| // SPDX-License-Identifier: GPL-2.0+ | 
 | // | 
 | // Copyright (c) 2013-2014 Freescale Semiconductor, Inc | 
 | // Copyright (c) 2017 Sysam, Angelo Dureghello  <angelo@sysam.it> | 
 |  | 
 | #include <linux/cleanup.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/dmapool.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/pm_domain.h> | 
 |  | 
 | #include "fsl-edma-common.h" | 
 |  | 
 | #define EDMA_CR			0x00 | 
 | #define EDMA_ES			0x04 | 
 | #define EDMA_ERQ		0x0C | 
 | #define EDMA_EEI		0x14 | 
 | #define EDMA_SERQ		0x1B | 
 | #define EDMA_CERQ		0x1A | 
 | #define EDMA_SEEI		0x19 | 
 | #define EDMA_CEEI		0x18 | 
 | #define EDMA_CINT		0x1F | 
 | #define EDMA_CERR		0x1E | 
 | #define EDMA_SSRT		0x1D | 
 | #define EDMA_CDNE		0x1C | 
 | #define EDMA_INTR		0x24 | 
 | #define EDMA_ERR		0x2C | 
 |  | 
 | #define EDMA64_ERQH		0x08 | 
 | #define EDMA64_EEIH		0x10 | 
 | #define EDMA64_SERQ		0x18 | 
 | #define EDMA64_CERQ		0x19 | 
 | #define EDMA64_SEEI		0x1a | 
 | #define EDMA64_CEEI		0x1b | 
 | #define EDMA64_CINT		0x1c | 
 | #define EDMA64_CERR		0x1d | 
 | #define EDMA64_SSRT		0x1e | 
 | #define EDMA64_CDNE		0x1f | 
 | #define EDMA64_INTH		0x20 | 
 | #define EDMA64_INTL		0x24 | 
 | #define EDMA64_ERRH		0x28 | 
 | #define EDMA64_ERRL		0x2c | 
 |  | 
 | void fsl_edma_tx_chan_handler(struct fsl_edma_chan *fsl_chan) | 
 | { | 
 | 	spin_lock(&fsl_chan->vchan.lock); | 
 |  | 
 | 	if (!fsl_chan->edesc) { | 
 | 		/* terminate_all called before */ | 
 | 		spin_unlock(&fsl_chan->vchan.lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!fsl_chan->edesc->iscyclic) { | 
 | 		list_del(&fsl_chan->edesc->vdesc.node); | 
 | 		vchan_cookie_complete(&fsl_chan->edesc->vdesc); | 
 | 		fsl_chan->edesc = NULL; | 
 | 		fsl_chan->status = DMA_COMPLETE; | 
 | 	} else { | 
 | 		vchan_cyclic_callback(&fsl_chan->edesc->vdesc); | 
 | 	} | 
 |  | 
 | 	if (!fsl_chan->edesc) | 
 | 		fsl_edma_xfer_desc(fsl_chan); | 
 |  | 
 | 	spin_unlock(&fsl_chan->vchan.lock); | 
 | } | 
 |  | 
 | static void fsl_edma3_enable_request(struct fsl_edma_chan *fsl_chan) | 
 | { | 
 | 	u32 val, flags; | 
 |  | 
 | 	flags = fsl_edma_drvflags(fsl_chan); | 
 | 	val = edma_readl_chreg(fsl_chan, ch_sbr); | 
 | 	if (fsl_chan->is_rxchan) | 
 | 		val |= EDMA_V3_CH_SBR_RD; | 
 | 	else | 
 | 		val |= EDMA_V3_CH_SBR_WR; | 
 |  | 
 | 	if (fsl_chan->is_remote) | 
 | 		val &= ~(EDMA_V3_CH_SBR_RD | EDMA_V3_CH_SBR_WR); | 
 |  | 
 | 	edma_writel_chreg(fsl_chan, val, ch_sbr); | 
 |  | 
 | 	if (flags & FSL_EDMA_DRV_HAS_CHMUX) { | 
 | 		/* | 
 | 		 * ch_mux: With the exception of 0, attempts to write a value | 
 | 		 * already in use will be forced to 0. | 
 | 		 */ | 
 | 		if (!edma_readl(fsl_chan->edma, fsl_chan->mux_addr)) | 
 | 			edma_writel(fsl_chan->edma, fsl_chan->srcid, fsl_chan->mux_addr); | 
 | 	} | 
 |  | 
 | 	val = edma_readl_chreg(fsl_chan, ch_csr); | 
 | 	val |= EDMA_V3_CH_CSR_ERQ | EDMA_V3_CH_CSR_EEI; | 
 | 	edma_writel_chreg(fsl_chan, val, ch_csr); | 
 | } | 
 |  | 
 | static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan) | 
 | { | 
 | 	struct edma_regs *regs = &fsl_chan->edma->regs; | 
 | 	u32 ch = fsl_chan->vchan.chan.chan_id; | 
 |  | 
 | 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG) | 
 | 		return fsl_edma3_enable_request(fsl_chan); | 
 |  | 
 | 	if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) { | 
 | 		edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), regs->seei); | 
 | 		edma_writeb(fsl_chan->edma, ch, regs->serq); | 
 | 	} else { | 
 | 		/* ColdFire is big endian, and accesses natively | 
 | 		 * big endian I/O peripherals | 
 | 		 */ | 
 | 		iowrite8(EDMA_SEEI_SEEI(ch), regs->seei); | 
 | 		iowrite8(ch, regs->serq); | 
 | 	} | 
 | } | 
 |  | 
 | static void fsl_edma3_disable_request(struct fsl_edma_chan *fsl_chan) | 
 | { | 
 | 	u32 val = edma_readl_chreg(fsl_chan, ch_csr); | 
 | 	u32 flags; | 
 |  | 
 | 	flags = fsl_edma_drvflags(fsl_chan); | 
 |  | 
 | 	if (flags & FSL_EDMA_DRV_HAS_CHMUX) | 
 | 		edma_writel(fsl_chan->edma, 0, fsl_chan->mux_addr); | 
 |  | 
 | 	val &= ~EDMA_V3_CH_CSR_ERQ; | 
 | 	edma_writel_chreg(fsl_chan, val, ch_csr); | 
 | } | 
 |  | 
 | void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan) | 
 | { | 
 | 	struct edma_regs *regs = &fsl_chan->edma->regs; | 
 | 	u32 ch = fsl_chan->vchan.chan.chan_id; | 
 |  | 
 | 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG) | 
 | 		return fsl_edma3_disable_request(fsl_chan); | 
 |  | 
 | 	if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) { | 
 | 		edma_writeb(fsl_chan->edma, ch, regs->cerq); | 
 | 		edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), regs->ceei); | 
 | 	} else { | 
 | 		/* ColdFire is big endian, and accesses natively | 
 | 		 * big endian I/O peripherals | 
 | 		 */ | 
 | 		iowrite8(ch, regs->cerq); | 
 | 		iowrite8(EDMA_CEEI_CEEI(ch), regs->ceei); | 
 | 	} | 
 | } | 
 |  | 
 | static void mux_configure8(struct fsl_edma_chan *fsl_chan, void __iomem *addr, | 
 | 			   u32 off, u32 slot, bool enable) | 
 | { | 
 | 	u8 val8; | 
 |  | 
 | 	if (enable) | 
 | 		val8 = EDMAMUX_CHCFG_ENBL | slot; | 
 | 	else | 
 | 		val8 = EDMAMUX_CHCFG_DIS; | 
 |  | 
 | 	iowrite8(val8, addr + off); | 
 | } | 
 |  | 
 | static void mux_configure32(struct fsl_edma_chan *fsl_chan, void __iomem *addr, | 
 | 			    u32 off, u32 slot, bool enable) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (enable) | 
 | 		val = EDMAMUX_CHCFG_ENBL << 24 | slot; | 
 | 	else | 
 | 		val = EDMAMUX_CHCFG_DIS; | 
 |  | 
 | 	iowrite32(val, addr + off * 4); | 
 | } | 
 |  | 
 | void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan, | 
 | 		       unsigned int slot, bool enable) | 
 | { | 
 | 	u32 ch = fsl_chan->vchan.chan.chan_id; | 
 | 	void __iomem *muxaddr; | 
 | 	unsigned int chans_per_mux, ch_off; | 
 | 	int endian_diff[4] = {3, 1, -1, -3}; | 
 | 	u32 dmamux_nr = fsl_chan->edma->drvdata->dmamuxs; | 
 |  | 
 | 	if (!dmamux_nr) | 
 | 		return; | 
 |  | 
 | 	chans_per_mux = fsl_chan->edma->n_chans / dmamux_nr; | 
 | 	ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux; | 
 |  | 
 | 	if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_MUX_SWAP) | 
 | 		ch_off += endian_diff[ch_off % 4]; | 
 |  | 
 | 	muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux]; | 
 | 	slot = EDMAMUX_CHCFG_SOURCE(slot); | 
 |  | 
 | 	if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_CONFIG32) | 
 | 		mux_configure32(fsl_chan, muxaddr, ch_off, slot, enable); | 
 | 	else | 
 | 		mux_configure8(fsl_chan, muxaddr, ch_off, slot, enable); | 
 | } | 
 |  | 
 | static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) | 
 | 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 |  | 
 | 	val = ffs(addr_width) - 1; | 
 | 	return val | (val << 8); | 
 | } | 
 |  | 
 | void fsl_edma_free_desc(struct virt_dma_desc *vdesc) | 
 | { | 
 | 	struct fsl_edma_desc *fsl_desc; | 
 | 	int i; | 
 |  | 
 | 	fsl_desc = to_fsl_edma_desc(vdesc); | 
 | 	for (i = 0; i < fsl_desc->n_tcds; i++) | 
 | 		dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd, | 
 | 			      fsl_desc->tcd[i].ptcd); | 
 | 	kfree(fsl_desc); | 
 | } | 
 |  | 
 | int fsl_edma_terminate_all(struct dma_chan *chan) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	unsigned long flags; | 
 | 	LIST_HEAD(head); | 
 |  | 
 | 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | 
 | 	fsl_edma_disable_request(fsl_chan); | 
 | 	fsl_chan->edesc = NULL; | 
 | 	fsl_chan->status = DMA_COMPLETE; | 
 | 	vchan_get_all_descriptors(&fsl_chan->vchan, &head); | 
 | 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | 
 | 	vchan_dma_desc_free_list(&fsl_chan->vchan, &head); | 
 |  | 
 | 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_HAS_PD) | 
 | 		pm_runtime_allow(fsl_chan->pd_dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int fsl_edma_pause(struct dma_chan *chan) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | 
 | 	if (fsl_chan->edesc) { | 
 | 		fsl_edma_disable_request(fsl_chan); | 
 | 		fsl_chan->status = DMA_PAUSED; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int fsl_edma_resume(struct dma_chan *chan) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | 
 | 	if (fsl_chan->edesc) { | 
 | 		fsl_edma_enable_request(fsl_chan); | 
 | 		fsl_chan->status = DMA_IN_PROGRESS; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void fsl_edma_unprep_slave_dma(struct fsl_edma_chan *fsl_chan) | 
 | { | 
 | 	if (fsl_chan->dma_dir != DMA_NONE) | 
 | 		dma_unmap_resource(fsl_chan->vchan.chan.device->dev, | 
 | 				   fsl_chan->dma_dev_addr, | 
 | 				   fsl_chan->dma_dev_size, | 
 | 				   fsl_chan->dma_dir, 0); | 
 | 	fsl_chan->dma_dir = DMA_NONE; | 
 | } | 
 |  | 
 | static bool fsl_edma_prep_slave_dma(struct fsl_edma_chan *fsl_chan, | 
 | 				    enum dma_transfer_direction dir) | 
 | { | 
 | 	struct device *dev = fsl_chan->vchan.chan.device->dev; | 
 | 	enum dma_data_direction dma_dir; | 
 | 	phys_addr_t addr = 0; | 
 | 	u32 size = 0; | 
 |  | 
 | 	switch (dir) { | 
 | 	case DMA_MEM_TO_DEV: | 
 | 		dma_dir = DMA_FROM_DEVICE; | 
 | 		addr = fsl_chan->cfg.dst_addr; | 
 | 		size = fsl_chan->cfg.dst_maxburst; | 
 | 		break; | 
 | 	case DMA_DEV_TO_MEM: | 
 | 		dma_dir = DMA_TO_DEVICE; | 
 | 		addr = fsl_chan->cfg.src_addr; | 
 | 		size = fsl_chan->cfg.src_maxburst; | 
 | 		break; | 
 | 	default: | 
 | 		dma_dir = DMA_NONE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Already mapped for this config? */ | 
 | 	if (fsl_chan->dma_dir == dma_dir) | 
 | 		return true; | 
 |  | 
 | 	fsl_edma_unprep_slave_dma(fsl_chan); | 
 |  | 
 | 	fsl_chan->dma_dev_addr = dma_map_resource(dev, addr, size, dma_dir, 0); | 
 | 	if (dma_mapping_error(dev, fsl_chan->dma_dev_addr)) | 
 | 		return false; | 
 | 	fsl_chan->dma_dev_size = size; | 
 | 	fsl_chan->dma_dir = dma_dir; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | int fsl_edma_slave_config(struct dma_chan *chan, | 
 | 				 struct dma_slave_config *cfg) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 |  | 
 | 	memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg)); | 
 | 	fsl_edma_unprep_slave_dma(fsl_chan); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan, | 
 | 		struct virt_dma_desc *vdesc, bool in_progress) | 
 | { | 
 | 	struct fsl_edma_desc *edesc = fsl_chan->edesc; | 
 | 	enum dma_transfer_direction dir = edesc->dirn; | 
 | 	dma_addr_t cur_addr, dma_addr, old_addr; | 
 | 	size_t len, size; | 
 | 	u32 nbytes = 0; | 
 | 	int i; | 
 |  | 
 | 	/* calculate the total size in this desc */ | 
 | 	for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++) { | 
 | 		nbytes = fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, nbytes); | 
 | 		if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE)) | 
 | 			nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes); | 
 | 		len += nbytes * fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, biter); | 
 | 	} | 
 |  | 
 | 	if (!in_progress) | 
 | 		return len; | 
 |  | 
 | 	/* 64bit read is not atomic, need read retry when high 32bit changed */ | 
 | 	do { | 
 | 		if (dir == DMA_MEM_TO_DEV) { | 
 | 			old_addr = edma_read_tcdreg(fsl_chan, saddr); | 
 | 			cur_addr = edma_read_tcdreg(fsl_chan, saddr); | 
 | 		} else { | 
 | 			old_addr = edma_read_tcdreg(fsl_chan, daddr); | 
 | 			cur_addr = edma_read_tcdreg(fsl_chan, daddr); | 
 | 		} | 
 | 	} while (upper_32_bits(cur_addr) != upper_32_bits(old_addr)); | 
 |  | 
 | 	/* figure out the finished and calculate the residue */ | 
 | 	for (i = 0; i < fsl_chan->edesc->n_tcds; i++) { | 
 | 		nbytes = fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, nbytes); | 
 | 		if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE)) | 
 | 			nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes); | 
 |  | 
 | 		size = nbytes * fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, biter); | 
 |  | 
 | 		if (dir == DMA_MEM_TO_DEV) | 
 | 			dma_addr = fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, saddr); | 
 | 		else | 
 | 			dma_addr = fsl_edma_get_tcd_to_cpu(fsl_chan, edesc->tcd[i].vtcd, daddr); | 
 |  | 
 | 		len -= size; | 
 | 		if (cur_addr >= dma_addr && cur_addr < dma_addr + size) { | 
 | 			len += dma_addr + size - cur_addr; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | enum dma_status fsl_edma_tx_status(struct dma_chan *chan, | 
 | 		dma_cookie_t cookie, struct dma_tx_state *txstate) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	struct virt_dma_desc *vdesc; | 
 | 	enum dma_status status; | 
 | 	unsigned long flags; | 
 |  | 
 | 	status = dma_cookie_status(chan, cookie, txstate); | 
 | 	if (status == DMA_COMPLETE) | 
 | 		return status; | 
 |  | 
 | 	if (!txstate) | 
 | 		return fsl_chan->status; | 
 |  | 
 | 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | 
 | 	vdesc = vchan_find_desc(&fsl_chan->vchan, cookie); | 
 | 	if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie) | 
 | 		txstate->residue = | 
 | 			fsl_edma_desc_residue(fsl_chan, vdesc, true); | 
 | 	else if (vdesc) | 
 | 		txstate->residue = | 
 | 			fsl_edma_desc_residue(fsl_chan, vdesc, false); | 
 | 	else | 
 | 		txstate->residue = 0; | 
 |  | 
 | 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | 
 |  | 
 | 	return fsl_chan->status; | 
 | } | 
 |  | 
 | static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan, void *tcd) | 
 | { | 
 | 	u16 csr = 0; | 
 |  | 
 | 	/* | 
 | 	 * TCD parameters are stored in struct fsl_edma_hw_tcd in little | 
 | 	 * endian format. However, we need to load the TCD registers in | 
 | 	 * big- or little-endian obeying the eDMA engine model endian, | 
 | 	 * and this is performed from specific edma_write functions | 
 | 	 */ | 
 | 	edma_write_tcdreg(fsl_chan, 0, csr); | 
 |  | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, saddr); | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, daddr); | 
 |  | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, attr); | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, soff); | 
 |  | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, nbytes); | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, slast); | 
 |  | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, citer); | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, biter); | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, doff); | 
 |  | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, dlast_sga); | 
 |  | 
 | 	csr = fsl_edma_get_tcd_to_cpu(fsl_chan, tcd, csr); | 
 |  | 
 | 	if (fsl_chan->is_sw) { | 
 | 		csr |= EDMA_TCD_CSR_START; | 
 | 		fsl_edma_set_tcd_to_le(fsl_chan, tcd, csr, csr); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Must clear CHn_CSR[DONE] bit before enable TCDn_CSR[ESG] at EDMAv3 | 
 | 	 * eDMAv4 have not such requirement. | 
 | 	 * Change MLINK need clear CHn_CSR[DONE] for both eDMAv3 and eDMAv4. | 
 | 	 */ | 
 | 	if (((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_SG) && | 
 | 		(csr & EDMA_TCD_CSR_E_SG)) || | 
 | 	    ((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_LINK) && | 
 | 		(csr & EDMA_TCD_CSR_E_LINK))) | 
 | 		edma_writel_chreg(fsl_chan, edma_readl_chreg(fsl_chan, ch_csr), ch_csr); | 
 |  | 
 |  | 
 | 	edma_cp_tcd_to_reg(fsl_chan, tcd, csr); | 
 | } | 
 |  | 
 | static inline | 
 | void fsl_edma_fill_tcd(struct fsl_edma_chan *fsl_chan, | 
 | 		       struct fsl_edma_hw_tcd *tcd, dma_addr_t src, dma_addr_t dst, | 
 | 		       u16 attr, u16 soff, u32 nbytes, dma_addr_t slast, u16 citer, | 
 | 		       u16 biter, u16 doff, dma_addr_t dlast_sga, bool major_int, | 
 | 		       bool disable_req, bool enable_sg) | 
 | { | 
 | 	struct dma_slave_config *cfg = &fsl_chan->cfg; | 
 | 	u32 burst = 0; | 
 | 	u16 csr = 0; | 
 |  | 
 | 	/* | 
 | 	 * eDMA hardware SGs require the TCDs to be stored in little | 
 | 	 * endian format irrespective of the register endian model. | 
 | 	 * So we put the value in little endian in memory, waiting | 
 | 	 * for fsl_edma_set_tcd_regs doing the swap. | 
 | 	 */ | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, src, saddr); | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, dst, daddr); | 
 |  | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, attr, attr); | 
 |  | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, soff, soff); | 
 |  | 
 | 	/* If we expect to have either multi_fifo or a port window size, | 
 | 	 * we will use minor loop offset, meaning bits 29-10 will be used for | 
 | 	 * address offset, while bits 9-0 will be used to tell DMA how much | 
 | 	 * data to read from addr. | 
 | 	 * If we don't have either of those, will use a major loop reading from addr | 
 | 	 * nbytes (29bits). | 
 | 	 */ | 
 | 	if (cfg->direction == DMA_MEM_TO_DEV) { | 
 | 		if (fsl_chan->is_multi_fifo) | 
 | 			burst = cfg->dst_maxburst * 4; | 
 | 		if (cfg->dst_port_window_size) | 
 | 			burst = cfg->dst_port_window_size * cfg->dst_addr_width; | 
 | 		if (burst) { | 
 | 			nbytes |= EDMA_V3_TCD_NBYTES_MLOFF(-burst); | 
 | 			nbytes |= EDMA_V3_TCD_NBYTES_DMLOE; | 
 | 			nbytes &= ~EDMA_V3_TCD_NBYTES_SMLOE; | 
 | 		} | 
 | 	} else { | 
 | 		if (fsl_chan->is_multi_fifo) | 
 | 			burst = cfg->src_maxburst * 4; | 
 | 		if (cfg->src_port_window_size) | 
 | 			burst = cfg->src_port_window_size * cfg->src_addr_width; | 
 | 		if (burst) { | 
 | 			nbytes |= EDMA_V3_TCD_NBYTES_MLOFF(-burst); | 
 | 			nbytes |= EDMA_V3_TCD_NBYTES_SMLOE; | 
 | 			nbytes &= ~EDMA_V3_TCD_NBYTES_DMLOE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, nbytes, nbytes); | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, slast, slast); | 
 |  | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, EDMA_TCD_CITER_CITER(citer), citer); | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, doff, doff); | 
 |  | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, dlast_sga, dlast_sga); | 
 |  | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, EDMA_TCD_BITER_BITER(biter), biter); | 
 |  | 
 | 	if (major_int) | 
 | 		csr |= EDMA_TCD_CSR_INT_MAJOR; | 
 |  | 
 | 	if (disable_req) | 
 | 		csr |= EDMA_TCD_CSR_D_REQ; | 
 |  | 
 | 	if (enable_sg) | 
 | 		csr |= EDMA_TCD_CSR_E_SG; | 
 |  | 
 | 	if (fsl_chan->is_rxchan) | 
 | 		csr |= EDMA_TCD_CSR_ACTIVE; | 
 |  | 
 | 	if (fsl_chan->is_sw) | 
 | 		csr |= EDMA_TCD_CSR_START; | 
 |  | 
 | 	fsl_edma_set_tcd_to_le(fsl_chan, tcd, csr, csr); | 
 |  | 
 | 	trace_edma_fill_tcd(fsl_chan, tcd); | 
 | } | 
 |  | 
 | static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan, | 
 | 		int sg_len) | 
 | { | 
 | 	struct fsl_edma_desc *fsl_desc; | 
 | 	int i; | 
 |  | 
 | 	fsl_desc = kzalloc(struct_size(fsl_desc, tcd, sg_len), GFP_NOWAIT); | 
 | 	if (!fsl_desc) | 
 | 		return NULL; | 
 |  | 
 | 	fsl_desc->echan = fsl_chan; | 
 | 	fsl_desc->n_tcds = sg_len; | 
 | 	for (i = 0; i < sg_len; i++) { | 
 | 		fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool, | 
 | 					GFP_NOWAIT, &fsl_desc->tcd[i].ptcd); | 
 | 		if (!fsl_desc->tcd[i].vtcd) | 
 | 			goto err; | 
 | 	} | 
 | 	return fsl_desc; | 
 |  | 
 | err: | 
 | 	while (--i >= 0) | 
 | 		dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd, | 
 | 				fsl_desc->tcd[i].ptcd); | 
 | 	kfree(fsl_desc); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic( | 
 | 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, | 
 | 		size_t period_len, enum dma_transfer_direction direction, | 
 | 		unsigned long flags) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	struct fsl_edma_desc *fsl_desc; | 
 | 	dma_addr_t dma_buf_next; | 
 | 	bool major_int = true; | 
 | 	int sg_len, i; | 
 | 	dma_addr_t src_addr, dst_addr, last_sg; | 
 | 	u16 soff, doff, iter; | 
 | 	u32 nbytes; | 
 |  | 
 | 	if (!is_slave_direction(direction)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!fsl_edma_prep_slave_dma(fsl_chan, direction)) | 
 | 		return NULL; | 
 |  | 
 | 	sg_len = buf_len / period_len; | 
 | 	fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); | 
 | 	if (!fsl_desc) | 
 | 		return NULL; | 
 | 	fsl_desc->iscyclic = true; | 
 | 	fsl_desc->dirn = direction; | 
 |  | 
 | 	dma_buf_next = dma_addr; | 
 | 	if (direction == DMA_MEM_TO_DEV) { | 
 | 		fsl_chan->attr = | 
 | 			fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width); | 
 | 		nbytes = fsl_chan->cfg.dst_addr_width * | 
 | 			fsl_chan->cfg.dst_maxburst; | 
 | 	} else { | 
 | 		fsl_chan->attr = | 
 | 			fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width); | 
 | 		nbytes = fsl_chan->cfg.src_addr_width * | 
 | 			fsl_chan->cfg.src_maxburst; | 
 | 	} | 
 |  | 
 | 	iter = period_len / nbytes; | 
 |  | 
 | 	for (i = 0; i < sg_len; i++) { | 
 | 		if (dma_buf_next >= dma_addr + buf_len) | 
 | 			dma_buf_next = dma_addr; | 
 |  | 
 | 		/* get next sg's physical address */ | 
 | 		last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; | 
 |  | 
 | 		if (direction == DMA_MEM_TO_DEV) { | 
 | 			src_addr = dma_buf_next; | 
 | 			dst_addr = fsl_chan->dma_dev_addr; | 
 | 			soff = fsl_chan->cfg.dst_addr_width; | 
 | 			doff = fsl_chan->is_multi_fifo ? 4 : 0; | 
 | 			if (fsl_chan->cfg.dst_port_window_size) | 
 | 				doff = fsl_chan->cfg.dst_addr_width; | 
 | 		} else if (direction == DMA_DEV_TO_MEM) { | 
 | 			src_addr = fsl_chan->dma_dev_addr; | 
 | 			dst_addr = dma_buf_next; | 
 | 			soff = fsl_chan->is_multi_fifo ? 4 : 0; | 
 | 			doff = fsl_chan->cfg.src_addr_width; | 
 | 			if (fsl_chan->cfg.src_port_window_size) | 
 | 				soff = fsl_chan->cfg.src_addr_width; | 
 | 		} else { | 
 | 			/* DMA_DEV_TO_DEV */ | 
 | 			src_addr = fsl_chan->cfg.src_addr; | 
 | 			dst_addr = fsl_chan->cfg.dst_addr; | 
 | 			soff = doff = 0; | 
 | 			major_int = false; | 
 | 		} | 
 |  | 
 | 		fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, dst_addr, | 
 | 				  fsl_chan->attr, soff, nbytes, 0, iter, | 
 | 				  iter, doff, last_sg, major_int, false, true); | 
 | 		dma_buf_next += period_len; | 
 | 	} | 
 |  | 
 | 	return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); | 
 | } | 
 |  | 
 | struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg( | 
 | 		struct dma_chan *chan, struct scatterlist *sgl, | 
 | 		unsigned int sg_len, enum dma_transfer_direction direction, | 
 | 		unsigned long flags, void *context) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	struct fsl_edma_desc *fsl_desc; | 
 | 	struct scatterlist *sg; | 
 | 	dma_addr_t src_addr, dst_addr, last_sg; | 
 | 	u16 soff, doff, iter; | 
 | 	u32 nbytes; | 
 | 	int i; | 
 |  | 
 | 	if (!is_slave_direction(direction)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!fsl_edma_prep_slave_dma(fsl_chan, direction)) | 
 | 		return NULL; | 
 |  | 
 | 	fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); | 
 | 	if (!fsl_desc) | 
 | 		return NULL; | 
 | 	fsl_desc->iscyclic = false; | 
 | 	fsl_desc->dirn = direction; | 
 |  | 
 | 	if (direction == DMA_MEM_TO_DEV) { | 
 | 		fsl_chan->attr = | 
 | 			fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width); | 
 | 		nbytes = fsl_chan->cfg.dst_addr_width * | 
 | 			fsl_chan->cfg.dst_maxburst; | 
 | 	} else { | 
 | 		fsl_chan->attr = | 
 | 			fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width); | 
 | 		nbytes = fsl_chan->cfg.src_addr_width * | 
 | 			fsl_chan->cfg.src_maxburst; | 
 | 	} | 
 |  | 
 | 	for_each_sg(sgl, sg, sg_len, i) { | 
 | 		if (direction == DMA_MEM_TO_DEV) { | 
 | 			src_addr = sg_dma_address(sg); | 
 | 			dst_addr = fsl_chan->dma_dev_addr; | 
 | 			soff = fsl_chan->cfg.dst_addr_width; | 
 | 			doff = 0; | 
 | 		} else if (direction == DMA_DEV_TO_MEM) { | 
 | 			src_addr = fsl_chan->dma_dev_addr; | 
 | 			dst_addr = sg_dma_address(sg); | 
 | 			soff = 0; | 
 | 			doff = fsl_chan->cfg.src_addr_width; | 
 | 		} else { | 
 | 			/* DMA_DEV_TO_DEV */ | 
 | 			src_addr = fsl_chan->cfg.src_addr; | 
 | 			dst_addr = fsl_chan->cfg.dst_addr; | 
 | 			soff = 0; | 
 | 			doff = 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Choose the suitable burst length if sg_dma_len is not | 
 | 		 * multiple of burst length so that the whole transfer length is | 
 | 		 * multiple of minor loop(burst length). | 
 | 		 */ | 
 | 		if (sg_dma_len(sg) % nbytes) { | 
 | 			u32 width = (direction == DMA_DEV_TO_MEM) ? doff : soff; | 
 | 			u32 burst = (direction == DMA_DEV_TO_MEM) ? | 
 | 						fsl_chan->cfg.src_maxburst : | 
 | 						fsl_chan->cfg.dst_maxburst; | 
 | 			int j; | 
 |  | 
 | 			for (j = burst; j > 1; j--) { | 
 | 				if (!(sg_dma_len(sg) % (j * width))) { | 
 | 					nbytes = j * width; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			/* Set burst size as 1 if there's no suitable one */ | 
 | 			if (j == 1) | 
 | 				nbytes = width; | 
 | 		} | 
 | 		iter = sg_dma_len(sg) / nbytes; | 
 | 		if (i < sg_len - 1) { | 
 | 			last_sg = fsl_desc->tcd[(i + 1)].ptcd; | 
 | 			fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, | 
 | 					  dst_addr, fsl_chan->attr, soff, | 
 | 					  nbytes, 0, iter, iter, doff, last_sg, | 
 | 					  false, false, true); | 
 | 		} else { | 
 | 			last_sg = 0; | 
 | 			fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, | 
 | 					  dst_addr, fsl_chan->attr, soff, | 
 | 					  nbytes, 0, iter, iter, doff, last_sg, | 
 | 					  true, true, false); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); | 
 | } | 
 |  | 
 | struct dma_async_tx_descriptor *fsl_edma_prep_memcpy(struct dma_chan *chan, | 
 | 						     dma_addr_t dma_dst, dma_addr_t dma_src, | 
 | 						     size_t len, unsigned long flags) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	struct fsl_edma_desc *fsl_desc; | 
 |  | 
 | 	fsl_desc = fsl_edma_alloc_desc(fsl_chan, 1); | 
 | 	if (!fsl_desc) | 
 | 		return NULL; | 
 | 	fsl_desc->iscyclic = false; | 
 |  | 
 | 	fsl_chan->is_sw = true; | 
 | 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_MEM_REMOTE) | 
 | 		fsl_chan->is_remote = true; | 
 |  | 
 | 	/* To match with copy_align and max_seg_size so 1 tcd is enough */ | 
 | 	fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[0].vtcd, dma_src, dma_dst, | 
 | 			fsl_edma_get_tcd_attr(DMA_SLAVE_BUSWIDTH_32_BYTES), | 
 | 			32, len, 0, 1, 1, 32, 0, true, true, false); | 
 |  | 
 | 	return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); | 
 | } | 
 |  | 
 | void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan) | 
 | { | 
 | 	struct virt_dma_desc *vdesc; | 
 |  | 
 | 	lockdep_assert_held(&fsl_chan->vchan.lock); | 
 |  | 
 | 	vdesc = vchan_next_desc(&fsl_chan->vchan); | 
 | 	if (!vdesc) | 
 | 		return; | 
 | 	fsl_chan->edesc = to_fsl_edma_desc(vdesc); | 
 | 	fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd); | 
 | 	fsl_edma_enable_request(fsl_chan); | 
 | 	fsl_chan->status = DMA_IN_PROGRESS; | 
 | } | 
 |  | 
 | void fsl_edma_issue_pending(struct dma_chan *chan) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | 
 |  | 
 | 	if (unlikely(fsl_chan->pm_state != RUNNING)) { | 
 | 		spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | 
 | 		/* cannot submit due to suspend */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc) | 
 | 		fsl_edma_xfer_desc(fsl_chan); | 
 |  | 
 | 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | 
 | } | 
 |  | 
 | int fsl_edma_alloc_chan_resources(struct dma_chan *chan) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_HAS_CHCLK) | 
 | 		clk_prepare_enable(fsl_chan->clk); | 
 |  | 
 | 	fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev, | 
 | 				fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_TCD64 ? | 
 | 				sizeof(struct fsl_edma_hw_tcd64) : sizeof(struct fsl_edma_hw_tcd), | 
 | 				32, 0); | 
 |  | 
 | 	if (fsl_chan->txirq) | 
 | 		ret = request_irq(fsl_chan->txirq, fsl_chan->irq_handler, IRQF_SHARED, | 
 | 				 fsl_chan->chan_name, fsl_chan); | 
 |  | 
 | 	if (ret) | 
 | 		goto err_txirq; | 
 |  | 
 | 	if (fsl_chan->errirq > 0) | 
 | 		ret = request_irq(fsl_chan->errirq, fsl_chan->errirq_handler, IRQF_SHARED, | 
 | 				  fsl_chan->errirq_name, fsl_chan); | 
 |  | 
 | 	if (ret) | 
 | 		goto err_errirq; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_errirq: | 
 | 	if (fsl_chan->txirq) | 
 | 		free_irq(fsl_chan->txirq, fsl_chan); | 
 | err_txirq: | 
 | 	dma_pool_destroy(fsl_chan->tcd_pool); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void fsl_edma_free_chan_resources(struct dma_chan *chan) | 
 | { | 
 | 	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | 
 | 	struct fsl_edma_engine *edma = fsl_chan->edma; | 
 | 	unsigned long flags; | 
 | 	LIST_HEAD(head); | 
 |  | 
 | 	spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | 
 | 	fsl_edma_disable_request(fsl_chan); | 
 | 	if (edma->drvdata->dmamuxs) | 
 | 		fsl_edma_chan_mux(fsl_chan, 0, false); | 
 | 	fsl_chan->edesc = NULL; | 
 | 	vchan_get_all_descriptors(&fsl_chan->vchan, &head); | 
 | 	fsl_edma_unprep_slave_dma(fsl_chan); | 
 | 	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | 
 |  | 
 | 	if (fsl_chan->txirq) | 
 | 		free_irq(fsl_chan->txirq, fsl_chan); | 
 | 	if (fsl_chan->errirq) | 
 | 		free_irq(fsl_chan->errirq, fsl_chan); | 
 |  | 
 | 	vchan_dma_desc_free_list(&fsl_chan->vchan, &head); | 
 | 	dma_pool_destroy(fsl_chan->tcd_pool); | 
 | 	fsl_chan->tcd_pool = NULL; | 
 | 	fsl_chan->is_sw = false; | 
 | 	fsl_chan->srcid = 0; | 
 | 	fsl_chan->is_remote = false; | 
 | 	if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_HAS_CHCLK) | 
 | 		clk_disable_unprepare(fsl_chan->clk); | 
 | } | 
 |  | 
 | void fsl_edma_cleanup_vchan(struct dma_device *dmadev) | 
 | { | 
 | 	struct fsl_edma_chan *chan, *_chan; | 
 |  | 
 | 	list_for_each_entry_safe(chan, _chan, | 
 | 				&dmadev->channels, vchan.chan.device_node) { | 
 | 		list_del(&chan->vchan.chan.device_node); | 
 | 		tasklet_kill(&chan->vchan.task); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * On the 32 channels Vybrid/mpc577x edma version, register offsets are | 
 |  * different compared to ColdFire mcf5441x 64 channels edma. | 
 |  * | 
 |  * This function sets up register offsets as per proper declared version | 
 |  * so must be called in xxx_edma_probe() just after setting the | 
 |  * edma "version" and "membase" appropriately. | 
 |  */ | 
 | void fsl_edma_setup_regs(struct fsl_edma_engine *edma) | 
 | { | 
 | 	bool is64 = !!(edma->drvdata->flags & FSL_EDMA_DRV_EDMA64); | 
 |  | 
 | 	edma->regs.cr = edma->membase + EDMA_CR; | 
 | 	edma->regs.es = edma->membase + EDMA_ES; | 
 | 	edma->regs.erql = edma->membase + EDMA_ERQ; | 
 | 	edma->regs.eeil = edma->membase + EDMA_EEI; | 
 |  | 
 | 	edma->regs.serq = edma->membase + (is64 ? EDMA64_SERQ : EDMA_SERQ); | 
 | 	edma->regs.cerq = edma->membase + (is64 ? EDMA64_CERQ : EDMA_CERQ); | 
 | 	edma->regs.seei = edma->membase + (is64 ? EDMA64_SEEI : EDMA_SEEI); | 
 | 	edma->regs.ceei = edma->membase + (is64 ? EDMA64_CEEI : EDMA_CEEI); | 
 | 	edma->regs.cint = edma->membase + (is64 ? EDMA64_CINT : EDMA_CINT); | 
 | 	edma->regs.cerr = edma->membase + (is64 ? EDMA64_CERR : EDMA_CERR); | 
 | 	edma->regs.ssrt = edma->membase + (is64 ? EDMA64_SSRT : EDMA_SSRT); | 
 | 	edma->regs.cdne = edma->membase + (is64 ? EDMA64_CDNE : EDMA_CDNE); | 
 | 	edma->regs.intl = edma->membase + (is64 ? EDMA64_INTL : EDMA_INTR); | 
 | 	edma->regs.errl = edma->membase + (is64 ? EDMA64_ERRL : EDMA_ERR); | 
 |  | 
 | 	if (is64) { | 
 | 		edma->regs.erqh = edma->membase + EDMA64_ERQH; | 
 | 		edma->regs.eeih = edma->membase + EDMA64_EEIH; | 
 | 		edma->regs.errh = edma->membase + EDMA64_ERRH; | 
 | 		edma->regs.inth = edma->membase + EDMA64_INTH; | 
 | 	} | 
 | } | 
 |  | 
 | MODULE_LICENSE("GPL v2"); |