| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * srmmu.c:  SRMMU specific routines for memory management. | 
 |  * | 
 |  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu) | 
 |  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) | 
 |  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be) | 
 |  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) | 
 |  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) | 
 |  */ | 
 |  | 
 | #include <linux/seq_file.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/export.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 |  | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/io-unit.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/bitext.h> | 
 | #include <asm/vaddrs.h> | 
 | #include <asm/cache.h> | 
 | #include <asm/traps.h> | 
 | #include <asm/oplib.h> | 
 | #include <asm/mbus.h> | 
 | #include <asm/page.h> | 
 | #include <asm/asi.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/io.h> | 
 |  | 
 | /* Now the cpu specific definitions. */ | 
 | #include <asm/turbosparc.h> | 
 | #include <asm/tsunami.h> | 
 | #include <asm/viking.h> | 
 | #include <asm/swift.h> | 
 | #include <asm/leon.h> | 
 | #include <asm/mxcc.h> | 
 | #include <asm/ross.h> | 
 |  | 
 | #include "mm_32.h" | 
 |  | 
 | enum mbus_module srmmu_modtype; | 
 | static unsigned int hwbug_bitmask; | 
 | int vac_cache_size; | 
 | EXPORT_SYMBOL(vac_cache_size); | 
 | int vac_line_size; | 
 |  | 
 | extern struct resource sparc_iomap; | 
 |  | 
 | extern unsigned long last_valid_pfn; | 
 |  | 
 | static pgd_t *srmmu_swapper_pg_dir; | 
 |  | 
 | const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; | 
 | EXPORT_SYMBOL(sparc32_cachetlb_ops); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | const struct sparc32_cachetlb_ops *local_ops; | 
 |  | 
 | #define FLUSH_BEGIN(mm) | 
 | #define FLUSH_END | 
 | #else | 
 | #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { | 
 | #define FLUSH_END	} | 
 | #endif | 
 |  | 
 | int flush_page_for_dma_global = 1; | 
 |  | 
 | char *srmmu_name; | 
 |  | 
 | ctxd_t *srmmu_ctx_table_phys; | 
 | static ctxd_t *srmmu_context_table; | 
 |  | 
 | int viking_mxcc_present; | 
 | static DEFINE_SPINLOCK(srmmu_context_spinlock); | 
 |  | 
 | static int is_hypersparc; | 
 |  | 
 | static int srmmu_cache_pagetables; | 
 |  | 
 | /* these will be initialized in srmmu_nocache_calcsize() */ | 
 | static unsigned long srmmu_nocache_size; | 
 | static unsigned long srmmu_nocache_end; | 
 |  | 
 | /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ | 
 | #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) | 
 |  | 
 | /* The context table is a nocache user with the biggest alignment needs. */ | 
 | #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) | 
 |  | 
 | void *srmmu_nocache_pool; | 
 | static struct bit_map srmmu_nocache_map; | 
 |  | 
 | static inline int srmmu_pmd_none(pmd_t pmd) | 
 | { return !(pmd_val(pmd) & 0xFFFFFFF); } | 
 |  | 
 | /* XXX should we hyper_flush_whole_icache here - Anton */ | 
 | static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) | 
 | { | 
 | 	pte_t pte; | 
 |  | 
 | 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); | 
 | 	set_pte((pte_t *)ctxp, pte); | 
 | } | 
 |  | 
 | /* | 
 |  * Locations of MSI Registers. | 
 |  */ | 
 | #define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */ | 
 |  | 
 | /* | 
 |  * Useful bits in the MSI Registers. | 
 |  */ | 
 | #define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */ | 
 |  | 
 | static void msi_set_sync(void) | 
 | { | 
 | 	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t" | 
 | 			      "andn %%g3, %2, %%g3\n\t" | 
 | 			      "sta %%g3, [%0] %1\n\t" : : | 
 | 			      "r" (MSI_MBUS_ARBEN), | 
 | 			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3"); | 
 | } | 
 |  | 
 | void pmd_set(pmd_t *pmdp, pte_t *ptep) | 
 | { | 
 | 	unsigned long ptp = __nocache_pa(ptep) >> 4; | 
 | 	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp)); | 
 | } | 
 |  | 
 | /* | 
 |  * size: bytes to allocate in the nocache area. | 
 |  * align: bytes, number to align at. | 
 |  * Returns the virtual address of the allocated area. | 
 |  */ | 
 | static void *__srmmu_get_nocache(int size, int align) | 
 | { | 
 | 	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT; | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (size < minsz) { | 
 | 		printk(KERN_ERR "Size 0x%x too small for nocache request\n", | 
 | 		       size); | 
 | 		size = minsz; | 
 | 	} | 
 | 	if (size & (minsz - 1)) { | 
 | 		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n", | 
 | 		       size); | 
 | 		size += minsz - 1; | 
 | 	} | 
 | 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); | 
 |  | 
 | 	offset = bit_map_string_get(&srmmu_nocache_map, | 
 | 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT, | 
 | 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT); | 
 | 	if (offset == -1) { | 
 | 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", | 
 | 		       size, (int) srmmu_nocache_size, | 
 | 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); | 
 | 	return (void *)addr; | 
 | } | 
 |  | 
 | void *srmmu_get_nocache(int size, int align) | 
 | { | 
 | 	void *tmp; | 
 |  | 
 | 	tmp = __srmmu_get_nocache(size, align); | 
 |  | 
 | 	if (tmp) | 
 | 		memset(tmp, 0, size); | 
 |  | 
 | 	return tmp; | 
 | } | 
 |  | 
 | void srmmu_free_nocache(void *addr, int size) | 
 | { | 
 | 	unsigned long vaddr; | 
 | 	int offset; | 
 |  | 
 | 	vaddr = (unsigned long)addr; | 
 | 	if (vaddr < SRMMU_NOCACHE_VADDR) { | 
 | 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n", | 
 | 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); | 
 | 		BUG(); | 
 | 	} | 
 | 	if (vaddr + size > srmmu_nocache_end) { | 
 | 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n", | 
 | 		    vaddr, srmmu_nocache_end); | 
 | 		BUG(); | 
 | 	} | 
 | 	if (!is_power_of_2(size)) { | 
 | 		printk("Size 0x%x is not a power of 2\n", size); | 
 | 		BUG(); | 
 | 	} | 
 | 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { | 
 | 		printk("Size 0x%x is too small\n", size); | 
 | 		BUG(); | 
 | 	} | 
 | 	if (vaddr & (size - 1)) { | 
 | 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; | 
 | 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; | 
 |  | 
 | 	bit_map_clear(&srmmu_nocache_map, offset, size); | 
 | } | 
 |  | 
 | static void srmmu_early_allocate_ptable_skeleton(unsigned long start, | 
 | 						 unsigned long end); | 
 |  | 
 | /* Return how much physical memory we have.  */ | 
 | static unsigned long __init probe_memory(void) | 
 | { | 
 | 	unsigned long total = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; sp_banks[i].num_bytes; i++) | 
 | 		total += sp_banks[i].num_bytes; | 
 |  | 
 | 	return total; | 
 | } | 
 |  | 
 | /* | 
 |  * Reserve nocache dynamically proportionally to the amount of | 
 |  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 | 
 |  */ | 
 | static void __init srmmu_nocache_calcsize(void) | 
 | { | 
 | 	unsigned long sysmemavail = probe_memory() / 1024; | 
 | 	int srmmu_nocache_npages; | 
 |  | 
 | 	srmmu_nocache_npages = | 
 | 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; | 
 |  | 
 |  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ | 
 | 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; | 
 | 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) | 
 | 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; | 
 |  | 
 | 	/* anything above 1280 blows up */ | 
 | 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) | 
 | 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; | 
 |  | 
 | 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; | 
 | 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; | 
 | } | 
 |  | 
 | static void __init srmmu_nocache_init(void) | 
 | { | 
 | 	void *srmmu_nocache_bitmap; | 
 | 	unsigned int bitmap_bits; | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	unsigned long paddr, vaddr; | 
 | 	unsigned long pteval; | 
 |  | 
 | 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; | 
 |  | 
 | 	srmmu_nocache_pool = memblock_alloc_or_panic(srmmu_nocache_size, | 
 | 					    SRMMU_NOCACHE_ALIGN_MAX); | 
 | 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size); | 
 |  | 
 | 	srmmu_nocache_bitmap = | 
 | 		memblock_alloc_or_panic(BITS_TO_LONGS(bitmap_bits) * sizeof(long), | 
 | 			       SMP_CACHE_BYTES); | 
 | 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); | 
 |  | 
 | 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); | 
 | 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); | 
 | 	init_mm.pgd = srmmu_swapper_pg_dir; | 
 |  | 
 | 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); | 
 |  | 
 | 	paddr = __pa((unsigned long)srmmu_nocache_pool); | 
 | 	vaddr = SRMMU_NOCACHE_VADDR; | 
 |  | 
 | 	while (vaddr < srmmu_nocache_end) { | 
 | 		pgd = pgd_offset_k(vaddr); | 
 | 		p4d = p4d_offset(pgd, vaddr); | 
 | 		pud = pud_offset(p4d, vaddr); | 
 | 		pmd = pmd_offset(__nocache_fix(pud), vaddr); | 
 | 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); | 
 |  | 
 | 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); | 
 |  | 
 | 		if (srmmu_cache_pagetables) | 
 | 			pteval |= SRMMU_CACHE; | 
 |  | 
 | 		set_pte(__nocache_fix(pte), __pte(pteval)); | 
 |  | 
 | 		vaddr += PAGE_SIZE; | 
 | 		paddr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	flush_cache_all(); | 
 | 	flush_tlb_all(); | 
 | } | 
 |  | 
 | pgd_t *get_pgd_fast(void) | 
 | { | 
 | 	pgd_t *pgd = NULL; | 
 |  | 
 | 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); | 
 | 	if (pgd) { | 
 | 		pgd_t *init = pgd_offset_k(0); | 
 | 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); | 
 | 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, | 
 | 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); | 
 | 	} | 
 |  | 
 | 	return pgd; | 
 | } | 
 |  | 
 | /* | 
 |  * Hardware needs alignment to 256 only, but we align to whole page size | 
 |  * to reduce fragmentation problems due to the buddy principle. | 
 |  * XXX Provide actual fragmentation statistics in /proc. | 
 |  * | 
 |  * Alignments up to the page size are the same for physical and virtual | 
 |  * addresses of the nocache area. | 
 |  */ | 
 | pgtable_t pte_alloc_one(struct mm_struct *mm) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!(ptep = pte_alloc_one_kernel(mm))) | 
 | 		return NULL; | 
 | 	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	if (page_ref_inc_return(page) == 2 && | 
 | 			!pagetable_pte_ctor(mm, page_ptdesc(page))) { | 
 | 		page_ref_dec(page); | 
 | 		ptep = NULL; | 
 | 	} | 
 | 	spin_unlock(&mm->page_table_lock); | 
 |  | 
 | 	return ptep; | 
 | } | 
 |  | 
 | void pte_free(struct mm_struct *mm, pgtable_t ptep) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	if (page_ref_dec_return(page) == 1) | 
 | 		pagetable_dtor(page_ptdesc(page)); | 
 | 	spin_unlock(&mm->page_table_lock); | 
 |  | 
 | 	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE); | 
 | } | 
 |  | 
 | /* context handling - a dynamically sized pool is used */ | 
 | #define NO_CONTEXT	-1 | 
 |  | 
 | struct ctx_list { | 
 | 	struct ctx_list *next; | 
 | 	struct ctx_list *prev; | 
 | 	unsigned int ctx_number; | 
 | 	struct mm_struct *ctx_mm; | 
 | }; | 
 |  | 
 | static struct ctx_list *ctx_list_pool; | 
 | static struct ctx_list ctx_free; | 
 | static struct ctx_list ctx_used; | 
 |  | 
 | /* At boot time we determine the number of contexts */ | 
 | static int num_contexts; | 
 |  | 
 | static inline void remove_from_ctx_list(struct ctx_list *entry) | 
 | { | 
 | 	entry->next->prev = entry->prev; | 
 | 	entry->prev->next = entry->next; | 
 | } | 
 |  | 
 | static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) | 
 | { | 
 | 	entry->next = head; | 
 | 	(entry->prev = head->prev)->next = entry; | 
 | 	head->prev = entry; | 
 | } | 
 | #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) | 
 | #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) | 
 |  | 
 |  | 
 | static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) | 
 | { | 
 | 	struct ctx_list *ctxp; | 
 |  | 
 | 	ctxp = ctx_free.next; | 
 | 	if (ctxp != &ctx_free) { | 
 | 		remove_from_ctx_list(ctxp); | 
 | 		add_to_used_ctxlist(ctxp); | 
 | 		mm->context = ctxp->ctx_number; | 
 | 		ctxp->ctx_mm = mm; | 
 | 		return; | 
 | 	} | 
 | 	ctxp = ctx_used.next; | 
 | 	if (ctxp->ctx_mm == old_mm) | 
 | 		ctxp = ctxp->next; | 
 | 	if (ctxp == &ctx_used) | 
 | 		panic("out of mmu contexts"); | 
 | 	flush_cache_mm(ctxp->ctx_mm); | 
 | 	flush_tlb_mm(ctxp->ctx_mm); | 
 | 	remove_from_ctx_list(ctxp); | 
 | 	add_to_used_ctxlist(ctxp); | 
 | 	ctxp->ctx_mm->context = NO_CONTEXT; | 
 | 	ctxp->ctx_mm = mm; | 
 | 	mm->context = ctxp->ctx_number; | 
 | } | 
 |  | 
 | static inline void free_context(int context) | 
 | { | 
 | 	struct ctx_list *ctx_old; | 
 |  | 
 | 	ctx_old = ctx_list_pool + context; | 
 | 	remove_from_ctx_list(ctx_old); | 
 | 	add_to_free_ctxlist(ctx_old); | 
 | } | 
 |  | 
 | static void __init sparc_context_init(int numctx) | 
 | { | 
 | 	int ctx; | 
 | 	unsigned long size; | 
 |  | 
 | 	size = numctx * sizeof(struct ctx_list); | 
 | 	ctx_list_pool = memblock_alloc_or_panic(size, SMP_CACHE_BYTES); | 
 |  | 
 | 	for (ctx = 0; ctx < numctx; ctx++) { | 
 | 		struct ctx_list *clist; | 
 |  | 
 | 		clist = (ctx_list_pool + ctx); | 
 | 		clist->ctx_number = ctx; | 
 | 		clist->ctx_mm = NULL; | 
 | 	} | 
 | 	ctx_free.next = ctx_free.prev = &ctx_free; | 
 | 	ctx_used.next = ctx_used.prev = &ctx_used; | 
 | 	for (ctx = 0; ctx < numctx; ctx++) | 
 | 		add_to_free_ctxlist(ctx_list_pool + ctx); | 
 | } | 
 |  | 
 | void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, | 
 | 	       struct task_struct *tsk) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (mm->context == NO_CONTEXT) { | 
 | 		spin_lock_irqsave(&srmmu_context_spinlock, flags); | 
 | 		alloc_context(old_mm, mm); | 
 | 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags); | 
 | 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); | 
 | 	} | 
 |  | 
 | 	if (sparc_cpu_model == sparc_leon) | 
 | 		leon_switch_mm(); | 
 |  | 
 | 	if (is_hypersparc) | 
 | 		hyper_flush_whole_icache(); | 
 |  | 
 | 	srmmu_set_context(mm->context); | 
 | } | 
 |  | 
 | /* Low level IO area allocation on the SRMMU. */ | 
 | static inline void srmmu_mapioaddr(unsigned long physaddr, | 
 | 				   unsigned long virt_addr, int bus_type) | 
 | { | 
 | 	pgd_t *pgdp; | 
 | 	p4d_t *p4dp; | 
 | 	pud_t *pudp; | 
 | 	pmd_t *pmdp; | 
 | 	pte_t *ptep; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	physaddr &= PAGE_MASK; | 
 | 	pgdp = pgd_offset_k(virt_addr); | 
 | 	p4dp = p4d_offset(pgdp, virt_addr); | 
 | 	pudp = pud_offset(p4dp, virt_addr); | 
 | 	pmdp = pmd_offset(pudp, virt_addr); | 
 | 	ptep = pte_offset_kernel(pmdp, virt_addr); | 
 | 	tmp = (physaddr >> 4) | SRMMU_ET_PTE; | 
 |  | 
 | 	/* I need to test whether this is consistent over all | 
 | 	 * sun4m's.  The bus_type represents the upper 4 bits of | 
 | 	 * 36-bit physical address on the I/O space lines... | 
 | 	 */ | 
 | 	tmp |= (bus_type << 28); | 
 | 	tmp |= SRMMU_PRIV; | 
 | 	__flush_page_to_ram(virt_addr); | 
 | 	set_pte(ptep, __pte(tmp)); | 
 | } | 
 |  | 
 | void srmmu_mapiorange(unsigned int bus, unsigned long xpa, | 
 | 		      unsigned long xva, unsigned int len) | 
 | { | 
 | 	while (len != 0) { | 
 | 		len -= PAGE_SIZE; | 
 | 		srmmu_mapioaddr(xpa, xva, bus); | 
 | 		xva += PAGE_SIZE; | 
 | 		xpa += PAGE_SIZE; | 
 | 	} | 
 | 	flush_tlb_all(); | 
 | } | 
 |  | 
 | static inline void srmmu_unmapioaddr(unsigned long virt_addr) | 
 | { | 
 | 	pgd_t *pgdp; | 
 | 	p4d_t *p4dp; | 
 | 	pud_t *pudp; | 
 | 	pmd_t *pmdp; | 
 | 	pte_t *ptep; | 
 |  | 
 |  | 
 | 	pgdp = pgd_offset_k(virt_addr); | 
 | 	p4dp = p4d_offset(pgdp, virt_addr); | 
 | 	pudp = pud_offset(p4dp, virt_addr); | 
 | 	pmdp = pmd_offset(pudp, virt_addr); | 
 | 	ptep = pte_offset_kernel(pmdp, virt_addr); | 
 |  | 
 | 	/* No need to flush uncacheable page. */ | 
 | 	__pte_clear(ptep); | 
 | } | 
 |  | 
 | void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) | 
 | { | 
 | 	while (len != 0) { | 
 | 		len -= PAGE_SIZE; | 
 | 		srmmu_unmapioaddr(virt_addr); | 
 | 		virt_addr += PAGE_SIZE; | 
 | 	} | 
 | 	flush_tlb_all(); | 
 | } | 
 |  | 
 | /* tsunami.S */ | 
 | extern void tsunami_flush_cache_all(void); | 
 | extern void tsunami_flush_cache_mm(struct mm_struct *mm); | 
 | extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); | 
 | extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); | 
 | extern void tsunami_flush_page_to_ram(unsigned long page); | 
 | extern void tsunami_flush_page_for_dma(unsigned long page); | 
 | extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); | 
 | extern void tsunami_flush_tlb_all(void); | 
 | extern void tsunami_flush_tlb_mm(struct mm_struct *mm); | 
 | extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); | 
 | extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); | 
 | extern void tsunami_setup_blockops(void); | 
 |  | 
 | /* swift.S */ | 
 | extern void swift_flush_cache_all(void); | 
 | extern void swift_flush_cache_mm(struct mm_struct *mm); | 
 | extern void swift_flush_cache_range(struct vm_area_struct *vma, | 
 | 				    unsigned long start, unsigned long end); | 
 | extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); | 
 | extern void swift_flush_page_to_ram(unsigned long page); | 
 | extern void swift_flush_page_for_dma(unsigned long page); | 
 | extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); | 
 | extern void swift_flush_tlb_all(void); | 
 | extern void swift_flush_tlb_mm(struct mm_struct *mm); | 
 | extern void swift_flush_tlb_range(struct vm_area_struct *vma, | 
 | 				  unsigned long start, unsigned long end); | 
 | extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); | 
 |  | 
 | #if 0  /* P3: deadwood to debug precise flushes on Swift. */ | 
 | void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) | 
 | { | 
 | 	int cctx, ctx1; | 
 |  | 
 | 	page &= PAGE_MASK; | 
 | 	if ((ctx1 = vma->vm_mm->context) != -1) { | 
 | 		cctx = srmmu_get_context(); | 
 | /* Is context # ever different from current context? P3 */ | 
 | 		if (cctx != ctx1) { | 
 | 			printk("flush ctx %02x curr %02x\n", ctx1, cctx); | 
 | 			srmmu_set_context(ctx1); | 
 | 			swift_flush_page(page); | 
 | 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : | 
 | 					"r" (page), "i" (ASI_M_FLUSH_PROBE)); | 
 | 			srmmu_set_context(cctx); | 
 | 		} else { | 
 | 			 /* Rm. prot. bits from virt. c. */ | 
 | 			/* swift_flush_cache_all(); */ | 
 | 			/* swift_flush_cache_page(vma, page); */ | 
 | 			swift_flush_page(page); | 
 |  | 
 | 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : | 
 | 				"r" (page), "i" (ASI_M_FLUSH_PROBE)); | 
 | 			/* same as above: srmmu_flush_tlb_page() */ | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The following are all MBUS based SRMMU modules, and therefore could | 
 |  * be found in a multiprocessor configuration.  On the whole, these | 
 |  * chips seems to be much more touchy about DVMA and page tables | 
 |  * with respect to cache coherency. | 
 |  */ | 
 |  | 
 | /* viking.S */ | 
 | extern void viking_flush_cache_all(void); | 
 | extern void viking_flush_cache_mm(struct mm_struct *mm); | 
 | extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, | 
 | 				     unsigned long end); | 
 | extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); | 
 | extern void viking_flush_page_to_ram(unsigned long page); | 
 | extern void viking_flush_page_for_dma(unsigned long page); | 
 | extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); | 
 | extern void viking_flush_page(unsigned long page); | 
 | extern void viking_mxcc_flush_page(unsigned long page); | 
 | extern void viking_flush_tlb_all(void); | 
 | extern void viking_flush_tlb_mm(struct mm_struct *mm); | 
 | extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
 | 				   unsigned long end); | 
 | extern void viking_flush_tlb_page(struct vm_area_struct *vma, | 
 | 				  unsigned long page); | 
 | extern void sun4dsmp_flush_tlb_all(void); | 
 | extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); | 
 | extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
 | 				   unsigned long end); | 
 | extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, | 
 | 				  unsigned long page); | 
 |  | 
 | /* hypersparc.S */ | 
 | extern void hypersparc_flush_cache_all(void); | 
 | extern void hypersparc_flush_cache_mm(struct mm_struct *mm); | 
 | extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); | 
 | extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); | 
 | extern void hypersparc_flush_page_to_ram(unsigned long page); | 
 | extern void hypersparc_flush_page_for_dma(unsigned long page); | 
 | extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); | 
 | extern void hypersparc_flush_tlb_all(void); | 
 | extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); | 
 | extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); | 
 | extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); | 
 | extern void hypersparc_setup_blockops(void); | 
 |  | 
 | /* | 
 |  * NOTE: All of this startup code assumes the low 16mb (approx.) of | 
 |  *       kernel mappings are done with one single contiguous chunk of | 
 |  *       ram.  On small ram machines (classics mainly) we only get | 
 |  *       around 8mb mapped for us. | 
 |  */ | 
 |  | 
 | static void __init early_pgtable_allocfail(char *type) | 
 | { | 
 | 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); | 
 | 	prom_halt(); | 
 | } | 
 |  | 
 | static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, | 
 | 							unsigned long end) | 
 | { | 
 | 	pgd_t *pgdp; | 
 | 	p4d_t *p4dp; | 
 | 	pud_t *pudp; | 
 | 	pmd_t *pmdp; | 
 | 	pte_t *ptep; | 
 |  | 
 | 	while (start < end) { | 
 | 		pgdp = pgd_offset_k(start); | 
 | 		p4dp = p4d_offset(pgdp, start); | 
 | 		pudp = pud_offset(p4dp, start); | 
 | 		if (pud_none(*__nocache_fix(pudp))) { | 
 | 			pmdp = __srmmu_get_nocache( | 
 | 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); | 
 | 			if (pmdp == NULL) | 
 | 				early_pgtable_allocfail("pmd"); | 
 | 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); | 
 | 			pud_set(__nocache_fix(pudp), pmdp); | 
 | 		} | 
 | 		pmdp = pmd_offset(__nocache_fix(pudp), start); | 
 | 		if (srmmu_pmd_none(*__nocache_fix(pmdp))) { | 
 | 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); | 
 | 			if (ptep == NULL) | 
 | 				early_pgtable_allocfail("pte"); | 
 | 			memset(__nocache_fix(ptep), 0, PTE_SIZE); | 
 | 			pmd_set(__nocache_fix(pmdp), ptep); | 
 | 		} | 
 | 		if (start > (0xffffffffUL - PMD_SIZE)) | 
 | 			break; | 
 | 		start = (start + PMD_SIZE) & PMD_MASK; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init srmmu_allocate_ptable_skeleton(unsigned long start, | 
 | 						  unsigned long end) | 
 | { | 
 | 	pgd_t *pgdp; | 
 | 	p4d_t *p4dp; | 
 | 	pud_t *pudp; | 
 | 	pmd_t *pmdp; | 
 | 	pte_t *ptep; | 
 |  | 
 | 	while (start < end) { | 
 | 		pgdp = pgd_offset_k(start); | 
 | 		p4dp = p4d_offset(pgdp, start); | 
 | 		pudp = pud_offset(p4dp, start); | 
 | 		if (pud_none(*pudp)) { | 
 | 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); | 
 | 			if (pmdp == NULL) | 
 | 				early_pgtable_allocfail("pmd"); | 
 | 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); | 
 | 			pud_set((pud_t *)pgdp, pmdp); | 
 | 		} | 
 | 		pmdp = pmd_offset(pudp, start); | 
 | 		if (srmmu_pmd_none(*pmdp)) { | 
 | 			ptep = __srmmu_get_nocache(PTE_SIZE, | 
 | 							     PTE_SIZE); | 
 | 			if (ptep == NULL) | 
 | 				early_pgtable_allocfail("pte"); | 
 | 			memset(ptep, 0, PTE_SIZE); | 
 | 			pmd_set(pmdp, ptep); | 
 | 		} | 
 | 		if (start > (0xffffffffUL - PMD_SIZE)) | 
 | 			break; | 
 | 		start = (start + PMD_SIZE) & PMD_MASK; | 
 | 	} | 
 | } | 
 |  | 
 | /* These flush types are not available on all chips... */ | 
 | static inline unsigned long srmmu_probe(unsigned long vaddr) | 
 | { | 
 | 	unsigned long retval; | 
 |  | 
 | 	if (sparc_cpu_model != sparc_leon) { | 
 |  | 
 | 		vaddr &= PAGE_MASK; | 
 | 		__asm__ __volatile__("lda [%1] %2, %0\n\t" : | 
 | 				     "=r" (retval) : | 
 | 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); | 
 | 	} else { | 
 | 		retval = leon_swprobe(vaddr, NULL); | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * This is much cleaner than poking around physical address space | 
 |  * looking at the prom's page table directly which is what most | 
 |  * other OS's do.  Yuck... this is much better. | 
 |  */ | 
 | static void __init srmmu_inherit_prom_mappings(unsigned long start, | 
 | 					       unsigned long end) | 
 | { | 
 | 	unsigned long probed; | 
 | 	unsigned long addr; | 
 | 	pgd_t *pgdp; | 
 | 	p4d_t *p4dp; | 
 | 	pud_t *pudp; | 
 | 	pmd_t *pmdp; | 
 | 	pte_t *ptep; | 
 | 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ | 
 |  | 
 | 	while (start <= end) { | 
 | 		if (start == 0) | 
 | 			break; /* probably wrap around */ | 
 | 		if (start == 0xfef00000) | 
 | 			start = KADB_DEBUGGER_BEGVM; | 
 | 		probed = srmmu_probe(start); | 
 | 		if (!probed) { | 
 | 			/* continue probing until we find an entry */ | 
 | 			start += PAGE_SIZE; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* A red snapper, see what it really is. */ | 
 | 		what = 0; | 
 | 		addr = start - PAGE_SIZE; | 
 |  | 
 | 		if (!(start & ~(PMD_MASK))) { | 
 | 			if (srmmu_probe(addr + PMD_SIZE) == probed) | 
 | 				what = 1; | 
 | 		} | 
 |  | 
 | 		if (!(start & ~(PGDIR_MASK))) { | 
 | 			if (srmmu_probe(addr + PGDIR_SIZE) == probed) | 
 | 				what = 2; | 
 | 		} | 
 |  | 
 | 		pgdp = pgd_offset_k(start); | 
 | 		p4dp = p4d_offset(pgdp, start); | 
 | 		pudp = pud_offset(p4dp, start); | 
 | 		if (what == 2) { | 
 | 			*__nocache_fix(pgdp) = __pgd(probed); | 
 | 			start += PGDIR_SIZE; | 
 | 			continue; | 
 | 		} | 
 | 		if (pud_none(*__nocache_fix(pudp))) { | 
 | 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, | 
 | 						   SRMMU_PMD_TABLE_SIZE); | 
 | 			if (pmdp == NULL) | 
 | 				early_pgtable_allocfail("pmd"); | 
 | 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); | 
 | 			pud_set(__nocache_fix(pudp), pmdp); | 
 | 		} | 
 | 		pmdp = pmd_offset(__nocache_fix(pudp), start); | 
 | 		if (what == 1) { | 
 | 			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed); | 
 | 			start += PMD_SIZE; | 
 | 			continue; | 
 | 		} | 
 | 		if (srmmu_pmd_none(*__nocache_fix(pmdp))) { | 
 | 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); | 
 | 			if (ptep == NULL) | 
 | 				early_pgtable_allocfail("pte"); | 
 | 			memset(__nocache_fix(ptep), 0, PTE_SIZE); | 
 | 			pmd_set(__nocache_fix(pmdp), ptep); | 
 | 		} | 
 | 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start); | 
 | 		*__nocache_fix(ptep) = __pte(probed); | 
 | 		start += PAGE_SIZE; | 
 | 	} | 
 | } | 
 |  | 
 | #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) | 
 |  | 
 | /* Create a third-level SRMMU 16MB page mapping. */ | 
 | static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) | 
 | { | 
 | 	pgd_t *pgdp = pgd_offset_k(vaddr); | 
 | 	unsigned long big_pte; | 
 |  | 
 | 	big_pte = KERNEL_PTE(phys_base >> 4); | 
 | 	*__nocache_fix(pgdp) = __pgd(big_pte); | 
 | } | 
 |  | 
 | /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ | 
 | static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) | 
 | { | 
 | 	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK); | 
 | 	unsigned long vstart = (vbase & PGDIR_MASK); | 
 | 	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); | 
 | 	/* Map "low" memory only */ | 
 | 	const unsigned long min_vaddr = PAGE_OFFSET; | 
 | 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; | 
 |  | 
 | 	if (vstart < min_vaddr || vstart >= max_vaddr) | 
 | 		return vstart; | 
 |  | 
 | 	if (vend > max_vaddr || vend < min_vaddr) | 
 | 		vend = max_vaddr; | 
 |  | 
 | 	while (vstart < vend) { | 
 | 		do_large_mapping(vstart, pstart); | 
 | 		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE; | 
 | 	} | 
 | 	return vstart; | 
 | } | 
 |  | 
 | static void __init map_kernel(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (phys_base > 0) { | 
 | 		do_large_mapping(PAGE_OFFSET, phys_base); | 
 | 	} | 
 |  | 
 | 	for (i = 0; sp_banks[i].num_bytes != 0; i++) { | 
 | 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); | 
 | 	} | 
 | } | 
 |  | 
 | void (*poke_srmmu)(void) = NULL; | 
 |  | 
 | void __init srmmu_paging_init(void) | 
 | { | 
 | 	int i; | 
 | 	phandle cpunode; | 
 | 	char node_str[128]; | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	unsigned long pages_avail; | 
 |  | 
 | 	init_mm.context = (unsigned long) NO_CONTEXT; | 
 | 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */ | 
 |  | 
 | 	if (sparc_cpu_model == sun4d) | 
 | 		num_contexts = 65536; /* We know it is Viking */ | 
 | 	else { | 
 | 		/* Find the number of contexts on the srmmu. */ | 
 | 		cpunode = prom_getchild(prom_root_node); | 
 | 		num_contexts = 0; | 
 | 		while (cpunode != 0) { | 
 | 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); | 
 | 			if (!strcmp(node_str, "cpu")) { | 
 | 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); | 
 | 				break; | 
 | 			} | 
 | 			cpunode = prom_getsibling(cpunode); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!num_contexts) { | 
 | 		prom_printf("Something wrong, can't find cpu node in paging_init.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	pages_avail = 0; | 
 | 	last_valid_pfn = bootmem_init(&pages_avail); | 
 |  | 
 | 	srmmu_nocache_calcsize(); | 
 | 	srmmu_nocache_init(); | 
 | 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); | 
 | 	map_kernel(); | 
 |  | 
 | 	/* ctx table has to be physically aligned to its size */ | 
 | 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); | 
 | 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); | 
 |  | 
 | 	for (i = 0; i < num_contexts; i++) | 
 | 		srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); | 
 |  | 
 | 	flush_cache_all(); | 
 | 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); | 
 | #ifdef CONFIG_SMP | 
 | 	/* Stop from hanging here... */ | 
 | 	local_ops->tlb_all(); | 
 | #else | 
 | 	flush_tlb_all(); | 
 | #endif | 
 | 	poke_srmmu(); | 
 |  | 
 | 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); | 
 | 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); | 
 |  | 
 | 	srmmu_allocate_ptable_skeleton( | 
 | 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); | 
 | 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); | 
 |  | 
 | 	pgd = pgd_offset_k(PKMAP_BASE); | 
 | 	p4d = p4d_offset(pgd, PKMAP_BASE); | 
 | 	pud = pud_offset(p4d, PKMAP_BASE); | 
 | 	pmd = pmd_offset(pud, PKMAP_BASE); | 
 | 	pte = pte_offset_kernel(pmd, PKMAP_BASE); | 
 | 	pkmap_page_table = pte; | 
 |  | 
 | 	flush_cache_all(); | 
 | 	flush_tlb_all(); | 
 |  | 
 | 	sparc_context_init(num_contexts); | 
 |  | 
 | 	{ | 
 | 		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 }; | 
 |  | 
 | 		max_zone_pfn[ZONE_DMA] = max_low_pfn; | 
 | 		max_zone_pfn[ZONE_NORMAL] = max_low_pfn; | 
 | 		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn; | 
 |  | 
 | 		free_area_init(max_zone_pfn); | 
 | 	} | 
 | } | 
 |  | 
 | void mmu_info(struct seq_file *m) | 
 | { | 
 | 	seq_printf(m, | 
 | 		   "MMU type\t: %s\n" | 
 | 		   "contexts\t: %d\n" | 
 | 		   "nocache total\t: %ld\n" | 
 | 		   "nocache used\t: %d\n", | 
 | 		   srmmu_name, | 
 | 		   num_contexts, | 
 | 		   srmmu_nocache_size, | 
 | 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); | 
 | } | 
 |  | 
 | int init_new_context(struct task_struct *tsk, struct mm_struct *mm) | 
 | { | 
 | 	mm->context = NO_CONTEXT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void destroy_context(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (mm->context != NO_CONTEXT) { | 
 | 		flush_cache_mm(mm); | 
 | 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); | 
 | 		flush_tlb_mm(mm); | 
 | 		spin_lock_irqsave(&srmmu_context_spinlock, flags); | 
 | 		free_context(mm->context); | 
 | 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags); | 
 | 		mm->context = NO_CONTEXT; | 
 | 	} | 
 | } | 
 |  | 
 | /* Init various srmmu chip types. */ | 
 | static void __init srmmu_is_bad(void) | 
 | { | 
 | 	prom_printf("Could not determine SRMMU chip type.\n"); | 
 | 	prom_halt(); | 
 | } | 
 |  | 
 | static void __init init_vac_layout(void) | 
 | { | 
 | 	phandle nd; | 
 | 	int cache_lines; | 
 | 	char node_str[128]; | 
 | #ifdef CONFIG_SMP | 
 | 	int cpu = 0; | 
 | 	unsigned long max_size = 0; | 
 | 	unsigned long min_line_size = 0x10000000; | 
 | #endif | 
 |  | 
 | 	nd = prom_getchild(prom_root_node); | 
 | 	while ((nd = prom_getsibling(nd)) != 0) { | 
 | 		prom_getstring(nd, "device_type", node_str, sizeof(node_str)); | 
 | 		if (!strcmp(node_str, "cpu")) { | 
 | 			vac_line_size = prom_getint(nd, "cache-line-size"); | 
 | 			if (vac_line_size == -1) { | 
 | 				prom_printf("can't determine cache-line-size, halting.\n"); | 
 | 				prom_halt(); | 
 | 			} | 
 | 			cache_lines = prom_getint(nd, "cache-nlines"); | 
 | 			if (cache_lines == -1) { | 
 | 				prom_printf("can't determine cache-nlines, halting.\n"); | 
 | 				prom_halt(); | 
 | 			} | 
 |  | 
 | 			vac_cache_size = cache_lines * vac_line_size; | 
 | #ifdef CONFIG_SMP | 
 | 			if (vac_cache_size > max_size) | 
 | 				max_size = vac_cache_size; | 
 | 			if (vac_line_size < min_line_size) | 
 | 				min_line_size = vac_line_size; | 
 | 			//FIXME: cpus not contiguous!! | 
 | 			cpu++; | 
 | 			if (cpu >= nr_cpu_ids || !cpu_online(cpu)) | 
 | 				break; | 
 | #else | 
 | 			break; | 
 | #endif | 
 | 		} | 
 | 	} | 
 | 	if (nd == 0) { | 
 | 		prom_printf("No CPU nodes found, halting.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | #ifdef CONFIG_SMP | 
 | 	vac_cache_size = max_size; | 
 | 	vac_line_size = min_line_size; | 
 | #endif | 
 | 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", | 
 | 	       (int)vac_cache_size, (int)vac_line_size); | 
 | } | 
 |  | 
 | static void poke_hypersparc(void) | 
 | { | 
 | 	volatile unsigned long clear; | 
 | 	unsigned long mreg = srmmu_get_mmureg(); | 
 |  | 
 | 	hyper_flush_unconditional_combined(); | 
 |  | 
 | 	mreg &= ~(HYPERSPARC_CWENABLE); | 
 | 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); | 
 | 	mreg |= (HYPERSPARC_CMODE); | 
 |  | 
 | 	srmmu_set_mmureg(mreg); | 
 |  | 
 | #if 0 /* XXX I think this is bad news... -DaveM */ | 
 | 	hyper_clear_all_tags(); | 
 | #endif | 
 |  | 
 | 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); | 
 | 	hyper_flush_whole_icache(); | 
 | 	clear = srmmu_get_faddr(); | 
 | 	clear = srmmu_get_fstatus(); | 
 | } | 
 |  | 
 | static const struct sparc32_cachetlb_ops hypersparc_ops = { | 
 | 	.cache_all	= hypersparc_flush_cache_all, | 
 | 	.cache_mm	= hypersparc_flush_cache_mm, | 
 | 	.cache_page	= hypersparc_flush_cache_page, | 
 | 	.cache_range	= hypersparc_flush_cache_range, | 
 | 	.tlb_all	= hypersparc_flush_tlb_all, | 
 | 	.tlb_mm		= hypersparc_flush_tlb_mm, | 
 | 	.tlb_page	= hypersparc_flush_tlb_page, | 
 | 	.tlb_range	= hypersparc_flush_tlb_range, | 
 | 	.page_to_ram	= hypersparc_flush_page_to_ram, | 
 | 	.sig_insns	= hypersparc_flush_sig_insns, | 
 | 	.page_for_dma	= hypersparc_flush_page_for_dma, | 
 | }; | 
 |  | 
 | static void __init init_hypersparc(void) | 
 | { | 
 | 	srmmu_name = "ROSS HyperSparc"; | 
 | 	srmmu_modtype = HyperSparc; | 
 |  | 
 | 	init_vac_layout(); | 
 |  | 
 | 	is_hypersparc = 1; | 
 | 	sparc32_cachetlb_ops = &hypersparc_ops; | 
 |  | 
 | 	poke_srmmu = poke_hypersparc; | 
 |  | 
 | 	hypersparc_setup_blockops(); | 
 | } | 
 |  | 
 | static void poke_swift(void) | 
 | { | 
 | 	unsigned long mreg; | 
 |  | 
 | 	/* Clear any crap from the cache or else... */ | 
 | 	swift_flush_cache_all(); | 
 |  | 
 | 	/* Enable I & D caches */ | 
 | 	mreg = srmmu_get_mmureg(); | 
 | 	mreg |= (SWIFT_IE | SWIFT_DE); | 
 | 	/* | 
 | 	 * The Swift branch folding logic is completely broken.  At | 
 | 	 * trap time, if things are just right, if can mistakenly | 
 | 	 * think that a trap is coming from kernel mode when in fact | 
 | 	 * it is coming from user mode (it mis-executes the branch in | 
 | 	 * the trap code).  So you see things like crashme completely | 
 | 	 * hosing your machine which is completely unacceptable.  Turn | 
 | 	 * this shit off... nice job Fujitsu. | 
 | 	 */ | 
 | 	mreg &= ~(SWIFT_BF); | 
 | 	srmmu_set_mmureg(mreg); | 
 | } | 
 |  | 
 | static const struct sparc32_cachetlb_ops swift_ops = { | 
 | 	.cache_all	= swift_flush_cache_all, | 
 | 	.cache_mm	= swift_flush_cache_mm, | 
 | 	.cache_page	= swift_flush_cache_page, | 
 | 	.cache_range	= swift_flush_cache_range, | 
 | 	.tlb_all	= swift_flush_tlb_all, | 
 | 	.tlb_mm		= swift_flush_tlb_mm, | 
 | 	.tlb_page	= swift_flush_tlb_page, | 
 | 	.tlb_range	= swift_flush_tlb_range, | 
 | 	.page_to_ram	= swift_flush_page_to_ram, | 
 | 	.sig_insns	= swift_flush_sig_insns, | 
 | 	.page_for_dma	= swift_flush_page_for_dma, | 
 | }; | 
 |  | 
 | #define SWIFT_MASKID_ADDR  0x10003018 | 
 | static void __init init_swift(void) | 
 | { | 
 | 	unsigned long swift_rev; | 
 |  | 
 | 	__asm__ __volatile__("lda [%1] %2, %0\n\t" | 
 | 			     "srl %0, 0x18, %0\n\t" : | 
 | 			     "=r" (swift_rev) : | 
 | 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); | 
 | 	srmmu_name = "Fujitsu Swift"; | 
 | 	switch (swift_rev) { | 
 | 	case 0x11: | 
 | 	case 0x20: | 
 | 	case 0x23: | 
 | 	case 0x30: | 
 | 		srmmu_modtype = Swift_lots_o_bugs; | 
 | 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); | 
 | 		/* | 
 | 		 * Gee george, I wonder why Sun is so hush hush about | 
 | 		 * this hardware bug... really braindamage stuff going | 
 | 		 * on here.  However I think we can find a way to avoid | 
 | 		 * all of the workaround overhead under Linux.  Basically, | 
 | 		 * any page fault can cause kernel pages to become user | 
 | 		 * accessible (the mmu gets confused and clears some of | 
 | 		 * the ACC bits in kernel ptes).  Aha, sounds pretty | 
 | 		 * horrible eh?  But wait, after extensive testing it appears | 
 | 		 * that if you use pgd_t level large kernel pte's (like the | 
 | 		 * 4MB pages on the Pentium) the bug does not get tripped | 
 | 		 * at all.  This avoids almost all of the major overhead. | 
 | 		 * Welcome to a world where your vendor tells you to, | 
 | 		 * "apply this kernel patch" instead of "sorry for the | 
 | 		 * broken hardware, send it back and we'll give you | 
 | 		 * properly functioning parts" | 
 | 		 */ | 
 | 		break; | 
 | 	case 0x25: | 
 | 	case 0x31: | 
 | 		srmmu_modtype = Swift_bad_c; | 
 | 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; | 
 | 		/* | 
 | 		 * You see Sun allude to this hardware bug but never | 
 | 		 * admit things directly, they'll say things like, | 
 | 		 * "the Swift chip cache problems" or similar. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		srmmu_modtype = Swift_ok; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	sparc32_cachetlb_ops = &swift_ops; | 
 | 	flush_page_for_dma_global = 0; | 
 |  | 
 | 	/* | 
 | 	 * Are you now convinced that the Swift is one of the | 
 | 	 * biggest VLSI abortions of all time?  Bravo Fujitsu! | 
 | 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if | 
 | 	 * you examined the microcode of the Swift you'd find | 
 | 	 * XXX's all over the place. | 
 | 	 */ | 
 | 	poke_srmmu = poke_swift; | 
 | } | 
 |  | 
 | static void turbosparc_flush_cache_all(void) | 
 | { | 
 | 	flush_user_windows(); | 
 | 	turbosparc_idflash_clear(); | 
 | } | 
 |  | 
 | static void turbosparc_flush_cache_mm(struct mm_struct *mm) | 
 | { | 
 | 	FLUSH_BEGIN(mm) | 
 | 	flush_user_windows(); | 
 | 	turbosparc_idflash_clear(); | 
 | 	FLUSH_END | 
 | } | 
 |  | 
 | static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) | 
 | { | 
 | 	FLUSH_BEGIN(vma->vm_mm) | 
 | 	flush_user_windows(); | 
 | 	turbosparc_idflash_clear(); | 
 | 	FLUSH_END | 
 | } | 
 |  | 
 | static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) | 
 | { | 
 | 	FLUSH_BEGIN(vma->vm_mm) | 
 | 	flush_user_windows(); | 
 | 	if (vma->vm_flags & VM_EXEC) | 
 | 		turbosparc_flush_icache(); | 
 | 	turbosparc_flush_dcache(); | 
 | 	FLUSH_END | 
 | } | 
 |  | 
 | /* TurboSparc is copy-back, if we turn it on, but this does not work. */ | 
 | static void turbosparc_flush_page_to_ram(unsigned long page) | 
 | { | 
 | #ifdef TURBOSPARC_WRITEBACK | 
 | 	volatile unsigned long clear; | 
 |  | 
 | 	if (srmmu_probe(page)) | 
 | 		turbosparc_flush_page_cache(page); | 
 | 	clear = srmmu_get_fstatus(); | 
 | #endif | 
 | } | 
 |  | 
 | static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) | 
 | { | 
 | } | 
 |  | 
 | static void turbosparc_flush_page_for_dma(unsigned long page) | 
 | { | 
 | 	turbosparc_flush_dcache(); | 
 | } | 
 |  | 
 | static void turbosparc_flush_tlb_all(void) | 
 | { | 
 | 	srmmu_flush_whole_tlb(); | 
 | } | 
 |  | 
 | static void turbosparc_flush_tlb_mm(struct mm_struct *mm) | 
 | { | 
 | 	FLUSH_BEGIN(mm) | 
 | 	srmmu_flush_whole_tlb(); | 
 | 	FLUSH_END | 
 | } | 
 |  | 
 | static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) | 
 | { | 
 | 	FLUSH_BEGIN(vma->vm_mm) | 
 | 	srmmu_flush_whole_tlb(); | 
 | 	FLUSH_END | 
 | } | 
 |  | 
 | static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) | 
 | { | 
 | 	FLUSH_BEGIN(vma->vm_mm) | 
 | 	srmmu_flush_whole_tlb(); | 
 | 	FLUSH_END | 
 | } | 
 |  | 
 |  | 
 | static void poke_turbosparc(void) | 
 | { | 
 | 	unsigned long mreg = srmmu_get_mmureg(); | 
 | 	unsigned long ccreg; | 
 |  | 
 | 	/* Clear any crap from the cache or else... */ | 
 | 	turbosparc_flush_cache_all(); | 
 | 	/* Temporarily disable I & D caches */ | 
 | 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); | 
 | 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */ | 
 | 	srmmu_set_mmureg(mreg); | 
 |  | 
 | 	ccreg = turbosparc_get_ccreg(); | 
 |  | 
 | #ifdef TURBOSPARC_WRITEBACK | 
 | 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */ | 
 | 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); | 
 | 			/* Write-back D-cache, emulate VLSI | 
 | 			 * abortion number three, not number one */ | 
 | #else | 
 | 	/* For now let's play safe, optimize later */ | 
 | 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); | 
 | 			/* Do DVMA snooping in Dcache, Write-thru D-cache */ | 
 | 	ccreg &= ~(TURBOSPARC_uS2); | 
 | 			/* Emulate VLSI abortion number three, not number one */ | 
 | #endif | 
 |  | 
 | 	switch (ccreg & 7) { | 
 | 	case 0: /* No SE cache */ | 
 | 	case 7: /* Test mode */ | 
 | 		break; | 
 | 	default: | 
 | 		ccreg |= (TURBOSPARC_SCENABLE); | 
 | 	} | 
 | 	turbosparc_set_ccreg(ccreg); | 
 |  | 
 | 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ | 
 | 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */ | 
 | 	srmmu_set_mmureg(mreg); | 
 | } | 
 |  | 
 | static const struct sparc32_cachetlb_ops turbosparc_ops = { | 
 | 	.cache_all	= turbosparc_flush_cache_all, | 
 | 	.cache_mm	= turbosparc_flush_cache_mm, | 
 | 	.cache_page	= turbosparc_flush_cache_page, | 
 | 	.cache_range	= turbosparc_flush_cache_range, | 
 | 	.tlb_all	= turbosparc_flush_tlb_all, | 
 | 	.tlb_mm		= turbosparc_flush_tlb_mm, | 
 | 	.tlb_page	= turbosparc_flush_tlb_page, | 
 | 	.tlb_range	= turbosparc_flush_tlb_range, | 
 | 	.page_to_ram	= turbosparc_flush_page_to_ram, | 
 | 	.sig_insns	= turbosparc_flush_sig_insns, | 
 | 	.page_for_dma	= turbosparc_flush_page_for_dma, | 
 | }; | 
 |  | 
 | static void __init init_turbosparc(void) | 
 | { | 
 | 	srmmu_name = "Fujitsu TurboSparc"; | 
 | 	srmmu_modtype = TurboSparc; | 
 | 	sparc32_cachetlb_ops = &turbosparc_ops; | 
 | 	poke_srmmu = poke_turbosparc; | 
 | } | 
 |  | 
 | static void poke_tsunami(void) | 
 | { | 
 | 	unsigned long mreg = srmmu_get_mmureg(); | 
 |  | 
 | 	tsunami_flush_icache(); | 
 | 	tsunami_flush_dcache(); | 
 | 	mreg &= ~TSUNAMI_ITD; | 
 | 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); | 
 | 	srmmu_set_mmureg(mreg); | 
 | } | 
 |  | 
 | static const struct sparc32_cachetlb_ops tsunami_ops = { | 
 | 	.cache_all	= tsunami_flush_cache_all, | 
 | 	.cache_mm	= tsunami_flush_cache_mm, | 
 | 	.cache_page	= tsunami_flush_cache_page, | 
 | 	.cache_range	= tsunami_flush_cache_range, | 
 | 	.tlb_all	= tsunami_flush_tlb_all, | 
 | 	.tlb_mm		= tsunami_flush_tlb_mm, | 
 | 	.tlb_page	= tsunami_flush_tlb_page, | 
 | 	.tlb_range	= tsunami_flush_tlb_range, | 
 | 	.page_to_ram	= tsunami_flush_page_to_ram, | 
 | 	.sig_insns	= tsunami_flush_sig_insns, | 
 | 	.page_for_dma	= tsunami_flush_page_for_dma, | 
 | }; | 
 |  | 
 | static void __init init_tsunami(void) | 
 | { | 
 | 	/* | 
 | 	 * Tsunami's pretty sane, Sun and TI actually got it | 
 | 	 * somewhat right this time.  Fujitsu should have | 
 | 	 * taken some lessons from them. | 
 | 	 */ | 
 |  | 
 | 	srmmu_name = "TI Tsunami"; | 
 | 	srmmu_modtype = Tsunami; | 
 | 	sparc32_cachetlb_ops = &tsunami_ops; | 
 | 	poke_srmmu = poke_tsunami; | 
 |  | 
 | 	tsunami_setup_blockops(); | 
 | } | 
 |  | 
 | static void poke_viking(void) | 
 | { | 
 | 	unsigned long mreg = srmmu_get_mmureg(); | 
 | 	static int smp_catch; | 
 |  | 
 | 	if (viking_mxcc_present) { | 
 | 		unsigned long mxcc_control = mxcc_get_creg(); | 
 |  | 
 | 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); | 
 | 		mxcc_control &= ~(MXCC_CTL_RRC); | 
 | 		mxcc_set_creg(mxcc_control); | 
 |  | 
 | 		/* | 
 | 		 * We don't need memory parity checks. | 
 | 		 * XXX This is a mess, have to dig out later. ecd. | 
 | 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control); | 
 | 		 */ | 
 |  | 
 | 		/* We do cache ptables on MXCC. */ | 
 | 		mreg |= VIKING_TCENABLE; | 
 | 	} else { | 
 | 		unsigned long bpreg; | 
 |  | 
 | 		mreg &= ~(VIKING_TCENABLE); | 
 | 		if (smp_catch++) { | 
 | 			/* Must disable mixed-cmd mode here for other cpu's. */ | 
 | 			bpreg = viking_get_bpreg(); | 
 | 			bpreg &= ~(VIKING_ACTION_MIX); | 
 | 			viking_set_bpreg(bpreg); | 
 |  | 
 | 			/* Just in case PROM does something funny. */ | 
 | 			msi_set_sync(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mreg |= VIKING_SPENABLE; | 
 | 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); | 
 | 	mreg |= VIKING_SBENABLE; | 
 | 	mreg &= ~(VIKING_ACENABLE); | 
 | 	srmmu_set_mmureg(mreg); | 
 | } | 
 |  | 
 | static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { | 
 | 	.cache_all	= viking_flush_cache_all, | 
 | 	.cache_mm	= viking_flush_cache_mm, | 
 | 	.cache_page	= viking_flush_cache_page, | 
 | 	.cache_range	= viking_flush_cache_range, | 
 | 	.tlb_all	= viking_flush_tlb_all, | 
 | 	.tlb_mm		= viking_flush_tlb_mm, | 
 | 	.tlb_page	= viking_flush_tlb_page, | 
 | 	.tlb_range	= viking_flush_tlb_range, | 
 | 	.page_to_ram	= viking_flush_page_to_ram, | 
 | 	.sig_insns	= viking_flush_sig_insns, | 
 | 	.page_for_dma	= viking_flush_page_for_dma, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* On sun4d the cpu broadcasts local TLB flushes, so we can just | 
 |  * perform the local TLB flush and all the other cpus will see it. | 
 |  * But, unfortunately, there is a bug in the sun4d XBUS backplane | 
 |  * that requires that we add some synchronization to these flushes. | 
 |  * | 
 |  * The bug is that the fifo which keeps track of all the pending TLB | 
 |  * broadcasts in the system is an entry or two too small, so if we | 
 |  * have too many going at once we'll overflow that fifo and lose a TLB | 
 |  * flush resulting in corruption. | 
 |  * | 
 |  * Our workaround is to take a global spinlock around the TLB flushes, | 
 |  * which guarentees we won't ever have too many pending.  It's a big | 
 |  * hammer, but a semaphore like system to make sure we only have N TLB | 
 |  * flushes going at once will require SMP locking anyways so there's | 
 |  * no real value in trying any harder than this. | 
 |  */ | 
 | static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { | 
 | 	.cache_all	= viking_flush_cache_all, | 
 | 	.cache_mm	= viking_flush_cache_mm, | 
 | 	.cache_page	= viking_flush_cache_page, | 
 | 	.cache_range	= viking_flush_cache_range, | 
 | 	.tlb_all	= sun4dsmp_flush_tlb_all, | 
 | 	.tlb_mm		= sun4dsmp_flush_tlb_mm, | 
 | 	.tlb_page	= sun4dsmp_flush_tlb_page, | 
 | 	.tlb_range	= sun4dsmp_flush_tlb_range, | 
 | 	.page_to_ram	= viking_flush_page_to_ram, | 
 | 	.sig_insns	= viking_flush_sig_insns, | 
 | 	.page_for_dma	= viking_flush_page_for_dma, | 
 | }; | 
 | #endif | 
 |  | 
 | static void __init init_viking(void) | 
 | { | 
 | 	unsigned long mreg = srmmu_get_mmureg(); | 
 |  | 
 | 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */ | 
 | 	if (mreg & VIKING_MMODE) { | 
 | 		srmmu_name = "TI Viking"; | 
 | 		viking_mxcc_present = 0; | 
 | 		msi_set_sync(); | 
 |  | 
 | 		/* | 
 | 		 * We need this to make sure old viking takes no hits | 
 | 		 * on its cache for dma snoops to workaround the | 
 | 		 * "load from non-cacheable memory" interrupt bug. | 
 | 		 * This is only necessary because of the new way in | 
 | 		 * which we use the IOMMU. | 
 | 		 */ | 
 | 		viking_ops.page_for_dma = viking_flush_page; | 
 | #ifdef CONFIG_SMP | 
 | 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page; | 
 | #endif | 
 | 		flush_page_for_dma_global = 0; | 
 | 	} else { | 
 | 		srmmu_name = "TI Viking/MXCC"; | 
 | 		viking_mxcc_present = 1; | 
 | 		srmmu_cache_pagetables = 1; | 
 | 	} | 
 |  | 
 | 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) | 
 | 		&viking_ops; | 
 | #ifdef CONFIG_SMP | 
 | 	if (sparc_cpu_model == sun4d) | 
 | 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) | 
 | 			&viking_sun4d_smp_ops; | 
 | #endif | 
 |  | 
 | 	poke_srmmu = poke_viking; | 
 | } | 
 |  | 
 | /* Probe for the srmmu chip version. */ | 
 | static void __init get_srmmu_type(void) | 
 | { | 
 | 	unsigned long mreg, psr; | 
 | 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers; | 
 |  | 
 | 	srmmu_modtype = SRMMU_INVAL_MOD; | 
 | 	hwbug_bitmask = 0; | 
 |  | 
 | 	mreg = srmmu_get_mmureg(); psr = get_psr(); | 
 | 	mod_typ = (mreg & 0xf0000000) >> 28; | 
 | 	mod_rev = (mreg & 0x0f000000) >> 24; | 
 | 	psr_typ = (psr >> 28) & 0xf; | 
 | 	psr_vers = (psr >> 24) & 0xf; | 
 |  | 
 | 	/* First, check for sparc-leon. */ | 
 | 	if (sparc_cpu_model == sparc_leon) { | 
 | 		init_leon(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Second, check for HyperSparc or Cypress. */ | 
 | 	if (mod_typ == 1) { | 
 | 		switch (mod_rev) { | 
 | 		case 7: | 
 | 			/* UP or MP Hypersparc */ | 
 | 			init_hypersparc(); | 
 | 			break; | 
 | 		case 0: | 
 | 		case 2: | 
 | 		case 10: | 
 | 		case 11: | 
 | 		case 12: | 
 | 		case 13: | 
 | 		case 14: | 
 | 		case 15: | 
 | 		default: | 
 | 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); | 
 | 			prom_halt(); | 
 | 			break; | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Now Fujitsu TurboSparc. It might happen that it is | 
 | 	 * in Swift emulation mode, so we will check later... | 
 | 	 */ | 
 | 	if (psr_typ == 0 && psr_vers == 5) { | 
 | 		init_turbosparc(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Next check for Fujitsu Swift. */ | 
 | 	if (psr_typ == 0 && psr_vers == 4) { | 
 | 		phandle cpunode; | 
 | 		char node_str[128]; | 
 |  | 
 | 		/* Look if it is not a TurboSparc emulating Swift... */ | 
 | 		cpunode = prom_getchild(prom_root_node); | 
 | 		while ((cpunode = prom_getsibling(cpunode)) != 0) { | 
 | 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); | 
 | 			if (!strcmp(node_str, "cpu")) { | 
 | 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) && | 
 | 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) { | 
 | 					init_turbosparc(); | 
 | 					return; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		init_swift(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Now the Viking family of srmmu. */ | 
 | 	if (psr_typ == 4 && | 
 | 	   ((psr_vers == 0) || | 
 | 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { | 
 | 		init_viking(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Finally the Tsunami. */ | 
 | 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { | 
 | 		init_tsunami(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Oh well */ | 
 | 	srmmu_is_bad(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* Local cross-calls. */ | 
 | static void smp_flush_page_for_dma(unsigned long page) | 
 | { | 
 | 	xc1(local_ops->page_for_dma, page); | 
 | 	local_ops->page_for_dma(page); | 
 | } | 
 |  | 
 | static void smp_flush_cache_all(void) | 
 | { | 
 | 	xc0(local_ops->cache_all); | 
 | 	local_ops->cache_all(); | 
 | } | 
 |  | 
 | static void smp_flush_tlb_all(void) | 
 | { | 
 | 	xc0(local_ops->tlb_all); | 
 | 	local_ops->tlb_all(); | 
 | } | 
 |  | 
 | static bool any_other_mm_cpus(struct mm_struct *mm) | 
 | { | 
 | 	return cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids; | 
 | } | 
 |  | 
 | static void smp_flush_cache_mm(struct mm_struct *mm) | 
 | { | 
 | 	if (mm->context != NO_CONTEXT) { | 
 | 		if (any_other_mm_cpus(mm)) | 
 | 			xc1(local_ops->cache_mm, (unsigned long)mm); | 
 | 		local_ops->cache_mm(mm); | 
 | 	} | 
 | } | 
 |  | 
 | static void smp_flush_tlb_mm(struct mm_struct *mm) | 
 | { | 
 | 	if (mm->context != NO_CONTEXT) { | 
 | 		if (any_other_mm_cpus(mm)) { | 
 | 			xc1(local_ops->tlb_mm, (unsigned long)mm); | 
 | 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) | 
 | 				cpumask_copy(mm_cpumask(mm), | 
 | 					     cpumask_of(smp_processor_id())); | 
 | 		} | 
 | 		local_ops->tlb_mm(mm); | 
 | 	} | 
 | } | 
 |  | 
 | static void smp_flush_cache_range(struct vm_area_struct *vma, | 
 | 				  unsigned long start, | 
 | 				  unsigned long end) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	if (mm->context != NO_CONTEXT) { | 
 | 		if (any_other_mm_cpus(mm)) | 
 | 			xc3(local_ops->cache_range, (unsigned long)vma, start, | 
 | 			    end); | 
 | 		local_ops->cache_range(vma, start, end); | 
 | 	} | 
 | } | 
 |  | 
 | static void smp_flush_tlb_range(struct vm_area_struct *vma, | 
 | 				unsigned long start, | 
 | 				unsigned long end) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	if (mm->context != NO_CONTEXT) { | 
 | 		if (any_other_mm_cpus(mm)) | 
 | 			xc3(local_ops->tlb_range, (unsigned long)vma, start, | 
 | 			    end); | 
 | 		local_ops->tlb_range(vma, start, end); | 
 | 	} | 
 | } | 
 |  | 
 | static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	if (mm->context != NO_CONTEXT) { | 
 | 		if (any_other_mm_cpus(mm)) | 
 | 			xc2(local_ops->cache_page, (unsigned long)vma, page); | 
 | 		local_ops->cache_page(vma, page); | 
 | 	} | 
 | } | 
 |  | 
 | static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	if (mm->context != NO_CONTEXT) { | 
 | 		if (any_other_mm_cpus(mm)) | 
 | 			xc2(local_ops->tlb_page, (unsigned long)vma, page); | 
 | 		local_ops->tlb_page(vma, page); | 
 | 	} | 
 | } | 
 |  | 
 | static void smp_flush_page_to_ram(unsigned long page) | 
 | { | 
 | 	/* Current theory is that those who call this are the one's | 
 | 	 * who have just dirtied their cache with the pages contents | 
 | 	 * in kernel space, therefore we only run this on local cpu. | 
 | 	 * | 
 | 	 * XXX This experiment failed, research further... -DaveM | 
 | 	 */ | 
 | #if 1 | 
 | 	xc1(local_ops->page_to_ram, page); | 
 | #endif | 
 | 	local_ops->page_to_ram(page); | 
 | } | 
 |  | 
 | static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) | 
 | { | 
 | 	if (any_other_mm_cpus(mm)) | 
 | 		xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr); | 
 | 	local_ops->sig_insns(mm, insn_addr); | 
 | } | 
 |  | 
 | static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { | 
 | 	.cache_all	= smp_flush_cache_all, | 
 | 	.cache_mm	= smp_flush_cache_mm, | 
 | 	.cache_page	= smp_flush_cache_page, | 
 | 	.cache_range	= smp_flush_cache_range, | 
 | 	.tlb_all	= smp_flush_tlb_all, | 
 | 	.tlb_mm		= smp_flush_tlb_mm, | 
 | 	.tlb_page	= smp_flush_tlb_page, | 
 | 	.tlb_range	= smp_flush_tlb_range, | 
 | 	.page_to_ram	= smp_flush_page_to_ram, | 
 | 	.sig_insns	= smp_flush_sig_insns, | 
 | 	.page_for_dma	= smp_flush_page_for_dma, | 
 | }; | 
 | #endif | 
 |  | 
 | /* Load up routines and constants for sun4m and sun4d mmu */ | 
 | void __init load_mmu(void) | 
 | { | 
 | 	/* Functions */ | 
 | 	get_srmmu_type(); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* El switcheroo... */ | 
 | 	local_ops = sparc32_cachetlb_ops; | 
 |  | 
 | 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { | 
 | 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all; | 
 | 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; | 
 | 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range; | 
 | 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page; | 
 | 	} | 
 |  | 
 | 	if (poke_srmmu == poke_viking) { | 
 | 		/* Avoid unnecessary cross calls. */ | 
 | 		smp_cachetlb_ops.cache_all = local_ops->cache_all; | 
 | 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm; | 
 | 		smp_cachetlb_ops.cache_range = local_ops->cache_range; | 
 | 		smp_cachetlb_ops.cache_page = local_ops->cache_page; | 
 |  | 
 | 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; | 
 | 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns; | 
 | 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; | 
 | 	} | 
 |  | 
 | 	/* It really is const after this point. */ | 
 | 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) | 
 | 		&smp_cachetlb_ops; | 
 | #endif | 
 |  | 
 | 	if (sparc_cpu_model != sun4d) | 
 | 		ld_mmu_iommu(); | 
 | #ifdef CONFIG_SMP | 
 | 	if (sparc_cpu_model == sun4d) | 
 | 		sun4d_init_smp(); | 
 | 	else if (sparc_cpu_model == sparc_leon) | 
 | 		leon_init_smp(); | 
 | 	else | 
 | 		sun4m_init_smp(); | 
 | #endif | 
 | } |