|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2015 Intel Corporation | 
|  | *	Keith Busch <kbusch@kernel.org> | 
|  | */ | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/pr.h> | 
|  | #include <linux/unaligned.h> | 
|  |  | 
|  | #include "nvme.h" | 
|  |  | 
|  | static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type) | 
|  | { | 
|  | switch (type) { | 
|  | case PR_WRITE_EXCLUSIVE: | 
|  | return NVME_PR_WRITE_EXCLUSIVE; | 
|  | case PR_EXCLUSIVE_ACCESS: | 
|  | return NVME_PR_EXCLUSIVE_ACCESS; | 
|  | case PR_WRITE_EXCLUSIVE_REG_ONLY: | 
|  | return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY; | 
|  | case PR_EXCLUSIVE_ACCESS_REG_ONLY: | 
|  | return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY; | 
|  | case PR_WRITE_EXCLUSIVE_ALL_REGS: | 
|  | return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS; | 
|  | case PR_EXCLUSIVE_ACCESS_ALL_REGS: | 
|  | return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type) | 
|  | { | 
|  | switch (type) { | 
|  | case NVME_PR_WRITE_EXCLUSIVE: | 
|  | return PR_WRITE_EXCLUSIVE; | 
|  | case NVME_PR_EXCLUSIVE_ACCESS: | 
|  | return PR_EXCLUSIVE_ACCESS; | 
|  | case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY: | 
|  | return PR_WRITE_EXCLUSIVE_REG_ONLY; | 
|  | case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY: | 
|  | return PR_EXCLUSIVE_ACCESS_REG_ONLY; | 
|  | case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS: | 
|  | return PR_WRITE_EXCLUSIVE_ALL_REGS; | 
|  | case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS: | 
|  | return PR_EXCLUSIVE_ACCESS_ALL_REGS; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nvme_send_ns_head_pr_command(struct block_device *bdev, | 
|  | struct nvme_command *c, void *data, unsigned int data_len) | 
|  | { | 
|  | struct nvme_ns_head *head = bdev->bd_disk->private_data; | 
|  | int srcu_idx = srcu_read_lock(&head->srcu); | 
|  | struct nvme_ns *ns = nvme_find_path(head); | 
|  | int ret = -EWOULDBLOCK; | 
|  |  | 
|  | if (ns) { | 
|  | c->common.nsid = cpu_to_le32(ns->head->ns_id); | 
|  | ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len); | 
|  | } | 
|  | srcu_read_unlock(&head->srcu, srcu_idx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, | 
|  | void *data, unsigned int data_len) | 
|  | { | 
|  | c->common.nsid = cpu_to_le32(ns->head->ns_id); | 
|  | return nvme_submit_sync_cmd(ns->queue, c, data, data_len); | 
|  | } | 
|  |  | 
|  | static int nvme_status_to_pr_err(int status) | 
|  | { | 
|  | if (nvme_is_path_error(status)) | 
|  | return PR_STS_PATH_FAILED; | 
|  |  | 
|  | switch (status & NVME_SCT_SC_MASK) { | 
|  | case NVME_SC_SUCCESS: | 
|  | return PR_STS_SUCCESS; | 
|  | case NVME_SC_RESERVATION_CONFLICT: | 
|  | return PR_STS_RESERVATION_CONFLICT; | 
|  | case NVME_SC_BAD_ATTRIBUTES: | 
|  | case NVME_SC_INVALID_OPCODE: | 
|  | case NVME_SC_INVALID_FIELD: | 
|  | case NVME_SC_INVALID_NS: | 
|  | return -EINVAL; | 
|  | default: | 
|  | return PR_STS_IOERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __nvme_send_pr_command(struct block_device *bdev, u32 cdw10, | 
|  | u32 cdw11, u8 op, void *data, unsigned int data_len) | 
|  | { | 
|  | struct nvme_command c = { 0 }; | 
|  |  | 
|  | c.common.opcode = op; | 
|  | c.common.cdw10 = cpu_to_le32(cdw10); | 
|  | c.common.cdw11 = cpu_to_le32(cdw11); | 
|  |  | 
|  | if (nvme_disk_is_ns_head(bdev->bd_disk)) | 
|  | return nvme_send_ns_head_pr_command(bdev, &c, data, data_len); | 
|  | return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, | 
|  | data, data_len); | 
|  | } | 
|  |  | 
|  | static int nvme_send_pr_command(struct block_device *bdev, u32 cdw10, u32 cdw11, | 
|  | u8 op, void *data, unsigned int data_len) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = __nvme_send_pr_command(bdev, cdw10, cdw11, op, data, data_len); | 
|  | return ret < 0 ? ret : nvme_status_to_pr_err(ret); | 
|  | } | 
|  |  | 
|  | static int nvme_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct nvmet_pr_register_data data = { 0 }; | 
|  | u32 cdw10; | 
|  |  | 
|  | if (flags & ~PR_FL_IGNORE_KEY) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | data.crkey = cpu_to_le64(old_key); | 
|  | data.nrkey = cpu_to_le64(new_key); | 
|  |  | 
|  | cdw10 = old_key ? NVME_PR_REGISTER_ACT_REPLACE : | 
|  | NVME_PR_REGISTER_ACT_REG; | 
|  | cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0; | 
|  | cdw10 |= NVME_PR_CPTPL_PERSIST; | 
|  |  | 
|  | return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_register, | 
|  | &data, sizeof(data)); | 
|  | } | 
|  |  | 
|  | static int nvme_pr_reserve(struct block_device *bdev, u64 key, | 
|  | enum pr_type type, unsigned flags) | 
|  | { | 
|  | struct nvmet_pr_acquire_data data = { 0 }; | 
|  | u32 cdw10; | 
|  |  | 
|  | if (flags & ~PR_FL_IGNORE_KEY) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | data.crkey = cpu_to_le64(key); | 
|  |  | 
|  | cdw10 = NVME_PR_ACQUIRE_ACT_ACQUIRE; | 
|  | cdw10 |= nvme_pr_type_from_blk(type) << 8; | 
|  | cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0; | 
|  |  | 
|  | return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire, | 
|  | &data, sizeof(data)); | 
|  | } | 
|  |  | 
|  | static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, | 
|  | enum pr_type type, bool abort) | 
|  | { | 
|  | struct nvmet_pr_acquire_data data = { 0 }; | 
|  | u32 cdw10; | 
|  |  | 
|  | data.crkey = cpu_to_le64(old); | 
|  | data.prkey = cpu_to_le64(new); | 
|  |  | 
|  | cdw10 = abort ? NVME_PR_ACQUIRE_ACT_PREEMPT_AND_ABORT : | 
|  | NVME_PR_ACQUIRE_ACT_PREEMPT; | 
|  | cdw10 |= nvme_pr_type_from_blk(type) << 8; | 
|  |  | 
|  | return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire, | 
|  | &data, sizeof(data)); | 
|  | } | 
|  |  | 
|  | static int nvme_pr_clear(struct block_device *bdev, u64 key) | 
|  | { | 
|  | struct nvmet_pr_release_data data = { 0 }; | 
|  | u32 cdw10; | 
|  |  | 
|  | data.crkey = cpu_to_le64(key); | 
|  |  | 
|  | cdw10 = NVME_PR_RELEASE_ACT_CLEAR; | 
|  | cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY; | 
|  |  | 
|  | return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release, | 
|  | &data, sizeof(data)); | 
|  | } | 
|  |  | 
|  | static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) | 
|  | { | 
|  | struct nvmet_pr_release_data data = { 0 }; | 
|  | u32 cdw10; | 
|  |  | 
|  | data.crkey = cpu_to_le64(key); | 
|  |  | 
|  | cdw10 = NVME_PR_RELEASE_ACT_RELEASE; | 
|  | cdw10 |= nvme_pr_type_from_blk(type) << 8; | 
|  | cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY; | 
|  |  | 
|  | return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release, | 
|  | &data, sizeof(data)); | 
|  | } | 
|  |  | 
|  | static int nvme_pr_resv_report(struct block_device *bdev, void *data, | 
|  | u32 data_len, bool *eds) | 
|  | { | 
|  | u32 cdw10, cdw11; | 
|  | int ret; | 
|  |  | 
|  | cdw10 = nvme_bytes_to_numd(data_len); | 
|  | cdw11 = NVME_EXTENDED_DATA_STRUCT; | 
|  | *eds = true; | 
|  |  | 
|  | retry: | 
|  | ret = __nvme_send_pr_command(bdev, cdw10, cdw11, nvme_cmd_resv_report, | 
|  | data, data_len); | 
|  | if (ret == NVME_SC_HOST_ID_INCONSIST && | 
|  | cdw11 == NVME_EXTENDED_DATA_STRUCT) { | 
|  | cdw11 = 0; | 
|  | *eds = false; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return ret < 0 ? ret : nvme_status_to_pr_err(ret); | 
|  | } | 
|  |  | 
|  | static int nvme_pr_read_keys(struct block_device *bdev, | 
|  | struct pr_keys *keys_info) | 
|  | { | 
|  | u32 rse_len, num_keys = keys_info->num_keys; | 
|  | struct nvme_reservation_status_ext *rse; | 
|  | int ret, i; | 
|  | bool eds; | 
|  |  | 
|  | /* | 
|  | * Assume we are using 128-bit host IDs and allocate a buffer large | 
|  | * enough to get enough keys to fill the return keys buffer. | 
|  | */ | 
|  | rse_len = struct_size(rse, regctl_eds, num_keys); | 
|  | rse = kzalloc(rse_len, GFP_KERNEL); | 
|  | if (!rse) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds); | 
|  | if (ret) | 
|  | goto free_rse; | 
|  |  | 
|  | keys_info->generation = le32_to_cpu(rse->gen); | 
|  | keys_info->num_keys = get_unaligned_le16(&rse->regctl); | 
|  |  | 
|  | num_keys = min(num_keys, keys_info->num_keys); | 
|  | for (i = 0; i < num_keys; i++) { | 
|  | if (eds) { | 
|  | keys_info->keys[i] = | 
|  | le64_to_cpu(rse->regctl_eds[i].rkey); | 
|  | } else { | 
|  | struct nvme_reservation_status *rs; | 
|  |  | 
|  | rs = (struct nvme_reservation_status *)rse; | 
|  | keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey); | 
|  | } | 
|  | } | 
|  |  | 
|  | free_rse: | 
|  | kfree(rse); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int nvme_pr_read_reservation(struct block_device *bdev, | 
|  | struct pr_held_reservation *resv) | 
|  | { | 
|  | struct nvme_reservation_status_ext tmp_rse, *rse; | 
|  | int ret, i, num_regs; | 
|  | u32 rse_len; | 
|  | bool eds; | 
|  |  | 
|  | get_num_regs: | 
|  | /* | 
|  | * Get the number of registrations so we know how big to allocate | 
|  | * the response buffer. | 
|  | */ | 
|  | ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | num_regs = get_unaligned_le16(&tmp_rse.regctl); | 
|  | if (!num_regs) { | 
|  | resv->generation = le32_to_cpu(tmp_rse.gen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | rse_len = struct_size(rse, regctl_eds, num_regs); | 
|  | rse = kzalloc(rse_len, GFP_KERNEL); | 
|  | if (!rse) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds); | 
|  | if (ret) | 
|  | goto free_rse; | 
|  |  | 
|  | if (num_regs != get_unaligned_le16(&rse->regctl)) { | 
|  | kfree(rse); | 
|  | goto get_num_regs; | 
|  | } | 
|  |  | 
|  | resv->generation = le32_to_cpu(rse->gen); | 
|  | resv->type = block_pr_type_from_nvme(rse->rtype); | 
|  |  | 
|  | for (i = 0; i < num_regs; i++) { | 
|  | if (eds) { | 
|  | if (rse->regctl_eds[i].rcsts) { | 
|  | resv->key = le64_to_cpu(rse->regctl_eds[i].rkey); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | struct nvme_reservation_status *rs; | 
|  |  | 
|  | rs = (struct nvme_reservation_status *)rse; | 
|  | if (rs->regctl_ds[i].rcsts) { | 
|  | resv->key = le64_to_cpu(rs->regctl_ds[i].rkey); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | free_rse: | 
|  | kfree(rse); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | const struct pr_ops nvme_pr_ops = { | 
|  | .pr_register	= nvme_pr_register, | 
|  | .pr_reserve	= nvme_pr_reserve, | 
|  | .pr_release	= nvme_pr_release, | 
|  | .pr_preempt	= nvme_pr_preempt, | 
|  | .pr_clear	= nvme_pr_clear, | 
|  | .pr_read_keys	= nvme_pr_read_keys, | 
|  | .pr_read_reservation = nvme_pr_read_reservation, | 
|  | }; |