|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2017-2018 Christoph Hellwig. | 
|  | */ | 
|  |  | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <trace/events/block.h> | 
|  | #include "nvme.h" | 
|  |  | 
|  | bool multipath = true; | 
|  | static bool multipath_always_on; | 
|  |  | 
|  | static int multipath_param_set(const char *val, const struct kernel_param *kp) | 
|  | { | 
|  | int ret; | 
|  | bool *arg = kp->arg; | 
|  |  | 
|  | ret = param_set_bool(val, kp); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (multipath_always_on && !*arg) { | 
|  | pr_err("Can't disable multipath when multipath_always_on is configured.\n"); | 
|  | *arg = true; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct kernel_param_ops multipath_param_ops = { | 
|  | .set = multipath_param_set, | 
|  | .get = param_get_bool, | 
|  | }; | 
|  |  | 
|  | module_param_cb(multipath, &multipath_param_ops, &multipath, 0444); | 
|  | MODULE_PARM_DESC(multipath, | 
|  | "turn on native support for multiple controllers per subsystem"); | 
|  |  | 
|  | static int multipath_always_on_set(const char *val, | 
|  | const struct kernel_param *kp) | 
|  | { | 
|  | int ret; | 
|  | bool *arg = kp->arg; | 
|  |  | 
|  | ret = param_set_bool(val, kp); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (*arg) | 
|  | multipath = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct kernel_param_ops multipath_always_on_ops = { | 
|  | .set = multipath_always_on_set, | 
|  | .get = param_get_bool, | 
|  | }; | 
|  |  | 
|  | module_param_cb(multipath_always_on, &multipath_always_on_ops, | 
|  | &multipath_always_on, 0444); | 
|  | MODULE_PARM_DESC(multipath_always_on, | 
|  | "create multipath node always except for private namespace with non-unique nsid; note that this also implicitly enables native multipath support"); | 
|  |  | 
|  | static const char *nvme_iopolicy_names[] = { | 
|  | [NVME_IOPOLICY_NUMA]	= "numa", | 
|  | [NVME_IOPOLICY_RR]	= "round-robin", | 
|  | [NVME_IOPOLICY_QD]      = "queue-depth", | 
|  | }; | 
|  |  | 
|  | static int iopolicy = NVME_IOPOLICY_NUMA; | 
|  |  | 
|  | static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp) | 
|  | { | 
|  | if (!val) | 
|  | return -EINVAL; | 
|  | if (!strncmp(val, "numa", 4)) | 
|  | iopolicy = NVME_IOPOLICY_NUMA; | 
|  | else if (!strncmp(val, "round-robin", 11)) | 
|  | iopolicy = NVME_IOPOLICY_RR; | 
|  | else if (!strncmp(val, "queue-depth", 11)) | 
|  | iopolicy = NVME_IOPOLICY_QD; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp) | 
|  | { | 
|  | return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]); | 
|  | } | 
|  |  | 
|  | module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy, | 
|  | &iopolicy, 0644); | 
|  | MODULE_PARM_DESC(iopolicy, | 
|  | "Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'"); | 
|  |  | 
|  | void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys) | 
|  | { | 
|  | subsys->iopolicy = iopolicy; | 
|  | } | 
|  |  | 
|  | void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) | 
|  | { | 
|  | struct nvme_ns_head *h; | 
|  |  | 
|  | lockdep_assert_held(&subsys->lock); | 
|  | list_for_each_entry(h, &subsys->nsheads, entry) | 
|  | if (h->disk) | 
|  | blk_mq_unfreeze_queue_nomemrestore(h->disk->queue); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) | 
|  | { | 
|  | struct nvme_ns_head *h; | 
|  |  | 
|  | lockdep_assert_held(&subsys->lock); | 
|  | list_for_each_entry(h, &subsys->nsheads, entry) | 
|  | if (h->disk) | 
|  | blk_mq_freeze_queue_wait(h->disk->queue); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) | 
|  | { | 
|  | struct nvme_ns_head *h; | 
|  |  | 
|  | lockdep_assert_held(&subsys->lock); | 
|  | list_for_each_entry(h, &subsys->nsheads, entry) | 
|  | if (h->disk) | 
|  | blk_freeze_queue_start(h->disk->queue); | 
|  | } | 
|  |  | 
|  | void nvme_failover_req(struct request *req) | 
|  | { | 
|  | struct nvme_ns *ns = req->q->queuedata; | 
|  | u16 status = nvme_req(req)->status & NVME_SCT_SC_MASK; | 
|  | unsigned long flags; | 
|  | struct bio *bio; | 
|  |  | 
|  | nvme_mpath_clear_current_path(ns); | 
|  |  | 
|  | /* | 
|  | * If we got back an ANA error, we know the controller is alive but not | 
|  | * ready to serve this namespace.  Kick of a re-read of the ANA | 
|  | * information page, and just try any other available path for now. | 
|  | */ | 
|  | if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) { | 
|  | set_bit(NVME_NS_ANA_PENDING, &ns->flags); | 
|  | queue_work(nvme_wq, &ns->ctrl->ana_work); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&ns->head->requeue_lock, flags); | 
|  | for (bio = req->bio; bio; bio = bio->bi_next) { | 
|  | bio_set_dev(bio, ns->head->disk->part0); | 
|  | if (bio->bi_opf & REQ_POLLED) { | 
|  | bio->bi_opf &= ~REQ_POLLED; | 
|  | bio->bi_cookie = BLK_QC_T_NONE; | 
|  | } | 
|  | /* | 
|  | * The alternate request queue that we may end up submitting | 
|  | * the bio to may be frozen temporarily, in this case REQ_NOWAIT | 
|  | * will fail the I/O immediately with EAGAIN to the issuer. | 
|  | * We are not in the issuer context which cannot block. Clear | 
|  | * the flag to avoid spurious EAGAIN I/O failures. | 
|  | */ | 
|  | bio->bi_opf &= ~REQ_NOWAIT; | 
|  | } | 
|  | blk_steal_bios(&ns->head->requeue_list, req); | 
|  | spin_unlock_irqrestore(&ns->head->requeue_lock, flags); | 
|  |  | 
|  | nvme_req(req)->status = 0; | 
|  | nvme_end_req(req); | 
|  | kblockd_schedule_work(&ns->head->requeue_work); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_start_request(struct request *rq) | 
|  | { | 
|  | struct nvme_ns *ns = rq->q->queuedata; | 
|  | struct gendisk *disk = ns->head->disk; | 
|  |  | 
|  | if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) { | 
|  | atomic_inc(&ns->ctrl->nr_active); | 
|  | nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE; | 
|  | } | 
|  |  | 
|  | if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq)) | 
|  | return; | 
|  |  | 
|  | nvme_req(rq)->flags |= NVME_MPATH_IO_STATS; | 
|  | nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq), | 
|  | jiffies); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nvme_mpath_start_request); | 
|  |  | 
|  | void nvme_mpath_end_request(struct request *rq) | 
|  | { | 
|  | struct nvme_ns *ns = rq->q->queuedata; | 
|  |  | 
|  | if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE) | 
|  | atomic_dec_if_positive(&ns->ctrl->nr_active); | 
|  |  | 
|  | if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS)) | 
|  | return; | 
|  | bdev_end_io_acct(ns->head->disk->part0, req_op(rq), | 
|  | blk_rq_bytes(rq) >> SECTOR_SHIFT, | 
|  | nvme_req(rq)->start_time); | 
|  | } | 
|  |  | 
|  | void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) | 
|  | { | 
|  | struct nvme_ns *ns; | 
|  | int srcu_idx; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&ctrl->srcu); | 
|  | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, | 
|  | srcu_read_lock_held(&ctrl->srcu)) { | 
|  | if (!ns->head->disk) | 
|  | continue; | 
|  | kblockd_schedule_work(&ns->head->requeue_work); | 
|  | if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE) | 
|  | disk_uevent(ns->head->disk, KOBJ_CHANGE); | 
|  | } | 
|  | srcu_read_unlock(&ctrl->srcu, srcu_idx); | 
|  | } | 
|  |  | 
|  | static const char *nvme_ana_state_names[] = { | 
|  | [0]				= "invalid state", | 
|  | [NVME_ANA_OPTIMIZED]		= "optimized", | 
|  | [NVME_ANA_NONOPTIMIZED]		= "non-optimized", | 
|  | [NVME_ANA_INACCESSIBLE]		= "inaccessible", | 
|  | [NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss", | 
|  | [NVME_ANA_CHANGE]		= "change", | 
|  | }; | 
|  |  | 
|  | bool nvme_mpath_clear_current_path(struct nvme_ns *ns) | 
|  | { | 
|  | struct nvme_ns_head *head = ns->head; | 
|  | bool changed = false; | 
|  | int node; | 
|  |  | 
|  | if (!head) | 
|  | goto out; | 
|  |  | 
|  | for_each_node(node) { | 
|  | if (ns == rcu_access_pointer(head->current_path[node])) { | 
|  | rcu_assign_pointer(head->current_path[node], NULL); | 
|  | changed = true; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) | 
|  | { | 
|  | struct nvme_ns *ns; | 
|  | int srcu_idx; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&ctrl->srcu); | 
|  | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, | 
|  | srcu_read_lock_held(&ctrl->srcu)) { | 
|  | nvme_mpath_clear_current_path(ns); | 
|  | kblockd_schedule_work(&ns->head->requeue_work); | 
|  | } | 
|  | srcu_read_unlock(&ctrl->srcu, srcu_idx); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_revalidate_paths(struct nvme_ns *ns) | 
|  | { | 
|  | struct nvme_ns_head *head = ns->head; | 
|  | sector_t capacity = get_capacity(head->disk); | 
|  | int node; | 
|  | int srcu_idx; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&head->srcu); | 
|  | list_for_each_entry_srcu(ns, &head->list, siblings, | 
|  | srcu_read_lock_held(&head->srcu)) { | 
|  | if (capacity != get_capacity(ns->disk)) | 
|  | clear_bit(NVME_NS_READY, &ns->flags); | 
|  | } | 
|  | srcu_read_unlock(&head->srcu, srcu_idx); | 
|  |  | 
|  | for_each_node(node) | 
|  | rcu_assign_pointer(head->current_path[node], NULL); | 
|  | kblockd_schedule_work(&head->requeue_work); | 
|  | } | 
|  |  | 
|  | static bool nvme_path_is_disabled(struct nvme_ns *ns) | 
|  | { | 
|  | enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl); | 
|  |  | 
|  | /* | 
|  | * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should | 
|  | * still be able to complete assuming that the controller is connected. | 
|  | * Otherwise it will fail immediately and return to the requeue list. | 
|  | */ | 
|  | if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING) | 
|  | return true; | 
|  | if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) || | 
|  | !test_bit(NVME_NS_READY, &ns->flags)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) | 
|  | { | 
|  | int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; | 
|  | struct nvme_ns *found = NULL, *fallback = NULL, *ns; | 
|  |  | 
|  | list_for_each_entry_srcu(ns, &head->list, siblings, | 
|  | srcu_read_lock_held(&head->srcu)) { | 
|  | if (nvme_path_is_disabled(ns)) | 
|  | continue; | 
|  |  | 
|  | if (ns->ctrl->numa_node != NUMA_NO_NODE && | 
|  | READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) | 
|  | distance = node_distance(node, ns->ctrl->numa_node); | 
|  | else | 
|  | distance = LOCAL_DISTANCE; | 
|  |  | 
|  | switch (ns->ana_state) { | 
|  | case NVME_ANA_OPTIMIZED: | 
|  | if (distance < found_distance) { | 
|  | found_distance = distance; | 
|  | found = ns; | 
|  | } | 
|  | break; | 
|  | case NVME_ANA_NONOPTIMIZED: | 
|  | if (distance < fallback_distance) { | 
|  | fallback_distance = distance; | 
|  | fallback = ns; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) | 
|  | found = fallback; | 
|  | if (found) | 
|  | rcu_assign_pointer(head->current_path[node], found); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, | 
|  | struct nvme_ns *ns) | 
|  | { | 
|  | ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, | 
|  | siblings); | 
|  | if (ns) | 
|  | return ns; | 
|  | return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); | 
|  | } | 
|  |  | 
|  | static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head) | 
|  | { | 
|  | struct nvme_ns *ns, *found = NULL; | 
|  | int node = numa_node_id(); | 
|  | struct nvme_ns *old = srcu_dereference(head->current_path[node], | 
|  | &head->srcu); | 
|  |  | 
|  | if (unlikely(!old)) | 
|  | return __nvme_find_path(head, node); | 
|  |  | 
|  | if (list_is_singular(&head->list)) { | 
|  | if (nvme_path_is_disabled(old)) | 
|  | return NULL; | 
|  | return old; | 
|  | } | 
|  |  | 
|  | for (ns = nvme_next_ns(head, old); | 
|  | ns && ns != old; | 
|  | ns = nvme_next_ns(head, ns)) { | 
|  | if (nvme_path_is_disabled(ns)) | 
|  | continue; | 
|  |  | 
|  | if (ns->ana_state == NVME_ANA_OPTIMIZED) { | 
|  | found = ns; | 
|  | goto out; | 
|  | } | 
|  | if (ns->ana_state == NVME_ANA_NONOPTIMIZED) | 
|  | found = ns; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The loop above skips the current path for round-robin semantics. | 
|  | * Fall back to the current path if either: | 
|  | *  - no other optimized path found and current is optimized, | 
|  | *  - no other usable path found and current is usable. | 
|  | */ | 
|  | if (!nvme_path_is_disabled(old) && | 
|  | (old->ana_state == NVME_ANA_OPTIMIZED || | 
|  | (!found && old->ana_state == NVME_ANA_NONOPTIMIZED))) | 
|  | return old; | 
|  |  | 
|  | if (!found) | 
|  | return NULL; | 
|  | out: | 
|  | rcu_assign_pointer(head->current_path[node], found); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head) | 
|  | { | 
|  | struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns; | 
|  | unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX; | 
|  | unsigned int depth; | 
|  |  | 
|  | list_for_each_entry_srcu(ns, &head->list, siblings, | 
|  | srcu_read_lock_held(&head->srcu)) { | 
|  | if (nvme_path_is_disabled(ns)) | 
|  | continue; | 
|  |  | 
|  | depth = atomic_read(&ns->ctrl->nr_active); | 
|  |  | 
|  | switch (ns->ana_state) { | 
|  | case NVME_ANA_OPTIMIZED: | 
|  | if (depth < min_depth_opt) { | 
|  | min_depth_opt = depth; | 
|  | best_opt = ns; | 
|  | } | 
|  | break; | 
|  | case NVME_ANA_NONOPTIMIZED: | 
|  | if (depth < min_depth_nonopt) { | 
|  | min_depth_nonopt = depth; | 
|  | best_nonopt = ns; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (min_depth_opt == 0) | 
|  | return best_opt; | 
|  | } | 
|  |  | 
|  | return best_opt ? best_opt : best_nonopt; | 
|  | } | 
|  |  | 
|  | static inline bool nvme_path_is_optimized(struct nvme_ns *ns) | 
|  | { | 
|  | return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE && | 
|  | ns->ana_state == NVME_ANA_OPTIMIZED; | 
|  | } | 
|  |  | 
|  | static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head) | 
|  | { | 
|  | int node = numa_node_id(); | 
|  | struct nvme_ns *ns; | 
|  |  | 
|  | ns = srcu_dereference(head->current_path[node], &head->srcu); | 
|  | if (unlikely(!ns)) | 
|  | return __nvme_find_path(head, node); | 
|  | if (unlikely(!nvme_path_is_optimized(ns))) | 
|  | return __nvme_find_path(head, node); | 
|  | return ns; | 
|  | } | 
|  |  | 
|  | inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) | 
|  | { | 
|  | switch (READ_ONCE(head->subsys->iopolicy)) { | 
|  | case NVME_IOPOLICY_QD: | 
|  | return nvme_queue_depth_path(head); | 
|  | case NVME_IOPOLICY_RR: | 
|  | return nvme_round_robin_path(head); | 
|  | default: | 
|  | return nvme_numa_path(head); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool nvme_available_path(struct nvme_ns_head *head) | 
|  | { | 
|  | struct nvme_ns *ns; | 
|  |  | 
|  | if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) | 
|  | return false; | 
|  |  | 
|  | list_for_each_entry_srcu(ns, &head->list, siblings, | 
|  | srcu_read_lock_held(&head->srcu)) { | 
|  | if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags)) | 
|  | continue; | 
|  | switch (nvme_ctrl_state(ns->ctrl)) { | 
|  | case NVME_CTRL_LIVE: | 
|  | case NVME_CTRL_RESETTING: | 
|  | case NVME_CTRL_CONNECTING: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If "head->delayed_removal_secs" is configured (i.e., non-zero), do | 
|  | * not immediately fail I/O. Instead, requeue the I/O for the configured | 
|  | * duration, anticipating that if there's a transient link failure then | 
|  | * it may recover within this time window. This parameter is exported to | 
|  | * userspace via sysfs, and its default value is zero. It is internally | 
|  | * mapped to NVME_NSHEAD_QUEUE_IF_NO_PATH. When delayed_removal_secs is | 
|  | * non-zero, this flag is set to true. When zero, the flag is cleared. | 
|  | */ | 
|  | return nvme_mpath_queue_if_no_path(head); | 
|  | } | 
|  |  | 
|  | static void nvme_ns_head_submit_bio(struct bio *bio) | 
|  | { | 
|  | struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data; | 
|  | struct device *dev = disk_to_dev(head->disk); | 
|  | struct nvme_ns *ns; | 
|  | int srcu_idx; | 
|  |  | 
|  | /* | 
|  | * The namespace might be going away and the bio might be moved to a | 
|  | * different queue via blk_steal_bios(), so we need to use the bio_split | 
|  | * pool from the original queue to allocate the bvecs from. | 
|  | */ | 
|  | bio = bio_split_to_limits(bio); | 
|  | if (!bio) | 
|  | return; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&head->srcu); | 
|  | ns = nvme_find_path(head); | 
|  | if (likely(ns)) { | 
|  | bio_set_dev(bio, ns->disk->part0); | 
|  | bio->bi_opf |= REQ_NVME_MPATH; | 
|  | trace_block_bio_remap(bio, disk_devt(ns->head->disk), | 
|  | bio->bi_iter.bi_sector); | 
|  | submit_bio_noacct(bio); | 
|  | } else if (nvme_available_path(head)) { | 
|  | dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); | 
|  |  | 
|  | spin_lock_irq(&head->requeue_lock); | 
|  | bio_list_add(&head->requeue_list, bio); | 
|  | spin_unlock_irq(&head->requeue_lock); | 
|  | } else { | 
|  | dev_warn_ratelimited(dev, "no available path - failing I/O\n"); | 
|  |  | 
|  | bio_io_error(bio); | 
|  | } | 
|  |  | 
|  | srcu_read_unlock(&head->srcu, srcu_idx); | 
|  | } | 
|  |  | 
|  | static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode) | 
|  | { | 
|  | if (!nvme_tryget_ns_head(disk->private_data)) | 
|  | return -ENXIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nvme_ns_head_release(struct gendisk *disk) | 
|  | { | 
|  | nvme_put_ns_head(disk->private_data); | 
|  | } | 
|  |  | 
|  | static int nvme_ns_head_get_unique_id(struct gendisk *disk, u8 id[16], | 
|  | enum blk_unique_id type) | 
|  | { | 
|  | struct nvme_ns_head *head = disk->private_data; | 
|  | struct nvme_ns *ns; | 
|  | int srcu_idx, ret = -EWOULDBLOCK; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&head->srcu); | 
|  | ns = nvme_find_path(head); | 
|  | if (ns) | 
|  | ret = nvme_ns_get_unique_id(ns, id, type); | 
|  | srcu_read_unlock(&head->srcu, srcu_idx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_ZONED | 
|  | static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector, | 
|  | unsigned int nr_zones, report_zones_cb cb, void *data) | 
|  | { | 
|  | struct nvme_ns_head *head = disk->private_data; | 
|  | struct nvme_ns *ns; | 
|  | int srcu_idx, ret = -EWOULDBLOCK; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&head->srcu); | 
|  | ns = nvme_find_path(head); | 
|  | if (ns) | 
|  | ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data); | 
|  | srcu_read_unlock(&head->srcu, srcu_idx); | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | #define nvme_ns_head_report_zones	NULL | 
|  | #endif /* CONFIG_BLK_DEV_ZONED */ | 
|  |  | 
|  | const struct block_device_operations nvme_ns_head_ops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .submit_bio	= nvme_ns_head_submit_bio, | 
|  | .open		= nvme_ns_head_open, | 
|  | .release	= nvme_ns_head_release, | 
|  | .ioctl		= nvme_ns_head_ioctl, | 
|  | .compat_ioctl	= blkdev_compat_ptr_ioctl, | 
|  | .getgeo		= nvme_getgeo, | 
|  | .get_unique_id	= nvme_ns_head_get_unique_id, | 
|  | .report_zones	= nvme_ns_head_report_zones, | 
|  | .pr_ops		= &nvme_pr_ops, | 
|  | }; | 
|  |  | 
|  | static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev) | 
|  | { | 
|  | return container_of(cdev, struct nvme_ns_head, cdev); | 
|  | } | 
|  |  | 
|  | static int nvme_ns_head_chr_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev))) | 
|  | return -ENXIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nvme_ns_head_chr_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations nvme_ns_head_chr_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= nvme_ns_head_chr_open, | 
|  | .release	= nvme_ns_head_chr_release, | 
|  | .unlocked_ioctl	= nvme_ns_head_chr_ioctl, | 
|  | .compat_ioctl	= compat_ptr_ioctl, | 
|  | .uring_cmd	= nvme_ns_head_chr_uring_cmd, | 
|  | .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, | 
|  | }; | 
|  |  | 
|  | static int nvme_add_ns_head_cdev(struct nvme_ns_head *head) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | head->cdev_device.parent = &head->subsys->dev; | 
|  | ret = dev_set_name(&head->cdev_device, "ng%dn%d", | 
|  | head->subsys->instance, head->instance); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = nvme_cdev_add(&head->cdev, &head->cdev_device, | 
|  | &nvme_ns_head_chr_fops, THIS_MODULE); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void nvme_partition_scan_work(struct work_struct *work) | 
|  | { | 
|  | struct nvme_ns_head *head = | 
|  | container_of(work, struct nvme_ns_head, partition_scan_work); | 
|  |  | 
|  | if (WARN_ON_ONCE(!test_and_clear_bit(GD_SUPPRESS_PART_SCAN, | 
|  | &head->disk->state))) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&head->disk->open_mutex); | 
|  | bdev_disk_changed(head->disk, false); | 
|  | mutex_unlock(&head->disk->open_mutex); | 
|  | } | 
|  |  | 
|  | static void nvme_requeue_work(struct work_struct *work) | 
|  | { | 
|  | struct nvme_ns_head *head = | 
|  | container_of(work, struct nvme_ns_head, requeue_work); | 
|  | struct bio *bio, *next; | 
|  |  | 
|  | spin_lock_irq(&head->requeue_lock); | 
|  | next = bio_list_get(&head->requeue_list); | 
|  | spin_unlock_irq(&head->requeue_lock); | 
|  |  | 
|  | while ((bio = next) != NULL) { | 
|  | next = bio->bi_next; | 
|  | bio->bi_next = NULL; | 
|  |  | 
|  | submit_bio_noacct(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_remove_head(struct nvme_ns_head *head) | 
|  | { | 
|  | if (test_and_clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { | 
|  | /* | 
|  | * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared | 
|  | * to allow multipath to fail all I/O. | 
|  | */ | 
|  | kblockd_schedule_work(&head->requeue_work); | 
|  |  | 
|  | nvme_cdev_del(&head->cdev, &head->cdev_device); | 
|  | synchronize_srcu(&head->srcu); | 
|  | del_gendisk(head->disk); | 
|  | } | 
|  | nvme_put_ns_head(head); | 
|  | } | 
|  |  | 
|  | static void nvme_remove_head_work(struct work_struct *work) | 
|  | { | 
|  | struct nvme_ns_head *head = container_of(to_delayed_work(work), | 
|  | struct nvme_ns_head, remove_work); | 
|  | bool remove = false; | 
|  |  | 
|  | mutex_lock(&head->subsys->lock); | 
|  | if (list_empty(&head->list)) { | 
|  | list_del_init(&head->entry); | 
|  | remove = true; | 
|  | } | 
|  | mutex_unlock(&head->subsys->lock); | 
|  | if (remove) | 
|  | nvme_remove_head(head); | 
|  |  | 
|  | module_put(THIS_MODULE); | 
|  | } | 
|  |  | 
|  | int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) | 
|  | { | 
|  | struct queue_limits lim; | 
|  |  | 
|  | mutex_init(&head->lock); | 
|  | bio_list_init(&head->requeue_list); | 
|  | spin_lock_init(&head->requeue_lock); | 
|  | INIT_WORK(&head->requeue_work, nvme_requeue_work); | 
|  | INIT_WORK(&head->partition_scan_work, nvme_partition_scan_work); | 
|  | INIT_DELAYED_WORK(&head->remove_work, nvme_remove_head_work); | 
|  | head->delayed_removal_secs = 0; | 
|  |  | 
|  | /* | 
|  | * If "multipath_always_on" is enabled, a multipath node is added | 
|  | * regardless of whether the disk is single/multi ported, and whether | 
|  | * the namespace is shared or private. If "multipath_always_on" is not | 
|  | * enabled, a multipath node is added only if the subsystem supports | 
|  | * multiple controllers and the "multipath" option is configured. In | 
|  | * either case, for private namespaces, we ensure that the NSID is | 
|  | * unique. | 
|  | */ | 
|  | if (!multipath_always_on) { | 
|  | if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || | 
|  | !multipath) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!nvme_is_unique_nsid(ctrl, head)) | 
|  | return 0; | 
|  |  | 
|  | blk_set_stacking_limits(&lim); | 
|  | lim.dma_alignment = 3; | 
|  | lim.features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | | 
|  | BLK_FEAT_POLL | BLK_FEAT_ATOMIC_WRITES; | 
|  | if (head->ids.csi == NVME_CSI_ZNS) | 
|  | lim.features |= BLK_FEAT_ZONED; | 
|  |  | 
|  | head->disk = blk_alloc_disk(&lim, ctrl->numa_node); | 
|  | if (IS_ERR(head->disk)) | 
|  | return PTR_ERR(head->disk); | 
|  | head->disk->fops = &nvme_ns_head_ops; | 
|  | head->disk->private_data = head; | 
|  |  | 
|  | /* | 
|  | * We need to suppress the partition scan from occuring within the | 
|  | * controller's scan_work context. If a path error occurs here, the IO | 
|  | * will wait until a path becomes available or all paths are torn down, | 
|  | * but that action also occurs within scan_work, so it would deadlock. | 
|  | * Defer the partition scan to a different context that does not block | 
|  | * scan_work. | 
|  | */ | 
|  | set_bit(GD_SUPPRESS_PART_SCAN, &head->disk->state); | 
|  | sprintf(head->disk->disk_name, "nvme%dn%d", | 
|  | ctrl->subsys->instance, head->instance); | 
|  | nvme_tryget_ns_head(head); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nvme_mpath_set_live(struct nvme_ns *ns) | 
|  | { | 
|  | struct nvme_ns_head *head = ns->head; | 
|  | int rc; | 
|  |  | 
|  | if (!head->disk) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * test_and_set_bit() is used because it is protecting against two nvme | 
|  | * paths simultaneously calling device_add_disk() on the same namespace | 
|  | * head. | 
|  | */ | 
|  | if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { | 
|  | rc = device_add_disk(&head->subsys->dev, head->disk, | 
|  | nvme_ns_attr_groups); | 
|  | if (rc) { | 
|  | clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags); | 
|  | return; | 
|  | } | 
|  | nvme_add_ns_head_cdev(head); | 
|  | kblockd_schedule_work(&head->partition_scan_work); | 
|  | } | 
|  |  | 
|  | nvme_mpath_add_sysfs_link(ns->head); | 
|  |  | 
|  | mutex_lock(&head->lock); | 
|  | if (nvme_path_is_optimized(ns)) { | 
|  | int node, srcu_idx; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&head->srcu); | 
|  | for_each_online_node(node) | 
|  | __nvme_find_path(head, node); | 
|  | srcu_read_unlock(&head->srcu, srcu_idx); | 
|  | } | 
|  | mutex_unlock(&head->lock); | 
|  |  | 
|  | synchronize_srcu(&head->srcu); | 
|  | kblockd_schedule_work(&head->requeue_work); | 
|  | } | 
|  |  | 
|  | static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, | 
|  | int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, | 
|  | void *)) | 
|  | { | 
|  | void *base = ctrl->ana_log_buf; | 
|  | size_t offset = sizeof(struct nvme_ana_rsp_hdr); | 
|  | int error, i; | 
|  |  | 
|  | lockdep_assert_held(&ctrl->ana_lock); | 
|  |  | 
|  | for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { | 
|  | struct nvme_ana_group_desc *desc = base + offset; | 
|  | u32 nr_nsids; | 
|  | size_t nsid_buf_size; | 
|  |  | 
|  | if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) | 
|  | return -EINVAL; | 
|  |  | 
|  | nr_nsids = le32_to_cpu(desc->nnsids); | 
|  | nsid_buf_size = flex_array_size(desc, nsids, nr_nsids); | 
|  |  | 
|  | if (WARN_ON_ONCE(desc->grpid == 0)) | 
|  | return -EINVAL; | 
|  | if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) | 
|  | return -EINVAL; | 
|  | if (WARN_ON_ONCE(desc->state == 0)) | 
|  | return -EINVAL; | 
|  | if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | offset += sizeof(*desc); | 
|  | if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = cb(ctrl, desc, data); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | offset += nsid_buf_size; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool nvme_state_is_live(enum nvme_ana_state state) | 
|  | { | 
|  | return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; | 
|  | } | 
|  |  | 
|  | static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, | 
|  | struct nvme_ns *ns) | 
|  | { | 
|  | ns->ana_grpid = le32_to_cpu(desc->grpid); | 
|  | ns->ana_state = desc->state; | 
|  | clear_bit(NVME_NS_ANA_PENDING, &ns->flags); | 
|  | /* | 
|  | * nvme_mpath_set_live() will trigger I/O to the multipath path device | 
|  | * and in turn to this path device.  However we cannot accept this I/O | 
|  | * if the controller is not live.  This may deadlock if called from | 
|  | * nvme_mpath_init_identify() and the ctrl will never complete | 
|  | * initialization, preventing I/O from completing.  For this case we | 
|  | * will reprocess the ANA log page in nvme_mpath_update() once the | 
|  | * controller is ready. | 
|  | */ | 
|  | if (nvme_state_is_live(ns->ana_state) && | 
|  | nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE) | 
|  | nvme_mpath_set_live(ns); | 
|  | else { | 
|  | /* | 
|  | * Add sysfs link from multipath head gendisk node to path | 
|  | * device gendisk node. | 
|  | * If path's ana state is live (i.e. state is either optimized | 
|  | * or non-optimized) while we alloc the ns then sysfs link would | 
|  | * be created from nvme_mpath_set_live(). In that case we would | 
|  | * not fallthrough this code path. However for the path's ana | 
|  | * state other than live, we call nvme_mpath_set_live() only | 
|  | * after ana state transitioned to the live state. But we still | 
|  | * want to create the sysfs link from head node to a path device | 
|  | * irrespctive of the path's ana state. | 
|  | * If we reach through here then it means that path's ana state | 
|  | * is not live but still create the sysfs link to this path from | 
|  | * head node if head node of the path has already come alive. | 
|  | */ | 
|  | if (test_bit(NVME_NSHEAD_DISK_LIVE, &ns->head->flags)) | 
|  | nvme_mpath_add_sysfs_link(ns->head); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int nvme_update_ana_state(struct nvme_ctrl *ctrl, | 
|  | struct nvme_ana_group_desc *desc, void *data) | 
|  | { | 
|  | u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; | 
|  | unsigned *nr_change_groups = data; | 
|  | struct nvme_ns *ns; | 
|  | int srcu_idx; | 
|  |  | 
|  | dev_dbg(ctrl->device, "ANA group %d: %s.\n", | 
|  | le32_to_cpu(desc->grpid), | 
|  | nvme_ana_state_names[desc->state]); | 
|  |  | 
|  | if (desc->state == NVME_ANA_CHANGE) | 
|  | (*nr_change_groups)++; | 
|  |  | 
|  | if (!nr_nsids) | 
|  | return 0; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&ctrl->srcu); | 
|  | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, | 
|  | srcu_read_lock_held(&ctrl->srcu)) { | 
|  | unsigned nsid; | 
|  | again: | 
|  | nsid = le32_to_cpu(desc->nsids[n]); | 
|  | if (ns->head->ns_id < nsid) | 
|  | continue; | 
|  | if (ns->head->ns_id == nsid) | 
|  | nvme_update_ns_ana_state(desc, ns); | 
|  | if (++n == nr_nsids) | 
|  | break; | 
|  | if (ns->head->ns_id > nsid) | 
|  | goto again; | 
|  | } | 
|  | srcu_read_unlock(&ctrl->srcu, srcu_idx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nvme_read_ana_log(struct nvme_ctrl *ctrl) | 
|  | { | 
|  | u32 nr_change_groups = 0; | 
|  | int error; | 
|  |  | 
|  | mutex_lock(&ctrl->ana_lock); | 
|  | error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM, | 
|  | ctrl->ana_log_buf, ctrl->ana_log_size, 0); | 
|  | if (error) { | 
|  | dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | error = nvme_parse_ana_log(ctrl, &nr_change_groups, | 
|  | nvme_update_ana_state); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * In theory we should have an ANATT timer per group as they might enter | 
|  | * the change state at different times.  But that is a lot of overhead | 
|  | * just to protect against a target that keeps entering new changes | 
|  | * states while never finishing previous ones.  But we'll still | 
|  | * eventually time out once all groups are in change state, so this | 
|  | * isn't a big deal. | 
|  | * | 
|  | * We also double the ANATT value to provide some slack for transports | 
|  | * or AEN processing overhead. | 
|  | */ | 
|  | if (nr_change_groups) | 
|  | mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); | 
|  | else | 
|  | timer_delete_sync(&ctrl->anatt_timer); | 
|  | out_unlock: | 
|  | mutex_unlock(&ctrl->ana_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void nvme_ana_work(struct work_struct *work) | 
|  | { | 
|  | struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); | 
|  |  | 
|  | if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) | 
|  | return; | 
|  |  | 
|  | nvme_read_ana_log(ctrl); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_update(struct nvme_ctrl *ctrl) | 
|  | { | 
|  | u32 nr_change_groups = 0; | 
|  |  | 
|  | if (!ctrl->ana_log_buf) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&ctrl->ana_lock); | 
|  | nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state); | 
|  | mutex_unlock(&ctrl->ana_lock); | 
|  | } | 
|  |  | 
|  | static void nvme_anatt_timeout(struct timer_list *t) | 
|  | { | 
|  | struct nvme_ctrl *ctrl = timer_container_of(ctrl, t, anatt_timer); | 
|  |  | 
|  | dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); | 
|  | nvme_reset_ctrl(ctrl); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_stop(struct nvme_ctrl *ctrl) | 
|  | { | 
|  | if (!nvme_ctrl_use_ana(ctrl)) | 
|  | return; | 
|  | timer_delete_sync(&ctrl->anatt_timer); | 
|  | cancel_work_sync(&ctrl->ana_work); | 
|  | } | 
|  |  | 
|  | #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \ | 
|  | struct device_attribute subsys_attr_##_name =	\ | 
|  | __ATTR(_name, _mode, _show, _store) | 
|  |  | 
|  | static ssize_t nvme_subsys_iopolicy_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct nvme_subsystem *subsys = | 
|  | container_of(dev, struct nvme_subsystem, dev); | 
|  |  | 
|  | return sysfs_emit(buf, "%s\n", | 
|  | nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); | 
|  | } | 
|  |  | 
|  | static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys, | 
|  | int iopolicy) | 
|  | { | 
|  | struct nvme_ctrl *ctrl; | 
|  | int old_iopolicy = READ_ONCE(subsys->iopolicy); | 
|  |  | 
|  | if (old_iopolicy == iopolicy) | 
|  | return; | 
|  |  | 
|  | WRITE_ONCE(subsys->iopolicy, iopolicy); | 
|  |  | 
|  | /* iopolicy changes clear the mpath by design */ | 
|  | mutex_lock(&nvme_subsystems_lock); | 
|  | list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) | 
|  | nvme_mpath_clear_ctrl_paths(ctrl); | 
|  | mutex_unlock(&nvme_subsystems_lock); | 
|  |  | 
|  | pr_notice("subsysnqn %s iopolicy changed from %s to %s\n", | 
|  | subsys->subnqn, | 
|  | nvme_iopolicy_names[old_iopolicy], | 
|  | nvme_iopolicy_names[iopolicy]); | 
|  | } | 
|  |  | 
|  | static ssize_t nvme_subsys_iopolicy_store(struct device *dev, | 
|  | struct device_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | struct nvme_subsystem *subsys = | 
|  | container_of(dev, struct nvme_subsystem, dev); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { | 
|  | if (sysfs_streq(buf, nvme_iopolicy_names[i])) { | 
|  | nvme_subsys_iopolicy_update(subsys, i); | 
|  | return count; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  | SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, | 
|  | nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); | 
|  |  | 
|  | static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); | 
|  | } | 
|  | DEVICE_ATTR_RO(ana_grpid); | 
|  |  | 
|  | static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct nvme_ns *ns = nvme_get_ns_from_dev(dev); | 
|  |  | 
|  | return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); | 
|  | } | 
|  | DEVICE_ATTR_RO(ana_state); | 
|  |  | 
|  | static ssize_t queue_depth_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct nvme_ns *ns = nvme_get_ns_from_dev(dev); | 
|  |  | 
|  | if (ns->head->subsys->iopolicy != NVME_IOPOLICY_QD) | 
|  | return 0; | 
|  |  | 
|  | return sysfs_emit(buf, "%d\n", atomic_read(&ns->ctrl->nr_active)); | 
|  | } | 
|  | DEVICE_ATTR_RO(queue_depth); | 
|  |  | 
|  | static ssize_t numa_nodes_show(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | int node, srcu_idx; | 
|  | nodemask_t numa_nodes; | 
|  | struct nvme_ns *current_ns; | 
|  | struct nvme_ns *ns = nvme_get_ns_from_dev(dev); | 
|  | struct nvme_ns_head *head = ns->head; | 
|  |  | 
|  | if (head->subsys->iopolicy != NVME_IOPOLICY_NUMA) | 
|  | return 0; | 
|  |  | 
|  | nodes_clear(numa_nodes); | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&head->srcu); | 
|  | for_each_node(node) { | 
|  | current_ns = srcu_dereference(head->current_path[node], | 
|  | &head->srcu); | 
|  | if (ns == current_ns) | 
|  | node_set(node, numa_nodes); | 
|  | } | 
|  | srcu_read_unlock(&head->srcu, srcu_idx); | 
|  |  | 
|  | return sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&numa_nodes)); | 
|  | } | 
|  | DEVICE_ATTR_RO(numa_nodes); | 
|  |  | 
|  | static ssize_t delayed_removal_secs_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct gendisk *disk = dev_to_disk(dev); | 
|  | struct nvme_ns_head *head = disk->private_data; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&head->subsys->lock); | 
|  | ret = sysfs_emit(buf, "%u\n", head->delayed_removal_secs); | 
|  | mutex_unlock(&head->subsys->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t delayed_removal_secs_store(struct device *dev, | 
|  | struct device_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | struct gendisk *disk = dev_to_disk(dev); | 
|  | struct nvme_ns_head *head = disk->private_data; | 
|  | unsigned int sec; | 
|  | int ret; | 
|  |  | 
|  | ret = kstrtouint(buf, 0, &sec); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&head->subsys->lock); | 
|  | head->delayed_removal_secs = sec; | 
|  | if (sec) | 
|  | set_bit(NVME_NSHEAD_QUEUE_IF_NO_PATH, &head->flags); | 
|  | else | 
|  | clear_bit(NVME_NSHEAD_QUEUE_IF_NO_PATH, &head->flags); | 
|  | mutex_unlock(&head->subsys->lock); | 
|  | /* | 
|  | * Ensure that update to NVME_NSHEAD_QUEUE_IF_NO_PATH is seen | 
|  | * by its reader. | 
|  | */ | 
|  | synchronize_srcu(&head->srcu); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | DEVICE_ATTR_RW(delayed_removal_secs); | 
|  |  | 
|  | static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, | 
|  | struct nvme_ana_group_desc *desc, void *data) | 
|  | { | 
|  | struct nvme_ana_group_desc *dst = data; | 
|  |  | 
|  | if (desc->grpid != dst->grpid) | 
|  | return 0; | 
|  |  | 
|  | *dst = *desc; | 
|  | return -ENXIO; /* just break out of the loop */ | 
|  | } | 
|  |  | 
|  | void nvme_mpath_add_sysfs_link(struct nvme_ns_head *head) | 
|  | { | 
|  | struct device *target; | 
|  | int rc, srcu_idx; | 
|  | struct nvme_ns *ns; | 
|  | struct kobject *kobj; | 
|  |  | 
|  | /* | 
|  | * Ensure head disk node is already added otherwise we may get invalid | 
|  | * kobj for head disk node | 
|  | */ | 
|  | if (!test_bit(GD_ADDED, &head->disk->state)) | 
|  | return; | 
|  |  | 
|  | kobj = &disk_to_dev(head->disk)->kobj; | 
|  |  | 
|  | /* | 
|  | * loop through each ns chained through the head->list and create the | 
|  | * sysfs link from head node to the ns path node | 
|  | */ | 
|  | srcu_idx = srcu_read_lock(&head->srcu); | 
|  |  | 
|  | list_for_each_entry_srcu(ns, &head->list, siblings, | 
|  | srcu_read_lock_held(&head->srcu)) { | 
|  | /* | 
|  | * Ensure that ns path disk node is already added otherwise we | 
|  | * may get invalid kobj name for target | 
|  | */ | 
|  | if (!test_bit(GD_ADDED, &ns->disk->state)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Avoid creating link if it already exists for the given path. | 
|  | * When path ana state transitions from optimized to non- | 
|  | * optimized or vice-versa, the nvme_mpath_set_live() is | 
|  | * invoked which in truns call this function. Now if the sysfs | 
|  | * link already exists for the given path and we attempt to re- | 
|  | * create the link then sysfs code would warn about it loudly. | 
|  | * So we evaluate NVME_NS_SYSFS_ATTR_LINK flag here to ensure | 
|  | * that we're not creating duplicate link. | 
|  | * The test_and_set_bit() is used because it is protecting | 
|  | * against multiple nvme paths being simultaneously added. | 
|  | */ | 
|  | if (test_and_set_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags)) | 
|  | continue; | 
|  |  | 
|  | target = disk_to_dev(ns->disk); | 
|  | /* | 
|  | * Create sysfs link from head gendisk kobject @kobj to the | 
|  | * ns path gendisk kobject @target->kobj. | 
|  | */ | 
|  | rc = sysfs_add_link_to_group(kobj, nvme_ns_mpath_attr_group.name, | 
|  | &target->kobj, dev_name(target)); | 
|  | if (unlikely(rc)) { | 
|  | dev_err(disk_to_dev(ns->head->disk), | 
|  | "failed to create link to %s\n", | 
|  | dev_name(target)); | 
|  | clear_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | srcu_read_unlock(&head->srcu, srcu_idx); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_remove_sysfs_link(struct nvme_ns *ns) | 
|  | { | 
|  | struct device *target; | 
|  | struct kobject *kobj; | 
|  |  | 
|  | if (!test_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags)) | 
|  | return; | 
|  |  | 
|  | target = disk_to_dev(ns->disk); | 
|  | kobj = &disk_to_dev(ns->head->disk)->kobj; | 
|  | sysfs_remove_link_from_group(kobj, nvme_ns_mpath_attr_group.name, | 
|  | dev_name(target)); | 
|  | clear_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid) | 
|  | { | 
|  | if (nvme_ctrl_use_ana(ns->ctrl)) { | 
|  | struct nvme_ana_group_desc desc = { | 
|  | .grpid = anagrpid, | 
|  | .state = 0, | 
|  | }; | 
|  |  | 
|  | mutex_lock(&ns->ctrl->ana_lock); | 
|  | ns->ana_grpid = le32_to_cpu(anagrpid); | 
|  | nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); | 
|  | mutex_unlock(&ns->ctrl->ana_lock); | 
|  | if (desc.state) { | 
|  | /* found the group desc: update */ | 
|  | nvme_update_ns_ana_state(&desc, ns); | 
|  | } else { | 
|  | /* group desc not found: trigger a re-read */ | 
|  | set_bit(NVME_NS_ANA_PENDING, &ns->flags); | 
|  | queue_work(nvme_wq, &ns->ctrl->ana_work); | 
|  | } | 
|  | } else { | 
|  | ns->ana_state = NVME_ANA_OPTIMIZED; | 
|  | nvme_mpath_set_live(ns); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_ZONED | 
|  | if (blk_queue_is_zoned(ns->queue) && ns->head->disk) | 
|  | ns->head->disk->nr_zones = ns->disk->nr_zones; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void nvme_mpath_remove_disk(struct nvme_ns_head *head) | 
|  | { | 
|  | bool remove = false; | 
|  |  | 
|  | if (!head->disk) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&head->subsys->lock); | 
|  | /* | 
|  | * We are called when all paths have been removed, and at that point | 
|  | * head->list is expected to be empty. However, nvme_remove_ns() and | 
|  | * nvme_init_ns_head() can run concurrently and so if head->delayed_ | 
|  | * removal_secs is configured, it is possible that by the time we reach | 
|  | * this point, head->list may no longer be empty. Therefore, we recheck | 
|  | * head->list here. If it is no longer empty then we skip enqueuing the | 
|  | * delayed head removal work. | 
|  | */ | 
|  | if (!list_empty(&head->list)) | 
|  | goto out; | 
|  |  | 
|  | if (head->delayed_removal_secs) { | 
|  | /* | 
|  | * Ensure that no one could remove this module while the head | 
|  | * remove work is pending. | 
|  | */ | 
|  | if (!try_module_get(THIS_MODULE)) | 
|  | goto out; | 
|  | mod_delayed_work(nvme_wq, &head->remove_work, | 
|  | head->delayed_removal_secs * HZ); | 
|  | } else { | 
|  | list_del_init(&head->entry); | 
|  | remove = true; | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&head->subsys->lock); | 
|  | if (remove) | 
|  | nvme_remove_head(head); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_put_disk(struct nvme_ns_head *head) | 
|  | { | 
|  | if (!head->disk) | 
|  | return; | 
|  | /* make sure all pending bios are cleaned up */ | 
|  | kblockd_schedule_work(&head->requeue_work); | 
|  | flush_work(&head->requeue_work); | 
|  | flush_work(&head->partition_scan_work); | 
|  | put_disk(head->disk); | 
|  | } | 
|  |  | 
|  | void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl) | 
|  | { | 
|  | mutex_init(&ctrl->ana_lock); | 
|  | timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); | 
|  | INIT_WORK(&ctrl->ana_work, nvme_ana_work); | 
|  | } | 
|  |  | 
|  | int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) | 
|  | { | 
|  | size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT; | 
|  | size_t ana_log_size; | 
|  | int error = 0; | 
|  |  | 
|  | /* check if multipath is enabled and we have the capability */ | 
|  | if (!multipath || !ctrl->subsys || | 
|  | !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)) | 
|  | return 0; | 
|  |  | 
|  | /* initialize this in the identify path to cover controller resets */ | 
|  | atomic_set(&ctrl->nr_active, 0); | 
|  |  | 
|  | if (!ctrl->max_namespaces || | 
|  | ctrl->max_namespaces > le32_to_cpu(id->nn)) { | 
|  | dev_err(ctrl->device, | 
|  | "Invalid MNAN value %u\n", ctrl->max_namespaces); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ctrl->anacap = id->anacap; | 
|  | ctrl->anatt = id->anatt; | 
|  | ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); | 
|  | ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); | 
|  |  | 
|  | ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + | 
|  | ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) + | 
|  | ctrl->max_namespaces * sizeof(__le32); | 
|  | if (ana_log_size > max_transfer_size) { | 
|  | dev_err(ctrl->device, | 
|  | "ANA log page size (%zd) larger than MDTS (%zd).\n", | 
|  | ana_log_size, max_transfer_size); | 
|  | dev_err(ctrl->device, "disabling ANA support.\n"); | 
|  | goto out_uninit; | 
|  | } | 
|  | if (ana_log_size > ctrl->ana_log_size) { | 
|  | nvme_mpath_stop(ctrl); | 
|  | nvme_mpath_uninit(ctrl); | 
|  | ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL); | 
|  | if (!ctrl->ana_log_buf) | 
|  | return -ENOMEM; | 
|  | } | 
|  | ctrl->ana_log_size = ana_log_size; | 
|  | error = nvme_read_ana_log(ctrl); | 
|  | if (error) | 
|  | goto out_uninit; | 
|  | return 0; | 
|  |  | 
|  | out_uninit: | 
|  | nvme_mpath_uninit(ctrl); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void nvme_mpath_uninit(struct nvme_ctrl *ctrl) | 
|  | { | 
|  | kvfree(ctrl->ana_log_buf); | 
|  | ctrl->ana_log_buf = NULL; | 
|  | ctrl->ana_log_size = 0; | 
|  | } |