| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * linux/mm/page_isolation.c | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/page-isolation.h> | 
 | #include <linux/pageblock-flags.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/page_owner.h> | 
 | #include <linux/migrate.h> | 
 | #include "internal.h" | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/page_isolation.h> | 
 |  | 
 | /* | 
 |  * This function checks whether the range [start_pfn, end_pfn) includes | 
 |  * unmovable pages or not. The range must fall into a single pageblock and | 
 |  * consequently belong to a single zone. | 
 |  * | 
 |  * PageLRU check without isolation or lru_lock could race so that | 
 |  * MIGRATE_MOVABLE block might include unmovable pages. Similarly, pages | 
 |  * with movable_ops can only be identified some time after they were | 
 |  * allocated. So you can't expect this function should be exact. | 
 |  * | 
 |  * Returns a page without holding a reference. If the caller wants to | 
 |  * dereference that page (e.g., dumping), it has to make sure that it | 
 |  * cannot get removed (e.g., via memory unplug) concurrently. | 
 |  * | 
 |  */ | 
 | static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn, | 
 | 				enum pb_isolate_mode mode) | 
 | { | 
 | 	struct page *page = pfn_to_page(start_pfn); | 
 | 	struct zone *zone = page_zone(page); | 
 | 	unsigned long pfn; | 
 |  | 
 | 	VM_BUG_ON(pageblock_start_pfn(start_pfn) != | 
 | 		  pageblock_start_pfn(end_pfn - 1)); | 
 |  | 
 | 	if (is_migrate_cma_page(page)) { | 
 | 		/* | 
 | 		 * CMA allocations (alloc_contig_range) really need to mark | 
 | 		 * isolate CMA pageblocks even when they are not movable in fact | 
 | 		 * so consider them movable here. | 
 | 		 */ | 
 | 		if (mode == PB_ISOLATE_MODE_CMA_ALLOC) | 
 | 			return NULL; | 
 |  | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
 | 		page = pfn_to_page(pfn); | 
 |  | 
 | 		/* | 
 | 		 * Both, bootmem allocations and memory holes are marked | 
 | 		 * PG_reserved and are unmovable. We can even have unmovable | 
 | 		 * allocations inside ZONE_MOVABLE, for example when | 
 | 		 * specifying "movablecore". | 
 | 		 */ | 
 | 		if (PageReserved(page)) | 
 | 			return page; | 
 |  | 
 | 		/* | 
 | 		 * If the zone is movable and we have ruled out all reserved | 
 | 		 * pages then it should be reasonably safe to assume the rest | 
 | 		 * is movable. | 
 | 		 */ | 
 | 		if (zone_idx(zone) == ZONE_MOVABLE) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Hugepages are not in LRU lists, but they're movable. | 
 | 		 * THPs are on the LRU, but need to be counted as #small pages. | 
 | 		 * We need not scan over tail pages because we don't | 
 | 		 * handle each tail page individually in migration. | 
 | 		 */ | 
 | 		if (PageHuge(page) || PageTransCompound(page)) { | 
 | 			struct folio *folio = page_folio(page); | 
 | 			unsigned int skip_pages; | 
 |  | 
 | 			if (PageHuge(page)) { | 
 | 				struct hstate *h; | 
 |  | 
 | 				/* | 
 | 				 * The huge page may be freed so can not | 
 | 				 * use folio_hstate() directly. | 
 | 				 */ | 
 | 				h = size_to_hstate(folio_size(folio)); | 
 | 				if (h && !hugepage_migration_supported(h)) | 
 | 					return page; | 
 | 			} else if (!folio_test_lru(folio)) { | 
 | 				return page; | 
 | 			} | 
 |  | 
 | 			skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page); | 
 | 			pfn += skip_pages - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We can't use page_count without pin a page | 
 | 		 * because another CPU can free compound page. | 
 | 		 * This check already skips compound tails of THP | 
 | 		 * because their page->_refcount is zero at all time. | 
 | 		 */ | 
 | 		if (!page_ref_count(page)) { | 
 | 			if (PageBuddy(page)) | 
 | 				pfn += (1 << buddy_order(page)) - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The HWPoisoned page may be not in buddy system, and | 
 | 		 * page_count() is not 0. | 
 | 		 */ | 
 | 		if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && PageHWPoison(page)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We treat all PageOffline() pages as movable when offlining | 
 | 		 * to give drivers a chance to decrement their reference count | 
 | 		 * in MEM_GOING_OFFLINE in order to indicate that these pages | 
 | 		 * can be offlined as there are no direct references anymore. | 
 | 		 * For actually unmovable PageOffline() where the driver does | 
 | 		 * not support this, we will fail later when trying to actually | 
 | 		 * move these pages that still have a reference count > 0. | 
 | 		 * (false negatives in this function only) | 
 | 		 */ | 
 | 		if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && PageOffline(page)) | 
 | 			continue; | 
 |  | 
 | 		if (PageLRU(page) || page_has_movable_ops(page)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If there are RECLAIMABLE pages, we need to check | 
 | 		 * it.  But now, memory offline itself doesn't call | 
 | 		 * shrink_node_slabs() and it still to be fixed. | 
 | 		 */ | 
 | 		return page; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This function set pageblock migratetype to isolate if no unmovable page is | 
 |  * present in [start_pfn, end_pfn). The pageblock must intersect with | 
 |  * [start_pfn, end_pfn). | 
 |  */ | 
 | static int set_migratetype_isolate(struct page *page, enum pb_isolate_mode mode, | 
 | 			unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 | 	struct page *unmovable; | 
 | 	unsigned long flags; | 
 | 	unsigned long check_unmovable_start, check_unmovable_end; | 
 |  | 
 | 	if (PageUnaccepted(page)) | 
 | 		accept_page(page); | 
 |  | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * We assume the caller intended to SET migrate type to isolate. | 
 | 	 * If it is already set, then someone else must have raced and | 
 | 	 * set it before us. | 
 | 	 */ | 
 | 	if (is_migrate_isolate_page(page)) { | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. | 
 | 	 * We just check MOVABLE pages. | 
 | 	 * | 
 | 	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock | 
 | 	 * to avoid redundant checks. | 
 | 	 */ | 
 | 	check_unmovable_start = max(page_to_pfn(page), start_pfn); | 
 | 	check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)), | 
 | 				  end_pfn); | 
 |  | 
 | 	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end, | 
 | 			mode); | 
 | 	if (!unmovable) { | 
 | 		if (!pageblock_isolate_and_move_free_pages(zone, page)) { | 
 | 			spin_unlock_irqrestore(&zone->lock, flags); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		zone->nr_isolate_pageblock++; | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | 	if (mode == PB_ISOLATE_MODE_MEM_OFFLINE) { | 
 | 		/* | 
 | 		 * printk() with zone->lock held will likely trigger a | 
 | 		 * lockdep splat, so defer it here. | 
 | 		 */ | 
 | 		dump_page(unmovable, "unmovable page"); | 
 | 	} | 
 |  | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | static void unset_migratetype_isolate(struct page *page) | 
 | { | 
 | 	struct zone *zone; | 
 | 	unsigned long flags; | 
 | 	bool isolated_page = false; | 
 | 	unsigned int order; | 
 | 	struct page *buddy; | 
 |  | 
 | 	zone = page_zone(page); | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	if (!is_migrate_isolate_page(page)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Because freepage with more than pageblock_order on isolated | 
 | 	 * pageblock is restricted to merge due to freepage counting problem, | 
 | 	 * it is possible that there is free buddy page. | 
 | 	 * move_freepages_block() doesn't care of merge so we need other | 
 | 	 * approach in order to merge them. Isolation and free will make | 
 | 	 * these pages to be merged. | 
 | 	 */ | 
 | 	if (PageBuddy(page)) { | 
 | 		order = buddy_order(page); | 
 | 		if (order >= pageblock_order && order < MAX_PAGE_ORDER) { | 
 | 			buddy = find_buddy_page_pfn(page, page_to_pfn(page), | 
 | 						    order, NULL); | 
 | 			if (buddy && !is_migrate_isolate_page(buddy)) { | 
 | 				isolated_page = !!__isolate_free_page(page, order); | 
 | 				/* | 
 | 				 * Isolating a free page in an isolated pageblock | 
 | 				 * is expected to always work as watermarks don't | 
 | 				 * apply here. | 
 | 				 */ | 
 | 				VM_WARN_ON(!isolated_page); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we isolate freepage with more than pageblock_order, there | 
 | 	 * should be no freepage in the range, so we could avoid costly | 
 | 	 * pageblock scanning for freepage moving. | 
 | 	 * | 
 | 	 * We didn't actually touch any of the isolated pages, so place them | 
 | 	 * to the tail of the freelist. This is an optimization for memory | 
 | 	 * onlining - just onlined memory won't immediately be considered for | 
 | 	 * allocation. | 
 | 	 */ | 
 | 	if (!isolated_page) { | 
 | 		/* | 
 | 		 * Isolating this block already succeeded, so this | 
 | 		 * should not fail on zone boundaries. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(!pageblock_unisolate_and_move_free_pages(zone, page)); | 
 | 	} else { | 
 | 		clear_pageblock_isolate(page); | 
 | 		__putback_isolated_page(page, order, get_pageblock_migratetype(page)); | 
 | 	} | 
 | 	zone->nr_isolate_pageblock--; | 
 | out: | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | } | 
 |  | 
 | static inline struct page * | 
 | __first_valid_page(unsigned long pfn, unsigned long nr_pages) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = pfn_to_online_page(pfn + i); | 
 | 		if (!page) | 
 | 			continue; | 
 | 		return page; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * isolate_single_pageblock() -- tries to isolate a pageblock that might be | 
 |  * within a free or in-use page. | 
 |  * @boundary_pfn:		pageblock-aligned pfn that a page might cross | 
 |  * @mode:			isolation mode | 
 |  * @isolate_before:	isolate the pageblock before the boundary_pfn | 
 |  * @skip_isolation:	the flag to skip the pageblock isolation in second | 
 |  *			isolate_single_pageblock() | 
 |  * | 
 |  * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one | 
 |  * pageblock. When not all pageblocks within a page are isolated at the same | 
 |  * time, free page accounting can go wrong. For example, in the case of | 
 |  * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two | 
 |  * pagelbocks. | 
 |  * [      MAX_PAGE_ORDER         ] | 
 |  * [  pageblock0  |  pageblock1  ] | 
 |  * When either pageblock is isolated, if it is a free page, the page is not | 
 |  * split into separate migratetype lists, which is supposed to; if it is an | 
 |  * in-use page and freed later, __free_one_page() does not split the free page | 
 |  * either. The function handles this by splitting the free page or migrating | 
 |  * the in-use page then splitting the free page. | 
 |  */ | 
 | static int isolate_single_pageblock(unsigned long boundary_pfn, | 
 | 			enum pb_isolate_mode mode, bool isolate_before, | 
 | 			bool skip_isolation) | 
 | { | 
 | 	unsigned long start_pfn; | 
 | 	unsigned long isolate_pageblock; | 
 | 	unsigned long pfn; | 
 | 	struct zone *zone; | 
 | 	int ret; | 
 |  | 
 | 	VM_BUG_ON(!pageblock_aligned(boundary_pfn)); | 
 |  | 
 | 	if (isolate_before) | 
 | 		isolate_pageblock = boundary_pfn - pageblock_nr_pages; | 
 | 	else | 
 | 		isolate_pageblock = boundary_pfn; | 
 |  | 
 | 	/* | 
 | 	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid | 
 | 	 * only isolating a subset of pageblocks from a bigger than pageblock | 
 | 	 * free or in-use page. Also make sure all to-be-isolated pageblocks | 
 | 	 * are within the same zone. | 
 | 	 */ | 
 | 	zone  = page_zone(pfn_to_page(isolate_pageblock)); | 
 | 	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES), | 
 | 				      zone->zone_start_pfn); | 
 |  | 
 | 	if (skip_isolation) { | 
 | 		VM_BUG_ON(!get_pageblock_isolate(pfn_to_page(isolate_pageblock))); | 
 | 	} else { | 
 | 		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), | 
 | 				mode, isolate_pageblock, | 
 | 				isolate_pageblock + pageblock_nr_pages); | 
 |  | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Bail out early when the to-be-isolated pageblock does not form | 
 | 	 * a free or in-use page across boundary_pfn: | 
 | 	 * | 
 | 	 * 1. isolate before boundary_pfn: the page after is not online | 
 | 	 * 2. isolate after boundary_pfn: the page before is not online | 
 | 	 * | 
 | 	 * This also ensures correctness. Without it, when isolate after | 
 | 	 * boundary_pfn and [start_pfn, boundary_pfn) are not online, | 
 | 	 * __first_valid_page() will return unexpected NULL in the for loop | 
 | 	 * below. | 
 | 	 */ | 
 | 	if (isolate_before) { | 
 | 		if (!pfn_to_online_page(boundary_pfn)) | 
 | 			return 0; | 
 | 	} else { | 
 | 		if (!pfn_to_online_page(boundary_pfn - 1)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	for (pfn = start_pfn; pfn < boundary_pfn;) { | 
 | 		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn); | 
 |  | 
 | 		VM_BUG_ON(!page); | 
 | 		pfn = page_to_pfn(page); | 
 |  | 
 | 		if (PageUnaccepted(page)) { | 
 | 			pfn += MAX_ORDER_NR_PAGES; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (PageBuddy(page)) { | 
 | 			int order = buddy_order(page); | 
 |  | 
 | 			/* pageblock_isolate_and_move_free_pages() handled this */ | 
 | 			VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn); | 
 |  | 
 | 			pfn += 1UL << order; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If a compound page is straddling our block, attempt | 
 | 		 * to migrate it out of the way. | 
 | 		 * | 
 | 		 * We don't have to worry about this creating a large | 
 | 		 * free page that straddles into our block: gigantic | 
 | 		 * pages are freed as order-0 chunks, and LRU pages | 
 | 		 * (currently) do not exceed pageblock_order. | 
 | 		 * | 
 | 		 * The block of interest has already been marked | 
 | 		 * MIGRATE_ISOLATE above, so when migration is done it | 
 | 		 * will free its pages onto the correct freelists. | 
 | 		 */ | 
 | 		if (PageCompound(page)) { | 
 | 			struct page *head = compound_head(page); | 
 | 			unsigned long head_pfn = page_to_pfn(head); | 
 | 			unsigned long nr_pages = compound_nr(head); | 
 |  | 
 | 			if (head_pfn + nr_pages <= boundary_pfn || | 
 | 			    PageHuge(page)) { | 
 | 				pfn = head_pfn + nr_pages; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * These pages are movable too, but they're | 
 | 			 * not expected to exceed pageblock_order. | 
 | 			 * | 
 | 			 * Let us know when they do, so we can add | 
 | 			 * proper free and split handling for them. | 
 | 			 */ | 
 | 			VM_WARN_ON_ONCE_PAGE(PageLRU(page), page); | 
 | 			VM_WARN_ON_ONCE_PAGE(page_has_movable_ops(page), page); | 
 |  | 
 | 			goto failed; | 
 | 		} | 
 |  | 
 | 		pfn++; | 
 | 	} | 
 | 	return 0; | 
 | failed: | 
 | 	/* restore the original migratetype */ | 
 | 	if (!skip_isolation) | 
 | 		unset_migratetype_isolate(pfn_to_page(isolate_pageblock)); | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | /** | 
 |  * start_isolate_page_range() - mark page range MIGRATE_ISOLATE | 
 |  * @start_pfn:		The first PFN of the range to be isolated. | 
 |  * @end_pfn:		The last PFN of the range to be isolated. | 
 |  * @mode:		isolation mode | 
 |  * | 
 |  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in | 
 |  * the range will never be allocated. Any free pages and pages freed in the | 
 |  * future will not be allocated again. If specified range includes migrate types | 
 |  * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all | 
 |  * pages in the range finally, the caller have to free all pages in the range. | 
 |  * test_page_isolated() can be used for test it. | 
 |  * | 
 |  * The function first tries to isolate the pageblocks at the beginning and end | 
 |  * of the range, since there might be pages across the range boundaries. | 
 |  * Afterwards, it isolates the rest of the range. | 
 |  * | 
 |  * There is no high level synchronization mechanism that prevents two threads | 
 |  * from trying to isolate overlapping ranges. If this happens, one thread | 
 |  * will notice pageblocks in the overlapping range already set to isolate. | 
 |  * This happens in set_migratetype_isolate, and set_migratetype_isolate | 
 |  * returns an error. We then clean up by restoring the migration type on | 
 |  * pageblocks we may have modified and return -EBUSY to caller. This | 
 |  * prevents two threads from simultaneously working on overlapping ranges. | 
 |  * | 
 |  * Please note that there is no strong synchronization with the page allocator | 
 |  * either. Pages might be freed while their page blocks are marked ISOLATED. | 
 |  * A call to drain_all_pages() after isolation can flush most of them. However | 
 |  * in some cases pages might still end up on pcp lists and that would allow | 
 |  * for their allocation even when they are in fact isolated already. Depending | 
 |  * on how strong of a guarantee the caller needs, zone_pcp_disable/enable() | 
 |  * might be used to flush and disable pcplist before isolation and enable after | 
 |  * unisolation. | 
 |  * | 
 |  * Return: 0 on success and -EBUSY if any part of range cannot be isolated. | 
 |  */ | 
 | int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, | 
 | 			     enum pb_isolate_mode mode) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	struct page *page; | 
 | 	/* isolation is done at page block granularity */ | 
 | 	unsigned long isolate_start = pageblock_start_pfn(start_pfn); | 
 | 	unsigned long isolate_end = pageblock_align(end_pfn); | 
 | 	int ret; | 
 | 	bool skip_isolation = false; | 
 |  | 
 | 	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */ | 
 | 	ret = isolate_single_pageblock(isolate_start, mode, false, | 
 | 			skip_isolation); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (isolate_start == isolate_end - pageblock_nr_pages) | 
 | 		skip_isolation = true; | 
 |  | 
 | 	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */ | 
 | 	ret = isolate_single_pageblock(isolate_end, mode, true, skip_isolation); | 
 | 	if (ret) { | 
 | 		unset_migratetype_isolate(pfn_to_page(isolate_start)); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* skip isolated pageblocks at the beginning and end */ | 
 | 	for (pfn = isolate_start + pageblock_nr_pages; | 
 | 	     pfn < isolate_end - pageblock_nr_pages; | 
 | 	     pfn += pageblock_nr_pages) { | 
 | 		page = __first_valid_page(pfn, pageblock_nr_pages); | 
 | 		if (page && set_migratetype_isolate(page, mode, start_pfn, | 
 | 					end_pfn)) { | 
 | 			undo_isolate_page_range(isolate_start, pfn); | 
 | 			unset_migratetype_isolate( | 
 | 				pfn_to_page(isolate_end - pageblock_nr_pages)); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * undo_isolate_page_range - undo effects of start_isolate_page_range() | 
 |  * @start_pfn:		The first PFN of the isolated range | 
 |  * @end_pfn:		The last PFN of the isolated range | 
 |  * | 
 |  * This finds and unsets every MIGRATE_ISOLATE page block in the given range | 
 |  */ | 
 | void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	struct page *page; | 
 | 	unsigned long isolate_start = pageblock_start_pfn(start_pfn); | 
 | 	unsigned long isolate_end = pageblock_align(end_pfn); | 
 |  | 
 | 	for (pfn = isolate_start; | 
 | 	     pfn < isolate_end; | 
 | 	     pfn += pageblock_nr_pages) { | 
 | 		page = __first_valid_page(pfn, pageblock_nr_pages); | 
 | 		if (!page || !is_migrate_isolate_page(page)) | 
 | 			continue; | 
 | 		unset_migratetype_isolate(page); | 
 | 	} | 
 | } | 
 | /* | 
 |  * Test all pages in the range is free(means isolated) or not. | 
 |  * all pages in [start_pfn...end_pfn) must be in the same zone. | 
 |  * zone->lock must be held before call this. | 
 |  * | 
 |  * Returns the last tested pfn. | 
 |  */ | 
 | static unsigned long | 
 | __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn, | 
 | 				  enum pb_isolate_mode mode) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	while (pfn < end_pfn) { | 
 | 		page = pfn_to_page(pfn); | 
 | 		if (PageBuddy(page)) | 
 | 			/* | 
 | 			 * If the page is on a free list, it has to be on | 
 | 			 * the correct MIGRATE_ISOLATE freelist. There is no | 
 | 			 * simple way to verify that as VM_BUG_ON(), though. | 
 | 			 */ | 
 | 			pfn += 1 << buddy_order(page); | 
 | 		else if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && | 
 | 			 PageHWPoison(page)) | 
 | 			/* A HWPoisoned page cannot be also PageBuddy */ | 
 | 			pfn++; | 
 | 		else if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && | 
 | 			 PageOffline(page) && !page_count(page)) | 
 | 			/* | 
 | 			 * The responsible driver agreed to skip PageOffline() | 
 | 			 * pages when offlining memory by dropping its | 
 | 			 * reference in MEM_GOING_OFFLINE. | 
 | 			 */ | 
 | 			pfn++; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return pfn; | 
 | } | 
 |  | 
 | /** | 
 |  * test_pages_isolated - check if pageblocks in range are isolated | 
 |  * @start_pfn:		The first PFN of the isolated range | 
 |  * @end_pfn:		The first PFN *after* the isolated range | 
 |  * @mode:		Testing mode | 
 |  * | 
 |  * This tests if all in the specified range are free. | 
 |  * | 
 |  * If %PB_ISOLATE_MODE_MEM_OFFLINE specified in @mode, it will consider | 
 |  * poisoned and offlined pages free as well. | 
 |  * | 
 |  * Caller must ensure the requested range doesn't span zones. | 
 |  * | 
 |  * Returns 0 if true, -EBUSY if one or more pages are in use. | 
 |  */ | 
 | int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, | 
 | 			enum pb_isolate_mode mode) | 
 | { | 
 | 	unsigned long pfn, flags; | 
 | 	struct page *page; | 
 | 	struct zone *zone; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Due to the deferred freeing of hugetlb folios, the hugepage folios may | 
 | 	 * not immediately release to the buddy system. This can cause PageBuddy() | 
 | 	 * to fail in __test_page_isolated_in_pageblock(). To ensure that the | 
 | 	 * hugetlb folios are properly released back to the buddy system, we | 
 | 	 * invoke the wait_for_freed_hugetlb_folios() function to wait for the | 
 | 	 * release to complete. | 
 | 	 */ | 
 | 	wait_for_freed_hugetlb_folios(); | 
 |  | 
 | 	/* | 
 | 	 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free | 
 | 	 * pages are not aligned to pageblock_nr_pages. | 
 | 	 * Then we just check migratetype first. | 
 | 	 */ | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | 
 | 		page = __first_valid_page(pfn, pageblock_nr_pages); | 
 | 		if (page && !is_migrate_isolate_page(page)) | 
 | 			break; | 
 | 	} | 
 | 	page = __first_valid_page(start_pfn, end_pfn - start_pfn); | 
 | 	if ((pfn < end_pfn) || !page) { | 
 | 		ret = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Check all pages are free or marked as ISOLATED */ | 
 | 	zone = page_zone(page); | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, mode); | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 |  | 
 | 	ret = pfn < end_pfn ? -EBUSY : 0; | 
 |  | 
 | out: | 
 | 	trace_test_pages_isolated(start_pfn, end_pfn, pfn); | 
 |  | 
 | 	return ret; | 
 | } |