|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Contiguous Memory Allocator | 
|  | * | 
|  | * Copyright (c) 2010-2011 by Samsung Electronics. | 
|  | * Copyright IBM Corporation, 2013 | 
|  | * Copyright LG Electronics Inc., 2014 | 
|  | * Written by: | 
|  | *	Marek Szyprowski <m.szyprowski@samsung.com> | 
|  | *	Michal Nazarewicz <mina86@mina86.com> | 
|  | *	Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> | 
|  | *	Joonsoo Kim <iamjoonsoo.kim@lge.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "cma: " fmt | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  |  | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string_choices.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/cma.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <trace/events/cma.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "cma.h" | 
|  |  | 
|  | struct cma cma_areas[MAX_CMA_AREAS]; | 
|  | unsigned int cma_area_count; | 
|  |  | 
|  | phys_addr_t cma_get_base(const struct cma *cma) | 
|  | { | 
|  | WARN_ON_ONCE(cma->nranges != 1); | 
|  | return PFN_PHYS(cma->ranges[0].base_pfn); | 
|  | } | 
|  |  | 
|  | unsigned long cma_get_size(const struct cma *cma) | 
|  | { | 
|  | return cma->count << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | const char *cma_get_name(const struct cma *cma) | 
|  | { | 
|  | return cma->name; | 
|  | } | 
|  |  | 
|  | static unsigned long cma_bitmap_aligned_mask(const struct cma *cma, | 
|  | unsigned int align_order) | 
|  | { | 
|  | if (align_order <= cma->order_per_bit) | 
|  | return 0; | 
|  | return (1UL << (align_order - cma->order_per_bit)) - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the offset of the base PFN from the specified align_order. | 
|  | * The value returned is represented in order_per_bits. | 
|  | */ | 
|  | static unsigned long cma_bitmap_aligned_offset(const struct cma *cma, | 
|  | const struct cma_memrange *cmr, | 
|  | unsigned int align_order) | 
|  | { | 
|  | return (cmr->base_pfn & ((1UL << align_order) - 1)) | 
|  | >> cma->order_per_bit; | 
|  | } | 
|  |  | 
|  | static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma, | 
|  | unsigned long pages) | 
|  | { | 
|  | return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit; | 
|  | } | 
|  |  | 
|  | static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr, | 
|  | unsigned long pfn, unsigned long count) | 
|  | { | 
|  | unsigned long bitmap_no, bitmap_count; | 
|  | unsigned long flags; | 
|  |  | 
|  | bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit; | 
|  | bitmap_count = cma_bitmap_pages_to_bits(cma, count); | 
|  |  | 
|  | spin_lock_irqsave(&cma->lock, flags); | 
|  | bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count); | 
|  | cma->available_count += count; | 
|  | spin_unlock_irqrestore(&cma->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if a CMA area contains no ranges that intersect with | 
|  | * multiple zones. Store the result in the flags in case | 
|  | * this gets called more than once. | 
|  | */ | 
|  | bool cma_validate_zones(struct cma *cma) | 
|  | { | 
|  | int r; | 
|  | unsigned long base_pfn; | 
|  | struct cma_memrange *cmr; | 
|  | bool valid_bit_set; | 
|  |  | 
|  | /* | 
|  | * If already validated, return result of previous check. | 
|  | * Either the valid or invalid bit will be set if this | 
|  | * check has already been done. If neither is set, the | 
|  | * check has not been performed yet. | 
|  | */ | 
|  | valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags); | 
|  | if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags)) | 
|  | return valid_bit_set; | 
|  |  | 
|  | for (r = 0; r < cma->nranges; r++) { | 
|  | cmr = &cma->ranges[r]; | 
|  | base_pfn = cmr->base_pfn; | 
|  |  | 
|  | /* | 
|  | * alloc_contig_range() requires the pfn range specified | 
|  | * to be in the same zone. Simplify by forcing the entire | 
|  | * CMA resv range to be in the same zone. | 
|  | */ | 
|  | WARN_ON_ONCE(!pfn_valid(base_pfn)); | 
|  | if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) { | 
|  | set_bit(CMA_ZONES_INVALID, &cma->flags); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | set_bit(CMA_ZONES_VALID, &cma->flags); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void __init cma_activate_area(struct cma *cma) | 
|  | { | 
|  | unsigned long pfn, end_pfn, early_pfn[CMA_MAX_RANGES]; | 
|  | int allocrange, r; | 
|  | struct cma_memrange *cmr; | 
|  | unsigned long bitmap_count, count; | 
|  |  | 
|  | for (allocrange = 0; allocrange < cma->nranges; allocrange++) { | 
|  | cmr = &cma->ranges[allocrange]; | 
|  | early_pfn[allocrange] = cmr->early_pfn; | 
|  | cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr), | 
|  | GFP_KERNEL); | 
|  | if (!cmr->bitmap) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (!cma_validate_zones(cma)) | 
|  | goto cleanup; | 
|  |  | 
|  | for (r = 0; r < cma->nranges; r++) { | 
|  | cmr = &cma->ranges[r]; | 
|  | if (early_pfn[r] != cmr->base_pfn) { | 
|  | count = early_pfn[r] - cmr->base_pfn; | 
|  | bitmap_count = cma_bitmap_pages_to_bits(cma, count); | 
|  | bitmap_set(cmr->bitmap, 0, bitmap_count); | 
|  | } | 
|  |  | 
|  | for (pfn = early_pfn[r]; pfn < cmr->base_pfn + cmr->count; | 
|  | pfn += pageblock_nr_pages) | 
|  | init_cma_reserved_pageblock(pfn_to_page(pfn)); | 
|  | } | 
|  |  | 
|  | spin_lock_init(&cma->lock); | 
|  |  | 
|  | mutex_init(&cma->alloc_mutex); | 
|  |  | 
|  | #ifdef CONFIG_CMA_DEBUGFS | 
|  | INIT_HLIST_HEAD(&cma->mem_head); | 
|  | spin_lock_init(&cma->mem_head_lock); | 
|  | #endif | 
|  | set_bit(CMA_ACTIVATED, &cma->flags); | 
|  |  | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | for (r = 0; r < allocrange; r++) | 
|  | bitmap_free(cma->ranges[r].bitmap); | 
|  |  | 
|  | /* Expose all pages to the buddy, they are useless for CMA. */ | 
|  | if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) { | 
|  | for (r = 0; r < allocrange; r++) { | 
|  | cmr = &cma->ranges[r]; | 
|  | end_pfn = cmr->base_pfn + cmr->count; | 
|  | for (pfn = early_pfn[r]; pfn < end_pfn; pfn++) | 
|  | free_reserved_page(pfn_to_page(pfn)); | 
|  | } | 
|  | } | 
|  | totalcma_pages -= cma->count; | 
|  | cma->available_count = cma->count = 0; | 
|  | pr_err("CMA area %s could not be activated\n", cma->name); | 
|  | } | 
|  |  | 
|  | static int __init cma_init_reserved_areas(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cma_area_count; i++) | 
|  | cma_activate_area(&cma_areas[i]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | core_initcall(cma_init_reserved_areas); | 
|  |  | 
|  | void __init cma_reserve_pages_on_error(struct cma *cma) | 
|  | { | 
|  | set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags); | 
|  | } | 
|  |  | 
|  | static int __init cma_new_area(const char *name, phys_addr_t size, | 
|  | unsigned int order_per_bit, | 
|  | struct cma **res_cma) | 
|  | { | 
|  | struct cma *cma; | 
|  |  | 
|  | if (cma_area_count == ARRAY_SIZE(cma_areas)) { | 
|  | pr_err("Not enough slots for CMA reserved regions!\n"); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each reserved area must be initialised later, when more kernel | 
|  | * subsystems (like slab allocator) are available. | 
|  | */ | 
|  | cma = &cma_areas[cma_area_count]; | 
|  | cma_area_count++; | 
|  |  | 
|  | if (name) | 
|  | snprintf(cma->name, CMA_MAX_NAME, "%s", name); | 
|  | else | 
|  | snprintf(cma->name, CMA_MAX_NAME,  "cma%d\n", cma_area_count); | 
|  |  | 
|  | cma->available_count = cma->count = size >> PAGE_SHIFT; | 
|  | cma->order_per_bit = order_per_bit; | 
|  | *res_cma = cma; | 
|  | totalcma_pages += cma->count; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init cma_drop_area(struct cma *cma) | 
|  | { | 
|  | totalcma_pages -= cma->count; | 
|  | cma_area_count--; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cma_init_reserved_mem() - create custom contiguous area from reserved memory | 
|  | * @base: Base address of the reserved area | 
|  | * @size: Size of the reserved area (in bytes), | 
|  | * @order_per_bit: Order of pages represented by one bit on bitmap. | 
|  | * @name: The name of the area. If this parameter is NULL, the name of | 
|  | *        the area will be set to "cmaN", where N is a running counter of | 
|  | *        used areas. | 
|  | * @res_cma: Pointer to store the created cma region. | 
|  | * | 
|  | * This function creates custom contiguous area from already reserved memory. | 
|  | */ | 
|  | int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, | 
|  | unsigned int order_per_bit, | 
|  | const char *name, | 
|  | struct cma **res_cma) | 
|  | { | 
|  | struct cma *cma; | 
|  | int ret; | 
|  |  | 
|  | /* Sanity checks */ | 
|  | if (!size || !memblock_is_region_reserved(base, size)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which | 
|  | * needs pageblock_order to be initialized. Let's enforce it. | 
|  | */ | 
|  | if (!pageblock_order) { | 
|  | pr_err("pageblock_order not yet initialized. Called during early boot?\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* ensure minimal alignment required by mm core */ | 
|  | if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = cma_new_area(name, size, order_per_bit, &cma); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | cma->ranges[0].base_pfn = PFN_DOWN(base); | 
|  | cma->ranges[0].early_pfn = PFN_DOWN(base); | 
|  | cma->ranges[0].count = cma->count; | 
|  | cma->nranges = 1; | 
|  | cma->nid = NUMA_NO_NODE; | 
|  |  | 
|  | *res_cma = cma; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Structure used while walking physical memory ranges and finding out | 
|  | * which one(s) to use for a CMA area. | 
|  | */ | 
|  | struct cma_init_memrange { | 
|  | phys_addr_t base; | 
|  | phys_addr_t size; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Work array used during CMA initialization. | 
|  | */ | 
|  | static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata; | 
|  |  | 
|  | static bool __init revsizecmp(struct cma_init_memrange *mlp, | 
|  | struct cma_init_memrange *mrp) | 
|  | { | 
|  | return mlp->size > mrp->size; | 
|  | } | 
|  |  | 
|  | static bool __init basecmp(struct cma_init_memrange *mlp, | 
|  | struct cma_init_memrange *mrp) | 
|  | { | 
|  | return mlp->base < mrp->base; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to create sorted lists. | 
|  | */ | 
|  | static void __init list_insert_sorted( | 
|  | struct list_head *ranges, | 
|  | struct cma_init_memrange *mrp, | 
|  | bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh)) | 
|  | { | 
|  | struct list_head *mp; | 
|  | struct cma_init_memrange *mlp; | 
|  |  | 
|  | if (list_empty(ranges)) | 
|  | list_add(&mrp->list, ranges); | 
|  | else { | 
|  | list_for_each(mp, ranges) { | 
|  | mlp = list_entry(mp, struct cma_init_memrange, list); | 
|  | if (cmp(mlp, mrp)) | 
|  | break; | 
|  | } | 
|  | __list_add(&mrp->list, mlp->list.prev, &mlp->list); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init cma_fixed_reserve(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_HIGHMEM)) { | 
|  | phys_addr_t highmem_start = __pa(high_memory - 1) + 1; | 
|  |  | 
|  | /* | 
|  | * If allocating at a fixed base the request region must not | 
|  | * cross the low/high memory boundary. | 
|  | */ | 
|  | if (base < highmem_start && base + size > highmem_start) { | 
|  | pr_err("Region at %pa defined on low/high memory boundary (%pa)\n", | 
|  | &base, &highmem_start); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (memblock_is_region_reserved(base, size) || | 
|  | memblock_reserve(base, size) < 0) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static phys_addr_t __init cma_alloc_mem(phys_addr_t base, phys_addr_t size, | 
|  | phys_addr_t align, phys_addr_t limit, int nid) | 
|  | { | 
|  | phys_addr_t addr = 0; | 
|  |  | 
|  | /* | 
|  | * If there is enough memory, try a bottom-up allocation first. | 
|  | * It will place the new cma area close to the start of the node | 
|  | * and guarantee that the compaction is moving pages out of the | 
|  | * cma area and not into it. | 
|  | * Avoid using first 4GB to not interfere with constrained zones | 
|  | * like DMA/DMA32. | 
|  | */ | 
|  | #ifdef CONFIG_PHYS_ADDR_T_64BIT | 
|  | if (!memblock_bottom_up() && limit >= SZ_4G + size) { | 
|  | memblock_set_bottom_up(true); | 
|  | addr = memblock_alloc_range_nid(size, align, SZ_4G, limit, | 
|  | nid, true); | 
|  | memblock_set_bottom_up(false); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * On systems with HIGHMEM try allocating from there before consuming | 
|  | * memory in lower zones. | 
|  | */ | 
|  | if (!addr && IS_ENABLED(CONFIG_HIGHMEM)) { | 
|  | phys_addr_t highmem = __pa(high_memory - 1) + 1; | 
|  |  | 
|  | /* | 
|  | * All pages in the reserved area must come from the same zone. | 
|  | * If the requested region crosses the low/high memory boundary, | 
|  | * try allocating from high memory first and fall back to low | 
|  | * memory in case of failure. | 
|  | */ | 
|  | if (base < highmem && limit > highmem) { | 
|  | addr = memblock_alloc_range_nid(size, align, highmem, | 
|  | limit, nid, true); | 
|  | limit = highmem; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!addr) | 
|  | addr = memblock_alloc_range_nid(size, align, base, limit, nid, | 
|  | true); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static int __init __cma_declare_contiguous_nid(phys_addr_t *basep, | 
|  | phys_addr_t size, phys_addr_t limit, | 
|  | phys_addr_t alignment, unsigned int order_per_bit, | 
|  | bool fixed, const char *name, struct cma **res_cma, | 
|  | int nid) | 
|  | { | 
|  | phys_addr_t memblock_end = memblock_end_of_DRAM(); | 
|  | phys_addr_t base = *basep; | 
|  | int ret; | 
|  |  | 
|  | pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n", | 
|  | __func__, &size, &base, &limit, &alignment); | 
|  |  | 
|  | if (cma_area_count == ARRAY_SIZE(cma_areas)) { | 
|  | pr_err("Not enough slots for CMA reserved regions!\n"); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | if (!size) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (alignment && !is_power_of_2(alignment)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_NUMA)) | 
|  | nid = NUMA_NO_NODE; | 
|  |  | 
|  | /* Sanitise input arguments. */ | 
|  | alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES); | 
|  | if (fixed && base & (alignment - 1)) { | 
|  | pr_err("Region at %pa must be aligned to %pa bytes\n", | 
|  | &base, &alignment); | 
|  | return -EINVAL; | 
|  | } | 
|  | base = ALIGN(base, alignment); | 
|  | size = ALIGN(size, alignment); | 
|  | limit &= ~(alignment - 1); | 
|  |  | 
|  | if (!base) | 
|  | fixed = false; | 
|  |  | 
|  | /* size should be aligned with order_per_bit */ | 
|  | if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit)) | 
|  | return -EINVAL; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If the limit is unspecified or above the memblock end, its effective | 
|  | * value will be the memblock end. Set it explicitly to simplify further | 
|  | * checks. | 
|  | */ | 
|  | if (limit == 0 || limit > memblock_end) | 
|  | limit = memblock_end; | 
|  |  | 
|  | if (base + size > limit) { | 
|  | pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n", | 
|  | &size, &base, &limit); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Reserve memory */ | 
|  | if (fixed) { | 
|  | ret = cma_fixed_reserve(base, size); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else { | 
|  | base = cma_alloc_mem(base, size, alignment, limit, nid); | 
|  | if (!base) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * kmemleak scans/reads tracked objects for pointers to other | 
|  | * objects but this address isn't mapped and accessible | 
|  | */ | 
|  | kmemleak_ignore_phys(base); | 
|  | } | 
|  |  | 
|  | ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma); | 
|  | if (ret) { | 
|  | memblock_phys_free(base, size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | (*res_cma)->nid = nid; | 
|  | *basep = base; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create CMA areas with a total size of @total_size. A normal allocation | 
|  | * for one area is tried first. If that fails, the biggest memblock | 
|  | * ranges above 4G are selected, and allocated bottom up. | 
|  | * | 
|  | * The complexity here is not great, but this function will only be | 
|  | * called during boot, and the lists operated on have fewer than | 
|  | * CMA_MAX_RANGES elements (default value: 8). | 
|  | */ | 
|  | int __init cma_declare_contiguous_multi(phys_addr_t total_size, | 
|  | phys_addr_t align, unsigned int order_per_bit, | 
|  | const char *name, struct cma **res_cma, int nid) | 
|  | { | 
|  | phys_addr_t start = 0, end; | 
|  | phys_addr_t size, sizesum, sizeleft; | 
|  | struct cma_init_memrange *mrp, *mlp, *failed; | 
|  | struct cma_memrange *cmrp; | 
|  | LIST_HEAD(ranges); | 
|  | LIST_HEAD(final_ranges); | 
|  | struct list_head *mp, *next; | 
|  | int ret, nr = 1; | 
|  | u64 i; | 
|  | struct cma *cma; | 
|  |  | 
|  | /* | 
|  | * First, try it the normal way, producing just one range. | 
|  | */ | 
|  | ret = __cma_declare_contiguous_nid(&start, total_size, 0, align, | 
|  | order_per_bit, false, name, res_cma, nid); | 
|  | if (ret != -ENOMEM) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Couldn't find one range that fits our needs, so try multiple | 
|  | * ranges. | 
|  | * | 
|  | * No need to do the alignment checks here, the call to | 
|  | * cma_declare_contiguous_nid above would have caught | 
|  | * any issues. With the checks, we know that: | 
|  | * | 
|  | * - @align is a power of 2 | 
|  | * - @align is >= pageblock alignment | 
|  | * - @size is aligned to @align and to @order_per_bit | 
|  | * | 
|  | * So, as long as we create ranges that have a base | 
|  | * aligned to @align, and a size that is aligned to | 
|  | * both @align and @order_to_bit, things will work out. | 
|  | */ | 
|  | nr = 0; | 
|  | sizesum = 0; | 
|  | failed = NULL; | 
|  |  | 
|  | ret = cma_new_area(name, total_size, order_per_bit, &cma); | 
|  | if (ret != 0) | 
|  | goto out; | 
|  |  | 
|  | align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); | 
|  | /* | 
|  | * Create a list of ranges above 4G, largest range first. | 
|  | */ | 
|  | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) { | 
|  | if (upper_32_bits(start) == 0) | 
|  | continue; | 
|  |  | 
|  | start = ALIGN(start, align); | 
|  | if (start >= end) | 
|  | continue; | 
|  |  | 
|  | end = ALIGN_DOWN(end, align); | 
|  | if (end <= start) | 
|  | continue; | 
|  |  | 
|  | size = end - start; | 
|  | size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit)); | 
|  | if (!size) | 
|  | continue; | 
|  | sizesum += size; | 
|  |  | 
|  | pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end); | 
|  |  | 
|  | /* | 
|  | * If we don't yet have used the maximum number of | 
|  | * areas, grab a new one. | 
|  | * | 
|  | * If we can't use anymore, see if this range is not | 
|  | * smaller than the smallest one already recorded. If | 
|  | * not, re-use the smallest element. | 
|  | */ | 
|  | if (nr < CMA_MAX_RANGES) | 
|  | mrp = &memranges[nr++]; | 
|  | else { | 
|  | mrp = list_last_entry(&ranges, | 
|  | struct cma_init_memrange, list); | 
|  | if (size < mrp->size) | 
|  | continue; | 
|  | list_del(&mrp->list); | 
|  | sizesum -= mrp->size; | 
|  | pr_debug("deleted %016llx - %016llx from the list\n", | 
|  | (u64)mrp->base, (u64)mrp->base + size); | 
|  | } | 
|  | mrp->base = start; | 
|  | mrp->size = size; | 
|  |  | 
|  | /* | 
|  | * Now do a sorted insert. | 
|  | */ | 
|  | list_insert_sorted(&ranges, mrp, revsizecmp); | 
|  | pr_debug("added %016llx - %016llx to the list\n", | 
|  | (u64)mrp->base, (u64)mrp->base + size); | 
|  | pr_debug("total size now %llu\n", (u64)sizesum); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is not enough room in the CMA_MAX_RANGES largest | 
|  | * ranges, so bail out. | 
|  | */ | 
|  | if (sizesum < total_size) { | 
|  | cma_drop_area(cma); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Found ranges that provide enough combined space. | 
|  | * Now, sorted them by address, smallest first, because we | 
|  | * want to mimic a bottom-up memblock allocation. | 
|  | */ | 
|  | sizesum = 0; | 
|  | list_for_each_safe(mp, next, &ranges) { | 
|  | mlp = list_entry(mp, struct cma_init_memrange, list); | 
|  | list_del(mp); | 
|  | list_insert_sorted(&final_ranges, mlp, basecmp); | 
|  | sizesum += mlp->size; | 
|  | if (sizesum >= total_size) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the final list, and add a CMA range for | 
|  | * each range, possibly not using the last one fully. | 
|  | */ | 
|  | nr = 0; | 
|  | sizeleft = total_size; | 
|  | list_for_each(mp, &final_ranges) { | 
|  | mlp = list_entry(mp, struct cma_init_memrange, list); | 
|  | size = min(sizeleft, mlp->size); | 
|  | if (memblock_reserve(mlp->base, size)) { | 
|  | /* | 
|  | * Unexpected error. Could go on to | 
|  | * the next one, but just abort to | 
|  | * be safe. | 
|  | */ | 
|  | failed = mlp; | 
|  | break; | 
|  | } | 
|  |  | 
|  | pr_debug("created region %d: %016llx - %016llx\n", | 
|  | nr, (u64)mlp->base, (u64)mlp->base + size); | 
|  | cmrp = &cma->ranges[nr++]; | 
|  | cmrp->base_pfn = PHYS_PFN(mlp->base); | 
|  | cmrp->early_pfn = cmrp->base_pfn; | 
|  | cmrp->count = size >> PAGE_SHIFT; | 
|  |  | 
|  | sizeleft -= size; | 
|  | if (sizeleft == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (failed) { | 
|  | list_for_each(mp, &final_ranges) { | 
|  | mlp = list_entry(mp, struct cma_init_memrange, list); | 
|  | if (mlp == failed) | 
|  | break; | 
|  | memblock_phys_free(mlp->base, mlp->size); | 
|  | } | 
|  | cma_drop_area(cma); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cma->nranges = nr; | 
|  | cma->nid = nid; | 
|  | *res_cma = cma; | 
|  |  | 
|  | out: | 
|  | if (ret != 0) | 
|  | pr_err("Failed to reserve %lu MiB\n", | 
|  | (unsigned long)total_size / SZ_1M); | 
|  | else | 
|  | pr_info("Reserved %lu MiB in %d range%s\n", | 
|  | (unsigned long)total_size / SZ_1M, nr, str_plural(nr)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cma_declare_contiguous_nid() - reserve custom contiguous area | 
|  | * @base: Base address of the reserved area optional, use 0 for any | 
|  | * @size: Size of the reserved area (in bytes), | 
|  | * @limit: End address of the reserved memory (optional, 0 for any). | 
|  | * @alignment: Alignment for the CMA area, should be power of 2 or zero | 
|  | * @order_per_bit: Order of pages represented by one bit on bitmap. | 
|  | * @fixed: hint about where to place the reserved area | 
|  | * @name: The name of the area. See function cma_init_reserved_mem() | 
|  | * @res_cma: Pointer to store the created cma region. | 
|  | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
|  | * | 
|  | * This function reserves memory from early allocator. It should be | 
|  | * called by arch specific code once the early allocator (memblock or bootmem) | 
|  | * has been activated and all other subsystems have already allocated/reserved | 
|  | * memory. This function allows to create custom reserved areas. | 
|  | * | 
|  | * If @fixed is true, reserve contiguous area at exactly @base.  If false, | 
|  | * reserve in range from @base to @limit. | 
|  | */ | 
|  | int __init cma_declare_contiguous_nid(phys_addr_t base, | 
|  | phys_addr_t size, phys_addr_t limit, | 
|  | phys_addr_t alignment, unsigned int order_per_bit, | 
|  | bool fixed, const char *name, struct cma **res_cma, | 
|  | int nid) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = __cma_declare_contiguous_nid(&base, size, limit, alignment, | 
|  | order_per_bit, fixed, name, res_cma, nid); | 
|  | if (ret != 0) | 
|  | pr_err("Failed to reserve %ld MiB\n", | 
|  | (unsigned long)size / SZ_1M); | 
|  | else | 
|  | pr_info("Reserved %ld MiB at %pa\n", | 
|  | (unsigned long)size / SZ_1M, &base); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cma_debug_show_areas(struct cma *cma) | 
|  | { | 
|  | unsigned long start, end; | 
|  | unsigned long nr_part; | 
|  | unsigned long nbits; | 
|  | int r; | 
|  | struct cma_memrange *cmr; | 
|  |  | 
|  | spin_lock_irq(&cma->lock); | 
|  | pr_info("number of available pages: "); | 
|  | for (r = 0; r < cma->nranges; r++) { | 
|  | cmr = &cma->ranges[r]; | 
|  |  | 
|  | nbits = cma_bitmap_maxno(cma, cmr); | 
|  |  | 
|  | pr_info("range %d: ", r); | 
|  | for_each_clear_bitrange(start, end, cmr->bitmap, nbits) { | 
|  | nr_part = (end - start) << cma->order_per_bit; | 
|  | pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, start); | 
|  | } | 
|  | pr_info("\n"); | 
|  | } | 
|  | pr_cont("=> %lu free of %lu total pages\n", cma->available_count, | 
|  | cma->count); | 
|  | spin_unlock_irq(&cma->lock); | 
|  | } | 
|  |  | 
|  | static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr, | 
|  | unsigned long count, unsigned int align, | 
|  | struct page **pagep, gfp_t gfp) | 
|  | { | 
|  | unsigned long mask, offset; | 
|  | unsigned long pfn = -1; | 
|  | unsigned long start = 0; | 
|  | unsigned long bitmap_maxno, bitmap_no, bitmap_count; | 
|  | int ret = -EBUSY; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | mask = cma_bitmap_aligned_mask(cma, align); | 
|  | offset = cma_bitmap_aligned_offset(cma, cmr, align); | 
|  | bitmap_maxno = cma_bitmap_maxno(cma, cmr); | 
|  | bitmap_count = cma_bitmap_pages_to_bits(cma, count); | 
|  |  | 
|  | if (bitmap_count > bitmap_maxno) | 
|  | goto out; | 
|  |  | 
|  | for (;;) { | 
|  | spin_lock_irq(&cma->lock); | 
|  | /* | 
|  | * If the request is larger than the available number | 
|  | * of pages, stop right away. | 
|  | */ | 
|  | if (count > cma->available_count) { | 
|  | spin_unlock_irq(&cma->lock); | 
|  | break; | 
|  | } | 
|  | bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap, | 
|  | bitmap_maxno, start, bitmap_count, mask, | 
|  | offset); | 
|  | if (bitmap_no >= bitmap_maxno) { | 
|  | spin_unlock_irq(&cma->lock); | 
|  | break; | 
|  | } | 
|  | bitmap_set(cmr->bitmap, bitmap_no, bitmap_count); | 
|  | cma->available_count -= count; | 
|  | /* | 
|  | * It's safe to drop the lock here. We've marked this region for | 
|  | * our exclusive use. If the migration fails we will take the | 
|  | * lock again and unmark it. | 
|  | */ | 
|  | spin_unlock_irq(&cma->lock); | 
|  |  | 
|  | pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit); | 
|  | mutex_lock(&cma->alloc_mutex); | 
|  | ret = alloc_contig_range(pfn, pfn + count, ACR_FLAGS_CMA, gfp); | 
|  | mutex_unlock(&cma->alloc_mutex); | 
|  | if (ret == 0) { | 
|  | page = pfn_to_page(pfn); | 
|  | break; | 
|  | } | 
|  |  | 
|  | cma_clear_bitmap(cma, cmr, pfn, count); | 
|  | if (ret != -EBUSY) | 
|  | break; | 
|  |  | 
|  | pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n", | 
|  | __func__, pfn, pfn_to_page(pfn)); | 
|  |  | 
|  | trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn), | 
|  | count, align); | 
|  | /* try again with a bit different memory target */ | 
|  | start = bitmap_no + mask + 1; | 
|  | } | 
|  | out: | 
|  | *pagep = page; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct page *__cma_alloc(struct cma *cma, unsigned long count, | 
|  | unsigned int align, gfp_t gfp) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | int ret = -ENOMEM, r; | 
|  | unsigned long i; | 
|  | const char *name = cma ? cma->name : NULL; | 
|  |  | 
|  | if (!cma || !cma->count) | 
|  | return page; | 
|  |  | 
|  | pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, | 
|  | (void *)cma, cma->name, count, align); | 
|  |  | 
|  | if (!count) | 
|  | return page; | 
|  |  | 
|  | trace_cma_alloc_start(name, count, align); | 
|  |  | 
|  | for (r = 0; r < cma->nranges; r++) { | 
|  | page = NULL; | 
|  |  | 
|  | ret = cma_range_alloc(cma, &cma->ranges[r], count, align, | 
|  | &page, gfp); | 
|  | if (ret != -EBUSY || page) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CMA can allocate multiple page blocks, which results in different | 
|  | * blocks being marked with different tags. Reset the tags to ignore | 
|  | * those page blocks. | 
|  | */ | 
|  | if (page) { | 
|  | for (i = 0; i < count; i++) | 
|  | page_kasan_tag_reset(nth_page(page, i)); | 
|  | } | 
|  |  | 
|  | if (ret && !(gfp & __GFP_NOWARN)) { | 
|  | pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n", | 
|  | __func__, cma->name, count, ret); | 
|  | cma_debug_show_areas(cma); | 
|  | } | 
|  |  | 
|  | pr_debug("%s(): returned %p\n", __func__, page); | 
|  | trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0, | 
|  | page, count, align, ret); | 
|  | if (page) { | 
|  | count_vm_event(CMA_ALLOC_SUCCESS); | 
|  | cma_sysfs_account_success_pages(cma, count); | 
|  | } else { | 
|  | count_vm_event(CMA_ALLOC_FAIL); | 
|  | cma_sysfs_account_fail_pages(cma, count); | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cma_alloc() - allocate pages from contiguous area | 
|  | * @cma:   Contiguous memory region for which the allocation is performed. | 
|  | * @count: Requested number of pages. | 
|  | * @align: Requested alignment of pages (in PAGE_SIZE order). | 
|  | * @no_warn: Avoid printing message about failed allocation | 
|  | * | 
|  | * This function allocates part of contiguous memory on specific | 
|  | * contiguous memory area. | 
|  | */ | 
|  | struct page *cma_alloc(struct cma *cma, unsigned long count, | 
|  | unsigned int align, bool no_warn) | 
|  | { | 
|  | return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0)); | 
|  | } | 
|  |  | 
|  | struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (WARN_ON(!order || !(gfp & __GFP_COMP))) | 
|  | return NULL; | 
|  |  | 
|  | page = __cma_alloc(cma, 1 << order, order, gfp); | 
|  |  | 
|  | return page ? page_folio(page) : NULL; | 
|  | } | 
|  |  | 
|  | bool cma_pages_valid(struct cma *cma, const struct page *pages, | 
|  | unsigned long count) | 
|  | { | 
|  | unsigned long pfn, end; | 
|  | int r; | 
|  | struct cma_memrange *cmr; | 
|  | bool ret; | 
|  |  | 
|  | if (!cma || !pages || count > cma->count) | 
|  | return false; | 
|  |  | 
|  | pfn = page_to_pfn(pages); | 
|  | ret = false; | 
|  |  | 
|  | for (r = 0; r < cma->nranges; r++) { | 
|  | cmr = &cma->ranges[r]; | 
|  | end = cmr->base_pfn + cmr->count; | 
|  | if (pfn >= cmr->base_pfn && pfn < end) { | 
|  | ret = pfn + count <= end; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | pr_debug("%s(page %p, count %lu)\n", | 
|  | __func__, (void *)pages, count); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cma_release() - release allocated pages | 
|  | * @cma:   Contiguous memory region for which the allocation is performed. | 
|  | * @pages: Allocated pages. | 
|  | * @count: Number of allocated pages. | 
|  | * | 
|  | * This function releases memory allocated by cma_alloc(). | 
|  | * It returns false when provided pages do not belong to contiguous area and | 
|  | * true otherwise. | 
|  | */ | 
|  | bool cma_release(struct cma *cma, const struct page *pages, | 
|  | unsigned long count) | 
|  | { | 
|  | struct cma_memrange *cmr; | 
|  | unsigned long pfn, end_pfn; | 
|  | int r; | 
|  |  | 
|  | pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); | 
|  |  | 
|  | if (!cma_pages_valid(cma, pages, count)) | 
|  | return false; | 
|  |  | 
|  | pfn = page_to_pfn(pages); | 
|  | end_pfn = pfn + count; | 
|  |  | 
|  | for (r = 0; r < cma->nranges; r++) { | 
|  | cmr = &cma->ranges[r]; | 
|  | if (pfn >= cmr->base_pfn && | 
|  | pfn < (cmr->base_pfn + cmr->count)) { | 
|  | VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (r == cma->nranges) | 
|  | return false; | 
|  |  | 
|  | free_contig_range(pfn, count); | 
|  | cma_clear_bitmap(cma, cmr, pfn, count); | 
|  | cma_sysfs_account_release_pages(cma, count); | 
|  | trace_cma_release(cma->name, pfn, pages, count); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool cma_free_folio(struct cma *cma, const struct folio *folio) | 
|  | { | 
|  | if (WARN_ON(!folio_test_large(folio))) | 
|  | return false; | 
|  |  | 
|  | return cma_release(cma, &folio->page, folio_nr_pages(folio)); | 
|  | } | 
|  |  | 
|  | int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cma_area_count; i++) { | 
|  | int ret = it(&cma_areas[i], data); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end) | 
|  | { | 
|  | int r; | 
|  | struct cma_memrange *cmr; | 
|  | unsigned long rstart, rend; | 
|  |  | 
|  | for (r = 0; r < cma->nranges; r++) { | 
|  | cmr = &cma->ranges[r]; | 
|  |  | 
|  | rstart = PFN_PHYS(cmr->base_pfn); | 
|  | rend = PFN_PHYS(cmr->base_pfn + cmr->count); | 
|  | if (end < rstart) | 
|  | continue; | 
|  | if (start >= rend) | 
|  | continue; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Very basic function to reserve memory from a CMA area that has not | 
|  | * yet been activated. This is expected to be called early, when the | 
|  | * system is single-threaded, so there is no locking. The alignment | 
|  | * checking is restrictive - only pageblock-aligned areas | 
|  | * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function. | 
|  | * This keeps things simple, and is enough for the current use case. | 
|  | * | 
|  | * The CMA bitmaps have not yet been allocated, so just start | 
|  | * reserving from the bottom up, using a PFN to keep track | 
|  | * of what has been reserved. Unreserving is not possible. | 
|  | * | 
|  | * The caller is responsible for initializing the page structures | 
|  | * in the area properly, since this just points to memblock-allocated | 
|  | * memory. The caller should subsequently use init_cma_pageblock to | 
|  | * set the migrate type and CMA stats  the pageblocks that were reserved. | 
|  | * | 
|  | * If the CMA area fails to activate later, memory obtained through | 
|  | * this interface is not handed to the page allocator, this is | 
|  | * the responsibility of the caller (e.g. like normal memblock-allocated | 
|  | * memory). | 
|  | */ | 
|  | void __init *cma_reserve_early(struct cma *cma, unsigned long size) | 
|  | { | 
|  | int r; | 
|  | struct cma_memrange *cmr; | 
|  | unsigned long available; | 
|  | void *ret = NULL; | 
|  |  | 
|  | if (!cma || !cma->count) | 
|  | return NULL; | 
|  | /* | 
|  | * Can only be called early in init. | 
|  | */ | 
|  | if (test_bit(CMA_ACTIVATED, &cma->flags)) | 
|  | return NULL; | 
|  |  | 
|  | if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES)) | 
|  | return NULL; | 
|  |  | 
|  | if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit))) | 
|  | return NULL; | 
|  |  | 
|  | size >>= PAGE_SHIFT; | 
|  |  | 
|  | if (size > cma->available_count) | 
|  | return NULL; | 
|  |  | 
|  | for (r = 0; r < cma->nranges; r++) { | 
|  | cmr = &cma->ranges[r]; | 
|  | available = cmr->count - (cmr->early_pfn - cmr->base_pfn); | 
|  | if (size <= available) { | 
|  | ret = phys_to_virt(PFN_PHYS(cmr->early_pfn)); | 
|  | cmr->early_pfn += size; | 
|  | cma->available_count -= size; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } |