|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * KVM/MIPS: Support for hardware virtualization extensions | 
|  | * | 
|  | * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved. | 
|  | * Authors: Yann Le Du <ledu@kymasys.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cacheops.h> | 
|  | #include <asm/cmpxchg.h> | 
|  | #include <asm/fpu.h> | 
|  | #include <asm/hazards.h> | 
|  | #include <asm/inst.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/r4kcache.h> | 
|  | #include <asm/time.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbex.h> | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  |  | 
|  | #include "interrupt.h" | 
|  | #ifdef CONFIG_CPU_LOONGSON64 | 
|  | #include "loongson_regs.h" | 
|  | #endif | 
|  |  | 
|  | #include "trace.h" | 
|  |  | 
|  | /* Pointers to last VCPU loaded on each physical CPU */ | 
|  | static struct kvm_vcpu *last_vcpu[NR_CPUS]; | 
|  | /* Pointers to last VCPU executed on each physical CPU */ | 
|  | static struct kvm_vcpu *last_exec_vcpu[NR_CPUS]; | 
|  |  | 
|  | /* | 
|  | * Number of guest VTLB entries to use, so we can catch inconsistency between | 
|  | * CPUs. | 
|  | */ | 
|  | static unsigned int kvm_vz_guest_vtlb_size; | 
|  |  | 
|  | static inline long kvm_vz_read_gc0_ebase(void) | 
|  | { | 
|  | if (sizeof(long) == 8 && cpu_has_ebase_wg) | 
|  | return read_gc0_ebase_64(); | 
|  | else | 
|  | return read_gc0_ebase(); | 
|  | } | 
|  |  | 
|  | static inline void kvm_vz_write_gc0_ebase(long v) | 
|  | { | 
|  | /* | 
|  | * First write with WG=1 to write upper bits, then write again in case | 
|  | * WG should be left at 0. | 
|  | * write_gc0_ebase_64() is no longer UNDEFINED since R6. | 
|  | */ | 
|  | if (sizeof(long) == 8 && | 
|  | (cpu_has_mips64r6 || cpu_has_ebase_wg)) { | 
|  | write_gc0_ebase_64(v | MIPS_EBASE_WG); | 
|  | write_gc0_ebase_64(v); | 
|  | } else { | 
|  | write_gc0_ebase(v | MIPS_EBASE_WG); | 
|  | write_gc0_ebase(v); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These Config bits may be writable by the guest: | 
|  | * Config:	[K23, KU] (!TLB), K0 | 
|  | * Config1:	(none) | 
|  | * Config2:	[TU, SU] (impl) | 
|  | * Config3:	ISAOnExc | 
|  | * Config4:	FTLBPageSize | 
|  | * Config5:	K, CV, MSAEn, UFE, FRE, SBRI, UFR | 
|  | */ | 
|  |  | 
|  | static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return CONF_CM_CMASK; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return MIPS_CONF3_ISA_OE; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* no need to be exact */ | 
|  | return MIPS_CONF4_VFTLBPAGESIZE; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI; | 
|  |  | 
|  | /* Permit MSAEn changes if MSA supported and enabled */ | 
|  | if (kvm_mips_guest_has_msa(&vcpu->arch)) | 
|  | mask |= MIPS_CONF5_MSAEN; | 
|  |  | 
|  | /* | 
|  | * Permit guest FPU mode changes if FPU is enabled and the relevant | 
|  | * feature exists according to FIR register. | 
|  | */ | 
|  | if (kvm_mips_guest_has_fpu(&vcpu->arch)) { | 
|  | if (cpu_has_ufr) | 
|  | mask |= MIPS_CONF5_UFR; | 
|  | if (cpu_has_fre) | 
|  | mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE; | 
|  | } | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config6_guest_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return LOONGSON_CONF6_INTIMER | LOONGSON_CONF6_EXTIMER; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * VZ optionally allows these additional Config bits to be written by root: | 
|  | * Config:	M, [MT] | 
|  | * Config1:	M, [MMUSize-1, C2, MD, PC, WR, CA], FP | 
|  | * Config2:	M | 
|  | * Config3:	M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC, | 
|  | *		VInt, SP, CDMM, MT, SM, TL] | 
|  | * Config4:	M, [VTLBSizeExt, MMUSizeExt] | 
|  | * Config5:	MRP | 
|  | */ | 
|  |  | 
|  | static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M; | 
|  |  | 
|  | /* Permit FPU to be present if FPU is supported */ | 
|  | if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) | 
|  | mask |= MIPS_CONF1_FP; | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M | | 
|  | MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC; | 
|  |  | 
|  | /* Permit MSA to be present if MSA is supported */ | 
|  | if (kvm_mips_guest_can_have_msa(&vcpu->arch)) | 
|  | mask |= MIPS_CONF3_MSA; | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP; | 
|  | } | 
|  |  | 
|  | static inline unsigned int kvm_vz_config6_user_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_vz_config6_guest_wrmask(vcpu) | | 
|  | LOONGSON_CONF6_SFBEN | LOONGSON_CONF6_FTLBDIS; | 
|  | } | 
|  |  | 
|  | static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva) | 
|  | { | 
|  | /* VZ guest has already converted gva to gpa */ | 
|  | return gva; | 
|  | } | 
|  |  | 
|  | static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority) | 
|  | { | 
|  | set_bit(priority, &vcpu->arch.pending_exceptions); | 
|  | clear_bit(priority, &vcpu->arch.pending_exceptions_clr); | 
|  | } | 
|  |  | 
|  | static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority) | 
|  | { | 
|  | clear_bit(priority, &vcpu->arch.pending_exceptions); | 
|  | set_bit(priority, &vcpu->arch.pending_exceptions_clr); | 
|  | } | 
|  |  | 
|  | static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * timer expiry is asynchronous to vcpu execution therefore defer guest | 
|  | * cp0 accesses | 
|  | */ | 
|  | kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); | 
|  | } | 
|  |  | 
|  | static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * timer expiry is asynchronous to vcpu execution therefore defer guest | 
|  | * cp0 accesses | 
|  | */ | 
|  | kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER); | 
|  | } | 
|  |  | 
|  | static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mips_interrupt *irq) | 
|  | { | 
|  | int intr = (int)irq->irq; | 
|  |  | 
|  | /* | 
|  | * interrupts are asynchronous to vcpu execution therefore defer guest | 
|  | * cp0 accesses | 
|  | */ | 
|  | kvm_vz_queue_irq(vcpu, kvm_irq_to_priority(intr)); | 
|  | } | 
|  |  | 
|  | static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mips_interrupt *irq) | 
|  | { | 
|  | int intr = (int)irq->irq; | 
|  |  | 
|  | /* | 
|  | * interrupts are asynchronous to vcpu execution therefore defer guest | 
|  | * cp0 accesses | 
|  | */ | 
|  | kvm_vz_dequeue_irq(vcpu, kvm_irq_to_priority(-intr)); | 
|  | } | 
|  |  | 
|  | static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority, | 
|  | u32 cause) | 
|  | { | 
|  | u32 irq = (priority < MIPS_EXC_MAX) ? | 
|  | kvm_priority_to_irq[priority] : 0; | 
|  |  | 
|  | switch (priority) { | 
|  | case MIPS_EXC_INT_TIMER: | 
|  | set_gc0_cause(C_TI); | 
|  | break; | 
|  |  | 
|  | case MIPS_EXC_INT_IO_1: | 
|  | case MIPS_EXC_INT_IO_2: | 
|  | case MIPS_EXC_INT_IPI_1: | 
|  | case MIPS_EXC_INT_IPI_2: | 
|  | if (cpu_has_guestctl2) | 
|  | set_c0_guestctl2(irq); | 
|  | else | 
|  | set_gc0_cause(irq); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | clear_bit(priority, &vcpu->arch.pending_exceptions); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority, | 
|  | u32 cause) | 
|  | { | 
|  | u32 irq = (priority < MIPS_EXC_MAX) ? | 
|  | kvm_priority_to_irq[priority] : 0; | 
|  |  | 
|  | switch (priority) { | 
|  | case MIPS_EXC_INT_TIMER: | 
|  | /* | 
|  | * Explicitly clear irq associated with Cause.IP[IPTI] | 
|  | * if GuestCtl2 virtual interrupt register not | 
|  | * supported or if not using GuestCtl2 Hardware Clear. | 
|  | */ | 
|  | if (cpu_has_guestctl2) { | 
|  | if (!(read_c0_guestctl2() & (irq << 14))) | 
|  | clear_c0_guestctl2(irq); | 
|  | } else { | 
|  | clear_gc0_cause(irq); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case MIPS_EXC_INT_IO_1: | 
|  | case MIPS_EXC_INT_IO_2: | 
|  | case MIPS_EXC_INT_IPI_1: | 
|  | case MIPS_EXC_INT_IPI_2: | 
|  | /* Clear GuestCtl2.VIP irq if not using Hardware Clear */ | 
|  | if (cpu_has_guestctl2) { | 
|  | if (!(read_c0_guestctl2() & (irq << 14))) | 
|  | clear_c0_guestctl2(irq); | 
|  | } else { | 
|  | clear_gc0_cause(irq); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | clear_bit(priority, &vcpu->arch.pending_exceptions_clr); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * VZ guest timer handling. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Returns:	true if the VZ GTOffset & real guest CP0_Count should be used | 
|  | *		instead of software emulation of guest timer. | 
|  | *		false otherwise. | 
|  | */ | 
|  | static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (kvm_mips_count_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | /* Chosen frequency must match real frequency */ | 
|  | if (mips_hpt_frequency != vcpu->arch.count_hz) | 
|  | return false; | 
|  |  | 
|  | /* We don't support a CP0_GTOffset with fewer bits than CP0_Count */ | 
|  | if (current_cpu_data.gtoffset_mask != 0xffffffff) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _kvm_vz_restore_stimer() - Restore soft timer state. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @compare:	CP0_Compare register value, restored by caller. | 
|  | * @cause:	CP0_Cause register to restore. | 
|  | * | 
|  | * Restore VZ state relating to the soft timer. The hard timer can be enabled | 
|  | * later. | 
|  | */ | 
|  | static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare, | 
|  | u32 cause) | 
|  | { | 
|  | /* | 
|  | * Avoid spurious counter interrupts by setting Guest CP0_Count to just | 
|  | * after Guest CP0_Compare. | 
|  | */ | 
|  | write_c0_gtoffset(compare - read_c0_count()); | 
|  |  | 
|  | back_to_back_c0_hazard(); | 
|  | write_gc0_cause(cause); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _kvm_vz_restore_htimer() - Restore hard timer state. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @compare:	CP0_Compare register value, restored by caller. | 
|  | * @cause:	CP0_Cause register to restore. | 
|  | * | 
|  | * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the | 
|  | * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause. | 
|  | */ | 
|  | static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu, | 
|  | u32 compare, u32 cause) | 
|  | { | 
|  | u32 start_count, after_count; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Freeze the soft-timer and sync the guest CP0_Count with it. We do | 
|  | * this with interrupts disabled to avoid latency. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | kvm_mips_freeze_hrtimer(vcpu, &start_count); | 
|  | write_c0_gtoffset(start_count - read_c0_count()); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* restore guest CP0_Cause, as TI may already be set */ | 
|  | back_to_back_c0_hazard(); | 
|  | write_gc0_cause(cause); | 
|  |  | 
|  | /* | 
|  | * The above sequence isn't atomic and would result in lost timer | 
|  | * interrupts if we're not careful. Detect if a timer interrupt is due | 
|  | * and assert it. | 
|  | */ | 
|  | back_to_back_c0_hazard(); | 
|  | after_count = read_gc0_count(); | 
|  | if (after_count - start_count > compare - start_count - 1) | 
|  | kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vz_restore_timer() - Restore timer state. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Restore soft timer state from saved context. | 
|  | */ | 
|  | static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = &vcpu->arch.cop0; | 
|  | u32 cause, compare; | 
|  |  | 
|  | compare = kvm_read_sw_gc0_compare(cop0); | 
|  | cause = kvm_read_sw_gc0_cause(cop0); | 
|  |  | 
|  | write_gc0_compare(compare); | 
|  | _kvm_vz_restore_stimer(vcpu, compare, cause); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vz_acquire_htimer() - Switch to hard timer state. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Restore hard timer state on top of existing soft timer state if possible. | 
|  | * | 
|  | * Since hard timer won't remain active over preemption, preemption should be | 
|  | * disabled by the caller. | 
|  | */ | 
|  | void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 gctl0; | 
|  |  | 
|  | gctl0 = read_c0_guestctl0(); | 
|  | if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) { | 
|  | /* enable guest access to hard timer */ | 
|  | write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT); | 
|  |  | 
|  | _kvm_vz_restore_htimer(vcpu, read_gc0_compare(), | 
|  | read_gc0_cause()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _kvm_vz_save_htimer() - Switch to software emulation of guest timer. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @out_compare: Pointer to write compare value to. | 
|  | * @out_cause:	Pointer to write cause value to. | 
|  | * | 
|  | * Save VZ guest timer state and switch to software emulation of guest CP0 | 
|  | * timer. The hard timer must already be in use, so preemption should be | 
|  | * disabled. | 
|  | */ | 
|  | static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu, | 
|  | u32 *out_compare, u32 *out_cause) | 
|  | { | 
|  | u32 cause, compare, before_count, end_count; | 
|  | ktime_t before_time; | 
|  |  | 
|  | compare = read_gc0_compare(); | 
|  | *out_compare = compare; | 
|  |  | 
|  | before_time = ktime_get(); | 
|  |  | 
|  | /* | 
|  | * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time | 
|  | * at which no pending timer interrupt is missing. | 
|  | */ | 
|  | before_count = read_gc0_count(); | 
|  | back_to_back_c0_hazard(); | 
|  | cause = read_gc0_cause(); | 
|  | *out_cause = cause; | 
|  |  | 
|  | /* | 
|  | * Record a final CP0_Count which we will transfer to the soft-timer. | 
|  | * This is recorded *after* saving CP0_Cause, so we don't get any timer | 
|  | * interrupts from just after the final CP0_Count point. | 
|  | */ | 
|  | back_to_back_c0_hazard(); | 
|  | end_count = read_gc0_count(); | 
|  |  | 
|  | /* | 
|  | * The above sequence isn't atomic, so we could miss a timer interrupt | 
|  | * between reading CP0_Cause and end_count. Detect and record any timer | 
|  | * interrupt due between before_count and end_count. | 
|  | */ | 
|  | if (end_count - before_count > compare - before_count - 1) | 
|  | kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); | 
|  |  | 
|  | /* | 
|  | * Restore soft-timer, ignoring a small amount of negative drift due to | 
|  | * delay between freeze_hrtimer and setting CP0_GTOffset. | 
|  | */ | 
|  | kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vz_save_timer() - Save guest timer state. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Save VZ guest timer state and switch to soft guest timer if hard timer was in | 
|  | * use. | 
|  | */ | 
|  | static void kvm_vz_save_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = &vcpu->arch.cop0; | 
|  | u32 gctl0, compare, cause; | 
|  |  | 
|  | gctl0 = read_c0_guestctl0(); | 
|  | if (gctl0 & MIPS_GCTL0_GT) { | 
|  | /* disable guest use of hard timer */ | 
|  | write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT); | 
|  |  | 
|  | /* save hard timer state */ | 
|  | _kvm_vz_save_htimer(vcpu, &compare, &cause); | 
|  | } else { | 
|  | compare = read_gc0_compare(); | 
|  | cause = read_gc0_cause(); | 
|  | } | 
|  |  | 
|  | /* save timer-related state to VCPU context */ | 
|  | kvm_write_sw_gc0_cause(cop0, cause); | 
|  | kvm_write_sw_gc0_compare(cop0, compare); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Transfers the state of the hard guest timer to the soft guest timer, leaving | 
|  | * guest state intact so it can continue to be used with the soft timer. | 
|  | */ | 
|  | void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 gctl0, compare, cause; | 
|  |  | 
|  | preempt_disable(); | 
|  | gctl0 = read_c0_guestctl0(); | 
|  | if (gctl0 & MIPS_GCTL0_GT) { | 
|  | /* disable guest use of timer */ | 
|  | write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT); | 
|  |  | 
|  | /* switch to soft timer */ | 
|  | _kvm_vz_save_htimer(vcpu, &compare, &cause); | 
|  |  | 
|  | /* leave soft timer in usable state */ | 
|  | _kvm_vz_restore_stimer(vcpu, compare, cause); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_eva_access() - Find whether an instruction is an EVA memory accessor. | 
|  | * @inst:	32-bit instruction encoding. | 
|  | * | 
|  | * Finds whether @inst encodes an EVA memory access instruction, which would | 
|  | * indicate that emulation of it should access the user mode address space | 
|  | * instead of the kernel mode address space. This matters for MUSUK segments | 
|  | * which are TLB mapped for user mode but unmapped for kernel mode. | 
|  | * | 
|  | * Returns:	Whether @inst encodes an EVA accessor instruction. | 
|  | */ | 
|  | static bool is_eva_access(union mips_instruction inst) | 
|  | { | 
|  | if (inst.spec3_format.opcode != spec3_op) | 
|  | return false; | 
|  |  | 
|  | switch (inst.spec3_format.func) { | 
|  | case lwle_op: | 
|  | case lwre_op: | 
|  | case cachee_op: | 
|  | case sbe_op: | 
|  | case she_op: | 
|  | case sce_op: | 
|  | case swe_op: | 
|  | case swle_op: | 
|  | case swre_op: | 
|  | case prefe_op: | 
|  | case lbue_op: | 
|  | case lhue_op: | 
|  | case lbe_op: | 
|  | case lhe_op: | 
|  | case lle_op: | 
|  | case lwe_op: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_eva_am_mapped() - Find whether an access mode is mapped. | 
|  | * @vcpu:	KVM VCPU state. | 
|  | * @am:		3-bit encoded access mode. | 
|  | * @eu:		Segment becomes unmapped and uncached when Status.ERL=1. | 
|  | * | 
|  | * Decode @am to find whether it encodes a mapped segment for the current VCPU | 
|  | * state. Where necessary @eu and the actual instruction causing the fault are | 
|  | * taken into account to make the decision. | 
|  | * | 
|  | * Returns:	Whether the VCPU faulted on a TLB mapped address. | 
|  | */ | 
|  | static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu) | 
|  | { | 
|  | u32 am_lookup; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Interpret access control mode. We assume address errors will already | 
|  | * have been caught by the guest, leaving us with: | 
|  | *      AM      UM  SM  KM  31..24 23..16 | 
|  | * UK    0 000          Unm   0      0 | 
|  | * MK    1 001          TLB   1 | 
|  | * MSK   2 010      TLB TLB   1 | 
|  | * MUSK  3 011  TLB TLB TLB   1 | 
|  | * MUSUK 4 100  TLB TLB Unm   0      1 | 
|  | * USK   5 101      Unm Unm   0      0 | 
|  | * -     6 110                0      0 | 
|  | * UUSK  7 111  Unm Unm Unm   0      0 | 
|  | * | 
|  | * We shift a magic value by AM across the sign bit to find if always | 
|  | * TLB mapped, and if not shift by 8 again to find if it depends on KM. | 
|  | */ | 
|  | am_lookup = 0x70080000 << am; | 
|  | if ((s32)am_lookup < 0) { | 
|  | /* | 
|  | * MK, MSK, MUSK | 
|  | * Always TLB mapped, unless SegCtl.EU && ERL | 
|  | */ | 
|  | if (!eu || !(read_gc0_status() & ST0_ERL)) | 
|  | return true; | 
|  | } else { | 
|  | am_lookup <<= 8; | 
|  | if ((s32)am_lookup < 0) { | 
|  | union mips_instruction inst; | 
|  | unsigned int status; | 
|  | u32 *opc; | 
|  |  | 
|  | /* | 
|  | * MUSUK | 
|  | * TLB mapped if not in kernel mode | 
|  | */ | 
|  | status = read_gc0_status(); | 
|  | if (!(status & (ST0_EXL | ST0_ERL)) && | 
|  | (status & ST0_KSU)) | 
|  | return true; | 
|  | /* | 
|  | * EVA access instructions in kernel | 
|  | * mode access user address space. | 
|  | */ | 
|  | opc = (u32 *)vcpu->arch.pc; | 
|  | if (vcpu->arch.host_cp0_cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  | err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
|  | if (!err && is_eva_access(inst)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA. | 
|  | * @vcpu:	KVM VCPU state. | 
|  | * @gva:	Guest virtual address to convert. | 
|  | * @gpa:	Output guest physical address. | 
|  | * | 
|  | * Convert a guest virtual address (GVA) which is valid according to the guest | 
|  | * context, to a guest physical address (GPA). | 
|  | * | 
|  | * Returns:	0 on success. | 
|  | *		-errno on failure. | 
|  | */ | 
|  | static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, | 
|  | unsigned long *gpa) | 
|  | { | 
|  | u32 gva32 = gva; | 
|  | unsigned long segctl; | 
|  |  | 
|  | if ((long)gva == (s32)gva32) { | 
|  | /* Handle canonical 32-bit virtual address */ | 
|  | if (cpu_guest_has_segments) { | 
|  | unsigned long mask, pa; | 
|  |  | 
|  | switch (gva32 >> 29) { | 
|  | case 0: | 
|  | case 1: /* CFG5 (1GB) */ | 
|  | segctl = read_gc0_segctl2() >> 16; | 
|  | mask = (unsigned long)0xfc0000000ull; | 
|  | break; | 
|  | case 2: | 
|  | case 3: /* CFG4 (1GB) */ | 
|  | segctl = read_gc0_segctl2(); | 
|  | mask = (unsigned long)0xfc0000000ull; | 
|  | break; | 
|  | case 4: /* CFG3 (512MB) */ | 
|  | segctl = read_gc0_segctl1() >> 16; | 
|  | mask = (unsigned long)0xfe0000000ull; | 
|  | break; | 
|  | case 5: /* CFG2 (512MB) */ | 
|  | segctl = read_gc0_segctl1(); | 
|  | mask = (unsigned long)0xfe0000000ull; | 
|  | break; | 
|  | case 6: /* CFG1 (512MB) */ | 
|  | segctl = read_gc0_segctl0() >> 16; | 
|  | mask = (unsigned long)0xfe0000000ull; | 
|  | break; | 
|  | case 7: /* CFG0 (512MB) */ | 
|  | segctl = read_gc0_segctl0(); | 
|  | mask = (unsigned long)0xfe0000000ull; | 
|  | break; | 
|  | default: | 
|  | /* | 
|  | * GCC 4.9 isn't smart enough to figure out that | 
|  | * segctl and mask are always initialised. | 
|  | */ | 
|  | unreachable(); | 
|  | } | 
|  |  | 
|  | if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7, | 
|  | segctl & 0x0008)) | 
|  | goto tlb_mapped; | 
|  |  | 
|  | /* Unmapped, find guest physical address */ | 
|  | pa = (segctl << 20) & mask; | 
|  | pa |= gva32 & ~mask; | 
|  | *gpa = pa; | 
|  | return 0; | 
|  | } else if ((s32)gva32 < (s32)0xc0000000) { | 
|  | /* legacy unmapped KSeg0 or KSeg1 */ | 
|  | *gpa = gva32 & 0x1fffffff; | 
|  | return 0; | 
|  | } | 
|  | #ifdef CONFIG_64BIT | 
|  | } else if ((gva & 0xc000000000000000) == 0x8000000000000000) { | 
|  | /* XKPHYS */ | 
|  | if (cpu_guest_has_segments) { | 
|  | /* | 
|  | * Each of the 8 regions can be overridden by SegCtl2.XR | 
|  | * to use SegCtl1.XAM. | 
|  | */ | 
|  | segctl = read_gc0_segctl2(); | 
|  | if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) { | 
|  | segctl = read_gc0_segctl1(); | 
|  | if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7, | 
|  | 0)) | 
|  | goto tlb_mapped; | 
|  | } | 
|  |  | 
|  | } | 
|  | /* | 
|  | * Traditionally fully unmapped. | 
|  | * Bits 61:59 specify the CCA, which we can just mask off here. | 
|  | * Bits 58:PABITS should be zero, but we shouldn't have got here | 
|  | * if it wasn't. | 
|  | */ | 
|  | *gpa = gva & 0x07ffffffffffffff; | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | tlb_mapped: | 
|  | return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA. | 
|  | * @vcpu:	KVM VCPU state. | 
|  | * @badvaddr:	Root BadVAddr. | 
|  | * @gpa:	Output guest physical address. | 
|  | * | 
|  | * VZ implementations are permitted to report guest virtual addresses (GVA) in | 
|  | * BadVAddr on a root exception during guest execution, instead of the more | 
|  | * convenient guest physical addresses (GPA). When we get a GVA, this function | 
|  | * converts it to a GPA, taking into account guest segmentation and guest TLB | 
|  | * state. | 
|  | * | 
|  | * Returns:	0 on success. | 
|  | *		-errno on failure. | 
|  | */ | 
|  | static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr, | 
|  | unsigned long *gpa) | 
|  | { | 
|  | unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 & | 
|  | MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; | 
|  |  | 
|  | /* If BadVAddr is GPA, then all is well in the world */ | 
|  | if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) { | 
|  | *gpa = badvaddr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Otherwise we'd expect it to be GVA ... */ | 
|  | if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA, | 
|  | "Unexpected gexccode %#x\n", gexccode)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* ... and we need to perform the GVA->GPA translation in software */ | 
|  | return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa); | 
|  | } | 
|  |  | 
|  | static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 *opc = (u32 *) vcpu->arch.pc; | 
|  | u32 cause = vcpu->arch.host_cp0_cause; | 
|  | u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; | 
|  | unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; | 
|  | u32 inst = 0; | 
|  |  | 
|  | /* | 
|  | *  Fetch the instruction. | 
|  | */ | 
|  | if (cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  | kvm_get_badinstr(opc, vcpu, &inst); | 
|  |  | 
|  | kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", | 
|  | exccode, opc, inst, badvaddr, | 
|  | read_gc0_status()); | 
|  | kvm_arch_vcpu_dump_regs(vcpu); | 
|  | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | return RESUME_HOST; | 
|  | } | 
|  |  | 
|  | static unsigned long mips_process_maar(unsigned int op, unsigned long val) | 
|  | { | 
|  | /* Mask off unused bits */ | 
|  | unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL; | 
|  |  | 
|  | if (read_gc0_pagegrain() & PG_ELPA) | 
|  | mask |= 0x00ffffff00000000ull; | 
|  | if (cpu_guest_has_mvh) | 
|  | mask |= MIPS_MAAR_VH; | 
|  |  | 
|  | /* Set or clear VH */ | 
|  | if (op == mtc_op) { | 
|  | /* clear VH */ | 
|  | val &= ~MIPS_MAAR_VH; | 
|  | } else if (op == dmtc_op) { | 
|  | /* set VH to match VL */ | 
|  | val &= ~MIPS_MAAR_VH; | 
|  | if (val & MIPS_MAAR_VL) | 
|  | val |= MIPS_MAAR_VH; | 
|  | } | 
|  |  | 
|  | return val & mask; | 
|  | } | 
|  |  | 
|  | static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val) | 
|  | { | 
|  | struct mips_coproc *cop0 = &vcpu->arch.cop0; | 
|  |  | 
|  | val &= MIPS_MAARI_INDEX; | 
|  | if (val == MIPS_MAARI_INDEX) | 
|  | kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1); | 
|  | else if (val < ARRAY_SIZE(vcpu->arch.maar)) | 
|  | kvm_write_sw_gc0_maari(cop0, val); | 
|  | } | 
|  |  | 
|  | static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst, | 
|  | u32 *opc, u32 cause, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = &vcpu->arch.cop0; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | u32 rt, rd, sel; | 
|  | unsigned long curr_pc; | 
|  | unsigned long val; | 
|  |  | 
|  | /* | 
|  | * Update PC and hold onto current PC in case there is | 
|  | * an error and we want to rollback the PC | 
|  | */ | 
|  | curr_pc = vcpu->arch.pc; | 
|  | er = update_pc(vcpu, cause); | 
|  | if (er == EMULATE_FAIL) | 
|  | return er; | 
|  |  | 
|  | if (inst.co_format.co) { | 
|  | switch (inst.co_format.func) { | 
|  | case wait_op: | 
|  | er = kvm_mips_emul_wait(vcpu); | 
|  | break; | 
|  | default: | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  | } else { | 
|  | rt = inst.c0r_format.rt; | 
|  | rd = inst.c0r_format.rd; | 
|  | sel = inst.c0r_format.sel; | 
|  |  | 
|  | switch (inst.c0r_format.rs) { | 
|  | case dmfc_op: | 
|  | case mfc_op: | 
|  | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS | 
|  | cop0->stat[rd][sel]++; | 
|  | #endif | 
|  | if (rd == MIPS_CP0_COUNT && | 
|  | sel == 0) {			/* Count */ | 
|  | val = kvm_mips_read_count(vcpu); | 
|  | } else if (rd == MIPS_CP0_COMPARE && | 
|  | sel == 0) {		/* Compare */ | 
|  | val = read_gc0_compare(); | 
|  | } else if (rd == MIPS_CP0_LLADDR && | 
|  | sel == 0) {		/* LLAddr */ | 
|  | if (cpu_guest_has_rw_llb) | 
|  | val = read_gc0_lladdr() & | 
|  | MIPS_LLADDR_LLB; | 
|  | else | 
|  | val = 0; | 
|  | } else if (rd == MIPS_CP0_LLADDR && | 
|  | sel == 1 &&		/* MAAR */ | 
|  | cpu_guest_has_maar && | 
|  | !cpu_guest_has_dyn_maar) { | 
|  | /* MAARI must be in range */ | 
|  | BUG_ON(kvm_read_sw_gc0_maari(cop0) >= | 
|  | ARRAY_SIZE(vcpu->arch.maar)); | 
|  | val = vcpu->arch.maar[ | 
|  | kvm_read_sw_gc0_maari(cop0)]; | 
|  | } else if ((rd == MIPS_CP0_PRID && | 
|  | (sel == 0 ||	/* PRid */ | 
|  | sel == 2 ||	/* CDMMBase */ | 
|  | sel == 3)) ||	/* CMGCRBase */ | 
|  | (rd == MIPS_CP0_STATUS && | 
|  | (sel == 2 ||	/* SRSCtl */ | 
|  | sel == 3)) ||	/* SRSMap */ | 
|  | (rd == MIPS_CP0_CONFIG && | 
|  | (sel == 6 ||	/* Config6 */ | 
|  | sel == 7)) ||	/* Config7 */ | 
|  | (rd == MIPS_CP0_LLADDR && | 
|  | (sel == 2) &&	/* MAARI */ | 
|  | cpu_guest_has_maar && | 
|  | !cpu_guest_has_dyn_maar) || | 
|  | (rd == MIPS_CP0_ERRCTL && | 
|  | (sel == 0))) {	/* ErrCtl */ | 
|  | val = cop0->reg[rd][sel]; | 
|  | #ifdef CONFIG_CPU_LOONGSON64 | 
|  | } else if (rd == MIPS_CP0_DIAG && | 
|  | (sel == 0)) {	/* Diag */ | 
|  | val = cop0->reg[rd][sel]; | 
|  | #endif | 
|  | } else { | 
|  | val = 0; | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | if (er != EMULATE_FAIL) { | 
|  | /* Sign extend */ | 
|  | if (inst.c0r_format.rs == mfc_op) | 
|  | val = (int)val; | 
|  | vcpu->arch.gprs[rt] = val; | 
|  | } | 
|  |  | 
|  | trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ? | 
|  | KVM_TRACE_MFC0 : KVM_TRACE_DMFC0, | 
|  | KVM_TRACE_COP0(rd, sel), val); | 
|  | break; | 
|  |  | 
|  | case dmtc_op: | 
|  | case mtc_op: | 
|  | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS | 
|  | cop0->stat[rd][sel]++; | 
|  | #endif | 
|  | val = vcpu->arch.gprs[rt]; | 
|  | trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ? | 
|  | KVM_TRACE_MTC0 : KVM_TRACE_DMTC0, | 
|  | KVM_TRACE_COP0(rd, sel), val); | 
|  |  | 
|  | if (rd == MIPS_CP0_COUNT && | 
|  | sel == 0) {			/* Count */ | 
|  | kvm_vz_lose_htimer(vcpu); | 
|  | kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); | 
|  | } else if (rd == MIPS_CP0_COMPARE && | 
|  | sel == 0) {		/* Compare */ | 
|  | kvm_mips_write_compare(vcpu, | 
|  | vcpu->arch.gprs[rt], | 
|  | true); | 
|  | } else if (rd == MIPS_CP0_LLADDR && | 
|  | sel == 0) {		/* LLAddr */ | 
|  | /* | 
|  | * P5600 generates GPSI on guest MTC0 LLAddr. | 
|  | * Only allow the guest to clear LLB. | 
|  | */ | 
|  | if (cpu_guest_has_rw_llb && | 
|  | !(val & MIPS_LLADDR_LLB)) | 
|  | write_gc0_lladdr(0); | 
|  | } else if (rd == MIPS_CP0_LLADDR && | 
|  | sel == 1 &&		/* MAAR */ | 
|  | cpu_guest_has_maar && | 
|  | !cpu_guest_has_dyn_maar) { | 
|  | val = mips_process_maar(inst.c0r_format.rs, | 
|  | val); | 
|  |  | 
|  | /* MAARI must be in range */ | 
|  | BUG_ON(kvm_read_sw_gc0_maari(cop0) >= | 
|  | ARRAY_SIZE(vcpu->arch.maar)); | 
|  | vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] = | 
|  | val; | 
|  | } else if (rd == MIPS_CP0_LLADDR && | 
|  | (sel == 2) &&	/* MAARI */ | 
|  | cpu_guest_has_maar && | 
|  | !cpu_guest_has_dyn_maar) { | 
|  | kvm_write_maari(vcpu, val); | 
|  | } else if (rd == MIPS_CP0_CONFIG && | 
|  | (sel == 6)) { | 
|  | cop0->reg[rd][sel] = (int)val; | 
|  | } else if (rd == MIPS_CP0_ERRCTL && | 
|  | (sel == 0)) {	/* ErrCtl */ | 
|  | /* ignore the written value */ | 
|  | #ifdef CONFIG_CPU_LOONGSON64 | 
|  | } else if (rd == MIPS_CP0_DIAG && | 
|  | (sel == 0)) {	/* Diag */ | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (val & LOONGSON_DIAG_BTB) { | 
|  | /* Flush BTB */ | 
|  | set_c0_diag(LOONGSON_DIAG_BTB); | 
|  | } | 
|  | if (val & LOONGSON_DIAG_ITLB) { | 
|  | /* Flush ITLB */ | 
|  | set_c0_diag(LOONGSON_DIAG_ITLB); | 
|  | } | 
|  | if (val & LOONGSON_DIAG_DTLB) { | 
|  | /* Flush DTLB */ | 
|  | set_c0_diag(LOONGSON_DIAG_DTLB); | 
|  | } | 
|  | if (val & LOONGSON_DIAG_VTLB) { | 
|  | /* Flush VTLB */ | 
|  | kvm_loongson_clear_guest_vtlb(); | 
|  | } | 
|  | if (val & LOONGSON_DIAG_FTLB) { | 
|  | /* Flush FTLB */ | 
|  | kvm_loongson_clear_guest_ftlb(); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | #endif | 
|  | } else { | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* Rollback PC only if emulation was unsuccessful */ | 
|  | if (er == EMULATE_FAIL) { | 
|  | kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n", | 
|  | curr_pc, __func__, inst.word); | 
|  |  | 
|  | vcpu->arch.pc = curr_pc; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst, | 
|  | u32 *opc, u32 cause, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | u32 cache, op_inst, op, base; | 
|  | s16 offset; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | unsigned long va, curr_pc; | 
|  |  | 
|  | /* | 
|  | * Update PC and hold onto current PC in case there is | 
|  | * an error and we want to rollback the PC | 
|  | */ | 
|  | curr_pc = vcpu->arch.pc; | 
|  | er = update_pc(vcpu, cause); | 
|  | if (er == EMULATE_FAIL) | 
|  | return er; | 
|  |  | 
|  | base = inst.i_format.rs; | 
|  | op_inst = inst.i_format.rt; | 
|  | if (cpu_has_mips_r6) | 
|  | offset = inst.spec3_format.simmediate; | 
|  | else | 
|  | offset = inst.i_format.simmediate; | 
|  | cache = op_inst & CacheOp_Cache; | 
|  | op = op_inst & CacheOp_Op; | 
|  |  | 
|  | va = arch->gprs[base] + offset; | 
|  |  | 
|  | kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", | 
|  | cache, op, base, arch->gprs[base], offset); | 
|  |  | 
|  | /* Secondary or tirtiary cache ops ignored */ | 
|  | if (cache != Cache_I && cache != Cache_D) | 
|  | return EMULATE_DONE; | 
|  |  | 
|  | switch (op_inst) { | 
|  | case Index_Invalidate_I: | 
|  | flush_icache_line_indexed(va); | 
|  | return EMULATE_DONE; | 
|  | case Index_Writeback_Inv_D: | 
|  | flush_dcache_line_indexed(va); | 
|  | return EMULATE_DONE; | 
|  | case Hit_Invalidate_I: | 
|  | case Hit_Invalidate_D: | 
|  | case Hit_Writeback_Inv_D: | 
|  | if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) { | 
|  | /* We can just flush entire icache */ | 
|  | local_flush_icache_range(0, 0); | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | /* So far, other platforms support guest hit cache ops */ | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", | 
|  | curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base], | 
|  | offset); | 
|  | /* Rollback PC */ | 
|  | vcpu->arch.pc = curr_pc; | 
|  |  | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_LOONGSON64 | 
|  | static enum emulation_result kvm_vz_gpsi_lwc2(union mips_instruction inst, | 
|  | u32 *opc, u32 cause, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned int rs, rd; | 
|  | unsigned int hostcfg; | 
|  | unsigned long curr_pc; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | /* | 
|  | * Update PC and hold onto current PC in case there is | 
|  | * an error and we want to rollback the PC | 
|  | */ | 
|  | curr_pc = vcpu->arch.pc; | 
|  | er = update_pc(vcpu, cause); | 
|  | if (er == EMULATE_FAIL) | 
|  | return er; | 
|  |  | 
|  | rs = inst.loongson3_lscsr_format.rs; | 
|  | rd = inst.loongson3_lscsr_format.rd; | 
|  | switch (inst.loongson3_lscsr_format.fr) { | 
|  | case 0x8:  /* Read CPUCFG */ | 
|  | ++vcpu->stat.vz_cpucfg_exits; | 
|  | hostcfg = read_cpucfg(vcpu->arch.gprs[rs]); | 
|  |  | 
|  | switch (vcpu->arch.gprs[rs]) { | 
|  | case LOONGSON_CFG0: | 
|  | vcpu->arch.gprs[rd] = 0x14c000; | 
|  | break; | 
|  | case LOONGSON_CFG1: | 
|  | hostcfg &= (LOONGSON_CFG1_FP | LOONGSON_CFG1_MMI | | 
|  | LOONGSON_CFG1_MSA1 | LOONGSON_CFG1_MSA2 | | 
|  | LOONGSON_CFG1_SFBP); | 
|  | vcpu->arch.gprs[rd] = hostcfg; | 
|  | break; | 
|  | case LOONGSON_CFG2: | 
|  | hostcfg &= (LOONGSON_CFG2_LEXT1 | LOONGSON_CFG2_LEXT2 | | 
|  | LOONGSON_CFG2_LEXT3 | LOONGSON_CFG2_LSPW); | 
|  | vcpu->arch.gprs[rd] = hostcfg; | 
|  | break; | 
|  | case LOONGSON_CFG3: | 
|  | vcpu->arch.gprs[rd] = hostcfg; | 
|  | break; | 
|  | default: | 
|  | /* Don't export any other advanced features to guest */ | 
|  | vcpu->arch.gprs[rd] = 0; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | kvm_err("lwc2 emulate not impl %d rs %lx @%lx\n", | 
|  | inst.loongson3_lscsr_format.fr, vcpu->arch.gprs[rs], curr_pc); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Rollback PC only if emulation was unsuccessful */ | 
|  | if (er == EMULATE_FAIL) { | 
|  | kvm_err("[%#lx]%s: unsupported lwc2 instruction 0x%08x 0x%08x\n", | 
|  | curr_pc, __func__, inst.word, inst.loongson3_lscsr_format.fr); | 
|  |  | 
|  | vcpu->arch.pc = curr_pc; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | union mips_instruction inst; | 
|  | int rd, rt, sel; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | *  Fetch the instruction. | 
|  | */ | 
|  | if (cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  | err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
|  | if (err) | 
|  | return EMULATE_FAIL; | 
|  |  | 
|  | switch (inst.r_format.opcode) { | 
|  | case cop0_op: | 
|  | er = kvm_vz_gpsi_cop0(inst, opc, cause, vcpu); | 
|  | break; | 
|  | #ifndef CONFIG_CPU_MIPSR6 | 
|  | case cache_op: | 
|  | trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); | 
|  | er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu); | 
|  | break; | 
|  | #endif | 
|  | #ifdef CONFIG_CPU_LOONGSON64 | 
|  | case lwc2_op: | 
|  | er = kvm_vz_gpsi_lwc2(inst, opc, cause, vcpu); | 
|  | break; | 
|  | #endif | 
|  | case spec3_op: | 
|  | switch (inst.spec3_format.func) { | 
|  | #ifdef CONFIG_CPU_MIPSR6 | 
|  | case cache6_op: | 
|  | trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); | 
|  | er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu); | 
|  | break; | 
|  | #endif | 
|  | case rdhwr_op: | 
|  | if (inst.r_format.rs || (inst.r_format.re >> 3)) | 
|  | goto unknown; | 
|  |  | 
|  | rd = inst.r_format.rd; | 
|  | rt = inst.r_format.rt; | 
|  | sel = inst.r_format.re & 0x7; | 
|  |  | 
|  | switch (rd) { | 
|  | case MIPS_HWR_CC:	/* Read count register */ | 
|  | arch->gprs[rt] = | 
|  | (long)(int)kvm_mips_read_count(vcpu); | 
|  | break; | 
|  | default: | 
|  | trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, | 
|  | KVM_TRACE_HWR(rd, sel), 0); | 
|  | goto unknown; | 
|  | } | 
|  |  | 
|  | trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, | 
|  | KVM_TRACE_HWR(rd, sel), arch->gprs[rt]); | 
|  |  | 
|  | er = update_pc(vcpu, cause); | 
|  | break; | 
|  | default: | 
|  | goto unknown; | 
|  | } | 
|  | break; | 
|  | unknown: | 
|  |  | 
|  | default: | 
|  | kvm_err("GPSI exception not supported (%p/%#x)\n", | 
|  | opc, inst.word); | 
|  | kvm_arch_vcpu_dump_regs(vcpu); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | union mips_instruction inst; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | *  Fetch the instruction. | 
|  | */ | 
|  | if (cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  | err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
|  | if (err) | 
|  | return EMULATE_FAIL; | 
|  |  | 
|  | /* complete MTC0 on behalf of guest and advance EPC */ | 
|  | if (inst.c0r_format.opcode == cop0_op && | 
|  | inst.c0r_format.rs == mtc_op && | 
|  | inst.c0r_format.z == 0) { | 
|  | int rt = inst.c0r_format.rt; | 
|  | int rd = inst.c0r_format.rd; | 
|  | int sel = inst.c0r_format.sel; | 
|  | unsigned int val = arch->gprs[rt]; | 
|  | unsigned int old_val, change; | 
|  |  | 
|  | trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel), | 
|  | val); | 
|  |  | 
|  | if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { | 
|  | /* FR bit should read as zero if no FPU */ | 
|  | if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
|  | val &= ~(ST0_CU1 | ST0_FR); | 
|  |  | 
|  | /* | 
|  | * Also don't allow FR to be set if host doesn't support | 
|  | * it. | 
|  | */ | 
|  | if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) | 
|  | val &= ~ST0_FR; | 
|  |  | 
|  | old_val = read_gc0_status(); | 
|  | change = val ^ old_val; | 
|  |  | 
|  | if (change & ST0_FR) { | 
|  | /* | 
|  | * FPU and Vector register state is made | 
|  | * UNPREDICTABLE by a change of FR, so don't | 
|  | * even bother saving it. | 
|  | */ | 
|  | kvm_drop_fpu(vcpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If MSA state is already live, it is undefined how it | 
|  | * interacts with FR=0 FPU state, and we don't want to | 
|  | * hit reserved instruction exceptions trying to save | 
|  | * the MSA state later when CU=1 && FR=1, so play it | 
|  | * safe and save it first. | 
|  | */ | 
|  | if (change & ST0_CU1 && !(val & ST0_FR) && | 
|  | vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) | 
|  | kvm_lose_fpu(vcpu); | 
|  |  | 
|  | write_gc0_status(val); | 
|  | } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { | 
|  | u32 old_cause = read_gc0_cause(); | 
|  | u32 change = old_cause ^ val; | 
|  |  | 
|  | /* DC bit enabling/disabling timer? */ | 
|  | if (change & CAUSEF_DC) { | 
|  | if (val & CAUSEF_DC) { | 
|  | kvm_vz_lose_htimer(vcpu); | 
|  | kvm_mips_count_disable_cause(vcpu); | 
|  | } else { | 
|  | kvm_mips_count_enable_cause(vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Only certain bits are RW to the guest */ | 
|  | change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP | | 
|  | CAUSEF_IP0 | CAUSEF_IP1); | 
|  |  | 
|  | /* WP can only be cleared */ | 
|  | change &= ~CAUSEF_WP | old_cause; | 
|  |  | 
|  | write_gc0_cause(old_cause ^ change); | 
|  | } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */ | 
|  | write_gc0_intctl(val); | 
|  | } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { | 
|  | old_val = read_gc0_config5(); | 
|  | change = val ^ old_val; | 
|  | /* Handle changes in FPU/MSA modes */ | 
|  | preempt_disable(); | 
|  |  | 
|  | /* | 
|  | * Propagate FRE changes immediately if the FPU | 
|  | * context is already loaded. | 
|  | */ | 
|  | if (change & MIPS_CONF5_FRE && | 
|  | vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) | 
|  | change_c0_config5(MIPS_CONF5_FRE, val); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | val = old_val ^ | 
|  | (change & kvm_vz_config5_guest_wrmask(vcpu)); | 
|  | write_gc0_config5(val); | 
|  | } else { | 
|  | kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n", | 
|  | opc, inst.word); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | if (er != EMULATE_FAIL) | 
|  | er = update_pc(vcpu, cause); | 
|  | } else { | 
|  | kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n", | 
|  | opc, inst.word); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * Presumably this is due to MC (guest mode change), so lets trace some | 
|  | * relevant info. | 
|  | */ | 
|  | trace_kvm_guest_mode_change(vcpu); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er; | 
|  | union mips_instruction inst; | 
|  | unsigned long curr_pc; | 
|  | int err; | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  | err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
|  | if (err) | 
|  | return EMULATE_FAIL; | 
|  |  | 
|  | /* | 
|  | * Update PC and hold onto current PC in case there is | 
|  | * an error and we want to rollback the PC | 
|  | */ | 
|  | curr_pc = vcpu->arch.pc; | 
|  | er = update_pc(vcpu, cause); | 
|  | if (er == EMULATE_FAIL) | 
|  | return er; | 
|  |  | 
|  | er = kvm_mips_emul_hypcall(vcpu, inst); | 
|  | if (er == EMULATE_FAIL) | 
|  | vcpu->arch.pc = curr_pc; | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode, | 
|  | u32 cause, | 
|  | u32 *opc, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 inst; | 
|  |  | 
|  | /* | 
|  | *  Fetch the instruction. | 
|  | */ | 
|  | if (cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  | kvm_get_badinstr(opc, vcpu, &inst); | 
|  |  | 
|  | kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n", | 
|  | gexccode, opc, inst, read_gc0_status()); | 
|  |  | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 *opc = (u32 *) vcpu->arch.pc; | 
|  | u32 cause = vcpu->arch.host_cp0_cause; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | u32 gexccode = (vcpu->arch.host_cp0_guestctl0 & | 
|  | MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; | 
|  | int ret = RESUME_GUEST; | 
|  |  | 
|  | trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode); | 
|  | switch (gexccode) { | 
|  | case MIPS_GCTL0_GEXC_GPSI: | 
|  | ++vcpu->stat.vz_gpsi_exits; | 
|  | er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu); | 
|  | break; | 
|  | case MIPS_GCTL0_GEXC_GSFC: | 
|  | ++vcpu->stat.vz_gsfc_exits; | 
|  | er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu); | 
|  | break; | 
|  | case MIPS_GCTL0_GEXC_HC: | 
|  | ++vcpu->stat.vz_hc_exits; | 
|  | er = kvm_trap_vz_handle_hc(cause, opc, vcpu); | 
|  | break; | 
|  | case MIPS_GCTL0_GEXC_GRR: | 
|  | ++vcpu->stat.vz_grr_exits; | 
|  | er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, | 
|  | vcpu); | 
|  | break; | 
|  | case MIPS_GCTL0_GEXC_GVA: | 
|  | ++vcpu->stat.vz_gva_exits; | 
|  | er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, | 
|  | vcpu); | 
|  | break; | 
|  | case MIPS_GCTL0_GEXC_GHFC: | 
|  | ++vcpu->stat.vz_ghfc_exits; | 
|  | er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu); | 
|  | break; | 
|  | case MIPS_GCTL0_GEXC_GPA: | 
|  | ++vcpu->stat.vz_gpa_exits; | 
|  | er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, | 
|  | vcpu); | 
|  | break; | 
|  | default: | 
|  | ++vcpu->stat.vz_resvd_exits; | 
|  | er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, | 
|  | vcpu); | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (er == EMULATE_DONE) { | 
|  | ret = RESUME_GUEST; | 
|  | } else if (er == EMULATE_HYPERCALL) { | 
|  | ret = kvm_mips_handle_hypcall(vcpu); | 
|  | } else { | 
|  | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | ret = RESUME_HOST; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_trap_vz_handle_cop_unusable() - Guest used unusable coprocessor. | 
|  | * @vcpu:	Virtual CPU context. | 
|  | * | 
|  | * Handle when the guest attempts to use a coprocessor which hasn't been allowed | 
|  | * by the root context. | 
|  | * | 
|  | * Return: value indicating whether to resume the host or the guest | 
|  | * 	   (RESUME_HOST or RESUME_GUEST) | 
|  | */ | 
|  | static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 cause = vcpu->arch.host_cp0_cause; | 
|  | enum emulation_result er = EMULATE_FAIL; | 
|  | int ret = RESUME_GUEST; | 
|  |  | 
|  | if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) { | 
|  | /* | 
|  | * If guest FPU not present, the FPU operation should have been | 
|  | * treated as a reserved instruction! | 
|  | * If FPU already in use, we shouldn't get this at all. | 
|  | */ | 
|  | if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) || | 
|  | vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { | 
|  | preempt_enable(); | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | kvm_own_fpu(vcpu); | 
|  | er = EMULATE_DONE; | 
|  | } | 
|  | /* other coprocessors not handled */ | 
|  |  | 
|  | switch (er) { | 
|  | case EMULATE_DONE: | 
|  | ret = RESUME_GUEST; | 
|  | break; | 
|  |  | 
|  | case EMULATE_FAIL: | 
|  | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | ret = RESUME_HOST; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root. | 
|  | * @vcpu:	Virtual CPU context. | 
|  | * | 
|  | * Handle when the guest attempts to use MSA when it is disabled in the root | 
|  | * context. | 
|  | * | 
|  | * Return: value indicating whether to resume the host or the guest | 
|  | * 	   (RESUME_HOST or RESUME_GUEST) | 
|  | */ | 
|  | static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * If MSA not present or not exposed to guest or FR=0, the MSA operation | 
|  | * should have been treated as a reserved instruction! | 
|  | * Same if CU1=1, FR=0. | 
|  | * If MSA already in use, we shouldn't get this at all. | 
|  | */ | 
|  | if (!kvm_mips_guest_has_msa(&vcpu->arch) || | 
|  | (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 || | 
|  | !(read_gc0_config5() & MIPS_CONF5_MSAEN) || | 
|  | vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { | 
|  | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | return RESUME_HOST; | 
|  | } | 
|  |  | 
|  | kvm_own_msa(vcpu); | 
|  |  | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_run *run = vcpu->run; | 
|  | u32 *opc = (u32 *) vcpu->arch.pc; | 
|  | u32 cause = vcpu->arch.host_cp0_cause; | 
|  | ulong badvaddr = vcpu->arch.host_cp0_badvaddr; | 
|  | union mips_instruction inst; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | int err, ret = RESUME_GUEST; | 
|  |  | 
|  | if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) { | 
|  | /* A code fetch fault doesn't count as an MMIO */ | 
|  | if (kvm_is_ifetch_fault(&vcpu->arch)) { | 
|  | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | return RESUME_HOST; | 
|  | } | 
|  |  | 
|  | /* Fetch the instruction */ | 
|  | if (cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  | err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
|  | if (err) { | 
|  | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | return RESUME_HOST; | 
|  | } | 
|  |  | 
|  | /* Treat as MMIO */ | 
|  | er = kvm_mips_emulate_load(inst, cause, vcpu); | 
|  | if (er == EMULATE_FAIL) { | 
|  | kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n", | 
|  | opc, badvaddr); | 
|  | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (er == EMULATE_DONE) { | 
|  | ret = RESUME_GUEST; | 
|  | } else if (er == EMULATE_DO_MMIO) { | 
|  | run->exit_reason = KVM_EXIT_MMIO; | 
|  | ret = RESUME_HOST; | 
|  | } else { | 
|  | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | ret = RESUME_HOST; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_run *run = vcpu->run; | 
|  | u32 *opc = (u32 *) vcpu->arch.pc; | 
|  | u32 cause = vcpu->arch.host_cp0_cause; | 
|  | ulong badvaddr = vcpu->arch.host_cp0_badvaddr; | 
|  | union mips_instruction inst; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | int err; | 
|  | int ret = RESUME_GUEST; | 
|  |  | 
|  | /* Just try the access again if we couldn't do the translation */ | 
|  | if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr)) | 
|  | return RESUME_GUEST; | 
|  | vcpu->arch.host_cp0_badvaddr = badvaddr; | 
|  |  | 
|  | if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) { | 
|  | /* Fetch the instruction */ | 
|  | if (cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  | err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
|  | if (err) { | 
|  | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | return RESUME_HOST; | 
|  | } | 
|  |  | 
|  | /* Treat as MMIO */ | 
|  | er = kvm_mips_emulate_store(inst, cause, vcpu); | 
|  | if (er == EMULATE_FAIL) { | 
|  | kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n", | 
|  | opc, badvaddr); | 
|  | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (er == EMULATE_DONE) { | 
|  | ret = RESUME_GUEST; | 
|  | } else if (er == EMULATE_DO_MMIO) { | 
|  | run->exit_reason = KVM_EXIT_MMIO; | 
|  | ret = RESUME_HOST; | 
|  | } else { | 
|  | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | ret = RESUME_HOST; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 kvm_vz_get_one_regs[] = { | 
|  | KVM_REG_MIPS_CP0_INDEX, | 
|  | KVM_REG_MIPS_CP0_ENTRYLO0, | 
|  | KVM_REG_MIPS_CP0_ENTRYLO1, | 
|  | KVM_REG_MIPS_CP0_CONTEXT, | 
|  | KVM_REG_MIPS_CP0_PAGEMASK, | 
|  | KVM_REG_MIPS_CP0_PAGEGRAIN, | 
|  | KVM_REG_MIPS_CP0_WIRED, | 
|  | KVM_REG_MIPS_CP0_HWRENA, | 
|  | KVM_REG_MIPS_CP0_BADVADDR, | 
|  | KVM_REG_MIPS_CP0_COUNT, | 
|  | KVM_REG_MIPS_CP0_ENTRYHI, | 
|  | KVM_REG_MIPS_CP0_COMPARE, | 
|  | KVM_REG_MIPS_CP0_STATUS, | 
|  | KVM_REG_MIPS_CP0_INTCTL, | 
|  | KVM_REG_MIPS_CP0_CAUSE, | 
|  | KVM_REG_MIPS_CP0_EPC, | 
|  | KVM_REG_MIPS_CP0_PRID, | 
|  | KVM_REG_MIPS_CP0_EBASE, | 
|  | KVM_REG_MIPS_CP0_CONFIG, | 
|  | KVM_REG_MIPS_CP0_CONFIG1, | 
|  | KVM_REG_MIPS_CP0_CONFIG2, | 
|  | KVM_REG_MIPS_CP0_CONFIG3, | 
|  | KVM_REG_MIPS_CP0_CONFIG4, | 
|  | KVM_REG_MIPS_CP0_CONFIG5, | 
|  | KVM_REG_MIPS_CP0_CONFIG6, | 
|  | #ifdef CONFIG_64BIT | 
|  | KVM_REG_MIPS_CP0_XCONTEXT, | 
|  | #endif | 
|  | KVM_REG_MIPS_CP0_ERROREPC, | 
|  |  | 
|  | KVM_REG_MIPS_COUNT_CTL, | 
|  | KVM_REG_MIPS_COUNT_RESUME, | 
|  | KVM_REG_MIPS_COUNT_HZ, | 
|  | }; | 
|  |  | 
|  | static u64 kvm_vz_get_one_regs_contextconfig[] = { | 
|  | KVM_REG_MIPS_CP0_CONTEXTCONFIG, | 
|  | #ifdef CONFIG_64BIT | 
|  | KVM_REG_MIPS_CP0_XCONTEXTCONFIG, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static u64 kvm_vz_get_one_regs_segments[] = { | 
|  | KVM_REG_MIPS_CP0_SEGCTL0, | 
|  | KVM_REG_MIPS_CP0_SEGCTL1, | 
|  | KVM_REG_MIPS_CP0_SEGCTL2, | 
|  | }; | 
|  |  | 
|  | static u64 kvm_vz_get_one_regs_htw[] = { | 
|  | KVM_REG_MIPS_CP0_PWBASE, | 
|  | KVM_REG_MIPS_CP0_PWFIELD, | 
|  | KVM_REG_MIPS_CP0_PWSIZE, | 
|  | KVM_REG_MIPS_CP0_PWCTL, | 
|  | }; | 
|  |  | 
|  | static u64 kvm_vz_get_one_regs_kscratch[] = { | 
|  | KVM_REG_MIPS_CP0_KSCRATCH1, | 
|  | KVM_REG_MIPS_CP0_KSCRATCH2, | 
|  | KVM_REG_MIPS_CP0_KSCRATCH3, | 
|  | KVM_REG_MIPS_CP0_KSCRATCH4, | 
|  | KVM_REG_MIPS_CP0_KSCRATCH5, | 
|  | KVM_REG_MIPS_CP0_KSCRATCH6, | 
|  | }; | 
|  |  | 
|  | static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long ret; | 
|  |  | 
|  | ret = ARRAY_SIZE(kvm_vz_get_one_regs); | 
|  | if (cpu_guest_has_userlocal) | 
|  | ++ret; | 
|  | if (cpu_guest_has_badinstr) | 
|  | ++ret; | 
|  | if (cpu_guest_has_badinstrp) | 
|  | ++ret; | 
|  | if (cpu_guest_has_contextconfig) | 
|  | ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig); | 
|  | if (cpu_guest_has_segments) | 
|  | ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments); | 
|  | if (cpu_guest_has_htw || cpu_guest_has_ldpte) | 
|  | ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw); | 
|  | if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) | 
|  | ret += 1 + ARRAY_SIZE(vcpu->arch.maar); | 
|  | ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) | 
|  | { | 
|  | u64 index; | 
|  | unsigned int i; | 
|  |  | 
|  | if (copy_to_user(indices, kvm_vz_get_one_regs, | 
|  | sizeof(kvm_vz_get_one_regs))) | 
|  | return -EFAULT; | 
|  | indices += ARRAY_SIZE(kvm_vz_get_one_regs); | 
|  |  | 
|  | if (cpu_guest_has_userlocal) { | 
|  | index = KVM_REG_MIPS_CP0_USERLOCAL; | 
|  | if (copy_to_user(indices, &index, sizeof(index))) | 
|  | return -EFAULT; | 
|  | ++indices; | 
|  | } | 
|  | if (cpu_guest_has_badinstr) { | 
|  | index = KVM_REG_MIPS_CP0_BADINSTR; | 
|  | if (copy_to_user(indices, &index, sizeof(index))) | 
|  | return -EFAULT; | 
|  | ++indices; | 
|  | } | 
|  | if (cpu_guest_has_badinstrp) { | 
|  | index = KVM_REG_MIPS_CP0_BADINSTRP; | 
|  | if (copy_to_user(indices, &index, sizeof(index))) | 
|  | return -EFAULT; | 
|  | ++indices; | 
|  | } | 
|  | if (cpu_guest_has_contextconfig) { | 
|  | if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig, | 
|  | sizeof(kvm_vz_get_one_regs_contextconfig))) | 
|  | return -EFAULT; | 
|  | indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig); | 
|  | } | 
|  | if (cpu_guest_has_segments) { | 
|  | if (copy_to_user(indices, kvm_vz_get_one_regs_segments, | 
|  | sizeof(kvm_vz_get_one_regs_segments))) | 
|  | return -EFAULT; | 
|  | indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments); | 
|  | } | 
|  | if (cpu_guest_has_htw || cpu_guest_has_ldpte) { | 
|  | if (copy_to_user(indices, kvm_vz_get_one_regs_htw, | 
|  | sizeof(kvm_vz_get_one_regs_htw))) | 
|  | return -EFAULT; | 
|  | indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw); | 
|  | } | 
|  | if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) { | 
|  | for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) { | 
|  | index = KVM_REG_MIPS_CP0_MAAR(i); | 
|  | if (copy_to_user(indices, &index, sizeof(index))) | 
|  | return -EFAULT; | 
|  | ++indices; | 
|  | } | 
|  |  | 
|  | index = KVM_REG_MIPS_CP0_MAARI; | 
|  | if (copy_to_user(indices, &index, sizeof(index))) | 
|  | return -EFAULT; | 
|  | ++indices; | 
|  | } | 
|  | for (i = 0; i < 6; ++i) { | 
|  | if (!cpu_guest_has_kscr(i + 2)) | 
|  | continue; | 
|  |  | 
|  | if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i], | 
|  | sizeof(kvm_vz_get_one_regs_kscratch[i]))) | 
|  | return -EFAULT; | 
|  | ++indices; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline s64 entrylo_kvm_to_user(unsigned long v) | 
|  | { | 
|  | s64 mask, ret = v; | 
|  |  | 
|  | if (BITS_PER_LONG == 32) { | 
|  | /* | 
|  | * KVM API exposes 64-bit version of the register, so move the | 
|  | * RI/XI bits up into place. | 
|  | */ | 
|  | mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; | 
|  | ret &= ~mask; | 
|  | ret |= ((s64)v & mask) << 32; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline unsigned long entrylo_user_to_kvm(s64 v) | 
|  | { | 
|  | unsigned long mask, ret = v; | 
|  |  | 
|  | if (BITS_PER_LONG == 32) { | 
|  | /* | 
|  | * KVM API exposes 64-bit versiono of the register, so move the | 
|  | * RI/XI bits down into place. | 
|  | */ | 
|  | mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; | 
|  | ret &= ~mask; | 
|  | ret |= (v >> 32) & mask; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu, | 
|  | const struct kvm_one_reg *reg, | 
|  | s64 *v) | 
|  | { | 
|  | struct mips_coproc *cop0 = &vcpu->arch.cop0; | 
|  | unsigned int idx; | 
|  |  | 
|  | switch (reg->id) { | 
|  | case KVM_REG_MIPS_CP0_INDEX: | 
|  | *v = (long)read_gc0_index(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_ENTRYLO0: | 
|  | *v = entrylo_kvm_to_user(read_gc0_entrylo0()); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_ENTRYLO1: | 
|  | *v = entrylo_kvm_to_user(read_gc0_entrylo1()); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONTEXT: | 
|  | *v = (long)read_gc0_context(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONTEXTCONFIG: | 
|  | if (!cpu_guest_has_contextconfig) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_contextconfig(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_USERLOCAL: | 
|  | if (!cpu_guest_has_userlocal) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_userlocal(); | 
|  | break; | 
|  | #ifdef CONFIG_64BIT | 
|  | case KVM_REG_MIPS_CP0_XCONTEXTCONFIG: | 
|  | if (!cpu_guest_has_contextconfig) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_xcontextconfig(); | 
|  | break; | 
|  | #endif | 
|  | case KVM_REG_MIPS_CP0_PAGEMASK: | 
|  | *v = (long)read_gc0_pagemask(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PAGEGRAIN: | 
|  | *v = (long)read_gc0_pagegrain(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_SEGCTL0: | 
|  | if (!cpu_guest_has_segments) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_segctl0(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_SEGCTL1: | 
|  | if (!cpu_guest_has_segments) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_segctl1(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_SEGCTL2: | 
|  | if (!cpu_guest_has_segments) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_segctl2(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PWBASE: | 
|  | if (!cpu_guest_has_htw && !cpu_guest_has_ldpte) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_pwbase(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PWFIELD: | 
|  | if (!cpu_guest_has_htw && !cpu_guest_has_ldpte) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_pwfield(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PWSIZE: | 
|  | if (!cpu_guest_has_htw && !cpu_guest_has_ldpte) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_pwsize(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_WIRED: | 
|  | *v = (long)read_gc0_wired(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PWCTL: | 
|  | if (!cpu_guest_has_htw && !cpu_guest_has_ldpte) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_pwctl(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_HWRENA: | 
|  | *v = (long)read_gc0_hwrena(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_BADVADDR: | 
|  | *v = (long)read_gc0_badvaddr(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_BADINSTR: | 
|  | if (!cpu_guest_has_badinstr) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_badinstr(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_BADINSTRP: | 
|  | if (!cpu_guest_has_badinstrp) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_badinstrp(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_COUNT: | 
|  | *v = kvm_mips_read_count(vcpu); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_ENTRYHI: | 
|  | *v = (long)read_gc0_entryhi(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_COMPARE: | 
|  | *v = (long)read_gc0_compare(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_STATUS: | 
|  | *v = (long)read_gc0_status(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_INTCTL: | 
|  | *v = read_gc0_intctl(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CAUSE: | 
|  | *v = (long)read_gc0_cause(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_EPC: | 
|  | *v = (long)read_gc0_epc(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PRID: | 
|  | switch (boot_cpu_type()) { | 
|  | case CPU_CAVIUM_OCTEON3: | 
|  | /* Octeon III has a read-only guest.PRid */ | 
|  | *v = read_gc0_prid(); | 
|  | break; | 
|  | default: | 
|  | *v = (long)kvm_read_c0_guest_prid(cop0); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_EBASE: | 
|  | *v = kvm_vz_read_gc0_ebase(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG: | 
|  | *v = read_gc0_config(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG1: | 
|  | if (!cpu_guest_has_conf1) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_config1(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG2: | 
|  | if (!cpu_guest_has_conf2) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_config2(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG3: | 
|  | if (!cpu_guest_has_conf3) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_config3(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG4: | 
|  | if (!cpu_guest_has_conf4) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_config4(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG5: | 
|  | if (!cpu_guest_has_conf5) | 
|  | return -EINVAL; | 
|  | *v = read_gc0_config5(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG6: | 
|  | *v = kvm_read_sw_gc0_config6(cop0); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f): | 
|  | if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) | 
|  | return -EINVAL; | 
|  | idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0); | 
|  | if (idx >= ARRAY_SIZE(vcpu->arch.maar)) | 
|  | return -EINVAL; | 
|  | *v = vcpu->arch.maar[idx]; | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_MAARI: | 
|  | if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) | 
|  | return -EINVAL; | 
|  | *v = kvm_read_sw_gc0_maari(&vcpu->arch.cop0); | 
|  | break; | 
|  | #ifdef CONFIG_64BIT | 
|  | case KVM_REG_MIPS_CP0_XCONTEXT: | 
|  | *v = read_gc0_xcontext(); | 
|  | break; | 
|  | #endif | 
|  | case KVM_REG_MIPS_CP0_ERROREPC: | 
|  | *v = (long)read_gc0_errorepc(); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: | 
|  | idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; | 
|  | if (!cpu_guest_has_kscr(idx)) | 
|  | return -EINVAL; | 
|  | switch (idx) { | 
|  | case 2: | 
|  | *v = (long)read_gc0_kscratch1(); | 
|  | break; | 
|  | case 3: | 
|  | *v = (long)read_gc0_kscratch2(); | 
|  | break; | 
|  | case 4: | 
|  | *v = (long)read_gc0_kscratch3(); | 
|  | break; | 
|  | case 5: | 
|  | *v = (long)read_gc0_kscratch4(); | 
|  | break; | 
|  | case 6: | 
|  | *v = (long)read_gc0_kscratch5(); | 
|  | break; | 
|  | case 7: | 
|  | *v = (long)read_gc0_kscratch6(); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_COUNT_CTL: | 
|  | *v = vcpu->arch.count_ctl; | 
|  | break; | 
|  | case KVM_REG_MIPS_COUNT_RESUME: | 
|  | *v = ktime_to_ns(vcpu->arch.count_resume); | 
|  | break; | 
|  | case KVM_REG_MIPS_COUNT_HZ: | 
|  | *v = vcpu->arch.count_hz; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu, | 
|  | const struct kvm_one_reg *reg, | 
|  | s64 v) | 
|  | { | 
|  | struct mips_coproc *cop0 = &vcpu->arch.cop0; | 
|  | unsigned int idx; | 
|  | int ret = 0; | 
|  | unsigned int cur, change; | 
|  |  | 
|  | switch (reg->id) { | 
|  | case KVM_REG_MIPS_CP0_INDEX: | 
|  | write_gc0_index(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_ENTRYLO0: | 
|  | write_gc0_entrylo0(entrylo_user_to_kvm(v)); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_ENTRYLO1: | 
|  | write_gc0_entrylo1(entrylo_user_to_kvm(v)); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONTEXT: | 
|  | write_gc0_context(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONTEXTCONFIG: | 
|  | if (!cpu_guest_has_contextconfig) | 
|  | return -EINVAL; | 
|  | write_gc0_contextconfig(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_USERLOCAL: | 
|  | if (!cpu_guest_has_userlocal) | 
|  | return -EINVAL; | 
|  | write_gc0_userlocal(v); | 
|  | break; | 
|  | #ifdef CONFIG_64BIT | 
|  | case KVM_REG_MIPS_CP0_XCONTEXTCONFIG: | 
|  | if (!cpu_guest_has_contextconfig) | 
|  | return -EINVAL; | 
|  | write_gc0_xcontextconfig(v); | 
|  | break; | 
|  | #endif | 
|  | case KVM_REG_MIPS_CP0_PAGEMASK: | 
|  | write_gc0_pagemask(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PAGEGRAIN: | 
|  | write_gc0_pagegrain(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_SEGCTL0: | 
|  | if (!cpu_guest_has_segments) | 
|  | return -EINVAL; | 
|  | write_gc0_segctl0(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_SEGCTL1: | 
|  | if (!cpu_guest_has_segments) | 
|  | return -EINVAL; | 
|  | write_gc0_segctl1(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_SEGCTL2: | 
|  | if (!cpu_guest_has_segments) | 
|  | return -EINVAL; | 
|  | write_gc0_segctl2(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PWBASE: | 
|  | if (!cpu_guest_has_htw && !cpu_guest_has_ldpte) | 
|  | return -EINVAL; | 
|  | write_gc0_pwbase(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PWFIELD: | 
|  | if (!cpu_guest_has_htw && !cpu_guest_has_ldpte) | 
|  | return -EINVAL; | 
|  | write_gc0_pwfield(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PWSIZE: | 
|  | if (!cpu_guest_has_htw && !cpu_guest_has_ldpte) | 
|  | return -EINVAL; | 
|  | write_gc0_pwsize(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_WIRED: | 
|  | change_gc0_wired(MIPSR6_WIRED_WIRED, v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PWCTL: | 
|  | if (!cpu_guest_has_htw && !cpu_guest_has_ldpte) | 
|  | return -EINVAL; | 
|  | write_gc0_pwctl(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_HWRENA: | 
|  | write_gc0_hwrena(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_BADVADDR: | 
|  | write_gc0_badvaddr(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_BADINSTR: | 
|  | if (!cpu_guest_has_badinstr) | 
|  | return -EINVAL; | 
|  | write_gc0_badinstr(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_BADINSTRP: | 
|  | if (!cpu_guest_has_badinstrp) | 
|  | return -EINVAL; | 
|  | write_gc0_badinstrp(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_COUNT: | 
|  | kvm_mips_write_count(vcpu, v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_ENTRYHI: | 
|  | write_gc0_entryhi(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_COMPARE: | 
|  | kvm_mips_write_compare(vcpu, v, false); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_STATUS: | 
|  | write_gc0_status(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_INTCTL: | 
|  | write_gc0_intctl(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CAUSE: | 
|  | /* | 
|  | * If the timer is stopped or started (DC bit) it must look | 
|  | * atomic with changes to the timer interrupt pending bit (TI). | 
|  | * A timer interrupt should not happen in between. | 
|  | */ | 
|  | if ((read_gc0_cause() ^ v) & CAUSEF_DC) { | 
|  | if (v & CAUSEF_DC) { | 
|  | /* disable timer first */ | 
|  | kvm_mips_count_disable_cause(vcpu); | 
|  | change_gc0_cause((u32)~CAUSEF_DC, v); | 
|  | } else { | 
|  | /* enable timer last */ | 
|  | change_gc0_cause((u32)~CAUSEF_DC, v); | 
|  | kvm_mips_count_enable_cause(vcpu); | 
|  | } | 
|  | } else { | 
|  | write_gc0_cause(v); | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_EPC: | 
|  | write_gc0_epc(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_PRID: | 
|  | switch (boot_cpu_type()) { | 
|  | case CPU_CAVIUM_OCTEON3: | 
|  | /* Octeon III has a guest.PRid, but its read-only */ | 
|  | break; | 
|  | default: | 
|  | kvm_write_c0_guest_prid(cop0, v); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_EBASE: | 
|  | kvm_vz_write_gc0_ebase(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG: | 
|  | cur = read_gc0_config(); | 
|  | change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu); | 
|  | if (change) { | 
|  | v = cur ^ change; | 
|  | write_gc0_config(v); | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG1: | 
|  | if (!cpu_guest_has_conf1) | 
|  | break; | 
|  | cur = read_gc0_config1(); | 
|  | change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu); | 
|  | if (change) { | 
|  | v = cur ^ change; | 
|  | write_gc0_config1(v); | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG2: | 
|  | if (!cpu_guest_has_conf2) | 
|  | break; | 
|  | cur = read_gc0_config2(); | 
|  | change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu); | 
|  | if (change) { | 
|  | v = cur ^ change; | 
|  | write_gc0_config2(v); | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG3: | 
|  | if (!cpu_guest_has_conf3) | 
|  | break; | 
|  | cur = read_gc0_config3(); | 
|  | change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu); | 
|  | if (change) { | 
|  | v = cur ^ change; | 
|  | write_gc0_config3(v); | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG4: | 
|  | if (!cpu_guest_has_conf4) | 
|  | break; | 
|  | cur = read_gc0_config4(); | 
|  | change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu); | 
|  | if (change) { | 
|  | v = cur ^ change; | 
|  | write_gc0_config4(v); | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG5: | 
|  | if (!cpu_guest_has_conf5) | 
|  | break; | 
|  | cur = read_gc0_config5(); | 
|  | change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu); | 
|  | if (change) { | 
|  | v = cur ^ change; | 
|  | write_gc0_config5(v); | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_CONFIG6: | 
|  | cur = kvm_read_sw_gc0_config6(cop0); | 
|  | change = (cur ^ v) & kvm_vz_config6_user_wrmask(vcpu); | 
|  | if (change) { | 
|  | v = cur ^ change; | 
|  | kvm_write_sw_gc0_config6(cop0, (int)v); | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f): | 
|  | if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) | 
|  | return -EINVAL; | 
|  | idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0); | 
|  | if (idx >= ARRAY_SIZE(vcpu->arch.maar)) | 
|  | return -EINVAL; | 
|  | vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_MAARI: | 
|  | if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) | 
|  | return -EINVAL; | 
|  | kvm_write_maari(vcpu, v); | 
|  | break; | 
|  | #ifdef CONFIG_64BIT | 
|  | case KVM_REG_MIPS_CP0_XCONTEXT: | 
|  | write_gc0_xcontext(v); | 
|  | break; | 
|  | #endif | 
|  | case KVM_REG_MIPS_CP0_ERROREPC: | 
|  | write_gc0_errorepc(v); | 
|  | break; | 
|  | case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: | 
|  | idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; | 
|  | if (!cpu_guest_has_kscr(idx)) | 
|  | return -EINVAL; | 
|  | switch (idx) { | 
|  | case 2: | 
|  | write_gc0_kscratch1(v); | 
|  | break; | 
|  | case 3: | 
|  | write_gc0_kscratch2(v); | 
|  | break; | 
|  | case 4: | 
|  | write_gc0_kscratch3(v); | 
|  | break; | 
|  | case 5: | 
|  | write_gc0_kscratch4(v); | 
|  | break; | 
|  | case 6: | 
|  | write_gc0_kscratch5(v); | 
|  | break; | 
|  | case 7: | 
|  | write_gc0_kscratch6(v); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case KVM_REG_MIPS_COUNT_CTL: | 
|  | ret = kvm_mips_set_count_ctl(vcpu, v); | 
|  | break; | 
|  | case KVM_REG_MIPS_COUNT_RESUME: | 
|  | ret = kvm_mips_set_count_resume(vcpu, v); | 
|  | break; | 
|  | case KVM_REG_MIPS_COUNT_HZ: | 
|  | ret = kvm_mips_set_count_hz(vcpu, v); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define guestid_cache(cpu)	(cpu_data[cpu].guestid_cache) | 
|  | static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long guestid = guestid_cache(cpu); | 
|  |  | 
|  | if (!(++guestid & GUESTID_MASK)) { | 
|  | if (cpu_has_vtag_icache) | 
|  | flush_icache_all(); | 
|  |  | 
|  | if (!guestid)		/* fix version if needed */ | 
|  | guestid = GUESTID_FIRST_VERSION; | 
|  |  | 
|  | ++guestid;		/* guestid 0 reserved for root */ | 
|  |  | 
|  | /* start new guestid cycle */ | 
|  | kvm_vz_local_flush_roottlb_all_guests(); | 
|  | kvm_vz_local_flush_guesttlb_all(); | 
|  | } | 
|  |  | 
|  | guestid_cache(cpu) = guestid; | 
|  | } | 
|  |  | 
|  | /* Returns 1 if the guest TLB may be clobbered */ | 
|  | static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | if (!kvm_request_pending(vcpu)) | 
|  | return 0; | 
|  |  | 
|  | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { | 
|  | if (cpu_has_guestid) { | 
|  | /* Drop all GuestIDs for this VCPU */ | 
|  | for_each_possible_cpu(i) | 
|  | vcpu->arch.vzguestid[i] = 0; | 
|  | /* This will clobber guest TLB contents too */ | 
|  | ret = 1; | 
|  | } | 
|  | /* | 
|  | * For Root ASID Dealias (RAD) we don't do anything here, but we | 
|  | * still need the request to ensure we recheck asid_flush_mask. | 
|  | * We can still return 0 as only the root TLB will be affected | 
|  | * by a root ASID flush. | 
|  | */ | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned int wired = read_gc0_wired(); | 
|  | struct kvm_mips_tlb *tlbs; | 
|  | int i; | 
|  |  | 
|  | /* Expand the wired TLB array if necessary */ | 
|  | wired &= MIPSR6_WIRED_WIRED; | 
|  | if (wired > vcpu->arch.wired_tlb_limit) { | 
|  | tlbs = krealloc(vcpu->arch.wired_tlb, wired * | 
|  | sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC); | 
|  | if (WARN_ON(!tlbs)) { | 
|  | /* Save whatever we can */ | 
|  | wired = vcpu->arch.wired_tlb_limit; | 
|  | } else { | 
|  | vcpu->arch.wired_tlb = tlbs; | 
|  | vcpu->arch.wired_tlb_limit = wired; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (wired) | 
|  | /* Save wired entries from the guest TLB */ | 
|  | kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired); | 
|  | /* Invalidate any dropped entries since last time */ | 
|  | for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) { | 
|  | vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i); | 
|  | vcpu->arch.wired_tlb[i].tlb_lo[0] = 0; | 
|  | vcpu->arch.wired_tlb[i].tlb_lo[1] = 0; | 
|  | vcpu->arch.wired_tlb[i].tlb_mask = 0; | 
|  | } | 
|  | vcpu->arch.wired_tlb_used = wired; | 
|  | } | 
|  |  | 
|  | static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* Load wired entries into the guest TLB */ | 
|  | if (vcpu->arch.wired_tlb) | 
|  | kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0, | 
|  | vcpu->arch.wired_tlb_used); | 
|  | } | 
|  |  | 
|  | static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct mm_struct *gpa_mm = &kvm->arch.gpa_mm; | 
|  | bool migrated; | 
|  |  | 
|  | /* | 
|  | * Are we entering guest context on a different CPU to last time? | 
|  | * If so, the VCPU's guest TLB state on this CPU may be stale. | 
|  | */ | 
|  | migrated = (vcpu->arch.last_exec_cpu != cpu); | 
|  | vcpu->arch.last_exec_cpu = cpu; | 
|  |  | 
|  | /* | 
|  | * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and | 
|  | * remains set until another vcpu is loaded in.  As a rule GuestRID | 
|  | * remains zeroed when in root context unless the kernel is busy | 
|  | * manipulating guest tlb entries. | 
|  | */ | 
|  | if (cpu_has_guestid) { | 
|  | /* | 
|  | * Check if our GuestID is of an older version and thus invalid. | 
|  | * | 
|  | * We also discard the stored GuestID if we've executed on | 
|  | * another CPU, as the guest mappings may have changed without | 
|  | * hypervisor knowledge. | 
|  | */ | 
|  | if (migrated || | 
|  | (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) & | 
|  | GUESTID_VERSION_MASK) { | 
|  | kvm_vz_get_new_guestid(cpu, vcpu); | 
|  | vcpu->arch.vzguestid[cpu] = guestid_cache(cpu); | 
|  | trace_kvm_guestid_change(vcpu, | 
|  | vcpu->arch.vzguestid[cpu]); | 
|  | } | 
|  |  | 
|  | /* Restore GuestID */ | 
|  | change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]); | 
|  | } else { | 
|  | /* | 
|  | * The Guest TLB only stores a single guest's TLB state, so | 
|  | * flush it if another VCPU has executed on this CPU. | 
|  | * | 
|  | * We also flush if we've executed on another CPU, as the guest | 
|  | * mappings may have changed without hypervisor knowledge. | 
|  | */ | 
|  | if (migrated || last_exec_vcpu[cpu] != vcpu) | 
|  | kvm_vz_local_flush_guesttlb_all(); | 
|  | last_exec_vcpu[cpu] = vcpu; | 
|  |  | 
|  | /* | 
|  | * Root ASID dealiases guest GPA mappings in the root TLB. | 
|  | * Allocate new root ASID if needed. | 
|  | */ | 
|  | if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask)) | 
|  | get_new_mmu_context(gpa_mm); | 
|  | else | 
|  | check_mmu_context(gpa_mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = &vcpu->arch.cop0; | 
|  | bool migrated, all; | 
|  |  | 
|  | /* | 
|  | * Have we migrated to a different CPU? | 
|  | * If so, any old guest TLB state may be stale. | 
|  | */ | 
|  | migrated = (vcpu->arch.last_sched_cpu != cpu); | 
|  |  | 
|  | /* | 
|  | * Was this the last VCPU to run on this CPU? | 
|  | * If not, any old guest state from this VCPU will have been clobbered. | 
|  | */ | 
|  | all = migrated || (last_vcpu[cpu] != vcpu); | 
|  | last_vcpu[cpu] = vcpu; | 
|  |  | 
|  | /* | 
|  | * Restore CP0_Wired unconditionally as we clear it after use, and | 
|  | * restore wired guest TLB entries (while in guest context). | 
|  | */ | 
|  | kvm_restore_gc0_wired(cop0); | 
|  | if (current->flags & PF_VCPU) { | 
|  | tlbw_use_hazard(); | 
|  | kvm_vz_vcpu_load_tlb(vcpu, cpu); | 
|  | kvm_vz_vcpu_load_wired(vcpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore timer state regardless, as e.g. Cause.TI can change over time | 
|  | * if left unmaintained. | 
|  | */ | 
|  | kvm_vz_restore_timer(vcpu); | 
|  |  | 
|  | /* Set MC bit if we want to trace guest mode changes */ | 
|  | if (kvm_trace_guest_mode_change) | 
|  | set_c0_guestctl0(MIPS_GCTL0_MC); | 
|  | else | 
|  | clear_c0_guestctl0(MIPS_GCTL0_MC); | 
|  |  | 
|  | /* Don't bother restoring registers multiple times unless necessary */ | 
|  | if (!all) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Restore config registers first, as some implementations restrict | 
|  | * writes to other registers when the corresponding feature bits aren't | 
|  | * set. For example Status.CU1 cannot be set unless Config1.FP is set. | 
|  | */ | 
|  | kvm_restore_gc0_config(cop0); | 
|  | if (cpu_guest_has_conf1) | 
|  | kvm_restore_gc0_config1(cop0); | 
|  | if (cpu_guest_has_conf2) | 
|  | kvm_restore_gc0_config2(cop0); | 
|  | if (cpu_guest_has_conf3) | 
|  | kvm_restore_gc0_config3(cop0); | 
|  | if (cpu_guest_has_conf4) | 
|  | kvm_restore_gc0_config4(cop0); | 
|  | if (cpu_guest_has_conf5) | 
|  | kvm_restore_gc0_config5(cop0); | 
|  | if (cpu_guest_has_conf6) | 
|  | kvm_restore_gc0_config6(cop0); | 
|  | if (cpu_guest_has_conf7) | 
|  | kvm_restore_gc0_config7(cop0); | 
|  |  | 
|  | kvm_restore_gc0_index(cop0); | 
|  | kvm_restore_gc0_entrylo0(cop0); | 
|  | kvm_restore_gc0_entrylo1(cop0); | 
|  | kvm_restore_gc0_context(cop0); | 
|  | if (cpu_guest_has_contextconfig) | 
|  | kvm_restore_gc0_contextconfig(cop0); | 
|  | #ifdef CONFIG_64BIT | 
|  | kvm_restore_gc0_xcontext(cop0); | 
|  | if (cpu_guest_has_contextconfig) | 
|  | kvm_restore_gc0_xcontextconfig(cop0); | 
|  | #endif | 
|  | kvm_restore_gc0_pagemask(cop0); | 
|  | kvm_restore_gc0_pagegrain(cop0); | 
|  | kvm_restore_gc0_hwrena(cop0); | 
|  | kvm_restore_gc0_badvaddr(cop0); | 
|  | kvm_restore_gc0_entryhi(cop0); | 
|  | kvm_restore_gc0_status(cop0); | 
|  | kvm_restore_gc0_intctl(cop0); | 
|  | kvm_restore_gc0_epc(cop0); | 
|  | kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0)); | 
|  | if (cpu_guest_has_userlocal) | 
|  | kvm_restore_gc0_userlocal(cop0); | 
|  |  | 
|  | kvm_restore_gc0_errorepc(cop0); | 
|  |  | 
|  | /* restore KScratch registers if enabled in guest */ | 
|  | if (cpu_guest_has_conf4) { | 
|  | if (cpu_guest_has_kscr(2)) | 
|  | kvm_restore_gc0_kscratch1(cop0); | 
|  | if (cpu_guest_has_kscr(3)) | 
|  | kvm_restore_gc0_kscratch2(cop0); | 
|  | if (cpu_guest_has_kscr(4)) | 
|  | kvm_restore_gc0_kscratch3(cop0); | 
|  | if (cpu_guest_has_kscr(5)) | 
|  | kvm_restore_gc0_kscratch4(cop0); | 
|  | if (cpu_guest_has_kscr(6)) | 
|  | kvm_restore_gc0_kscratch5(cop0); | 
|  | if (cpu_guest_has_kscr(7)) | 
|  | kvm_restore_gc0_kscratch6(cop0); | 
|  | } | 
|  |  | 
|  | if (cpu_guest_has_badinstr) | 
|  | kvm_restore_gc0_badinstr(cop0); | 
|  | if (cpu_guest_has_badinstrp) | 
|  | kvm_restore_gc0_badinstrp(cop0); | 
|  |  | 
|  | if (cpu_guest_has_segments) { | 
|  | kvm_restore_gc0_segctl0(cop0); | 
|  | kvm_restore_gc0_segctl1(cop0); | 
|  | kvm_restore_gc0_segctl2(cop0); | 
|  | } | 
|  |  | 
|  | /* restore HTW registers */ | 
|  | if (cpu_guest_has_htw || cpu_guest_has_ldpte) { | 
|  | kvm_restore_gc0_pwbase(cop0); | 
|  | kvm_restore_gc0_pwfield(cop0); | 
|  | kvm_restore_gc0_pwsize(cop0); | 
|  | kvm_restore_gc0_pwctl(cop0); | 
|  | } | 
|  |  | 
|  | /* restore Root.GuestCtl2 from unused Guest guestctl2 register */ | 
|  | if (cpu_has_guestctl2) | 
|  | write_c0_guestctl2( | 
|  | cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]); | 
|  |  | 
|  | /* | 
|  | * We should clear linked load bit to break interrupted atomics. This | 
|  | * prevents a SC on the next VCPU from succeeding by matching a LL on | 
|  | * the previous VCPU. | 
|  | */ | 
|  | if (vcpu->kvm->created_vcpus > 1) | 
|  | write_gc0_lladdr(0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = &vcpu->arch.cop0; | 
|  |  | 
|  | if (current->flags & PF_VCPU) | 
|  | kvm_vz_vcpu_save_wired(vcpu); | 
|  |  | 
|  | kvm_lose_fpu(vcpu); | 
|  |  | 
|  | kvm_save_gc0_index(cop0); | 
|  | kvm_save_gc0_entrylo0(cop0); | 
|  | kvm_save_gc0_entrylo1(cop0); | 
|  | kvm_save_gc0_context(cop0); | 
|  | if (cpu_guest_has_contextconfig) | 
|  | kvm_save_gc0_contextconfig(cop0); | 
|  | #ifdef CONFIG_64BIT | 
|  | kvm_save_gc0_xcontext(cop0); | 
|  | if (cpu_guest_has_contextconfig) | 
|  | kvm_save_gc0_xcontextconfig(cop0); | 
|  | #endif | 
|  | kvm_save_gc0_pagemask(cop0); | 
|  | kvm_save_gc0_pagegrain(cop0); | 
|  | kvm_save_gc0_wired(cop0); | 
|  | /* allow wired TLB entries to be overwritten */ | 
|  | clear_gc0_wired(MIPSR6_WIRED_WIRED); | 
|  | kvm_save_gc0_hwrena(cop0); | 
|  | kvm_save_gc0_badvaddr(cop0); | 
|  | kvm_save_gc0_entryhi(cop0); | 
|  | kvm_save_gc0_status(cop0); | 
|  | kvm_save_gc0_intctl(cop0); | 
|  | kvm_save_gc0_epc(cop0); | 
|  | kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase()); | 
|  | if (cpu_guest_has_userlocal) | 
|  | kvm_save_gc0_userlocal(cop0); | 
|  |  | 
|  | /* only save implemented config registers */ | 
|  | kvm_save_gc0_config(cop0); | 
|  | if (cpu_guest_has_conf1) | 
|  | kvm_save_gc0_config1(cop0); | 
|  | if (cpu_guest_has_conf2) | 
|  | kvm_save_gc0_config2(cop0); | 
|  | if (cpu_guest_has_conf3) | 
|  | kvm_save_gc0_config3(cop0); | 
|  | if (cpu_guest_has_conf4) | 
|  | kvm_save_gc0_config4(cop0); | 
|  | if (cpu_guest_has_conf5) | 
|  | kvm_save_gc0_config5(cop0); | 
|  | if (cpu_guest_has_conf6) | 
|  | kvm_save_gc0_config6(cop0); | 
|  | if (cpu_guest_has_conf7) | 
|  | kvm_save_gc0_config7(cop0); | 
|  |  | 
|  | kvm_save_gc0_errorepc(cop0); | 
|  |  | 
|  | /* save KScratch registers if enabled in guest */ | 
|  | if (cpu_guest_has_conf4) { | 
|  | if (cpu_guest_has_kscr(2)) | 
|  | kvm_save_gc0_kscratch1(cop0); | 
|  | if (cpu_guest_has_kscr(3)) | 
|  | kvm_save_gc0_kscratch2(cop0); | 
|  | if (cpu_guest_has_kscr(4)) | 
|  | kvm_save_gc0_kscratch3(cop0); | 
|  | if (cpu_guest_has_kscr(5)) | 
|  | kvm_save_gc0_kscratch4(cop0); | 
|  | if (cpu_guest_has_kscr(6)) | 
|  | kvm_save_gc0_kscratch5(cop0); | 
|  | if (cpu_guest_has_kscr(7)) | 
|  | kvm_save_gc0_kscratch6(cop0); | 
|  | } | 
|  |  | 
|  | if (cpu_guest_has_badinstr) | 
|  | kvm_save_gc0_badinstr(cop0); | 
|  | if (cpu_guest_has_badinstrp) | 
|  | kvm_save_gc0_badinstrp(cop0); | 
|  |  | 
|  | if (cpu_guest_has_segments) { | 
|  | kvm_save_gc0_segctl0(cop0); | 
|  | kvm_save_gc0_segctl1(cop0); | 
|  | kvm_save_gc0_segctl2(cop0); | 
|  | } | 
|  |  | 
|  | /* save HTW registers if enabled in guest */ | 
|  | if (cpu_guest_has_ldpte || (cpu_guest_has_htw && | 
|  | kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW)) { | 
|  | kvm_save_gc0_pwbase(cop0); | 
|  | kvm_save_gc0_pwfield(cop0); | 
|  | kvm_save_gc0_pwsize(cop0); | 
|  | kvm_save_gc0_pwctl(cop0); | 
|  | } | 
|  |  | 
|  | kvm_vz_save_timer(vcpu); | 
|  |  | 
|  | /* save Root.GuestCtl2 in unused Guest guestctl2 register */ | 
|  | if (cpu_has_guestctl2) | 
|  | cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = | 
|  | read_c0_guestctl2(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB. | 
|  | * @size:	Number of guest VTLB entries (0 < @size <= root VTLB entries). | 
|  | * | 
|  | * Attempt to resize the guest VTLB by writing guest Config registers. This is | 
|  | * necessary for cores with a shared root/guest TLB to avoid overlap with wired | 
|  | * entries in the root VTLB. | 
|  | * | 
|  | * Returns:	The resulting guest VTLB size. | 
|  | */ | 
|  | static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size) | 
|  | { | 
|  | unsigned int config4 = 0, ret = 0, limit; | 
|  |  | 
|  | /* Write MMUSize - 1 into guest Config registers */ | 
|  | if (cpu_guest_has_conf1) | 
|  | change_gc0_config1(MIPS_CONF1_TLBS, | 
|  | (size - 1) << MIPS_CONF1_TLBS_SHIFT); | 
|  | if (cpu_guest_has_conf4) { | 
|  | config4 = read_gc0_config4(); | 
|  | if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == | 
|  | MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) { | 
|  | config4 &= ~MIPS_CONF4_VTLBSIZEEXT; | 
|  | config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << | 
|  | MIPS_CONF4_VTLBSIZEEXT_SHIFT; | 
|  | } else if ((config4 & MIPS_CONF4_MMUEXTDEF) == | 
|  | MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) { | 
|  | config4 &= ~MIPS_CONF4_MMUSIZEEXT; | 
|  | config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << | 
|  | MIPS_CONF4_MMUSIZEEXT_SHIFT; | 
|  | } | 
|  | write_gc0_config4(config4); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it | 
|  | * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write | 
|  | * not dropped) | 
|  | */ | 
|  | if (cpu_has_mips_r6) { | 
|  | limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >> | 
|  | MIPSR6_WIRED_LIMIT_SHIFT; | 
|  | if (size - 1 <= limit) | 
|  | limit = 0; | 
|  | write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT); | 
|  | } | 
|  |  | 
|  | /* Read back MMUSize - 1 */ | 
|  | back_to_back_c0_hazard(); | 
|  | if (cpu_guest_has_conf1) | 
|  | ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >> | 
|  | MIPS_CONF1_TLBS_SHIFT; | 
|  | if (config4) { | 
|  | if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == | 
|  | MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) | 
|  | ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >> | 
|  | MIPS_CONF4_VTLBSIZEEXT_SHIFT) << | 
|  | MIPS_CONF1_TLBS_SIZE; | 
|  | else if ((config4 & MIPS_CONF4_MMUEXTDEF) == | 
|  | MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) | 
|  | ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >> | 
|  | MIPS_CONF4_MMUSIZEEXT_SHIFT) << | 
|  | MIPS_CONF1_TLBS_SIZE; | 
|  | } | 
|  | return ret + 1; | 
|  | } | 
|  |  | 
|  | static int kvm_vz_enable_virtualization_cpu(void) | 
|  | { | 
|  | unsigned int mmu_size, guest_mmu_size, ftlb_size; | 
|  | u64 guest_cvmctl, cvmvmconfig; | 
|  |  | 
|  | switch (current_cpu_type()) { | 
|  | case CPU_CAVIUM_OCTEON3: | 
|  | /* Set up guest timer/perfcount IRQ lines */ | 
|  | guest_cvmctl = read_gc0_cvmctl(); | 
|  | guest_cvmctl &= ~CVMCTL_IPTI; | 
|  | guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT; | 
|  | guest_cvmctl &= ~CVMCTL_IPPCI; | 
|  | guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT; | 
|  | write_gc0_cvmctl(guest_cvmctl); | 
|  |  | 
|  | cvmvmconfig = read_c0_cvmvmconfig(); | 
|  | /* No I/O hole translation. */ | 
|  | cvmvmconfig |= CVMVMCONF_DGHT; | 
|  | /* Halve the root MMU size */ | 
|  | mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1) | 
|  | >> CVMVMCONF_MMUSIZEM1_S) + 1; | 
|  | guest_mmu_size = mmu_size / 2; | 
|  | mmu_size -= guest_mmu_size; | 
|  | cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1; | 
|  | cvmvmconfig |= mmu_size - 1; | 
|  | write_c0_cvmvmconfig(cvmvmconfig); | 
|  |  | 
|  | /* Update our records */ | 
|  | current_cpu_data.tlbsize = mmu_size; | 
|  | current_cpu_data.tlbsizevtlb = mmu_size; | 
|  | current_cpu_data.guest.tlbsize = guest_mmu_size; | 
|  |  | 
|  | /* Flush moved entries in new (guest) context */ | 
|  | kvm_vz_local_flush_guesttlb_all(); | 
|  | break; | 
|  | default: | 
|  | /* | 
|  | * ImgTec cores tend to use a shared root/guest TLB. To avoid | 
|  | * overlap of root wired and guest entries, the guest TLB may | 
|  | * need resizing. | 
|  | */ | 
|  | mmu_size = current_cpu_data.tlbsizevtlb; | 
|  | ftlb_size = current_cpu_data.tlbsize - mmu_size; | 
|  |  | 
|  | /* Try switching to maximum guest VTLB size for flush */ | 
|  | guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size); | 
|  | current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; | 
|  | kvm_vz_local_flush_guesttlb_all(); | 
|  |  | 
|  | /* | 
|  | * Reduce to make space for root wired entries and at least 2 | 
|  | * root non-wired entries. This does assume that long-term wired | 
|  | * entries won't be added later. | 
|  | */ | 
|  | guest_mmu_size = mmu_size - num_wired_entries() - 2; | 
|  | guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size); | 
|  | current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; | 
|  |  | 
|  | /* | 
|  | * Write the VTLB size, but if another CPU has already written, | 
|  | * check it matches or we won't provide a consistent view to the | 
|  | * guest. If this ever happens it suggests an asymmetric number | 
|  | * of wired entries. | 
|  | */ | 
|  | if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) && | 
|  | WARN(guest_mmu_size != kvm_vz_guest_vtlb_size, | 
|  | "Available guest VTLB size mismatch")) | 
|  | return -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable virtualization features granting guest direct control of | 
|  | * certain features: | 
|  | * CP0=1:	Guest coprocessor 0 context. | 
|  | * AT=Guest:	Guest MMU. | 
|  | * CG=1:	Hit (virtual address) CACHE operations (optional). | 
|  | * CF=1:	Guest Config registers. | 
|  | * CGI=1:	Indexed flush CACHE operations (optional). | 
|  | */ | 
|  | write_c0_guestctl0(MIPS_GCTL0_CP0 | | 
|  | (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) | | 
|  | MIPS_GCTL0_CG | MIPS_GCTL0_CF); | 
|  | if (cpu_has_guestctl0ext) { | 
|  | if (current_cpu_type() != CPU_LOONGSON64) | 
|  | set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI); | 
|  | else | 
|  | clear_c0_guestctl0ext(MIPS_GCTL0EXT_CGI); | 
|  | } | 
|  |  | 
|  | if (cpu_has_guestid) { | 
|  | write_c0_guestctl1(0); | 
|  | kvm_vz_local_flush_roottlb_all_guests(); | 
|  |  | 
|  | GUESTID_MASK = current_cpu_data.guestid_mask; | 
|  | GUESTID_FIRST_VERSION = GUESTID_MASK + 1; | 
|  | GUESTID_VERSION_MASK = ~GUESTID_MASK; | 
|  |  | 
|  | current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION; | 
|  | } | 
|  |  | 
|  | /* clear any pending injected virtual guest interrupts */ | 
|  | if (cpu_has_guestctl2) | 
|  | clear_c0_guestctl2(0x3f << 10); | 
|  |  | 
|  | #ifdef CONFIG_CPU_LOONGSON64 | 
|  | /* Control guest CCA attribute */ | 
|  | if (cpu_has_csr()) | 
|  | csr_writel(csr_readl(0xffffffec) | 0x1, 0xffffffec); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_vz_disable_virtualization_cpu(void) | 
|  | { | 
|  | u64 cvmvmconfig; | 
|  | unsigned int mmu_size; | 
|  |  | 
|  | /* Flush any remaining guest TLB entries */ | 
|  | kvm_vz_local_flush_guesttlb_all(); | 
|  |  | 
|  | switch (current_cpu_type()) { | 
|  | case CPU_CAVIUM_OCTEON3: | 
|  | /* | 
|  | * Allocate whole TLB for root. Existing guest TLB entries will | 
|  | * change ownership to the root TLB. We should be safe though as | 
|  | * they've already been flushed above while in guest TLB. | 
|  | */ | 
|  | cvmvmconfig = read_c0_cvmvmconfig(); | 
|  | mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1) | 
|  | >> CVMVMCONF_MMUSIZEM1_S) + 1; | 
|  | cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1; | 
|  | cvmvmconfig |= mmu_size - 1; | 
|  | write_c0_cvmvmconfig(cvmvmconfig); | 
|  |  | 
|  | /* Update our records */ | 
|  | current_cpu_data.tlbsize = mmu_size; | 
|  | current_cpu_data.tlbsizevtlb = mmu_size; | 
|  | current_cpu_data.guest.tlbsize = 0; | 
|  |  | 
|  | /* Flush moved entries in new (root) context */ | 
|  | local_flush_tlb_all(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (cpu_has_guestid) { | 
|  | write_c0_guestctl1(0); | 
|  | kvm_vz_local_flush_roottlb_all_guests(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_vz_check_extension(struct kvm *kvm, long ext) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | switch (ext) { | 
|  | case KVM_CAP_MIPS_VZ: | 
|  | /* we wouldn't be here unless cpu_has_vz */ | 
|  | r = 1; | 
|  | break; | 
|  | #ifdef CONFIG_64BIT | 
|  | case KVM_CAP_MIPS_64BIT: | 
|  | /* We support 64-bit registers/operations and addresses */ | 
|  | r = 2; | 
|  | break; | 
|  | #endif | 
|  | case KVM_CAP_IOEVENTFD: | 
|  | r = 1; | 
|  | break; | 
|  | default: | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | vcpu->arch.vzguestid[i] = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* | 
|  | * If the VCPU is freed and reused as another VCPU, we don't want the | 
|  | * matching pointer wrongly hanging around in last_vcpu[] or | 
|  | * last_exec_vcpu[]. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (last_vcpu[cpu] == vcpu) | 
|  | last_vcpu[cpu] = NULL; | 
|  | if (last_exec_vcpu[cpu] == vcpu) | 
|  | last_exec_vcpu[cpu] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = &vcpu->arch.cop0; | 
|  | unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */ | 
|  |  | 
|  | /* | 
|  | * Start off the timer at the same frequency as the host timer, but the | 
|  | * soft timer doesn't handle frequencies greater than 1GHz yet. | 
|  | */ | 
|  | if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC) | 
|  | count_hz = mips_hpt_frequency; | 
|  | kvm_mips_init_count(vcpu, count_hz); | 
|  |  | 
|  | /* | 
|  | * Initialize guest register state to valid architectural reset state. | 
|  | */ | 
|  |  | 
|  | /* PageGrain */ | 
|  | if (cpu_has_mips_r5 || cpu_has_mips_r6) | 
|  | kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC); | 
|  | /* Wired */ | 
|  | if (cpu_has_mips_r6) | 
|  | kvm_write_sw_gc0_wired(cop0, | 
|  | read_gc0_wired() & MIPSR6_WIRED_LIMIT); | 
|  | /* Status */ | 
|  | kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL); | 
|  | if (cpu_has_mips_r5 || cpu_has_mips_r6) | 
|  | kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status()); | 
|  | /* IntCtl */ | 
|  | kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() & | 
|  | (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI)); | 
|  | /* PRId */ | 
|  | kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id); | 
|  | /* EBase */ | 
|  | kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id); | 
|  | /* Config */ | 
|  | kvm_save_gc0_config(cop0); | 
|  | /* architecturally writable (e.g. from guest) */ | 
|  | kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK, | 
|  | _page_cachable_default >> _CACHE_SHIFT); | 
|  | /* architecturally read only, but maybe writable from root */ | 
|  | kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config()); | 
|  | if (cpu_guest_has_conf1) { | 
|  | kvm_set_sw_gc0_config(cop0, MIPS_CONF_M); | 
|  | /* Config1 */ | 
|  | kvm_save_gc0_config1(cop0); | 
|  | /* architecturally read only, but maybe writable from root */ | 
|  | kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2	| | 
|  | MIPS_CONF1_MD	| | 
|  | MIPS_CONF1_PC	| | 
|  | MIPS_CONF1_WR	| | 
|  | MIPS_CONF1_CA	| | 
|  | MIPS_CONF1_FP); | 
|  | } | 
|  | if (cpu_guest_has_conf2) { | 
|  | kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M); | 
|  | /* Config2 */ | 
|  | kvm_save_gc0_config2(cop0); | 
|  | } | 
|  | if (cpu_guest_has_conf3) { | 
|  | kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M); | 
|  | /* Config3 */ | 
|  | kvm_save_gc0_config3(cop0); | 
|  | /* architecturally writable (e.g. from guest) */ | 
|  | kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE); | 
|  | /* architecturally read only, but maybe writable from root */ | 
|  | kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA	| | 
|  | MIPS_CONF3_BPG	| | 
|  | MIPS_CONF3_ULRI	| | 
|  | MIPS_CONF3_DSP	| | 
|  | MIPS_CONF3_CTXTC	| | 
|  | MIPS_CONF3_ITL	| | 
|  | MIPS_CONF3_LPA	| | 
|  | MIPS_CONF3_VEIC	| | 
|  | MIPS_CONF3_VINT	| | 
|  | MIPS_CONF3_SP	| | 
|  | MIPS_CONF3_CDMM	| | 
|  | MIPS_CONF3_MT	| | 
|  | MIPS_CONF3_SM	| | 
|  | MIPS_CONF3_TL); | 
|  | } | 
|  | if (cpu_guest_has_conf4) { | 
|  | kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M); | 
|  | /* Config4 */ | 
|  | kvm_save_gc0_config4(cop0); | 
|  | } | 
|  | if (cpu_guest_has_conf5) { | 
|  | kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M); | 
|  | /* Config5 */ | 
|  | kvm_save_gc0_config5(cop0); | 
|  | /* architecturally writable (e.g. from guest) */ | 
|  | kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K	| | 
|  | MIPS_CONF5_CV	| | 
|  | MIPS_CONF5_MSAEN	| | 
|  | MIPS_CONF5_UFE	| | 
|  | MIPS_CONF5_FRE	| | 
|  | MIPS_CONF5_SBRI	| | 
|  | MIPS_CONF5_UFR); | 
|  | /* architecturally read only, but maybe writable from root */ | 
|  | kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP); | 
|  | } | 
|  |  | 
|  | if (cpu_guest_has_contextconfig) { | 
|  | /* ContextConfig */ | 
|  | kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0); | 
|  | #ifdef CONFIG_64BIT | 
|  | /* XContextConfig */ | 
|  | /* bits SEGBITS-13+3:4 set */ | 
|  | kvm_write_sw_gc0_xcontextconfig(cop0, | 
|  | ((1ull << (cpu_vmbits - 13)) - 1) << 4); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Implementation dependent, use the legacy layout */ | 
|  | if (cpu_guest_has_segments) { | 
|  | /* SegCtl0, SegCtl1, SegCtl2 */ | 
|  | kvm_write_sw_gc0_segctl0(cop0, 0x00200010); | 
|  | kvm_write_sw_gc0_segctl1(cop0, 0x00000002 | | 
|  | (_page_cachable_default >> _CACHE_SHIFT) << | 
|  | (16 + MIPS_SEGCFG_C_SHIFT)); | 
|  | kvm_write_sw_gc0_segctl2(cop0, 0x00380438); | 
|  | } | 
|  |  | 
|  | /* reset HTW registers */ | 
|  | if (cpu_guest_has_htw && (cpu_has_mips_r5 || cpu_has_mips_r6)) { | 
|  | /* PWField */ | 
|  | kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302); | 
|  | /* PWSize */ | 
|  | kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT); | 
|  | } | 
|  |  | 
|  | /* start with no pending virtual guest interrupts */ | 
|  | if (cpu_has_guestctl2) | 
|  | cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0; | 
|  |  | 
|  | /* Put PC at reset vector */ | 
|  | vcpu->arch.pc = CKSEG1ADDR(0x1fc00000); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_vz_prepare_flush_shadow(struct kvm *kvm) | 
|  | { | 
|  | if (!cpu_has_guestid) { | 
|  | /* | 
|  | * For each CPU there is a single GPA ASID used by all VCPUs in | 
|  | * the VM, so it doesn't make sense for the VCPUs to handle | 
|  | * invalidation of these ASIDs individually. | 
|  | * | 
|  | * Instead mark all CPUs as needing ASID invalidation in | 
|  | * asid_flush_mask, and kvm_flush_remote_tlbs(kvm) will | 
|  | * kick any running VCPUs so they check asid_flush_mask. | 
|  | */ | 
|  | cpumask_setall(&kvm->arch.asid_flush_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_vz_vcpu_reenter(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | int preserve_guest_tlb; | 
|  |  | 
|  | preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu); | 
|  |  | 
|  | if (preserve_guest_tlb) | 
|  | kvm_vz_vcpu_save_wired(vcpu); | 
|  |  | 
|  | kvm_vz_vcpu_load_tlb(vcpu, cpu); | 
|  |  | 
|  | if (preserve_guest_tlb) | 
|  | kvm_vz_vcpu_load_wired(vcpu); | 
|  | } | 
|  |  | 
|  | static int kvm_vz_vcpu_run(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | int r; | 
|  |  | 
|  | kvm_vz_acquire_htimer(vcpu); | 
|  | /* Check if we have any exceptions/interrupts pending */ | 
|  | kvm_mips_deliver_interrupts(vcpu, read_gc0_cause()); | 
|  |  | 
|  | kvm_vz_check_requests(vcpu, cpu); | 
|  | kvm_vz_vcpu_load_tlb(vcpu, cpu); | 
|  | kvm_vz_vcpu_load_wired(vcpu); | 
|  |  | 
|  | r = vcpu->arch.vcpu_run(vcpu); | 
|  |  | 
|  | kvm_vz_vcpu_save_wired(vcpu); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static struct kvm_mips_callbacks kvm_vz_callbacks = { | 
|  | .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable, | 
|  | .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss, | 
|  | .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss, | 
|  | .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss, | 
|  | .handle_addr_err_st = kvm_trap_vz_no_handler, | 
|  | .handle_addr_err_ld = kvm_trap_vz_no_handler, | 
|  | .handle_syscall = kvm_trap_vz_no_handler, | 
|  | .handle_res_inst = kvm_trap_vz_no_handler, | 
|  | .handle_break = kvm_trap_vz_no_handler, | 
|  | .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled, | 
|  | .handle_guest_exit = kvm_trap_vz_handle_guest_exit, | 
|  |  | 
|  | .enable_virtualization_cpu = kvm_vz_enable_virtualization_cpu, | 
|  | .disable_virtualization_cpu = kvm_vz_disable_virtualization_cpu, | 
|  | .check_extension = kvm_vz_check_extension, | 
|  | .vcpu_init = kvm_vz_vcpu_init, | 
|  | .vcpu_uninit = kvm_vz_vcpu_uninit, | 
|  | .vcpu_setup = kvm_vz_vcpu_setup, | 
|  | .prepare_flush_shadow = kvm_vz_prepare_flush_shadow, | 
|  | .gva_to_gpa = kvm_vz_gva_to_gpa_cb, | 
|  | .queue_timer_int = kvm_vz_queue_timer_int_cb, | 
|  | .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb, | 
|  | .queue_io_int = kvm_vz_queue_io_int_cb, | 
|  | .dequeue_io_int = kvm_vz_dequeue_io_int_cb, | 
|  | .irq_deliver = kvm_vz_irq_deliver_cb, | 
|  | .irq_clear = kvm_vz_irq_clear_cb, | 
|  | .num_regs = kvm_vz_num_regs, | 
|  | .copy_reg_indices = kvm_vz_copy_reg_indices, | 
|  | .get_one_reg = kvm_vz_get_one_reg, | 
|  | .set_one_reg = kvm_vz_set_one_reg, | 
|  | .vcpu_load = kvm_vz_vcpu_load, | 
|  | .vcpu_put = kvm_vz_vcpu_put, | 
|  | .vcpu_run = kvm_vz_vcpu_run, | 
|  | .vcpu_reenter = kvm_vz_vcpu_reenter, | 
|  | }; | 
|  |  | 
|  | /* FIXME: Get rid of the callbacks now that trap-and-emulate is gone. */ | 
|  | const struct kvm_mips_callbacks * const kvm_mips_callbacks = &kvm_vz_callbacks; | 
|  |  | 
|  | int kvm_mips_emulation_init(void) | 
|  | { | 
|  | if (!cpu_has_vz) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* | 
|  | * VZ requires at least 2 KScratch registers, so it should have been | 
|  | * possible to allocate pgd_reg. | 
|  | */ | 
|  | if (WARN(pgd_reg == -1, | 
|  | "pgd_reg not allocated even though cpu_has_vz\n")) | 
|  | return -ENODEV; | 
|  |  | 
|  | pr_info("Starting KVM with MIPS VZ extensions\n"); | 
|  | return 0; | 
|  | } |