstamp) { | 
|  | u64 ts = tcp_clock_ms(); | 
|  |  | 
|  | WRITE_ONCE(tw->tw_entry_stamp, ts); | 
|  | WRITE_ONCE(tcptw->tw_ts_recent_stamp, | 
|  | div_u64(ts, MSEC_PER_SEC)); | 
|  | WRITE_ONCE(tcptw->tw_ts_recent, | 
|  | tmp_opt.rcv_tsval); | 
|  | } | 
|  |  | 
|  | inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); | 
|  | return TCP_TW_ACK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Now real TIME-WAIT state. | 
|  | * | 
|  | *	RFC 1122: | 
|  | *	"When a connection is [...] on TIME-WAIT state [...] | 
|  | *	[a TCP] MAY accept a new SYN from the remote TCP to | 
|  | *	reopen the connection directly, if it: | 
|  | * | 
|  | *	(1)  assigns its initial sequence number for the new | 
|  | *	connection to be larger than the largest sequence | 
|  | *	number it used on the previous connection incarnation, | 
|  | *	and | 
|  | * | 
|  | *	(2)  returns to TIME-WAIT state if the SYN turns out | 
|  | *	to be an old duplicate". | 
|  | */ | 
|  |  | 
|  | if (!paws_reject && | 
|  | (TCP_SKB_CB(skb)->seq == rcv_nxt && | 
|  | (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { | 
|  | /* In window segment, it may be only reset or bare ack. */ | 
|  |  | 
|  | if (th->rst) { | 
|  | /* This is TIME_WAIT assassination, in two flavors. | 
|  | * Oh well... nobody has a sufficient solution to this | 
|  | * protocol bug yet. | 
|  | */ | 
|  | if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) { | 
|  | kill: | 
|  | inet_twsk_deschedule_put(tw); | 
|  | return TCP_TW_SUCCESS; | 
|  | } | 
|  | } else { | 
|  | inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); | 
|  | } | 
|  |  | 
|  | if (tmp_opt.saw_tstamp) { | 
|  | WRITE_ONCE(tcptw->tw_ts_recent, | 
|  | tmp_opt.rcv_tsval); | 
|  | WRITE_ONCE(tcptw->tw_ts_recent_stamp, | 
|  | ktime_get_seconds()); | 
|  | } | 
|  |  | 
|  | inet_twsk_put(tw); | 
|  | return TCP_TW_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Out of window segment. | 
|  |  | 
|  | All the segments are ACKed immediately. | 
|  |  | 
|  | The only exception is new SYN. We accept it, if it is | 
|  | not old duplicate and we are not in danger to be killed | 
|  | by delayed old duplicates. RFC check is that it has | 
|  | newer sequence number works at rates <40Mbit/sec. | 
|  | However, if paws works, it is reliable AND even more, | 
|  | we even may relax silly seq space cutoff. | 
|  |  | 
|  | RED-PEN: we violate main RFC requirement, if this SYN will appear | 
|  | old duplicate (i.e. we receive RST in reply to SYN-ACK), | 
|  | we must return socket to time-wait state. It is not good, | 
|  | but not fatal yet. | 
|  | */ | 
|  |  | 
|  | if (th->syn && !th->rst && !th->ack && !paws_reject && | 
|  | (after(TCP_SKB_CB(skb)->seq, rcv_nxt) || | 
|  | (tmp_opt.saw_tstamp && | 
|  | (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) { | 
|  | u32 isn = tcptw->tw_snd_nxt + 65535 + 2; | 
|  | if (isn == 0) | 
|  | isn++; | 
|  | *tw_isn = isn; | 
|  | return TCP_TW_SYN; | 
|  | } | 
|  |  | 
|  | if (paws_reject) { | 
|  | *drop_reason = SKB_DROP_REASON_TCP_RFC7323_TW_PAWS; | 
|  | __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWS_TW_REJECTED); | 
|  | } | 
|  |  | 
|  | if (!th->rst) { | 
|  | /* In this case we must reset the TIMEWAIT timer. | 
|  | * | 
|  | * If it is ACKless SYN it may be both old duplicate | 
|  | * and new good SYN with random sequence number <rcv_nxt. | 
|  | * Do not reschedule in the last case. | 
|  | */ | 
|  | if (paws_reject || th->ack) | 
|  | inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); | 
|  |  | 
|  | return tcp_timewait_check_oow_rate_limit( | 
|  | tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT); | 
|  | } | 
|  | inet_twsk_put(tw); | 
|  | return TCP_TW_SUCCESS; | 
|  | } | 
|  | EXPORT_IPV6_MOD(tcp_timewait_state_process); | 
|  |  | 
|  | static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw) | 
|  | { | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct tcp_md5sig_key *key; | 
|  |  | 
|  | /* | 
|  | * The timewait bucket does not have the key DB from the | 
|  | * sock structure. We just make a quick copy of the | 
|  | * md5 key being used (if indeed we are using one) | 
|  | * so the timewait ack generating code has the key. | 
|  | */ | 
|  | tcptw->tw_md5_key = NULL; | 
|  | if (!static_branch_unlikely(&tcp_md5_needed.key)) | 
|  | return; | 
|  |  | 
|  | key = tp->af_specific->md5_lookup(sk, sk); | 
|  | if (key) { | 
|  | tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC); | 
|  | if (!tcptw->tw_md5_key) | 
|  | return; | 
|  | if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) | 
|  | goto out_free; | 
|  | tcp_md5_add_sigpool(); | 
|  | } | 
|  | return; | 
|  | out_free: | 
|  | WARN_ON_ONCE(1); | 
|  | kfree(tcptw->tw_md5_key); | 
|  | tcptw->tw_md5_key = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a socket to time-wait or dead fin-wait-2 state. | 
|  | */ | 
|  | void tcp_time_wait(struct sock *sk, int state, int timeo) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct net *net = sock_net(sk); | 
|  | struct inet_timewait_sock *tw; | 
|  |  | 
|  | tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state); | 
|  |  | 
|  | if (tw) { | 
|  | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); | 
|  | const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1); | 
|  |  | 
|  | tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk); | 
|  | tw->tw_mark		= sk->sk_mark; | 
|  | tw->tw_priority		= READ_ONCE(sk->sk_priority); | 
|  | tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale; | 
|  | /* refreshed when we enter true TIME-WAIT state */ | 
|  | tw->tw_entry_stamp	= tcp_time_stamp_ms(tp); | 
|  | tcptw->tw_rcv_nxt	= tp->rcv_nxt; | 
|  | tcptw->tw_snd_nxt	= tp->snd_nxt; | 
|  | tcptw->tw_rcv_wnd	= tcp_receive_window(tp); | 
|  | tcptw->tw_ts_recent	= tp->rx_opt.ts_recent; | 
|  | tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; | 
|  | tcptw->tw_ts_offset	= tp->tsoffset; | 
|  | tw->tw_usec_ts		= tp->tcp_usec_ts; | 
|  | tcptw->tw_last_oow_ack_time = 0; | 
|  | tcptw->tw_tx_delay	= tp->tcp_tx_delay; | 
|  | tw->tw_txhash		= sk->sk_txhash; | 
|  | tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping; | 
|  | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING | 
|  | tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping; | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | if (tw->tw_family == PF_INET6) { | 
|  | struct ipv6_pinfo *np = inet6_sk(sk); | 
|  |  | 
|  | tw->tw_v6_daddr = sk->sk_v6_daddr; | 
|  | tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr; | 
|  | tw->tw_tclass = np->tclass; | 
|  | tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK); | 
|  | tw->tw_ipv6only = sk->sk_ipv6only; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | tcp_time_wait_init(sk, tcptw); | 
|  | tcp_ao_time_wait(tcptw, tp); | 
|  |  | 
|  | /* Get the TIME_WAIT timeout firing. */ | 
|  | if (timeo < rto) | 
|  | timeo = rto; | 
|  |  | 
|  | if (state == TCP_TIME_WAIT) | 
|  | timeo = TCP_TIMEWAIT_LEN; | 
|  |  | 
|  | /* Linkage updates. | 
|  | * Note that access to tw after this point is illegal. | 
|  | */ | 
|  | inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo); | 
|  | } else { | 
|  | /* Sorry, if we're out of memory, just CLOSE this | 
|  | * socket up.  We've got bigger problems than | 
|  | * non-graceful socket closings. | 
|  | */ | 
|  | NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW); | 
|  | } | 
|  |  | 
|  | tcp_update_metrics(sk); | 
|  | tcp_done(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_time_wait); | 
|  |  | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | static void tcp_md5_twsk_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct tcp_md5sig_key *key; | 
|  |  | 
|  | key = container_of(head, struct tcp_md5sig_key, rcu); | 
|  | kfree(key); | 
|  | static_branch_slow_dec_deferred(&tcp_md5_needed); | 
|  | tcp_md5_release_sigpool(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void tcp_twsk_destructor(struct sock *sk) | 
|  | { | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | if (static_branch_unlikely(&tcp_md5_needed.key)) { | 
|  | struct tcp_timewait_sock *twsk = tcp_twsk(sk); | 
|  |  | 
|  | if (twsk->tw_md5_key) | 
|  | call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu); | 
|  | } | 
|  | #endif | 
|  | tcp_ao_destroy_sock(sk, true); | 
|  | } | 
|  | EXPORT_IPV6_MOD_GPL(tcp_twsk_destructor); | 
|  |  | 
|  | void tcp_twsk_purge(struct list_head *net_exit_list) | 
|  | { | 
|  | bool purged_once = false; | 
|  | struct net *net; | 
|  |  | 
|  | list_for_each_entry(net, net_exit_list, exit_list) { | 
|  | if (net->ipv4.tcp_death_row.hashinfo->pernet) { | 
|  | /* Even if tw_refcount == 1, we must clean up kernel reqsk */ | 
|  | inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo); | 
|  | } else if (!purged_once) { | 
|  | inet_twsk_purge(&tcp_hashinfo); | 
|  | purged_once = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Warning : This function is called without sk_listener being locked. | 
|  | * Be sure to read socket fields once, as their value could change under us. | 
|  | */ | 
|  | void tcp_openreq_init_rwin(struct request_sock *req, | 
|  | const struct sock *sk_listener, | 
|  | const struct dst_entry *dst) | 
|  | { | 
|  | struct inet_request_sock *ireq = inet_rsk(req); | 
|  | const struct tcp_sock *tp = tcp_sk(sk_listener); | 
|  | int full_space = tcp_full_space(sk_listener); | 
|  | u32 window_clamp; | 
|  | __u8 rcv_wscale; | 
|  | u32 rcv_wnd; | 
|  | int mss; | 
|  |  | 
|  | mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); | 
|  | window_clamp = READ_ONCE(tp->window_clamp); | 
|  | /* Set this up on the first call only */ | 
|  | req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW); | 
|  |  | 
|  | /* limit the window selection if the user enforce a smaller rx buffer */ | 
|  | if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK && | 
|  | (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0)) | 
|  | req->rsk_window_clamp = full_space; | 
|  |  | 
|  | rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req); | 
|  | if (rcv_wnd == 0) | 
|  | rcv_wnd = dst_metric(dst, RTAX_INITRWND); | 
|  | else if (full_space < rcv_wnd * mss) | 
|  | full_space = rcv_wnd * mss; | 
|  |  | 
|  | /* tcp_full_space because it is guaranteed to be the first packet */ | 
|  | tcp_select_initial_window(sk_listener, full_space, | 
|  | mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), | 
|  | &req->rsk_rcv_wnd, | 
|  | &req->rsk_window_clamp, | 
|  | ireq->wscale_ok, | 
|  | &rcv_wscale, | 
|  | rcv_wnd); | 
|  | ireq->rcv_wscale = rcv_wscale; | 
|  | } | 
|  |  | 
|  | static void tcp_ecn_openreq_child(struct tcp_sock *tp, | 
|  | const struct request_sock *req) | 
|  | { | 
|  | tcp_ecn_mode_set(tp, inet_rsk(req)->ecn_ok ? | 
|  | TCP_ECN_MODE_RFC3168 : | 
|  | TCP_ECN_DISABLED); | 
|  | } | 
|  |  | 
|  | void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); | 
|  | bool ca_got_dst = false; | 
|  |  | 
|  | if (ca_key != TCP_CA_UNSPEC) { | 
|  | const struct tcp_congestion_ops *ca; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ca = tcp_ca_find_key(ca_key); | 
|  | if (likely(ca && bpf_try_module_get(ca, ca->owner))) { | 
|  | icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); | 
|  | icsk->icsk_ca_ops = ca; | 
|  | ca_got_dst = true; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* If no valid choice made yet, assign current system default ca. */ | 
|  | if (!ca_got_dst && | 
|  | (!icsk->icsk_ca_setsockopt || | 
|  | !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner))) | 
|  | tcp_assign_congestion_control(sk); | 
|  |  | 
|  | tcp_set_ca_state(sk, TCP_CA_Open); | 
|  | } | 
|  | EXPORT_IPV6_MOD_GPL(tcp_ca_openreq_child); | 
|  |  | 
|  | static void smc_check_reset_syn_req(const struct tcp_sock *oldtp, | 
|  | struct request_sock *req, | 
|  | struct tcp_sock *newtp) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_SMC) | 
|  | struct inet_request_sock *ireq; | 
|  |  | 
|  | if (static_branch_unlikely(&tcp_have_smc)) { | 
|  | ireq = inet_rsk(req); | 
|  | if (oldtp->syn_smc && !ireq->smc_ok) | 
|  | newtp->syn_smc = 0; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* This is not only more efficient than what we used to do, it eliminates | 
|  | * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM | 
|  | * | 
|  | * Actually, we could lots of memory writes here. tp of listening | 
|  | * socket contains all necessary default parameters. | 
|  | */ | 
|  | struct sock *tcp_create_openreq_child(const struct sock *sk, | 
|  | struct request_sock *req, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC); | 
|  | const struct inet_request_sock *ireq = inet_rsk(req); | 
|  | struct tcp_request_sock *treq = tcp_rsk(req); | 
|  | struct inet_connection_sock *newicsk; | 
|  | const struct tcp_sock *oldtp; | 
|  | struct tcp_sock *newtp; | 
|  | u32 seq; | 
|  |  | 
|  | if (!newsk) | 
|  | return NULL; | 
|  |  | 
|  | newicsk = inet_csk(newsk); | 
|  | newtp = tcp_sk(newsk); | 
|  | oldtp = tcp_sk(sk); | 
|  |  | 
|  | smc_check_reset_syn_req(oldtp, req, newtp); | 
|  |  | 
|  | /* Now setup tcp_sock */ | 
|  | newtp->pred_flags = 0; | 
|  |  | 
|  | seq = treq->rcv_isn + 1; | 
|  | newtp->rcv_wup = seq; | 
|  | WRITE_ONCE(newtp->copied_seq, seq); | 
|  | WRITE_ONCE(newtp->rcv_nxt, seq); | 
|  | newtp->segs_in = 1; | 
|  |  | 
|  | seq = treq->snt_isn + 1; | 
|  | newtp->snd_sml = newtp->snd_una = seq; | 
|  | WRITE_ONCE(newtp->snd_nxt, seq); | 
|  | newtp->snd_up = seq; | 
|  |  | 
|  | INIT_LIST_HEAD(&newtp->tsq_node); | 
|  | INIT_LIST_HEAD(&newtp->tsorted_sent_queue); | 
|  |  | 
|  | tcp_init_wl(newtp, treq->rcv_isn); | 
|  |  | 
|  | minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U); | 
|  | newicsk->icsk_ack.lrcvtime = tcp_jiffies32; | 
|  |  | 
|  | newtp->lsndtime = tcp_jiffies32; | 
|  | newsk->sk_txhash = READ_ONCE(treq->txhash); | 
|  | newtp->total_retrans = req->num_retrans; | 
|  |  | 
|  | tcp_init_xmit_timers(newsk); | 
|  | WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1); | 
|  |  | 
|  | if (sock_flag(newsk, SOCK_KEEPOPEN)) | 
|  | tcp_reset_keepalive_timer(newsk, keepalive_time_when(newtp)); | 
|  |  | 
|  | newtp->rx_opt.tstamp_ok = ireq->tstamp_ok; | 
|  | newtp->rx_opt.sack_ok = ireq->sack_ok; | 
|  | newtp->window_clamp = req->rsk_window_clamp; | 
|  | newtp->rcv_ssthresh = req->rsk_rcv_wnd; | 
|  | newtp->rcv_wnd = req->rsk_rcv_wnd; | 
|  | newtp->rx_opt.wscale_ok = ireq->wscale_ok; | 
|  | if (newtp->rx_opt.wscale_ok) { | 
|  | newtp->rx_opt.snd_wscale = ireq->snd_wscale; | 
|  | newtp->rx_opt.rcv_wscale = ireq->rcv_wscale; | 
|  | } else { | 
|  | newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; | 
|  | newtp->window_clamp = min(newtp->window_clamp, 65535U); | 
|  | } | 
|  | newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale; | 
|  | newtp->max_window = newtp->snd_wnd; | 
|  |  | 
|  | if (newtp->rx_opt.tstamp_ok) { | 
|  | newtp->tcp_usec_ts = treq->req_usec_ts; | 
|  | newtp->rx_opt.ts_recent = req->ts_recent; | 
|  | newtp->rx_opt.ts_recent_stamp = ktime_get_seconds(); | 
|  | newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | 
|  | } else { | 
|  | newtp->tcp_usec_ts = 0; | 
|  | newtp->rx_opt.ts_recent_stamp = 0; | 
|  | newtp->tcp_header_len = sizeof(struct tcphdr); | 
|  | } | 
|  | if (req->num_timeout) { | 
|  | newtp->total_rto = req->num_timeout; | 
|  | newtp->undo_marker = treq->snt_isn; | 
|  | if (newtp->tcp_usec_ts) { | 
|  | newtp->retrans_stamp = treq->snt_synack; | 
|  | newtp->total_rto_time = (u32)(tcp_clock_us() - | 
|  | newtp->retrans_stamp) / USEC_PER_MSEC; | 
|  | } else { | 
|  | newtp->retrans_stamp = div_u64(treq->snt_synack, | 
|  | USEC_PER_SEC / TCP_TS_HZ); | 
|  | newtp->total_rto_time = tcp_clock_ms() - | 
|  | newtp->retrans_stamp; | 
|  | } | 
|  | newtp->total_rto_recoveries = 1; | 
|  | } | 
|  | newtp->tsoffset = treq->ts_off; | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | newtp->md5sig_info = NULL;	/*XXX*/ | 
|  | #endif | 
|  | #ifdef CONFIG_TCP_AO | 
|  | newtp->ao_info = NULL; | 
|  |  | 
|  | if (tcp_rsk_used_ao(req)) { | 
|  | struct tcp_ao_key *ao_key; | 
|  |  | 
|  | ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1); | 
|  | if (ao_key) | 
|  | newtp->tcp_header_len += tcp_ao_len_aligned(ao_key); | 
|  | } | 
|  | #endif | 
|  | if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len) | 
|  | newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len; | 
|  | newtp->rx_opt.mss_clamp = req->mss; | 
|  | tcp_ecn_openreq_child(newtp, req); | 
|  | newtp->fastopen_req = NULL; | 
|  | RCU_INIT_POINTER(newtp->fastopen_rsk, NULL); | 
|  |  | 
|  | newtp->bpf_chg_cc_inprogress = 0; | 
|  | tcp_bpf_clone(sk, newsk); | 
|  |  | 
|  | __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS); | 
|  |  | 
|  | xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1); | 
|  |  | 
|  | return newsk; | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_create_openreq_child); | 
|  |  | 
|  | /* | 
|  | * Process an incoming packet for SYN_RECV sockets represented as a | 
|  | * request_sock. Normally sk is the listener socket but for TFO it | 
|  | * points to the child socket. | 
|  | * | 
|  | * XXX (TFO) - The current impl contains a special check for ack | 
|  | * validation and inside tcp_v4_reqsk_send_ack(). Can we do better? | 
|  | * | 
|  | * We don't need to initialize tmp_opt.sack_ok as we don't use the results | 
|  | * | 
|  | * Note: If @fastopen is true, this can be called from process context. | 
|  | *       Otherwise, this is from BH context. | 
|  | */ | 
|  |  | 
|  | struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, | 
|  | struct request_sock *req, | 
|  | bool fastopen, bool *req_stolen, | 
|  | enum skb_drop_reason *drop_reason) | 
|  | { | 
|  | struct tcp_options_received tmp_opt; | 
|  | struct sock *child; | 
|  | const struct tcphdr *th = tcp_hdr(skb); | 
|  | __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); | 
|  | bool tsecr_reject = false; | 
|  | bool paws_reject = false; | 
|  | bool own_req; | 
|  |  | 
|  | tmp_opt.saw_tstamp = 0; | 
|  | if (th->doff > (sizeof(struct tcphdr)>>2)) { | 
|  | tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL); | 
|  |  | 
|  | if (tmp_opt.saw_tstamp) { | 
|  | tmp_opt.ts_recent = req->ts_recent; | 
|  | if (tmp_opt.rcv_tsecr) { | 
|  | if (inet_rsk(req)->tstamp_ok && !fastopen) | 
|  | tsecr_reject = !between(tmp_opt.rcv_tsecr, | 
|  | tcp_rsk(req)->snt_tsval_first, | 
|  | READ_ONCE(tcp_rsk(req)->snt_tsval_last)); | 
|  | tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off; | 
|  | } | 
|  | /* We do not store true stamp, but it is not required, | 
|  | * it can be estimated (approximately) | 
|  | * from another data. | 
|  | */ | 
|  | tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ; | 
|  | paws_reject = tcp_paws_reject(&tmp_opt, th->rst); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for pure retransmitted SYN. */ | 
|  | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn && | 
|  | flg == TCP_FLAG_SYN && | 
|  | !paws_reject) { | 
|  | /* | 
|  | * RFC793 draws (Incorrectly! It was fixed in RFC1122) | 
|  | * this case on figure 6 and figure 8, but formal | 
|  | * protocol description says NOTHING. | 
|  | * To be more exact, it says that we should send ACK, | 
|  | * because this segment (at least, if it has no data) | 
|  | * is out of window. | 
|  | * | 
|  | *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT | 
|  | *  describe SYN-RECV state. All the description | 
|  | *  is wrong, we cannot believe to it and should | 
|  | *  rely only on common sense and implementation | 
|  | *  experience. | 
|  | * | 
|  | * Enforce "SYN-ACK" according to figure 8, figure 6 | 
|  | * of RFC793, fixed by RFC1122. | 
|  | * | 
|  | * Note that even if there is new data in the SYN packet | 
|  | * they will be thrown away too. | 
|  | * | 
|  | * Reset timer after retransmitting SYNACK, similar to | 
|  | * the idea of fast retransmit in recovery. | 
|  | */ | 
|  | if (!tcp_oow_rate_limited(sock_net(sk), skb, | 
|  | LINUX_MIB_TCPACKSKIPPEDSYNRECV, | 
|  | &tcp_rsk(req)->last_oow_ack_time) && | 
|  |  | 
|  | !tcp_rtx_synack(sk, req)) { | 
|  | unsigned long expires = jiffies; | 
|  |  | 
|  | expires += reqsk_timeout(req, TCP_RTO_MAX); | 
|  | if (!fastopen) | 
|  | mod_timer_pending(&req->rsk_timer, expires); | 
|  | else | 
|  | req->rsk_timer.expires = expires; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Further reproduces section "SEGMENT ARRIVES" | 
|  | for state SYN-RECEIVED of RFC793. | 
|  | It is broken, however, it does not work only | 
|  | when SYNs are crossed. | 
|  |  | 
|  | You would think that SYN crossing is impossible here, since | 
|  | we should have a SYN_SENT socket (from connect()) on our end, | 
|  | but this is not true if the crossed SYNs were sent to both | 
|  | ends by a malicious third party.  We must defend against this, | 
|  | and to do that we first verify the ACK (as per RFC793, page | 
|  | 36) and reset if it is invalid.  Is this a true full defense? | 
|  | To convince ourselves, let us consider a way in which the ACK | 
|  | test can still pass in this 'malicious crossed SYNs' case. | 
|  | Malicious sender sends identical SYNs (and thus identical sequence | 
|  | numbers) to both A and B: | 
|  |  | 
|  | A: gets SYN, seq=7 | 
|  | B: gets SYN, seq=7 | 
|  |  | 
|  | By our good fortune, both A and B select the same initial | 
|  | send sequence number of seven :-) | 
|  |  | 
|  | A: sends SYN|ACK, seq=7, ack_seq=8 | 
|  | B: sends SYN|ACK, seq=7, ack_seq=8 | 
|  |  | 
|  | So we are now A eating this SYN|ACK, ACK test passes.  So | 
|  | does sequence test, SYN is truncated, and thus we consider | 
|  | it a bare ACK. | 
|  |  | 
|  | If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this | 
|  | bare ACK.  Otherwise, we create an established connection.  Both | 
|  | ends (listening sockets) accept the new incoming connection and try | 
|  | to talk to each other. 8-) | 
|  |  | 
|  | Note: This case is both harmless, and rare.  Possibility is about the | 
|  | same as us discovering intelligent life on another plant tomorrow. | 
|  |  | 
|  | But generally, we should (RFC lies!) to accept ACK | 
|  | from SYNACK both here and in tcp_rcv_state_process(). | 
|  | tcp_rcv_state_process() does not, hence, we do not too. | 
|  |  | 
|  | Note that the case is absolutely generic: | 
|  | we cannot optimize anything here without | 
|  | violating protocol. All the checks must be made | 
|  | before attempt to create socket. | 
|  | */ | 
|  |  | 
|  | /* RFC793 page 36: "If the connection is in any non-synchronized state ... | 
|  | *                  and the incoming segment acknowledges something not yet | 
|  | *                  sent (the segment carries an unacceptable ACK) ... | 
|  | *                  a reset is sent." | 
|  | * | 
|  | * Invalid ACK: reset will be sent by listening socket. | 
|  | * Note that the ACK validity check for a Fast Open socket is done | 
|  | * elsewhere and is checked directly against the child socket rather | 
|  | * than req because user data may have been sent out. | 
|  | */ | 
|  | if ((flg & TCP_FLAG_ACK) && !fastopen && | 
|  | (TCP_SKB_CB(skb)->ack_seq != | 
|  | tcp_rsk(req)->snt_isn + 1)) | 
|  | return sk; | 
|  |  | 
|  | /* RFC793: "first check sequence number". */ | 
|  |  | 
|  | if (paws_reject || tsecr_reject || | 
|  | !tcp_in_window(TCP_SKB_CB(skb)->seq, | 
|  | TCP_SKB_CB(skb)->end_seq, | 
|  | tcp_rsk(req)->rcv_nxt, | 
|  | tcp_rsk(req)->rcv_nxt + | 
|  | tcp_synack_window(req))) { | 
|  | /* Out of window: send ACK and drop. */ | 
|  | if (!(flg & TCP_FLAG_RST) && | 
|  | !tcp_oow_rate_limited(sock_net(sk), skb, | 
|  | LINUX_MIB_TCPACKSKIPPEDSYNRECV, | 
|  | &tcp_rsk(req)->last_oow_ack_time)) | 
|  | req->rsk_ops->send_ack(sk, skb, req); | 
|  | if (paws_reject) { | 
|  | SKB_DR_SET(*drop_reason, TCP_RFC7323_PAWS); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); | 
|  | } else if (tsecr_reject) { | 
|  | SKB_DR_SET(*drop_reason, TCP_RFC7323_TSECR); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TSECRREJECTED); | 
|  | } else { | 
|  | SKB_DR_SET(*drop_reason, TCP_OVERWINDOW); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* In sequence, PAWS is OK. */ | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) { | 
|  | /* Truncate SYN, it is out of window starting | 
|  | at tcp_rsk(req)->rcv_isn + 1. */ | 
|  | flg &= ~TCP_FLAG_SYN; | 
|  | } | 
|  |  | 
|  | /* RFC793: "second check the RST bit" and | 
|  | *	   "fourth, check the SYN bit" | 
|  | */ | 
|  | if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) { | 
|  | TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); | 
|  | goto embryonic_reset; | 
|  | } | 
|  |  | 
|  | /* ACK sequence verified above, just make sure ACK is | 
|  | * set.  If ACK not set, just silently drop the packet. | 
|  | * | 
|  | * XXX (TFO) - if we ever allow "data after SYN", the | 
|  | * following check needs to be removed. | 
|  | */ | 
|  | if (!(flg & TCP_FLAG_ACK)) | 
|  | return NULL; | 
|  |  | 
|  | /* For Fast Open no more processing is needed (sk is the | 
|  | * child socket). | 
|  | */ | 
|  | if (fastopen) | 
|  | return sk; | 
|  |  | 
|  | /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */ | 
|  | if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) && | 
|  | TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) { | 
|  | inet_rsk(req)->acked = 1; | 
|  | __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* OK, ACK is valid, create big socket and | 
|  | * feed this segment to it. It will repeat all | 
|  | * the tests. THIS SEGMENT MUST MOVE SOCKET TO | 
|  | * ESTABLISHED STATE. If it will be dropped after | 
|  | * socket is created, wait for troubles. | 
|  | */ | 
|  | child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, | 
|  | req, &own_req); | 
|  | if (!child) | 
|  | goto listen_overflow; | 
|  |  | 
|  | if (own_req && tmp_opt.saw_tstamp && | 
|  | !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt)) | 
|  | tcp_sk(child)->rx_opt.ts_recent = tmp_opt.rcv_tsval; | 
|  |  | 
|  | if (own_req && rsk_drop_req(req)) { | 
|  | reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); | 
|  | inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req); | 
|  | return child; | 
|  | } | 
|  |  | 
|  | sock_rps_save_rxhash(child, skb); | 
|  | tcp_synack_rtt_meas(child, req); | 
|  | *req_stolen = !own_req; | 
|  | return inet_csk_complete_hashdance(sk, child, req, own_req); | 
|  |  | 
|  | listen_overflow: | 
|  | SKB_DR_SET(*drop_reason, TCP_LISTEN_OVERFLOW); | 
|  | if (sk != req->rsk_listener) | 
|  | __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); | 
|  |  | 
|  | if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) { | 
|  | inet_rsk(req)->acked = 1; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | embryonic_reset: | 
|  | if (!(flg & TCP_FLAG_RST)) { | 
|  | /* Received a bad SYN pkt - for TFO We try not to reset | 
|  | * the local connection unless it's really necessary to | 
|  | * avoid becoming vulnerable to outside attack aiming at | 
|  | * resetting legit local connections. | 
|  | */ | 
|  | req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN); | 
|  | } else if (fastopen) { /* received a valid RST pkt */ | 
|  | reqsk_fastopen_remove(sk, req, true); | 
|  | tcp_reset(sk, skb); | 
|  | } | 
|  | if (!fastopen) { | 
|  | bool unlinked = inet_csk_reqsk_queue_drop(sk, req); | 
|  |  | 
|  | if (unlinked) | 
|  | __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS); | 
|  | *req_stolen = !unlinked; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_IPV6_MOD(tcp_check_req); | 
|  |  | 
|  | /* | 
|  | * Queue segment on the new socket if the new socket is active, | 
|  | * otherwise we just shortcircuit this and continue with | 
|  | * the new socket. | 
|  | * | 
|  | * For the vast majority of cases child->sk_state will be TCP_SYN_RECV | 
|  | * when entering. But other states are possible due to a race condition | 
|  | * where after __inet_lookup_established() fails but before the listener | 
|  | * locked is obtained, other packets cause the same connection to | 
|  | * be created. | 
|  | */ | 
|  |  | 
|  | enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, | 
|  | struct sk_buff *skb) | 
|  | __releases(&((child)->sk_lock.slock)) | 
|  | { | 
|  | enum skb_drop_reason reason = SKB_NOT_DROPPED_YET; | 
|  | int state = child->sk_state; | 
|  |  | 
|  | /* record sk_napi_id and sk_rx_queue_mapping of child. */ | 
|  | sk_mark_napi_id_set(child, skb); | 
|  |  | 
|  | tcp_segs_in(tcp_sk(child), skb); | 
|  | if (!sock_owned_by_user(child)) { | 
|  | reason = tcp_rcv_state_process(child, skb); | 
|  | /* Wakeup parent, send SIGIO */ | 
|  | if (state == TCP_SYN_RECV && child->sk_state != state) | 
|  | parent->sk_data_ready(parent); | 
|  | } else { | 
|  | /* Alas, it is possible again, because we do lookup | 
|  | * in main socket hash table and lock on listening | 
|  | * socket does not protect us more. | 
|  | */ | 
|  | __sk_add_backlog(child, skb); | 
|  | } | 
|  |  | 
|  | bh_unlock_sock(child); | 
|  | sock_put(child); | 
|  | return reason; | 
|  | } | 
|  | EXPORT_IPV6_MOD(tcp_child_process); |