blob: 2d0a3554b6bf7d69f9ce9d1a95556442b9a1f718 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2012-2013 Freescale Semiconductor, Inc.
* Copyright 2018,2021-2025 NXP
*/
#include <linux/interrupt.h>
#include <linux/clockchips.h>
#include <linux/cpuhotplug.h>
#include <linux/clk.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
#include <linux/platform_device.h>
/*
* Each pit takes 0x10 Bytes register space
*/
#define PIT0_OFFSET 0x100
#define PIT_CH(n) (PIT0_OFFSET + 0x10 * (n))
#define PITMCR(__base) (__base)
#define PITMCR_FRZ BIT(0)
#define PITMCR_MDIS BIT(1)
#define PITLDVAL(__base) (__base)
#define PITTCTRL(__base) ((__base) + 0x08)
#define PITCVAL_OFFSET 0x04
#define PITCVAL(__base) ((__base) + 0x04)
#define PITTCTRL_TEN BIT(0)
#define PITTCTRL_TIE BIT(1)
#define PITTFLG(__base) ((__base) + 0x0c)
#define PITTFLG_TIF BIT(0)
struct pit_timer {
void __iomem *clksrc_base;
void __iomem *clkevt_base;
struct clock_event_device ced;
struct clocksource cs;
int rate;
};
struct pit_timer_data {
int max_pit_instances;
};
static DEFINE_PER_CPU(struct pit_timer *, pit_timers);
/*
* Global structure for multiple PITs initialization
*/
static int pit_instances;
static int max_pit_instances = 1;
static void __iomem *sched_clock_base;
static inline struct pit_timer *ced_to_pit(struct clock_event_device *ced)
{
return container_of(ced, struct pit_timer, ced);
}
static inline struct pit_timer *cs_to_pit(struct clocksource *cs)
{
return container_of(cs, struct pit_timer, cs);
}
static inline void pit_module_enable(void __iomem *base)
{
writel(0, PITMCR(base));
}
static inline void pit_module_disable(void __iomem *base)
{
writel(PITMCR_MDIS, PITMCR(base));
}
static inline void pit_timer_enable(void __iomem *base, bool tie)
{
u32 val = PITTCTRL_TEN | (tie ? PITTCTRL_TIE : 0);
writel(val, PITTCTRL(base));
}
static inline void pit_timer_disable(void __iomem *base)
{
writel(0, PITTCTRL(base));
}
static inline void pit_timer_set_counter(void __iomem *base, unsigned int cnt)
{
writel(cnt, PITLDVAL(base));
}
static inline void pit_timer_irqack(struct pit_timer *pit)
{
writel(PITTFLG_TIF, PITTFLG(pit->clkevt_base));
}
static u64 notrace pit_read_sched_clock(void)
{
return ~readl(sched_clock_base);
}
static u64 pit_timer_clocksource_read(struct clocksource *cs)
{
struct pit_timer *pit = cs_to_pit(cs);
return (u64)~readl(PITCVAL(pit->clksrc_base));
}
static int pit_clocksource_init(struct pit_timer *pit, const char *name,
void __iomem *base, unsigned long rate)
{
/*
* The channels 0 and 1 can be chained to build a 64-bit
* timer. Let's use the channel 2 as a clocksource and leave
* the channels 0 and 1 unused for anyone else who needs them
*/
pit->clksrc_base = base + PIT_CH(2);
pit->cs.name = name;
pit->cs.rating = 300;
pit->cs.read = pit_timer_clocksource_read;
pit->cs.mask = CLOCKSOURCE_MASK(32);
pit->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
/* set the max load value and start the clock source counter */
pit_timer_disable(pit->clksrc_base);
pit_timer_set_counter(pit->clksrc_base, ~0);
pit_timer_enable(pit->clksrc_base, 0);
sched_clock_base = pit->clksrc_base + PITCVAL_OFFSET;
sched_clock_register(pit_read_sched_clock, 32, rate);
return clocksource_register_hz(&pit->cs, rate);
}
static int pit_set_next_event(unsigned long delta, struct clock_event_device *ced)
{
struct pit_timer *pit = ced_to_pit(ced);
/*
* set a new value to PITLDVAL register will not restart the timer,
* to abort the current cycle and start a timer period with the new
* value, the timer must be disabled and enabled again.
* and the PITLAVAL should be set to delta minus one according to pit
* hardware requirement.
*/
pit_timer_disable(pit->clkevt_base);
pit_timer_set_counter(pit->clkevt_base, delta - 1);
pit_timer_enable(pit->clkevt_base, true);
return 0;
}
static int pit_shutdown(struct clock_event_device *ced)
{
struct pit_timer *pit = ced_to_pit(ced);
pit_timer_disable(pit->clkevt_base);
return 0;
}
static int pit_set_periodic(struct clock_event_device *ced)
{
struct pit_timer *pit = ced_to_pit(ced);
pit_set_next_event(pit->rate / HZ, ced);
return 0;
}
static irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *ced = dev_id;
struct pit_timer *pit = ced_to_pit(ced);
pit_timer_irqack(pit);
/*
* pit hardware doesn't support oneshot, it will generate an interrupt
* and reload the counter value from PITLDVAL when PITCVAL reach zero,
* and start the counter again. So software need to disable the timer
* to stop the counter loop in ONESHOT mode.
*/
if (likely(clockevent_state_oneshot(ced)))
pit_timer_disable(pit->clkevt_base);
ced->event_handler(ced);
return IRQ_HANDLED;
}
static int pit_clockevent_per_cpu_init(struct pit_timer *pit, const char *name,
void __iomem *base, unsigned long rate,
int irq, unsigned int cpu)
{
int ret;
/*
* The channels 0 and 1 can be chained to build a 64-bit
* timer. Let's use the channel 3 as a clockevent and leave
* the channels 0 and 1 unused for anyone else who needs them
*/
pit->clkevt_base = base + PIT_CH(3);
pit->rate = rate;
pit_timer_disable(pit->clkevt_base);
pit_timer_irqack(pit);
ret = request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_NOBALANCING,
name, &pit->ced);
if (ret)
return ret;
pit->ced.cpumask = cpumask_of(cpu);
pit->ced.irq = irq;
pit->ced.name = name;
pit->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
pit->ced.set_state_shutdown = pit_shutdown;
pit->ced.set_state_periodic = pit_set_periodic;
pit->ced.set_next_event = pit_set_next_event;
pit->ced.rating = 300;
per_cpu(pit_timers, cpu) = pit;
return 0;
}
static void pit_clockevent_per_cpu_exit(struct pit_timer *pit, unsigned int cpu)
{
pit_timer_disable(pit->clkevt_base);
free_irq(pit->ced.irq, &pit->ced);
per_cpu(pit_timers, cpu) = NULL;
}
static int pit_clockevent_starting_cpu(unsigned int cpu)
{
struct pit_timer *pit = per_cpu(pit_timers, cpu);
int ret;
if (!pit)
return 0;
ret = irq_force_affinity(pit->ced.irq, cpumask_of(cpu));
if (ret) {
pit_clockevent_per_cpu_exit(pit, cpu);
return ret;
}
/*
* The value for the LDVAL register trigger is calculated as:
* LDVAL trigger = (period / clock period) - 1
* The pit is a 32-bit down count timer, when the counter value
* reaches 0, it will generate an interrupt, thus the minimal
* LDVAL trigger value is 1. And then the min_delta is
* minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
*/
clockevents_config_and_register(&pit->ced, pit->rate, 2, 0xffffffff);
return 0;
}
static int pit_timer_init(struct device_node *np)
{
struct pit_timer *pit;
struct clk *pit_clk;
void __iomem *timer_base;
const char *name = of_node_full_name(np);
unsigned long clk_rate;
int irq, ret;
pit = kzalloc(sizeof(*pit), GFP_KERNEL);
if (!pit)
return -ENOMEM;
ret = -ENXIO;
timer_base = of_iomap(np, 0);
if (!timer_base) {
pr_err("Failed to iomap\n");
goto out_kfree;
}
ret = -EINVAL;
irq = irq_of_parse_and_map(np, 0);
if (irq <= 0) {
pr_err("Failed to irq_of_parse_and_map\n");
goto out_iounmap;
}
pit_clk = of_clk_get(np, 0);
if (IS_ERR(pit_clk)) {
ret = PTR_ERR(pit_clk);
goto out_irq_dispose_mapping;
}
ret = clk_prepare_enable(pit_clk);
if (ret)
goto out_clk_put;
clk_rate = clk_get_rate(pit_clk);
pit_module_disable(timer_base);
ret = pit_clocksource_init(pit, name, timer_base, clk_rate);
if (ret) {
pr_err("Failed to initialize clocksource '%pOF'\n", np);
goto out_pit_module_disable;
}
ret = pit_clockevent_per_cpu_init(pit, name, timer_base, clk_rate, irq, pit_instances);
if (ret) {
pr_err("Failed to initialize clockevent '%pOF'\n", np);
goto out_pit_clocksource_unregister;
}
/* enable the pit module */
pit_module_enable(timer_base);
pit_instances++;
if (pit_instances == max_pit_instances) {
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "PIT timer:starting",
pit_clockevent_starting_cpu, NULL);
if (ret < 0)
goto out_pit_clocksource_unregister;
}
return 0;
out_pit_clocksource_unregister:
clocksource_unregister(&pit->cs);
out_pit_module_disable:
pit_module_disable(timer_base);
clk_disable_unprepare(pit_clk);
out_clk_put:
clk_put(pit_clk);
out_irq_dispose_mapping:
irq_dispose_mapping(irq);
out_iounmap:
iounmap(timer_base);
out_kfree:
kfree(pit);
return ret;
}
static int pit_timer_probe(struct platform_device *pdev)
{
const struct pit_timer_data *pit_timer_data;
pit_timer_data = of_device_get_match_data(&pdev->dev);
if (pit_timer_data)
max_pit_instances = pit_timer_data->max_pit_instances;
return pit_timer_init(pdev->dev.of_node);
}
static struct pit_timer_data s32g2_data = { .max_pit_instances = 2 };
static const struct of_device_id pit_timer_of_match[] = {
{ .compatible = "nxp,s32g2-pit", .data = &s32g2_data },
{ }
};
MODULE_DEVICE_TABLE(of, pit_timer_of_match);
static struct platform_driver nxp_pit_driver = {
.driver = {
.name = "nxp-pit",
.of_match_table = pit_timer_of_match,
},
.probe = pit_timer_probe,
};
module_platform_driver(nxp_pit_driver);
TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);