| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * | 
 |  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/blkdev.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/random.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include "debug.h" | 
 | #include "ntfs.h" | 
 | #include "ntfs_fs.h" | 
 |  | 
 | /* | 
 |  * LOG FILE structs | 
 |  */ | 
 |  | 
 | // clang-format off | 
 |  | 
 | #define MaxLogFileSize     0x100000000ull | 
 | #define DefaultLogPageSize 4096 | 
 | #define MinLogRecordPages  0x30 | 
 |  | 
 | struct RESTART_HDR { | 
 | 	struct NTFS_RECORD_HEADER rhdr; // 'RSTR' | 
 | 	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log. | 
 | 	__le32 page_size;     // 0x14: Log page size used for this log file. | 
 | 	__le16 ra_off;        // 0x18: | 
 | 	__le16 minor_ver;     // 0x1A: | 
 | 	__le16 major_ver;     // 0x1C: | 
 | 	__le16 fixups[]; | 
 | }; | 
 |  | 
 | #define LFS_NO_CLIENT 0xffff | 
 | #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) | 
 |  | 
 | struct CLIENT_REC { | 
 | 	__le64 oldest_lsn; | 
 | 	__le64 restart_lsn; // 0x08: | 
 | 	__le16 prev_client; // 0x10: | 
 | 	__le16 next_client; // 0x12: | 
 | 	__le16 seq_num;     // 0x14: | 
 | 	u8 align[6];        // 0x16: | 
 | 	__le32 name_bytes;  // 0x1C: In bytes. | 
 | 	__le16 name[32];    // 0x20: Name of client. | 
 | }; | 
 |  | 
 | static_assert(sizeof(struct CLIENT_REC) == 0x60); | 
 |  | 
 | /* Two copies of these will exist at the beginning of the log file */ | 
 | struct RESTART_AREA { | 
 | 	__le64 current_lsn;    // 0x00: Current logical end of log file. | 
 | 	__le16 log_clients;    // 0x08: Maximum number of clients. | 
 | 	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays. | 
 | 	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO. | 
 | 	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number. | 
 | 	__le16 ra_len;         // 0x14: | 
 | 	__le16 client_off;     // 0x16: | 
 | 	__le64 l_size;         // 0x18: Usable log file size. | 
 | 	__le32 last_lsn_data_len; // 0x20: | 
 | 	__le16 rec_hdr_len;    // 0x24: Log page data offset. | 
 | 	__le16 data_off;       // 0x26: Log page data length. | 
 | 	__le32 open_log_count; // 0x28: | 
 | 	__le32 align[5];       // 0x2C: | 
 | 	struct CLIENT_REC clients[]; // 0x40: | 
 | }; | 
 |  | 
 | struct LOG_REC_HDR { | 
 | 	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION | 
 | 	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION | 
 | 	__le16 redo_off;     // 0x04:  Offset to Redo record. | 
 | 	__le16 redo_len;     // 0x06:  Redo length. | 
 | 	__le16 undo_off;     // 0x08:  Offset to Undo record. | 
 | 	__le16 undo_len;     // 0x0A:  Undo length. | 
 | 	__le16 target_attr;  // 0x0C: | 
 | 	__le16 lcns_follow;  // 0x0E: | 
 | 	__le16 record_off;   // 0x10: | 
 | 	__le16 attr_off;     // 0x12: | 
 | 	__le16 cluster_off;  // 0x14: | 
 | 	__le16 reserved;     // 0x16: | 
 | 	__le64 target_vcn;   // 0x18: | 
 | 	__le64 page_lcns[];  // 0x20: | 
 | }; | 
 |  | 
 | static_assert(sizeof(struct LOG_REC_HDR) == 0x20); | 
 |  | 
 | #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF | 
 | #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) | 
 |  | 
 | struct RESTART_TABLE { | 
 | 	__le16 size;       // 0x00: In bytes | 
 | 	__le16 used;       // 0x02: Entries | 
 | 	__le16 total;      // 0x04: Entries | 
 | 	__le16 res[3];     // 0x06: | 
 | 	__le32 free_goal;  // 0x0C: | 
 | 	__le32 first_free; // 0x10: | 
 | 	__le32 last_free;  // 0x14: | 
 |  | 
 | }; | 
 |  | 
 | static_assert(sizeof(struct RESTART_TABLE) == 0x18); | 
 |  | 
 | struct ATTR_NAME_ENTRY { | 
 | 	__le16 off; // Offset in the Open attribute Table. | 
 | 	__le16 name_bytes; | 
 | 	__le16 name[]; | 
 | }; | 
 |  | 
 | struct OPEN_ATTR_ENRTY { | 
 | 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated | 
 | 	__le32 bytes_per_index; // 0x04: | 
 | 	enum ATTR_TYPE type;    // 0x08: | 
 | 	u8 is_dirty_pages;      // 0x0C: | 
 | 	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr' | 
 | 	u8 name_len;            // 0x0C: Faked field to manage 'ptr' | 
 | 	u8 res; | 
 | 	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute | 
 | 	__le64 open_record_lsn; // 0x18: | 
 | 	void *ptr;              // 0x20: | 
 | }; | 
 |  | 
 | /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ | 
 | struct OPEN_ATTR_ENRTY_32 { | 
 | 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated | 
 | 	__le32 ptr;             // 0x04: | 
 | 	struct MFT_REF ref;     // 0x08: | 
 | 	__le64 open_record_lsn; // 0x10: | 
 | 	u8 is_dirty_pages;      // 0x18: | 
 | 	u8 is_attr_name;        // 0x19: | 
 | 	u8 res1[2]; | 
 | 	enum ATTR_TYPE type;    // 0x1C: | 
 | 	u8 name_len;            // 0x20: In wchar | 
 | 	u8 res2[3]; | 
 | 	__le32 AttributeName;   // 0x24: | 
 | 	__le32 bytes_per_index; // 0x28: | 
 | }; | 
 |  | 
 | #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c | 
 | // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); | 
 | static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); | 
 |  | 
 | /* | 
 |  * One entry exists in the Dirty Pages Table for each page which is dirty at | 
 |  * the time the Restart Area is written. | 
 |  */ | 
 | struct DIR_PAGE_ENTRY { | 
 | 	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated | 
 | 	__le32 target_attr;  // 0x04: Index into the Open attribute Table | 
 | 	__le32 transfer_len; // 0x08: | 
 | 	__le32 lcns_follow;  // 0x0C: | 
 | 	__le64 vcn;          // 0x10: Vcn of dirty page | 
 | 	__le64 oldest_lsn;   // 0x18: | 
 | 	__le64 page_lcns[];  // 0x20: | 
 | }; | 
 |  | 
 | static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); | 
 |  | 
 | /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ | 
 | struct DIR_PAGE_ENTRY_32 { | 
 | 	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated | 
 | 	__le32 target_attr;	// 0x04: Index into the Open attribute Table | 
 | 	__le32 transfer_len;	// 0x08: | 
 | 	__le32 lcns_follow;	// 0x0C: | 
 | 	__le32 reserved;	// 0x10: | 
 | 	__le32 vcn_low;		// 0x14: Vcn of dirty page | 
 | 	__le32 vcn_hi;		// 0x18: Vcn of dirty page | 
 | 	__le32 oldest_lsn_low;	// 0x1C: | 
 | 	__le32 oldest_lsn_hi;	// 0x1C: | 
 | 	__le32 page_lcns_low;	// 0x24: | 
 | 	__le32 page_lcns_hi;	// 0x24: | 
 | }; | 
 |  | 
 | static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); | 
 | static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); | 
 |  | 
 | enum transact_state { | 
 | 	TransactionUninitialized = 0, | 
 | 	TransactionActive, | 
 | 	TransactionPrepared, | 
 | 	TransactionCommitted | 
 | }; | 
 |  | 
 | struct TRANSACTION_ENTRY { | 
 | 	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated | 
 | 	u8 transact_state;    // 0x04: | 
 | 	u8 reserved[3];       // 0x05: | 
 | 	__le64 first_lsn;     // 0x08: | 
 | 	__le64 prev_lsn;      // 0x10: | 
 | 	__le64 undo_next_lsn; // 0x18: | 
 | 	__le32 undo_records;  // 0x20: Number of undo log records pending abort | 
 | 	__le32 undo_len;      // 0x24: Total undo size | 
 | }; | 
 |  | 
 | static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); | 
 |  | 
 | struct NTFS_RESTART { | 
 | 	__le32 major_ver;             // 0x00: | 
 | 	__le32 minor_ver;             // 0x04: | 
 | 	__le64 check_point_start;     // 0x08: | 
 | 	__le64 open_attr_table_lsn;   // 0x10: | 
 | 	__le64 attr_names_lsn;        // 0x18: | 
 | 	__le64 dirty_pages_table_lsn; // 0x20: | 
 | 	__le64 transact_table_lsn;    // 0x28: | 
 | 	__le32 open_attr_len;         // 0x30: In bytes | 
 | 	__le32 attr_names_len;        // 0x34: In bytes | 
 | 	__le32 dirty_pages_len;       // 0x38: In bytes | 
 | 	__le32 transact_table_len;    // 0x3C: In bytes | 
 | }; | 
 |  | 
 | static_assert(sizeof(struct NTFS_RESTART) == 0x40); | 
 |  | 
 | struct NEW_ATTRIBUTE_SIZES { | 
 | 	__le64 alloc_size; | 
 | 	__le64 valid_size; | 
 | 	__le64 data_size; | 
 | 	__le64 total_size; | 
 | }; | 
 |  | 
 | struct BITMAP_RANGE { | 
 | 	__le32 bitmap_off; | 
 | 	__le32 bits; | 
 | }; | 
 |  | 
 | struct LCN_RANGE { | 
 | 	__le64 lcn; | 
 | 	__le64 len; | 
 | }; | 
 |  | 
 | /* The following type defines the different log record types. */ | 
 | #define LfsClientRecord  cpu_to_le32(1) | 
 | #define LfsClientRestart cpu_to_le32(2) | 
 |  | 
 | /* This is used to uniquely identify a client for a particular log file. */ | 
 | struct CLIENT_ID { | 
 | 	__le16 seq_num; | 
 | 	__le16 client_idx; | 
 | }; | 
 |  | 
 | /* This is the header that begins every Log Record in the log file. */ | 
 | struct LFS_RECORD_HDR { | 
 | 	__le64 this_lsn;		// 0x00: | 
 | 	__le64 client_prev_lsn;		// 0x08: | 
 | 	__le64 client_undo_next_lsn;	// 0x10: | 
 | 	__le32 client_data_len;		// 0x18: | 
 | 	struct CLIENT_ID client;	// 0x1C: Owner of this log record. | 
 | 	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart. | 
 | 	__le32 transact_id;		// 0x24: | 
 | 	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE | 
 | 	u8 align[6];			// 0x2A: | 
 | }; | 
 |  | 
 | #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) | 
 |  | 
 | static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); | 
 |  | 
 | struct LFS_RECORD { | 
 | 	__le16 next_record_off;	// 0x00: Offset of the free space in the page, | 
 | 	u8 align[6];		// 0x02: | 
 | 	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page, | 
 | }; | 
 |  | 
 | static_assert(sizeof(struct LFS_RECORD) == 0x10); | 
 |  | 
 | struct RECORD_PAGE_HDR { | 
 | 	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD' | 
 | 	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END | 
 | 	__le16 page_count;		// 0x14: | 
 | 	__le16 page_pos;		// 0x16: | 
 | 	struct LFS_RECORD record_hdr;	// 0x18: | 
 | 	__le16 fixups[10];		// 0x28: | 
 | 	__le32 file_off;		// 0x3c: Used when major version >= 2 | 
 | }; | 
 |  | 
 | // clang-format on | 
 |  | 
 | // Page contains the end of a log record. | 
 | #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) | 
 |  | 
 | static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) | 
 | { | 
 | 	return hdr->rflags & LOG_PAGE_LOG_RECORD_END; | 
 | } | 
 |  | 
 | static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); | 
 |  | 
 | /* | 
 |  * END of NTFS LOG structures | 
 |  */ | 
 |  | 
 | /* Define some tuning parameters to keep the restart tables a reasonable size. */ | 
 | #define INITIAL_NUMBER_TRANSACTIONS 5 | 
 |  | 
 | enum NTFS_LOG_OPERATION { | 
 |  | 
 | 	Noop = 0x00, | 
 | 	CompensationLogRecord = 0x01, | 
 | 	InitializeFileRecordSegment = 0x02, | 
 | 	DeallocateFileRecordSegment = 0x03, | 
 | 	WriteEndOfFileRecordSegment = 0x04, | 
 | 	CreateAttribute = 0x05, | 
 | 	DeleteAttribute = 0x06, | 
 | 	UpdateResidentValue = 0x07, | 
 | 	UpdateNonresidentValue = 0x08, | 
 | 	UpdateMappingPairs = 0x09, | 
 | 	DeleteDirtyClusters = 0x0A, | 
 | 	SetNewAttributeSizes = 0x0B, | 
 | 	AddIndexEntryRoot = 0x0C, | 
 | 	DeleteIndexEntryRoot = 0x0D, | 
 | 	AddIndexEntryAllocation = 0x0E, | 
 | 	DeleteIndexEntryAllocation = 0x0F, | 
 | 	WriteEndOfIndexBuffer = 0x10, | 
 | 	SetIndexEntryVcnRoot = 0x11, | 
 | 	SetIndexEntryVcnAllocation = 0x12, | 
 | 	UpdateFileNameRoot = 0x13, | 
 | 	UpdateFileNameAllocation = 0x14, | 
 | 	SetBitsInNonresidentBitMap = 0x15, | 
 | 	ClearBitsInNonresidentBitMap = 0x16, | 
 | 	HotFix = 0x17, | 
 | 	EndTopLevelAction = 0x18, | 
 | 	PrepareTransaction = 0x19, | 
 | 	CommitTransaction = 0x1A, | 
 | 	ForgetTransaction = 0x1B, | 
 | 	OpenNonresidentAttribute = 0x1C, | 
 | 	OpenAttributeTableDump = 0x1D, | 
 | 	AttributeNamesDump = 0x1E, | 
 | 	DirtyPageTableDump = 0x1F, | 
 | 	TransactionTableDump = 0x20, | 
 | 	UpdateRecordDataRoot = 0x21, | 
 | 	UpdateRecordDataAllocation = 0x22, | 
 |  | 
 | 	UpdateRelativeDataInIndex = | 
 | 		0x23, // NtOfsRestartUpdateRelativeDataInIndex | 
 | 	UpdateRelativeDataInIndex2 = 0x24, | 
 | 	ZeroEndOfFileRecord = 0x25, | 
 | }; | 
 |  | 
 | /* | 
 |  * Array for log records which require a target attribute. | 
 |  * A true indicates that the corresponding restart operation | 
 |  * requires a target attribute. | 
 |  */ | 
 | static const u8 AttributeRequired[] = { | 
 | 	0xFC, 0xFB, 0xFF, 0x10, 0x06, | 
 | }; | 
 |  | 
 | static inline bool is_target_required(u16 op) | 
 | { | 
 | 	bool ret = op <= UpdateRecordDataAllocation && | 
 | 		   (AttributeRequired[op >> 3] >> (op & 7) & 1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) | 
 | { | 
 | 	switch (op) { | 
 | 	case Noop: | 
 | 	case DeleteDirtyClusters: | 
 | 	case HotFix: | 
 | 	case EndTopLevelAction: | 
 | 	case PrepareTransaction: | 
 | 	case CommitTransaction: | 
 | 	case ForgetTransaction: | 
 | 	case CompensationLogRecord: | 
 | 	case OpenNonresidentAttribute: | 
 | 	case OpenAttributeTableDump: | 
 | 	case AttributeNamesDump: | 
 | 	case DirtyPageTableDump: | 
 | 	case TransactionTableDump: | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; | 
 |  | 
 | /* Bytes per restart table. */ | 
 | static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) | 
 | { | 
 | 	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + | 
 | 	       sizeof(struct RESTART_TABLE); | 
 | } | 
 |  | 
 | /* Log record length. */ | 
 | static inline u32 lrh_length(const struct LOG_REC_HDR *lr) | 
 | { | 
 | 	u16 t16 = le16_to_cpu(lr->lcns_follow); | 
 |  | 
 | 	return struct_size(lr, page_lcns, max_t(u16, 1, t16)); | 
 | } | 
 |  | 
 | struct lcb { | 
 | 	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. | 
 | 	struct LOG_REC_HDR *log_rec; | 
 | 	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next | 
 | 	struct CLIENT_ID client; | 
 | 	bool alloc; // If true the we should deallocate 'log_rec'. | 
 | }; | 
 |  | 
 | static void lcb_put(struct lcb *lcb) | 
 | { | 
 | 	if (lcb->alloc) | 
 | 		kfree(lcb->log_rec); | 
 | 	kfree(lcb->lrh); | 
 | 	kfree(lcb); | 
 | } | 
 |  | 
 | /* Find the oldest lsn from active clients. */ | 
 | static inline void oldest_client_lsn(const struct CLIENT_REC *ca, | 
 | 				     __le16 next_client, u64 *oldest_lsn) | 
 | { | 
 | 	while (next_client != LFS_NO_CLIENT_LE) { | 
 | 		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); | 
 | 		u64 lsn = le64_to_cpu(cr->oldest_lsn); | 
 |  | 
 | 		/* Ignore this block if it's oldest lsn is 0. */ | 
 | 		if (lsn && lsn < *oldest_lsn) | 
 | 			*oldest_lsn = lsn; | 
 |  | 
 | 		next_client = cr->next_client; | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool is_rst_page_hdr_valid(u32 file_off, | 
 | 					 const struct RESTART_HDR *rhdr) | 
 | { | 
 | 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size); | 
 | 	u32 page_size = le32_to_cpu(rhdr->page_size); | 
 | 	u32 end_usa; | 
 | 	u16 ro; | 
 |  | 
 | 	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || | 
 | 	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) { | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* Check that if the file offset isn't 0, it is the system page size. */ | 
 | 	if (file_off && file_off != sys_page) | 
 | 		return false; | 
 |  | 
 | 	/* Check support version 1.1+. */ | 
 | 	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) | 
 | 		return false; | 
 |  | 
 | 	if (le16_to_cpu(rhdr->major_ver) > 2) | 
 | 		return false; | 
 |  | 
 | 	ro = le16_to_cpu(rhdr->ra_off); | 
 | 	if (!IS_ALIGNED(ro, 8) || ro > sys_page) | 
 | 		return false; | 
 |  | 
 | 	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); | 
 | 	end_usa += le16_to_cpu(rhdr->rhdr.fix_off); | 
 |  | 
 | 	if (ro < end_usa) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) | 
 | { | 
 | 	const struct RESTART_AREA *ra; | 
 | 	u16 cl, fl, ul; | 
 | 	u32 off, l_size, seq_bits; | 
 | 	u16 ro = le16_to_cpu(rhdr->ra_off); | 
 | 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size); | 
 |  | 
 | 	if (ro + offsetof(struct RESTART_AREA, l_size) > | 
 | 	    SECTOR_SIZE - sizeof(short)) | 
 | 		return false; | 
 |  | 
 | 	ra = Add2Ptr(rhdr, ro); | 
 | 	cl = le16_to_cpu(ra->log_clients); | 
 |  | 
 | 	if (cl > 1) | 
 | 		return false; | 
 |  | 
 | 	off = le16_to_cpu(ra->client_off); | 
 |  | 
 | 	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) | 
 | 		return false; | 
 |  | 
 | 	off += cl * sizeof(struct CLIENT_REC); | 
 |  | 
 | 	if (off > sys_page) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Check the restart length field and whether the entire | 
 | 	 * restart area is contained that length. | 
 | 	 */ | 
 | 	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || | 
 | 	    off > le16_to_cpu(ra->ra_len)) { | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * As a final check make sure that the use list and the free list | 
 | 	 * are either empty or point to a valid client. | 
 | 	 */ | 
 | 	fl = le16_to_cpu(ra->client_idx[0]); | 
 | 	ul = le16_to_cpu(ra->client_idx[1]); | 
 | 	if ((fl != LFS_NO_CLIENT && fl >= cl) || | 
 | 	    (ul != LFS_NO_CLIENT && ul >= cl)) | 
 | 		return false; | 
 |  | 
 | 	/* Make sure the sequence number bits match the log file size. */ | 
 | 	l_size = le64_to_cpu(ra->l_size); | 
 |  | 
 | 	seq_bits = sizeof(u64) * 8 + 3; | 
 | 	while (l_size) { | 
 | 		l_size >>= 1; | 
 | 		seq_bits -= 1; | 
 | 	} | 
 |  | 
 | 	if (seq_bits != le32_to_cpu(ra->seq_num_bits)) | 
 | 		return false; | 
 |  | 
 | 	/* The log page data offset and record header length must be quad-aligned. */ | 
 | 	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || | 
 | 	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, | 
 | 					bool usa_error) | 
 | { | 
 | 	u16 ro = le16_to_cpu(rhdr->ra_off); | 
 | 	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); | 
 | 	u16 ra_len = le16_to_cpu(ra->ra_len); | 
 | 	const struct CLIENT_REC *ca; | 
 | 	u32 i; | 
 |  | 
 | 	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) | 
 | 		return false; | 
 |  | 
 | 	/* Find the start of the client array. */ | 
 | 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); | 
 |  | 
 | 	/* | 
 | 	 * Start with the free list. | 
 | 	 * Check that all the clients are valid and that there isn't a cycle. | 
 | 	 * Do the in-use list on the second pass. | 
 | 	 */ | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		u16 client_idx = le16_to_cpu(ra->client_idx[i]); | 
 | 		bool first_client = true; | 
 | 		u16 clients = le16_to_cpu(ra->log_clients); | 
 |  | 
 | 		while (client_idx != LFS_NO_CLIENT) { | 
 | 			const struct CLIENT_REC *cr; | 
 |  | 
 | 			if (!clients || | 
 | 			    client_idx >= le16_to_cpu(ra->log_clients)) | 
 | 				return false; | 
 |  | 
 | 			clients -= 1; | 
 | 			cr = ca + client_idx; | 
 |  | 
 | 			client_idx = le16_to_cpu(cr->next_client); | 
 |  | 
 | 			if (first_client) { | 
 | 				first_client = false; | 
 | 				if (cr->prev_client != LFS_NO_CLIENT_LE) | 
 | 					return false; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * remove_client | 
 |  * | 
 |  * Remove a client record from a client record list an restart area. | 
 |  */ | 
 | static inline void remove_client(struct CLIENT_REC *ca, | 
 | 				 const struct CLIENT_REC *cr, __le16 *head) | 
 | { | 
 | 	if (cr->prev_client == LFS_NO_CLIENT_LE) | 
 | 		*head = cr->next_client; | 
 | 	else | 
 | 		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; | 
 |  | 
 | 	if (cr->next_client != LFS_NO_CLIENT_LE) | 
 | 		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; | 
 | } | 
 |  | 
 | /* | 
 |  * add_client - Add a client record to the start of a list. | 
 |  */ | 
 | static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) | 
 | { | 
 | 	struct CLIENT_REC *cr = ca + index; | 
 |  | 
 | 	cr->prev_client = LFS_NO_CLIENT_LE; | 
 | 	cr->next_client = *head; | 
 |  | 
 | 	if (*head != LFS_NO_CLIENT_LE) | 
 | 		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); | 
 |  | 
 | 	*head = cpu_to_le16(index); | 
 | } | 
 |  | 
 | /* | 
 |  * Enumerate restart table. | 
 |  * | 
 |  * @t - table to enumerate. | 
 |  * @c - current enumerated element. | 
 |  * | 
 |  * enumeration starts with @c == NULL | 
 |  * returns next element or NULL | 
 |  */ | 
 | static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) | 
 | { | 
 | 	__le32 *e; | 
 | 	u32 bprt; | 
 | 	u16 rsize; | 
 |  | 
 | 	if (!t) | 
 | 		return NULL; | 
 |  | 
 | 	rsize = le16_to_cpu(t->size); | 
 |  | 
 | 	if (!c) { | 
 | 		/* start enumeration. */ | 
 | 		if (!t->total) | 
 | 			return NULL; | 
 | 		e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); | 
 | 	} else { | 
 | 		e = Add2Ptr(c, rsize); | 
 | 	} | 
 |  | 
 | 	/* Loop until we hit the first one allocated, or the end of the list. */ | 
 | 	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; | 
 | 	     e = Add2Ptr(e, rsize)) { | 
 | 		if (*e == RESTART_ENTRY_ALLOCATED_LE) | 
 | 			return e; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * find_dp - Search for a @vcn in Dirty Page Table. | 
 |  */ | 
 | static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, | 
 | 					     u32 target_attr, u64 vcn) | 
 | { | 
 | 	__le32 ta = cpu_to_le32(target_attr); | 
 | 	struct DIR_PAGE_ENTRY *dp = NULL; | 
 |  | 
 | 	while ((dp = enum_rstbl(dptbl, dp))) { | 
 | 		u64 dp_vcn = le64_to_cpu(dp->vcn); | 
 |  | 
 | 		if (dp->target_attr == ta && vcn >= dp_vcn && | 
 | 		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { | 
 | 			return dp; | 
 | 		} | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) | 
 | { | 
 | 	if (use_default) | 
 | 		page_size = DefaultLogPageSize; | 
 |  | 
 | 	/* Round the file size down to a system page boundary. */ | 
 | 	*l_size &= ~(page_size - 1); | 
 |  | 
 | 	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */ | 
 | 	if (*l_size < (MinLogRecordPages + 2) * page_size) | 
 | 		return 0; | 
 |  | 
 | 	return page_size; | 
 | } | 
 |  | 
 | static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, | 
 | 			  u32 bytes_per_attr_entry) | 
 | { | 
 | 	u16 t16; | 
 |  | 
 | 	if (bytes < sizeof(struct LOG_REC_HDR)) | 
 | 		return false; | 
 | 	if (!tr) | 
 | 		return false; | 
 |  | 
 | 	if ((tr - sizeof(struct RESTART_TABLE)) % | 
 | 	    sizeof(struct TRANSACTION_ENTRY)) | 
 | 		return false; | 
 |  | 
 | 	if (le16_to_cpu(lr->redo_off) & 7) | 
 | 		return false; | 
 |  | 
 | 	if (le16_to_cpu(lr->undo_off) & 7) | 
 | 		return false; | 
 |  | 
 | 	if (lr->target_attr) | 
 | 		goto check_lcns; | 
 |  | 
 | 	if (is_target_required(le16_to_cpu(lr->redo_op))) | 
 | 		return false; | 
 |  | 
 | 	if (is_target_required(le16_to_cpu(lr->undo_op))) | 
 | 		return false; | 
 |  | 
 | check_lcns: | 
 | 	if (!lr->lcns_follow) | 
 | 		goto check_length; | 
 |  | 
 | 	t16 = le16_to_cpu(lr->target_attr); | 
 | 	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) | 
 | 		return false; | 
 |  | 
 | check_length: | 
 | 	if (bytes < lrh_length(lr)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) | 
 | { | 
 | 	u32 ts; | 
 | 	u32 i, off; | 
 | 	u16 rsize = le16_to_cpu(rt->size); | 
 | 	u16 ne = le16_to_cpu(rt->used); | 
 | 	u32 ff = le32_to_cpu(rt->first_free); | 
 | 	u32 lf = le32_to_cpu(rt->last_free); | 
 |  | 
 | 	ts = rsize * ne + sizeof(struct RESTART_TABLE); | 
 |  | 
 | 	if (!rsize || rsize > bytes || | 
 | 	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || | 
 | 	    le16_to_cpu(rt->total) > ne || ff > ts - sizeof(__le32) || | 
 | 	    lf > ts - sizeof(__le32) || | 
 | 	    (ff && ff < sizeof(struct RESTART_TABLE)) || | 
 | 	    (lf && lf < sizeof(struct RESTART_TABLE))) { | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Verify each entry is either allocated or points | 
 | 	 * to a valid offset the table. | 
 | 	 */ | 
 | 	for (i = 0; i < ne; i++) { | 
 | 		off = le32_to_cpu(*(__le32 *)Add2Ptr( | 
 | 			rt, i * rsize + sizeof(struct RESTART_TABLE))); | 
 |  | 
 | 		if (off != RESTART_ENTRY_ALLOCATED && off && | 
 | 		    (off < sizeof(struct RESTART_TABLE) || | 
 | 		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) { | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Walk through the list headed by the first entry to make | 
 | 	 * sure none of the entries are currently being used. | 
 | 	 */ | 
 | 	for (off = ff; off;) { | 
 | 		if (off == RESTART_ENTRY_ALLOCATED) | 
 | 			return false; | 
 |  | 
 | 		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); | 
 |  | 
 | 		if (off > ts - sizeof(__le32)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * free_rsttbl_idx - Free a previously allocated index a Restart Table. | 
 |  */ | 
 | static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) | 
 | { | 
 | 	__le32 *e; | 
 | 	u32 lf = le32_to_cpu(rt->last_free); | 
 | 	__le32 off_le = cpu_to_le32(off); | 
 |  | 
 | 	e = Add2Ptr(rt, off); | 
 |  | 
 | 	if (off < le32_to_cpu(rt->free_goal)) { | 
 | 		*e = rt->first_free; | 
 | 		rt->first_free = off_le; | 
 | 		if (!lf) | 
 | 			rt->last_free = off_le; | 
 | 	} else { | 
 | 		if (lf) | 
 | 			*(__le32 *)Add2Ptr(rt, lf) = off_le; | 
 | 		else | 
 | 			rt->first_free = off_le; | 
 |  | 
 | 		rt->last_free = off_le; | 
 | 		*e = 0; | 
 | 	} | 
 |  | 
 | 	le16_sub_cpu(&rt->total, 1); | 
 | } | 
 |  | 
 | static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) | 
 | { | 
 | 	__le32 *e, *last_free; | 
 | 	u32 off; | 
 | 	u32 bytes = esize * used + sizeof(struct RESTART_TABLE); | 
 | 	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; | 
 | 	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); | 
 |  | 
 | 	if (!t) | 
 | 		return NULL; | 
 |  | 
 | 	t->size = cpu_to_le16(esize); | 
 | 	t->used = cpu_to_le16(used); | 
 | 	t->free_goal = cpu_to_le32(~0u); | 
 | 	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); | 
 | 	t->last_free = cpu_to_le32(lf); | 
 |  | 
 | 	e = (__le32 *)(t + 1); | 
 | 	last_free = Add2Ptr(t, lf); | 
 |  | 
 | 	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; | 
 | 	     e = Add2Ptr(e, esize), off += esize) { | 
 | 		*e = cpu_to_le32(off); | 
 | 	} | 
 | 	return t; | 
 | } | 
 |  | 
 | static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, | 
 | 						  u32 add, u32 free_goal) | 
 | { | 
 | 	u16 esize = le16_to_cpu(tbl->size); | 
 | 	__le32 osize = cpu_to_le32(bytes_per_rt(tbl)); | 
 | 	u32 used = le16_to_cpu(tbl->used); | 
 | 	struct RESTART_TABLE *rt; | 
 |  | 
 | 	rt = init_rsttbl(esize, used + add); | 
 | 	if (!rt) | 
 | 		return NULL; | 
 |  | 
 | 	memcpy(rt + 1, tbl + 1, esize * used); | 
 |  | 
 | 	rt->free_goal = free_goal == ~0u ? | 
 | 				cpu_to_le32(~0u) : | 
 | 				cpu_to_le32(sizeof(struct RESTART_TABLE) + | 
 | 					    free_goal * esize); | 
 |  | 
 | 	if (tbl->first_free) { | 
 | 		rt->first_free = tbl->first_free; | 
 | 		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; | 
 | 	} else { | 
 | 		rt->first_free = osize; | 
 | 	} | 
 |  | 
 | 	rt->total = tbl->total; | 
 |  | 
 | 	kfree(tbl); | 
 | 	return rt; | 
 | } | 
 |  | 
 | /* | 
 |  * alloc_rsttbl_idx | 
 |  * | 
 |  * Allocate an index from within a previously initialized Restart Table. | 
 |  */ | 
 | static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) | 
 | { | 
 | 	u32 off; | 
 | 	__le32 *e; | 
 | 	struct RESTART_TABLE *t = *tbl; | 
 |  | 
 | 	if (!t->first_free) { | 
 | 		*tbl = t = extend_rsttbl(t, 16, ~0u); | 
 | 		if (!t) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	off = le32_to_cpu(t->first_free); | 
 |  | 
 | 	/* Dequeue this entry and zero it. */ | 
 | 	e = Add2Ptr(t, off); | 
 |  | 
 | 	t->first_free = *e; | 
 |  | 
 | 	memset(e, 0, le16_to_cpu(t->size)); | 
 |  | 
 | 	*e = RESTART_ENTRY_ALLOCATED_LE; | 
 |  | 
 | 	/* If list is going empty, then we fix the last_free as well. */ | 
 | 	if (!t->first_free) | 
 | 		t->last_free = 0; | 
 |  | 
 | 	le16_add_cpu(&t->total, 1); | 
 |  | 
 | 	return Add2Ptr(t, off); | 
 | } | 
 |  | 
 | /* | 
 |  * alloc_rsttbl_from_idx | 
 |  * | 
 |  * Allocate a specific index from within a previously initialized Restart Table. | 
 |  */ | 
 | static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) | 
 | { | 
 | 	u32 off; | 
 | 	__le32 *e; | 
 | 	struct RESTART_TABLE *rt = *tbl; | 
 | 	u32 bytes = bytes_per_rt(rt); | 
 | 	u16 esize = le16_to_cpu(rt->size); | 
 |  | 
 | 	/* If the entry is not the table, we will have to extend the table. */ | 
 | 	if (vbo >= bytes) { | 
 | 		/* | 
 | 		 * Extend the size by computing the number of entries between | 
 | 		 * the existing size and the desired index and adding 1 to that. | 
 | 		 */ | 
 | 		u32 bytes2idx = vbo - bytes; | 
 |  | 
 | 		/* | 
 | 		 * There should always be an integral number of entries | 
 | 		 * being added. Now extend the table. | 
 | 		 */ | 
 | 		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); | 
 | 		if (!rt) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	/* See if the entry is already allocated, and just return if it is. */ | 
 | 	e = Add2Ptr(rt, vbo); | 
 |  | 
 | 	if (*e == RESTART_ENTRY_ALLOCATED_LE) | 
 | 		return e; | 
 |  | 
 | 	/* | 
 | 	 * Walk through the table, looking for the entry we're | 
 | 	 * interested and the previous entry. | 
 | 	 */ | 
 | 	off = le32_to_cpu(rt->first_free); | 
 | 	e = Add2Ptr(rt, off); | 
 |  | 
 | 	if (off == vbo) { | 
 | 		/* this is a match */ | 
 | 		rt->first_free = *e; | 
 | 		goto skip_looking; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Need to walk through the list looking for the predecessor | 
 | 	 * of our entry. | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		/* Remember the entry just found */ | 
 | 		u32 last_off = off; | 
 | 		__le32 *last_e = e; | 
 |  | 
 | 		/* Should never run of entries. */ | 
 |  | 
 | 		/* Lookup up the next entry the list. */ | 
 | 		off = le32_to_cpu(*last_e); | 
 | 		e = Add2Ptr(rt, off); | 
 |  | 
 | 		/* If this is our match we are done. */ | 
 | 		if (off == vbo) { | 
 | 			*last_e = *e; | 
 |  | 
 | 			/* | 
 | 			 * If this was the last entry, we update that | 
 | 			 * table as well. | 
 | 			 */ | 
 | 			if (le32_to_cpu(rt->last_free) == off) | 
 | 				rt->last_free = cpu_to_le32(last_off); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | skip_looking: | 
 | 	/* If the list is now empty, we fix the last_free as well. */ | 
 | 	if (!rt->first_free) | 
 | 		rt->last_free = 0; | 
 |  | 
 | 	/* Zero this entry. */ | 
 | 	memset(e, 0, esize); | 
 | 	*e = RESTART_ENTRY_ALLOCATED_LE; | 
 |  | 
 | 	le16_add_cpu(&rt->total, 1); | 
 |  | 
 | 	return e; | 
 | } | 
 |  | 
 | struct restart_info { | 
 | 	u64 last_lsn; | 
 | 	struct RESTART_HDR *r_page; | 
 | 	u32 vbo; | 
 | 	bool chkdsk_was_run; | 
 | 	bool valid_page; | 
 | 	bool initialized; | 
 | 	bool restart; | 
 | }; | 
 |  | 
 | #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) | 
 |  | 
 | #define NTFSLOG_WRAPPED 0x00000001 | 
 | #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 | 
 | #define NTFSLOG_NO_LAST_LSN 0x00000004 | 
 | #define NTFSLOG_REUSE_TAIL 0x00000010 | 
 | #define NTFSLOG_NO_OLDEST_LSN 0x00000020 | 
 |  | 
 | /* Helper struct to work with NTFS $LogFile. */ | 
 | struct ntfs_log { | 
 | 	struct ntfs_inode *ni; | 
 |  | 
 | 	u32 l_size; | 
 | 	u32 orig_file_size; | 
 | 	u32 sys_page_size; | 
 | 	u32 sys_page_mask; | 
 | 	u32 page_size; | 
 | 	u32 page_mask; // page_size - 1 | 
 | 	u8 page_bits; | 
 | 	struct RECORD_PAGE_HDR *one_page_buf; | 
 |  | 
 | 	struct RESTART_TABLE *open_attr_tbl; | 
 | 	u32 transaction_id; | 
 | 	u32 clst_per_page; | 
 |  | 
 | 	u32 first_page; | 
 | 	u32 next_page; | 
 | 	u32 ra_off; | 
 | 	u32 data_off; | 
 | 	u32 restart_size; | 
 | 	u32 data_size; | 
 | 	u16 record_header_len; | 
 | 	u64 seq_num; | 
 | 	u32 seq_num_bits; | 
 | 	u32 file_data_bits; | 
 | 	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ | 
 |  | 
 | 	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ | 
 | 	u32 ra_size; /* The usable size of the restart area. */ | 
 |  | 
 | 	/* | 
 | 	 * If true, then the in-memory restart area is to be written | 
 | 	 * to the first position on the disk. | 
 | 	 */ | 
 | 	bool init_ra; | 
 | 	bool set_dirty; /* True if we need to set dirty flag. */ | 
 |  | 
 | 	u64 oldest_lsn; | 
 |  | 
 | 	u32 oldest_lsn_off; | 
 | 	u64 last_lsn; | 
 |  | 
 | 	u32 total_avail; | 
 | 	u32 total_avail_pages; | 
 | 	u32 total_undo_commit; | 
 | 	u32 max_current_avail; | 
 | 	u32 current_avail; | 
 | 	u32 reserved; | 
 |  | 
 | 	short major_ver; | 
 | 	short minor_ver; | 
 |  | 
 | 	u32 l_flags; /* See NTFSLOG_XXX */ | 
 | 	u32 current_openlog_count; /* On-disk value for open_log_count. */ | 
 |  | 
 | 	struct CLIENT_ID client_id; | 
 | 	u32 client_undo_commit; | 
 |  | 
 | 	struct restart_info rst_info, rst_info2; | 
 | }; | 
 |  | 
 | static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) | 
 | { | 
 | 	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); | 
 |  | 
 | 	return vbo; | 
 | } | 
 |  | 
 | /* Compute the offset in the log file of the next log page. */ | 
 | static inline u32 next_page_off(struct ntfs_log *log, u32 off) | 
 | { | 
 | 	off = (off & ~log->sys_page_mask) + log->page_size; | 
 | 	return off >= log->l_size ? log->first_page : off; | 
 | } | 
 |  | 
 | static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) | 
 | { | 
 | 	return (((u32)lsn) << 3) & log->page_mask; | 
 | } | 
 |  | 
 | static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) | 
 | { | 
 | 	return (off >> 3) + (Seq << log->file_data_bits); | 
 | } | 
 |  | 
 | static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) | 
 | { | 
 | 	return lsn >= log->oldest_lsn && | 
 | 	       lsn <= le64_to_cpu(log->ra->current_lsn); | 
 | } | 
 |  | 
 | static inline u32 hdr_file_off(struct ntfs_log *log, | 
 | 			       struct RECORD_PAGE_HDR *hdr) | 
 | { | 
 | 	if (log->major_ver < 2) | 
 | 		return le64_to_cpu(hdr->rhdr.lsn); | 
 |  | 
 | 	return le32_to_cpu(hdr->file_off); | 
 | } | 
 |  | 
 | static inline u64 base_lsn(struct ntfs_log *log, | 
 | 			   const struct RECORD_PAGE_HDR *hdr, u64 lsn) | 
 | { | 
 | 	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); | 
 | 	u64 ret = (((h_lsn >> log->file_data_bits) + | 
 | 		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) | 
 | 		   << log->file_data_bits) + | 
 | 		  ((((is_log_record_end(hdr) && | 
 | 		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ? | 
 | 			     le16_to_cpu(hdr->record_hdr.next_record_off) : | 
 | 			     log->page_size) + | 
 | 		    lsn) >> | 
 | 		   3); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool verify_client_lsn(struct ntfs_log *log, | 
 | 				     const struct CLIENT_REC *client, u64 lsn) | 
 | { | 
 | 	return lsn >= le64_to_cpu(client->oldest_lsn) && | 
 | 	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; | 
 | } | 
 |  | 
 | static int read_log_page(struct ntfs_log *log, u32 vbo, | 
 | 			 struct RECORD_PAGE_HDR **buffer, bool *usa_error) | 
 | { | 
 | 	int err = 0; | 
 | 	u32 page_idx = vbo >> log->page_bits; | 
 | 	u32 page_off = vbo & log->page_mask; | 
 | 	u32 bytes = log->page_size - page_off; | 
 | 	void *to_free = NULL; | 
 | 	u32 page_vbo = page_idx << log->page_bits; | 
 | 	struct RECORD_PAGE_HDR *page_buf; | 
 | 	struct ntfs_inode *ni = log->ni; | 
 | 	bool bBAAD; | 
 |  | 
 | 	if (vbo >= log->l_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!*buffer) { | 
 | 		to_free = kmalloc(log->page_size, GFP_NOFS); | 
 | 		if (!to_free) | 
 | 			return -ENOMEM; | 
 | 		*buffer = to_free; | 
 | 	} | 
 |  | 
 | 	page_buf = page_off ? log->one_page_buf : *buffer; | 
 |  | 
 | 	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, | 
 | 			       log->page_size, NULL); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) | 
 | 		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); | 
 |  | 
 | 	if (page_buf != *buffer) | 
 | 		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); | 
 |  | 
 | 	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; | 
 |  | 
 | 	if (usa_error) | 
 | 		*usa_error = bBAAD; | 
 | 	/* Check that the update sequence array for this page is valid */ | 
 | 	/* If we don't allow errors, raise an error status */ | 
 | 	else if (bBAAD) | 
 | 		err = -EINVAL; | 
 |  | 
 | out: | 
 | 	if (err && to_free) { | 
 | 		kfree(to_free); | 
 | 		*buffer = NULL; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * log_read_rst | 
 |  * | 
 |  * It walks through 512 blocks of the file looking for a valid | 
 |  * restart page header. It will stop the first time we find a | 
 |  * valid page header. | 
 |  */ | 
 | static int log_read_rst(struct ntfs_log *log, bool first, | 
 | 			struct restart_info *info) | 
 | { | 
 | 	u32 skip; | 
 | 	u64 vbo; | 
 | 	struct RESTART_HDR *r_page = NULL; | 
 |  | 
 | 	/* Determine which restart area we are looking for. */ | 
 | 	if (first) { | 
 | 		vbo = 0; | 
 | 		skip = 512; | 
 | 	} else { | 
 | 		vbo = 512; | 
 | 		skip = 0; | 
 | 	} | 
 |  | 
 | 	/* Loop continuously until we succeed. */ | 
 | 	for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) { | 
 | 		bool usa_error; | 
 | 		bool brst, bchk; | 
 | 		struct RESTART_AREA *ra; | 
 |  | 
 | 		/* Read a page header at the current offset. */ | 
 | 		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, | 
 | 				  &usa_error)) { | 
 | 			/* Ignore any errors. */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Exit if the signature is a log record page. */ | 
 | 		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { | 
 | 			info->initialized = true; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; | 
 | 		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; | 
 |  | 
 | 		if (!bchk && !brst) { | 
 | 			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { | 
 | 				/* | 
 | 				 * Remember if the signature does not | 
 | 				 * indicate uninitialized file. | 
 | 				 */ | 
 | 				info->initialized = true; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ra = NULL; | 
 | 		info->valid_page = false; | 
 | 		info->initialized = true; | 
 | 		info->vbo = vbo; | 
 |  | 
 | 		/* Let's check the restart area if this is a valid page. */ | 
 | 		if (!is_rst_page_hdr_valid(vbo, r_page)) | 
 | 			goto check_result; | 
 | 		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); | 
 |  | 
 | 		if (!is_rst_area_valid(r_page)) | 
 | 			goto check_result; | 
 |  | 
 | 		/* | 
 | 		 * We have a valid restart page header and restart area. | 
 | 		 * If chkdsk was run or we have no clients then we have | 
 | 		 * no more checking to do. | 
 | 		 */ | 
 | 		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { | 
 | 			info->valid_page = true; | 
 | 			goto check_result; | 
 | 		} | 
 |  | 
 | 		if (is_client_area_valid(r_page, usa_error)) { | 
 | 			info->valid_page = true; | 
 | 			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); | 
 | 		} | 
 |  | 
 | check_result: | 
 | 		/* | 
 | 		 * If chkdsk was run then update the caller's | 
 | 		 * values and return. | 
 | 		 */ | 
 | 		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { | 
 | 			info->chkdsk_was_run = true; | 
 | 			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); | 
 | 			info->restart = true; | 
 | 			info->r_page = r_page; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we have a valid page then copy the values | 
 | 		 * we need from it. | 
 | 		 */ | 
 | 		if (info->valid_page) { | 
 | 			info->last_lsn = le64_to_cpu(ra->current_lsn); | 
 | 			info->restart = true; | 
 | 			info->r_page = r_page; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kfree(r_page); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Ilog_init_pg_hdr - Init @log from restart page header. | 
 |  */ | 
 | static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver) | 
 | { | 
 | 	log->sys_page_size = log->page_size; | 
 | 	log->sys_page_mask = log->page_mask; | 
 |  | 
 | 	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; | 
 | 	if (!log->clst_per_page) | 
 | 		log->clst_per_page = 1; | 
 |  | 
 | 	log->first_page = major_ver >= 2 ? 0x22 * log->page_size : | 
 | 					   4 * log->page_size; | 
 | 	log->major_ver = major_ver; | 
 | 	log->minor_ver = minor_ver; | 
 | } | 
 |  | 
 | /* | 
 |  * log_create - Init @log in cases when we don't have a restart area to use. | 
 |  */ | 
 | static void log_create(struct ntfs_log *log, const u64 last_lsn, | 
 | 		       u32 open_log_count, bool wrapped, bool use_multi_page) | 
 | { | 
 | 	/* All file offsets must be quadword aligned. */ | 
 | 	log->file_data_bits = blksize_bits(log->l_size) - 3; | 
 | 	log->seq_num_mask = (8 << log->file_data_bits) - 1; | 
 | 	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; | 
 | 	log->seq_num = (last_lsn >> log->file_data_bits) + 2; | 
 | 	log->next_page = log->first_page; | 
 | 	log->oldest_lsn = log->seq_num << log->file_data_bits; | 
 | 	log->oldest_lsn_off = 0; | 
 | 	log->last_lsn = log->oldest_lsn; | 
 |  | 
 | 	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; | 
 |  | 
 | 	/* Set the correct flags for the I/O and indicate if we have wrapped. */ | 
 | 	if (wrapped) | 
 | 		log->l_flags |= NTFSLOG_WRAPPED; | 
 |  | 
 | 	if (use_multi_page) | 
 | 		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; | 
 |  | 
 | 	/* Compute the log page values. */ | 
 | 	log->data_off = ALIGN( | 
 | 		offsetof(struct RECORD_PAGE_HDR, fixups) + | 
 | 			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), | 
 | 		8); | 
 | 	log->data_size = log->page_size - log->data_off; | 
 | 	log->record_header_len = sizeof(struct LFS_RECORD_HDR); | 
 |  | 
 | 	/* Remember the different page sizes for reservation. */ | 
 | 	log->reserved = log->data_size - log->record_header_len; | 
 |  | 
 | 	/* Compute the restart page values. */ | 
 | 	log->ra_off = ALIGN( | 
 | 		offsetof(struct RESTART_HDR, fixups) + | 
 | 			sizeof(short) * | 
 | 				((log->sys_page_size >> SECTOR_SHIFT) + 1), | 
 | 		8); | 
 | 	log->restart_size = log->sys_page_size - log->ra_off; | 
 | 	log->ra_size = struct_size(log->ra, clients, 1); | 
 | 	log->current_openlog_count = open_log_count; | 
 |  | 
 | 	/* | 
 | 	 * The total available log file space is the number of | 
 | 	 * log file pages times the space available on each page. | 
 | 	 */ | 
 | 	log->total_avail_pages = log->l_size - log->first_page; | 
 | 	log->total_avail = log->total_avail_pages >> log->page_bits; | 
 |  | 
 | 	/* | 
 | 	 * We assume that we can't use the end of the page less than | 
 | 	 * the file record size. | 
 | 	 * Then we won't need to reserve more than the caller asks for. | 
 | 	 */ | 
 | 	log->max_current_avail = log->total_avail * log->reserved; | 
 | 	log->total_avail = log->total_avail * log->data_size; | 
 | 	log->current_avail = log->max_current_avail; | 
 | } | 
 |  | 
 | /* | 
 |  * log_create_ra - Fill a restart area from the values stored in @log. | 
 |  */ | 
 | static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) | 
 | { | 
 | 	struct CLIENT_REC *cr; | 
 | 	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); | 
 |  | 
 | 	if (!ra) | 
 | 		return NULL; | 
 |  | 
 | 	ra->current_lsn = cpu_to_le64(log->last_lsn); | 
 | 	ra->log_clients = cpu_to_le16(1); | 
 | 	ra->client_idx[1] = LFS_NO_CLIENT_LE; | 
 | 	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) | 
 | 		ra->flags = RESTART_SINGLE_PAGE_IO; | 
 | 	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); | 
 | 	ra->ra_len = cpu_to_le16(log->ra_size); | 
 | 	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); | 
 | 	ra->l_size = cpu_to_le64(log->l_size); | 
 | 	ra->rec_hdr_len = cpu_to_le16(log->record_header_len); | 
 | 	ra->data_off = cpu_to_le16(log->data_off); | 
 | 	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); | 
 |  | 
 | 	cr = ra->clients; | 
 |  | 
 | 	cr->prev_client = LFS_NO_CLIENT_LE; | 
 | 	cr->next_client = LFS_NO_CLIENT_LE; | 
 |  | 
 | 	return ra; | 
 | } | 
 |  | 
 | static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) | 
 | { | 
 | 	u32 base_vbo = lsn << 3; | 
 | 	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; | 
 | 	u32 page_off = base_vbo & log->page_mask; | 
 | 	u32 tail = log->page_size - page_off; | 
 |  | 
 | 	page_off -= 1; | 
 |  | 
 | 	/* Add the length of the header. */ | 
 | 	data_len += log->record_header_len; | 
 |  | 
 | 	/* | 
 | 	 * If this lsn is contained this log page we are done. | 
 | 	 * Otherwise we need to walk through several log pages. | 
 | 	 */ | 
 | 	if (data_len > tail) { | 
 | 		data_len -= tail; | 
 | 		tail = log->data_size; | 
 | 		page_off = log->data_off - 1; | 
 |  | 
 | 		for (;;) { | 
 | 			final_log_off = next_page_off(log, final_log_off); | 
 |  | 
 | 			/* | 
 | 			 * We are done if the remaining bytes | 
 | 			 * fit on this page. | 
 | 			 */ | 
 | 			if (data_len <= tail) | 
 | 				break; | 
 | 			data_len -= tail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We add the remaining bytes to our starting position on this page | 
 | 	 * and then add that value to the file offset of this log page. | 
 | 	 */ | 
 | 	return final_log_off + data_len + page_off; | 
 | } | 
 |  | 
 | static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, | 
 | 			u64 *lsn) | 
 | { | 
 | 	int err; | 
 | 	u64 this_lsn = le64_to_cpu(rh->this_lsn); | 
 | 	u32 vbo = lsn_to_vbo(log, this_lsn); | 
 | 	u32 end = | 
 | 		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); | 
 | 	u32 hdr_off = end & ~log->sys_page_mask; | 
 | 	u64 seq = this_lsn >> log->file_data_bits; | 
 | 	struct RECORD_PAGE_HDR *page = NULL; | 
 |  | 
 | 	/* Remember if we wrapped. */ | 
 | 	if (end <= vbo) | 
 | 		seq += 1; | 
 |  | 
 | 	/* Log page header for this page. */ | 
 | 	err = read_log_page(log, hdr_off, &page, NULL); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* | 
 | 	 * If the lsn we were given was not the last lsn on this page, | 
 | 	 * then the starting offset for the next lsn is on a quad word | 
 | 	 * boundary following the last file offset for the current lsn. | 
 | 	 * Otherwise the file offset is the start of the data on the next page. | 
 | 	 */ | 
 | 	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { | 
 | 		/* If we wrapped, we need to increment the sequence number. */ | 
 | 		hdr_off = next_page_off(log, hdr_off); | 
 | 		if (hdr_off == log->first_page) | 
 | 			seq += 1; | 
 |  | 
 | 		vbo = hdr_off + log->data_off; | 
 | 	} else { | 
 | 		vbo = ALIGN(end, 8); | 
 | 	} | 
 |  | 
 | 	/* Compute the lsn based on the file offset and the sequence count. */ | 
 | 	*lsn = vbo_to_lsn(log, vbo, seq); | 
 |  | 
 | 	/* | 
 | 	 * If this lsn is within the legal range for the file, we return true. | 
 | 	 * Otherwise false indicates that there are no more lsn's. | 
 | 	 */ | 
 | 	if (!is_lsn_in_file(log, *lsn)) | 
 | 		*lsn = 0; | 
 |  | 
 | 	kfree(page); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * current_log_avail - Calculate the number of bytes available for log records. | 
 |  */ | 
 | static u32 current_log_avail(struct ntfs_log *log) | 
 | { | 
 | 	u32 oldest_off, next_free_off, free_bytes; | 
 |  | 
 | 	if (log->l_flags & NTFSLOG_NO_LAST_LSN) { | 
 | 		/* The entire file is available. */ | 
 | 		return log->max_current_avail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there is a last lsn the restart area then we know that we will | 
 | 	 * have to compute the free range. | 
 | 	 * If there is no oldest lsn then start at the first page of the file. | 
 | 	 */ | 
 | 	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ? | 
 | 			     log->first_page : | 
 | 			     (log->oldest_lsn_off & ~log->sys_page_mask); | 
 |  | 
 | 	/* | 
 | 	 * We will use the next log page offset to compute the next free page. | 
 | 	 * If we are going to reuse this page go to the next page. | 
 | 	 * If we are at the first page then use the end of the file. | 
 | 	 */ | 
 | 	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ? | 
 | 				log->next_page + log->page_size : | 
 | 			log->next_page == log->first_page ? log->l_size : | 
 | 							    log->next_page; | 
 |  | 
 | 	/* If the two offsets are the same then there is no available space. */ | 
 | 	if (oldest_off == next_free_off) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * If the free offset follows the oldest offset then subtract | 
 | 	 * this range from the total available pages. | 
 | 	 */ | 
 | 	free_bytes = | 
 | 		oldest_off < next_free_off ? | 
 | 			log->total_avail_pages - (next_free_off - oldest_off) : | 
 | 			oldest_off - next_free_off; | 
 |  | 
 | 	free_bytes >>= log->page_bits; | 
 | 	return free_bytes * log->reserved; | 
 | } | 
 |  | 
 | static bool check_subseq_log_page(struct ntfs_log *log, | 
 | 				  const struct RECORD_PAGE_HDR *rp, u32 vbo, | 
 | 				  u64 seq) | 
 | { | 
 | 	u64 lsn_seq; | 
 | 	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; | 
 | 	u64 lsn = le64_to_cpu(rhdr->lsn); | 
 |  | 
 | 	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If the last lsn on the page occurs was written after the page | 
 | 	 * that caused the original error then we have a fatal error. | 
 | 	 */ | 
 | 	lsn_seq = lsn >> log->file_data_bits; | 
 |  | 
 | 	/* | 
 | 	 * If the sequence number for the lsn the page is equal or greater | 
 | 	 * than lsn we expect, then this is a subsequent write. | 
 | 	 */ | 
 | 	return lsn_seq >= seq || | 
 | 	       (lsn_seq == seq - 1 && log->first_page == vbo && | 
 | 		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); | 
 | } | 
 |  | 
 | /* | 
 |  * last_log_lsn | 
 |  * | 
 |  * Walks through the log pages for a file, searching for the | 
 |  * last log page written to the file. | 
 |  */ | 
 | static int last_log_lsn(struct ntfs_log *log) | 
 | { | 
 | 	int err; | 
 | 	bool usa_error = false; | 
 | 	bool replace_page = false; | 
 | 	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; | 
 | 	bool wrapped_file, wrapped; | 
 |  | 
 | 	u32 page_cnt = 1, page_pos = 1; | 
 | 	u32 page_off = 0, page_off1 = 0, saved_off = 0; | 
 | 	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; | 
 | 	u32 first_file_off = 0, second_file_off = 0; | 
 | 	u32 part_io_count = 0; | 
 | 	u32 tails = 0; | 
 | 	u32 this_off, curpage_off, nextpage_off, remain_pages; | 
 |  | 
 | 	u64 expected_seq, seq_base = 0, lsn_base = 0; | 
 | 	u64 best_lsn, best_lsn1, best_lsn2; | 
 | 	u64 lsn_cur, lsn1, lsn2; | 
 | 	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; | 
 |  | 
 | 	u16 cur_pos, best_page_pos; | 
 |  | 
 | 	struct RECORD_PAGE_HDR *page = NULL; | 
 | 	struct RECORD_PAGE_HDR *tst_page = NULL; | 
 | 	struct RECORD_PAGE_HDR *first_tail = NULL; | 
 | 	struct RECORD_PAGE_HDR *second_tail = NULL; | 
 | 	struct RECORD_PAGE_HDR *tail_page = NULL; | 
 | 	struct RECORD_PAGE_HDR *second_tail_prev = NULL; | 
 | 	struct RECORD_PAGE_HDR *first_tail_prev = NULL; | 
 | 	struct RECORD_PAGE_HDR *page_bufs = NULL; | 
 | 	struct RECORD_PAGE_HDR *best_page; | 
 |  | 
 | 	if (log->major_ver >= 2) { | 
 | 		final_off = 0x02 * log->page_size; | 
 | 		second_off = 0x12 * log->page_size; | 
 |  | 
 | 		// 0x10 == 0x12 - 0x2 | 
 | 		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); | 
 | 		if (!page_bufs) | 
 | 			return -ENOMEM; | 
 | 	} else { | 
 | 		second_off = log->first_page - log->page_size; | 
 | 		final_off = second_off - log->page_size; | 
 | 	} | 
 |  | 
 | next_tail: | 
 | 	/* Read second tail page (at pos 3/0x12000). */ | 
 | 	if (read_log_page(log, second_off, &second_tail, &usa_error) || | 
 | 	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { | 
 | 		kfree(second_tail); | 
 | 		second_tail = NULL; | 
 | 		second_file_off = 0; | 
 | 		lsn2 = 0; | 
 | 	} else { | 
 | 		second_file_off = hdr_file_off(log, second_tail); | 
 | 		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); | 
 | 	} | 
 |  | 
 | 	/* Read first tail page (at pos 2/0x2000). */ | 
 | 	if (read_log_page(log, final_off, &first_tail, &usa_error) || | 
 | 	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { | 
 | 		kfree(first_tail); | 
 | 		first_tail = NULL; | 
 | 		first_file_off = 0; | 
 | 		lsn1 = 0; | 
 | 	} else { | 
 | 		first_file_off = hdr_file_off(log, first_tail); | 
 | 		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); | 
 | 	} | 
 |  | 
 | 	if (log->major_ver < 2) { | 
 | 		int best_page; | 
 |  | 
 | 		first_tail_prev = first_tail; | 
 | 		final_off_prev = first_file_off; | 
 | 		second_tail_prev = second_tail; | 
 | 		second_off_prev = second_file_off; | 
 | 		tails = 1; | 
 |  | 
 | 		if (!first_tail && !second_tail) | 
 | 			goto tail_read; | 
 |  | 
 | 		if (first_tail && second_tail) | 
 | 			best_page = lsn1 < lsn2 ? 1 : 0; | 
 | 		else if (first_tail) | 
 | 			best_page = 0; | 
 | 		else | 
 | 			best_page = 1; | 
 |  | 
 | 		page_off = best_page ? second_file_off : first_file_off; | 
 | 		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; | 
 | 		goto tail_read; | 
 | 	} | 
 |  | 
 | 	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; | 
 | 	best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) : | 
 | 				  0; | 
 |  | 
 | 	if (first_tail && second_tail) { | 
 | 		if (best_lsn1 > best_lsn2) { | 
 | 			best_lsn = best_lsn1; | 
 | 			best_page = first_tail; | 
 | 			this_off = first_file_off; | 
 | 		} else { | 
 | 			best_lsn = best_lsn2; | 
 | 			best_page = second_tail; | 
 | 			this_off = second_file_off; | 
 | 		} | 
 | 	} else if (first_tail) { | 
 | 		best_lsn = best_lsn1; | 
 | 		best_page = first_tail; | 
 | 		this_off = first_file_off; | 
 | 	} else if (second_tail) { | 
 | 		best_lsn = best_lsn2; | 
 | 		best_page = second_tail; | 
 | 		this_off = second_file_off; | 
 | 	} else { | 
 | 		goto tail_read; | 
 | 	} | 
 |  | 
 | 	best_page_pos = le16_to_cpu(best_page->page_pos); | 
 |  | 
 | 	if (!tails) { | 
 | 		if (best_page_pos == page_pos) { | 
 | 			seq_base = best_lsn >> log->file_data_bits; | 
 | 			saved_off = page_off = le32_to_cpu(best_page->file_off); | 
 | 			lsn_base = best_lsn; | 
 |  | 
 | 			memmove(page_bufs, best_page, log->page_size); | 
 |  | 
 | 			page_cnt = le16_to_cpu(best_page->page_count); | 
 | 			if (page_cnt > 1) | 
 | 				page_pos += 1; | 
 |  | 
 | 			tails = 1; | 
 | 		} | 
 | 	} else if (seq_base == (best_lsn >> log->file_data_bits) && | 
 | 		   saved_off + log->page_size == this_off && | 
 | 		   lsn_base < best_lsn && | 
 | 		   (page_pos != page_cnt || best_page_pos == page_pos || | 
 | 		    best_page_pos == 1) && | 
 | 		   (page_pos >= page_cnt || best_page_pos == page_pos)) { | 
 | 		u16 bppc = le16_to_cpu(best_page->page_count); | 
 |  | 
 | 		saved_off += log->page_size; | 
 | 		lsn_base = best_lsn; | 
 |  | 
 | 		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, | 
 | 			log->page_size); | 
 |  | 
 | 		tails += 1; | 
 |  | 
 | 		if (best_page_pos != bppc) { | 
 | 			page_cnt = bppc; | 
 | 			page_pos = best_page_pos; | 
 |  | 
 | 			if (page_cnt > 1) | 
 | 				page_pos += 1; | 
 | 		} else { | 
 | 			page_pos = page_cnt = 1; | 
 | 		} | 
 | 	} else { | 
 | 		kfree(first_tail); | 
 | 		kfree(second_tail); | 
 | 		goto tail_read; | 
 | 	} | 
 |  | 
 | 	kfree(first_tail_prev); | 
 | 	first_tail_prev = first_tail; | 
 | 	final_off_prev = first_file_off; | 
 | 	first_tail = NULL; | 
 |  | 
 | 	kfree(second_tail_prev); | 
 | 	second_tail_prev = second_tail; | 
 | 	second_off_prev = second_file_off; | 
 | 	second_tail = NULL; | 
 |  | 
 | 	final_off += log->page_size; | 
 | 	second_off += log->page_size; | 
 |  | 
 | 	if (tails < 0x10) | 
 | 		goto next_tail; | 
 | tail_read: | 
 | 	first_tail = first_tail_prev; | 
 | 	final_off = final_off_prev; | 
 |  | 
 | 	second_tail = second_tail_prev; | 
 | 	second_off = second_off_prev; | 
 |  | 
 | 	page_cnt = page_pos = 1; | 
 |  | 
 | 	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) : | 
 | 						 log->next_page; | 
 |  | 
 | 	wrapped_file = | 
 | 		curpage_off == log->first_page && | 
 | 		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); | 
 |  | 
 | 	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; | 
 |  | 
 | 	nextpage_off = curpage_off; | 
 |  | 
 | next_page: | 
 | 	tail_page = NULL; | 
 | 	/* Read the next log page. */ | 
 | 	err = read_log_page(log, curpage_off, &page, &usa_error); | 
 |  | 
 | 	/* Compute the next log page offset the file. */ | 
 | 	nextpage_off = next_page_off(log, curpage_off); | 
 | 	wrapped = nextpage_off == log->first_page; | 
 |  | 
 | 	if (tails > 1) { | 
 | 		struct RECORD_PAGE_HDR *cur_page = | 
 | 			Add2Ptr(page_bufs, curpage_off - page_off); | 
 |  | 
 | 		if (curpage_off == saved_off) { | 
 | 			tail_page = cur_page; | 
 | 			goto use_tail_page; | 
 | 		} | 
 |  | 
 | 		if (page_off > curpage_off || curpage_off >= saved_off) | 
 | 			goto use_tail_page; | 
 |  | 
 | 		if (page_off1) | 
 | 			goto use_cur_page; | 
 |  | 
 | 		if (!err && !usa_error && | 
 | 		    page->rhdr.sign == NTFS_RCRD_SIGNATURE && | 
 | 		    cur_page->rhdr.lsn == page->rhdr.lsn && | 
 | 		    cur_page->record_hdr.next_record_off == | 
 | 			    page->record_hdr.next_record_off && | 
 | 		    ((page_pos == page_cnt && | 
 | 		      le16_to_cpu(page->page_pos) == 1) || | 
 | 		     (page_pos != page_cnt && | 
 | 		      le16_to_cpu(page->page_pos) == page_pos + 1 && | 
 | 		      le16_to_cpu(page->page_count) == page_cnt))) { | 
 | 			cur_page = NULL; | 
 | 			goto use_tail_page; | 
 | 		} | 
 |  | 
 | 		page_off1 = page_off; | 
 |  | 
 | use_cur_page: | 
 |  | 
 | 		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); | 
 |  | 
 | 		if (last_ok_lsn != | 
 | 			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) && | 
 | 		    ((lsn_cur >> log->file_data_bits) + | 
 | 		     ((curpage_off < | 
 | 		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ? | 
 | 			      1 : | 
 | 			      0)) != expected_seq) { | 
 | 			goto check_tail; | 
 | 		} | 
 |  | 
 | 		if (!is_log_record_end(cur_page)) { | 
 | 			tail_page = NULL; | 
 | 			last_ok_lsn = lsn_cur; | 
 | 			goto next_page_1; | 
 | 		} | 
 |  | 
 | 		log->seq_num = expected_seq; | 
 | 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN; | 
 | 		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); | 
 | 		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; | 
 |  | 
 | 		if (log->record_header_len <= | 
 | 		    log->page_size - | 
 | 			    le16_to_cpu(cur_page->record_hdr.next_record_off)) { | 
 | 			log->l_flags |= NTFSLOG_REUSE_TAIL; | 
 | 			log->next_page = curpage_off; | 
 | 		} else { | 
 | 			log->l_flags &= ~NTFSLOG_REUSE_TAIL; | 
 | 			log->next_page = nextpage_off; | 
 | 		} | 
 |  | 
 | 		if (wrapped_file) | 
 | 			log->l_flags |= NTFSLOG_WRAPPED; | 
 |  | 
 | 		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); | 
 | 		goto next_page_1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we are at the expected first page of a transfer check to see | 
 | 	 * if either tail copy is at this offset. | 
 | 	 * If this page is the last page of a transfer, check if we wrote | 
 | 	 * a subsequent tail copy. | 
 | 	 */ | 
 | 	if (page_cnt == page_pos || page_cnt == page_pos + 1) { | 
 | 		/* | 
 | 		 * Check if the offset matches either the first or second | 
 | 		 * tail copy. It is possible it will match both. | 
 | 		 */ | 
 | 		if (curpage_off == final_off) | 
 | 			tail_page = first_tail; | 
 |  | 
 | 		/* | 
 | 		 * If we already matched on the first page then | 
 | 		 * check the ending lsn's. | 
 | 		 */ | 
 | 		if (curpage_off == second_off) { | 
 | 			if (!tail_page || | 
 | 			    (second_tail && | 
 | 			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) > | 
 | 				     le64_to_cpu(first_tail->record_hdr | 
 | 							 .last_end_lsn))) { | 
 | 				tail_page = second_tail; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | use_tail_page: | 
 | 	if (tail_page) { | 
 | 		/* We have a candidate for a tail copy. */ | 
 | 		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); | 
 |  | 
 | 		if (last_ok_lsn < lsn_cur) { | 
 | 			/* | 
 | 			 * If the sequence number is not expected, | 
 | 			 * then don't use the tail copy. | 
 | 			 */ | 
 | 			if (expected_seq != (lsn_cur >> log->file_data_bits)) | 
 | 				tail_page = NULL; | 
 | 		} else if (last_ok_lsn > lsn_cur) { | 
 | 			/* | 
 | 			 * If the last lsn is greater than the one on | 
 | 			 * this page then forget this tail. | 
 | 			 */ | 
 | 			tail_page = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *If we have an error on the current page, | 
 | 	 * we will break of this loop. | 
 | 	 */ | 
 | 	if (err || usa_error) | 
 | 		goto check_tail; | 
 |  | 
 | 	/* | 
 | 	 * Done if the last lsn on this page doesn't match the previous known | 
 | 	 * last lsn or the sequence number is not expected. | 
 | 	 */ | 
 | 	lsn_cur = le64_to_cpu(page->rhdr.lsn); | 
 | 	if (last_ok_lsn != lsn_cur && | 
 | 	    expected_seq != (lsn_cur >> log->file_data_bits)) { | 
 | 		goto check_tail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check that the page position and page count values are correct. | 
 | 	 * If this is the first page of a transfer the position must be 1 | 
 | 	 * and the count will be unknown. | 
 | 	 */ | 
 | 	if (page_cnt == page_pos) { | 
 | 		if (page->page_pos != cpu_to_le16(1) && | 
 | 		    (!reuse_page || page->page_pos != page->page_count)) { | 
 | 			/* | 
 | 			 * If the current page is the first page we are | 
 | 			 * looking at and we are reusing this page then | 
 | 			 * it can be either the first or last page of a | 
 | 			 * transfer. Otherwise it can only be the first. | 
 | 			 */ | 
 | 			goto check_tail; | 
 | 		} | 
 | 	} else if (le16_to_cpu(page->page_count) != page_cnt || | 
 | 		   le16_to_cpu(page->page_pos) != page_pos + 1) { | 
 | 		/* | 
 | 		 * The page position better be 1 more than the last page | 
 | 		 * position and the page count better match. | 
 | 		 */ | 
 | 		goto check_tail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have a valid page the file and may have a valid page | 
 | 	 * the tail copy area. | 
 | 	 * If the tail page was written after the page the file then | 
 | 	 * break of the loop. | 
 | 	 */ | 
 | 	if (tail_page && | 
 | 	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { | 
 | 		/* Remember if we will replace the page. */ | 
 | 		replace_page = true; | 
 | 		goto check_tail; | 
 | 	} | 
 |  | 
 | 	tail_page = NULL; | 
 |  | 
 | 	if (is_log_record_end(page)) { | 
 | 		/* | 
 | 		 * Since we have read this page we know the sequence number | 
 | 		 * is the same as our expected value. | 
 | 		 */ | 
 | 		log->seq_num = expected_seq; | 
 | 		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); | 
 | 		log->ra->current_lsn = page->record_hdr.last_end_lsn; | 
 | 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN; | 
 |  | 
 | 		/* | 
 | 		 * If there is room on this page for another header then | 
 | 		 * remember we want to reuse the page. | 
 | 		 */ | 
 | 		if (log->record_header_len <= | 
 | 		    log->page_size - | 
 | 			    le16_to_cpu(page->record_hdr.next_record_off)) { | 
 | 			log->l_flags |= NTFSLOG_REUSE_TAIL; | 
 | 			log->next_page = curpage_off; | 
 | 		} else { | 
 | 			log->l_flags &= ~NTFSLOG_REUSE_TAIL; | 
 | 			log->next_page = nextpage_off; | 
 | 		} | 
 |  | 
 | 		/* Remember if we wrapped the log file. */ | 
 | 		if (wrapped_file) | 
 | 			log->l_flags |= NTFSLOG_WRAPPED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Remember the last page count and position. | 
 | 	 * Also remember the last known lsn. | 
 | 	 */ | 
 | 	page_cnt = le16_to_cpu(page->page_count); | 
 | 	page_pos = le16_to_cpu(page->page_pos); | 
 | 	last_ok_lsn = le64_to_cpu(page->rhdr.lsn); | 
 |  | 
 | next_page_1: | 
 |  | 
 | 	if (wrapped) { | 
 | 		expected_seq += 1; | 
 | 		wrapped_file = 1; | 
 | 	} | 
 |  | 
 | 	curpage_off = nextpage_off; | 
 | 	kfree(page); | 
 | 	page = NULL; | 
 | 	reuse_page = 0; | 
 | 	goto next_page; | 
 |  | 
 | check_tail: | 
 | 	if (tail_page) { | 
 | 		log->seq_num = expected_seq; | 
 | 		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); | 
 | 		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; | 
 | 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN; | 
 |  | 
 | 		if (log->page_size - | 
 | 			    le16_to_cpu( | 
 | 				    tail_page->record_hdr.next_record_off) >= | 
 | 		    log->record_header_len) { | 
 | 			log->l_flags |= NTFSLOG_REUSE_TAIL; | 
 | 			log->next_page = curpage_off; | 
 | 		} else { | 
 | 			log->l_flags &= ~NTFSLOG_REUSE_TAIL; | 
 | 			log->next_page = nextpage_off; | 
 | 		} | 
 |  | 
 | 		if (wrapped) | 
 | 			log->l_flags |= NTFSLOG_WRAPPED; | 
 | 	} | 
 |  | 
 | 	/* Remember that the partial IO will start at the next page. */ | 
 | 	second_off = nextpage_off; | 
 |  | 
 | 	/* | 
 | 	 * If the next page is the first page of the file then update | 
 | 	 * the sequence number for log records which begon the next page. | 
 | 	 */ | 
 | 	if (wrapped) | 
 | 		expected_seq += 1; | 
 |  | 
 | 	/* | 
 | 	 * If we have a tail copy or are performing single page I/O we can | 
 | 	 * immediately look at the next page. | 
 | 	 */ | 
 | 	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { | 
 | 		page_cnt = 2; | 
 | 		page_pos = 1; | 
 | 		goto check_valid; | 
 | 	} | 
 |  | 
 | 	if (page_pos != page_cnt) | 
 | 		goto check_valid; | 
 | 	/* | 
 | 	 * If the next page causes us to wrap to the beginning of the log | 
 | 	 * file then we know which page to check next. | 
 | 	 */ | 
 | 	if (wrapped) { | 
 | 		page_cnt = 2; | 
 | 		page_pos = 1; | 
 | 		goto check_valid; | 
 | 	} | 
 |  | 
 | 	cur_pos = 2; | 
 |  | 
 | next_test_page: | 
 | 	kfree(tst_page); | 
 | 	tst_page = NULL; | 
 |  | 
 | 	/* Walk through the file, reading log pages. */ | 
 | 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error); | 
 |  | 
 | 	/* | 
 | 	 * If we get a USA error then assume that we correctly found | 
 | 	 * the end of the original transfer. | 
 | 	 */ | 
 | 	if (usa_error) | 
 | 		goto file_is_valid; | 
 |  | 
 | 	/* | 
 | 	 * If we were able to read the page, we examine it to see if it | 
 | 	 * is the same or different Io block. | 
 | 	 */ | 
 | 	if (err) | 
 | 		goto next_test_page_1; | 
 |  | 
 | 	if (le16_to_cpu(tst_page->page_pos) == cur_pos && | 
 | 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { | 
 | 		page_cnt = le16_to_cpu(tst_page->page_count) + 1; | 
 | 		page_pos = le16_to_cpu(tst_page->page_pos); | 
 | 		goto check_valid; | 
 | 	} else { | 
 | 		goto file_is_valid; | 
 | 	} | 
 |  | 
 | next_test_page_1: | 
 |  | 
 | 	nextpage_off = next_page_off(log, curpage_off); | 
 | 	wrapped = nextpage_off == log->first_page; | 
 |  | 
 | 	if (wrapped) { | 
 | 		expected_seq += 1; | 
 | 		page_cnt = 2; | 
 | 		page_pos = 1; | 
 | 	} | 
 |  | 
 | 	cur_pos += 1; | 
 | 	part_io_count += 1; | 
 | 	if (!wrapped) | 
 | 		goto next_test_page; | 
 |  | 
 | check_valid: | 
 | 	/* Skip over the remaining pages this transfer. */ | 
 | 	remain_pages = page_cnt - page_pos - 1; | 
 | 	part_io_count += remain_pages; | 
 |  | 
 | 	while (remain_pages--) { | 
 | 		nextpage_off = next_page_off(log, curpage_off); | 
 | 		wrapped = nextpage_off == log->first_page; | 
 |  | 
 | 		if (wrapped) | 
 | 			expected_seq += 1; | 
 | 	} | 
 |  | 
 | 	/* Call our routine to check this log page. */ | 
 | 	kfree(tst_page); | 
 | 	tst_page = NULL; | 
 |  | 
 | 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error); | 
 | 	if (!err && !usa_error && | 
 | 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | file_is_valid: | 
 |  | 
 | 	/* We have a valid file. */ | 
 | 	if (page_off1 || tail_page) { | 
 | 		struct RECORD_PAGE_HDR *tmp_page; | 
 |  | 
 | 		if (sb_rdonly(log->ni->mi.sbi->sb)) { | 
 | 			err = -EROFS; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (page_off1) { | 
 | 			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); | 
 | 			tails -= (page_off1 - page_off) / log->page_size; | 
 | 			if (!tail_page) | 
 | 				tails -= 1; | 
 | 		} else { | 
 | 			tmp_page = tail_page; | 
 | 			tails = 1; | 
 | 		} | 
 |  | 
 | 		while (tails--) { | 
 | 			u64 off = hdr_file_off(log, tmp_page); | 
 |  | 
 | 			if (!page) { | 
 | 				page = kmalloc(log->page_size, GFP_NOFS); | 
 | 				if (!page) { | 
 | 					err = -ENOMEM; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Correct page and copy the data from this page | 
 | 			 * into it and flush it to disk. | 
 | 			 */ | 
 | 			memcpy(page, tmp_page, log->page_size); | 
 |  | 
 | 			/* Fill last flushed lsn value flush the page. */ | 
 | 			if (log->major_ver < 2) | 
 | 				page->rhdr.lsn = page->record_hdr.last_end_lsn; | 
 | 			else | 
 | 				page->file_off = 0; | 
 |  | 
 | 			page->page_pos = page->page_count = cpu_to_le16(1); | 
 |  | 
 | 			ntfs_fix_pre_write(&page->rhdr, log->page_size); | 
 |  | 
 | 			err = ntfs_sb_write_run(log->ni->mi.sbi, | 
 | 						&log->ni->file.run, off, page, | 
 | 						log->page_size, 0); | 
 |  | 
 | 			if (err) | 
 | 				goto out; | 
 |  | 
 | 			if (part_io_count && second_off == off) { | 
 | 				second_off += log->page_size; | 
 | 				part_io_count -= 1; | 
 | 			} | 
 |  | 
 | 			tmp_page = Add2Ptr(tmp_page, log->page_size); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (part_io_count) { | 
 | 		if (sb_rdonly(log->ni->mi.sbi->sb)) { | 
 | 			err = -EROFS; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(second_tail); | 
 | 	kfree(first_tail); | 
 | 	kfree(page); | 
 | 	kfree(tst_page); | 
 | 	kfree(page_bufs); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * read_log_rec_buf - Copy a log record from the file to a buffer. | 
 |  * | 
 |  * The log record may span several log pages and may even wrap the file. | 
 |  */ | 
 | static int read_log_rec_buf(struct ntfs_log *log, | 
 | 			    const struct LFS_RECORD_HDR *rh, void *buffer) | 
 | { | 
 | 	int err; | 
 | 	struct RECORD_PAGE_HDR *ph = NULL; | 
 | 	u64 lsn = le64_to_cpu(rh->this_lsn); | 
 | 	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; | 
 | 	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; | 
 | 	u32 data_len = le32_to_cpu(rh->client_data_len); | 
 |  | 
 | 	/* | 
 | 	 * While there are more bytes to transfer, | 
 | 	 * we continue to attempt to perform the read. | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		bool usa_error; | 
 | 		u32 tail = log->page_size - off; | 
 |  | 
 | 		if (tail >= data_len) | 
 | 			tail = data_len; | 
 |  | 
 | 		data_len -= tail; | 
 |  | 
 | 		err = read_log_page(log, vbo, &ph, &usa_error); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * The last lsn on this page better be greater or equal | 
 | 		 * to the lsn we are copying. | 
 | 		 */ | 
 | 		if (lsn > le64_to_cpu(ph->rhdr.lsn)) { | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		memcpy(buffer, Add2Ptr(ph, off), tail); | 
 |  | 
 | 		/* If there are no more bytes to transfer, we exit the loop. */ | 
 | 		if (!data_len) { | 
 | 			if (!is_log_record_end(ph) || | 
 | 			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { | 
 | 				err = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || | 
 | 		    lsn > le64_to_cpu(ph->rhdr.lsn)) { | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		vbo = next_page_off(log, vbo); | 
 | 		off = log->data_off; | 
 |  | 
 | 		/* | 
 | 		 * Adjust our pointer the user's buffer to transfer | 
 | 		 * the next block to. | 
 | 		 */ | 
 | 		buffer = Add2Ptr(buffer, tail); | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(ph); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, | 
 | 			 u64 *lsn) | 
 | { | 
 | 	int err; | 
 | 	struct LFS_RECORD_HDR *rh = NULL; | 
 | 	const struct CLIENT_REC *cr = | 
 | 		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); | 
 | 	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); | 
 | 	u32 len; | 
 | 	struct NTFS_RESTART *rst; | 
 |  | 
 | 	*lsn = 0; | 
 | 	*rst_ = NULL; | 
 |  | 
 | 	/* If the client doesn't have a restart area, go ahead and exit now. */ | 
 | 	if (!lsnc) | 
 | 		return 0; | 
 |  | 
 | 	err = read_log_page(log, lsn_to_vbo(log, lsnc), | 
 | 			    (struct RECORD_PAGE_HDR **)&rh, NULL); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	rst = NULL; | 
 | 	lsnr = le64_to_cpu(rh->this_lsn); | 
 |  | 
 | 	if (lsnc != lsnr) { | 
 | 		/* If the lsn values don't match, then the disk is corrupt. */ | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	*lsn = lsnr; | 
 | 	len = le32_to_cpu(rh->client_data_len); | 
 |  | 
 | 	if (!len) { | 
 | 		err = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (len < sizeof(struct NTFS_RESTART)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	rst = kmalloc(len, GFP_NOFS); | 
 | 	if (!rst) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Copy the data into the 'rst' buffer. */ | 
 | 	err = read_log_rec_buf(log, rh, rst); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	*rst_ = rst; | 
 | 	rst = NULL; | 
 |  | 
 | out: | 
 | 	kfree(rh); | 
 | 	kfree(rst); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) | 
 | { | 
 | 	int err; | 
 | 	struct LFS_RECORD_HDR *rh = lcb->lrh; | 
 | 	u32 rec_len, len; | 
 |  | 
 | 	/* Read the record header for this lsn. */ | 
 | 	if (!rh) { | 
 | 		err = read_log_page(log, lsn_to_vbo(log, lsn), | 
 | 				    (struct RECORD_PAGE_HDR **)&rh, NULL); | 
 |  | 
 | 		lcb->lrh = rh; | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the lsn the log record doesn't match the desired | 
 | 	 * lsn then the disk is corrupt. | 
 | 	 */ | 
 | 	if (lsn != le64_to_cpu(rh->this_lsn)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	len = le32_to_cpu(rh->client_data_len); | 
 |  | 
 | 	/* | 
 | 	 * Check that the length field isn't greater than the total | 
 | 	 * available space the log file. | 
 | 	 */ | 
 | 	rec_len = len + log->record_header_len; | 
 | 	if (rec_len >= log->total_avail) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * If the entire log record is on this log page, | 
 | 	 * put a pointer to the log record the context block. | 
 | 	 */ | 
 | 	if (rh->flags & LOG_RECORD_MULTI_PAGE) { | 
 | 		void *lr = kmalloc(len, GFP_NOFS); | 
 |  | 
 | 		if (!lr) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		lcb->log_rec = lr; | 
 | 		lcb->alloc = true; | 
 |  | 
 | 		/* Copy the data into the buffer returned. */ | 
 | 		err = read_log_rec_buf(log, rh, lr); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} else { | 
 | 		/* If beyond the end of the current page -> an error. */ | 
 | 		u32 page_off = lsn_to_page_off(log, lsn); | 
 |  | 
 | 		if (page_off + len + log->record_header_len > log->page_size) | 
 | 			return -EINVAL; | 
 |  | 
 | 		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); | 
 | 		lcb->alloc = false; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * read_log_rec_lcb - Init the query operation. | 
 |  */ | 
 | static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, | 
 | 			    struct lcb **lcb_) | 
 | { | 
 | 	int err; | 
 | 	const struct CLIENT_REC *cr; | 
 | 	struct lcb *lcb; | 
 |  | 
 | 	switch (ctx_mode) { | 
 | 	case lcb_ctx_undo_next: | 
 | 	case lcb_ctx_prev: | 
 | 	case lcb_ctx_next: | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Check that the given lsn is the legal range for this client. */ | 
 | 	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); | 
 |  | 
 | 	if (!verify_client_lsn(log, cr, lsn)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); | 
 | 	if (!lcb) | 
 | 		return -ENOMEM; | 
 | 	lcb->client = log->client_id; | 
 | 	lcb->ctx_mode = ctx_mode; | 
 |  | 
 | 	/* Find the log record indicated by the given lsn. */ | 
 | 	err = find_log_rec(log, lsn, lcb); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	*lcb_ = lcb; | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	lcb_put(lcb); | 
 | 	*lcb_ = NULL; | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * find_client_next_lsn | 
 |  * | 
 |  * Attempt to find the next lsn to return to a client based on the context mode. | 
 |  */ | 
 | static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) | 
 | { | 
 | 	int err; | 
 | 	u64 next_lsn; | 
 | 	struct LFS_RECORD_HDR *hdr; | 
 |  | 
 | 	hdr = lcb->lrh; | 
 | 	*lsn = 0; | 
 |  | 
 | 	if (lcb_ctx_next != lcb->ctx_mode) | 
 | 		goto check_undo_next; | 
 |  | 
 | 	/* Loop as long as another lsn can be found. */ | 
 | 	for (;;) { | 
 | 		u64 current_lsn; | 
 |  | 
 | 		err = next_log_lsn(log, hdr, ¤t_lsn); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		if (!current_lsn) | 
 | 			break; | 
 |  | 
 | 		if (hdr != lcb->lrh) | 
 | 			kfree(hdr); | 
 |  | 
 | 		hdr = NULL; | 
 | 		err = read_log_page(log, lsn_to_vbo(log, current_lsn), | 
 | 				    (struct RECORD_PAGE_HDR **)&hdr, NULL); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		if (memcmp(&hdr->client, &lcb->client, | 
 | 			   sizeof(struct CLIENT_ID))) { | 
 | 			/*err = -EINVAL; */ | 
 | 		} else if (LfsClientRecord == hdr->record_type) { | 
 | 			kfree(lcb->lrh); | 
 | 			lcb->lrh = hdr; | 
 | 			*lsn = current_lsn; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (hdr != lcb->lrh) | 
 | 		kfree(hdr); | 
 | 	return err; | 
 |  | 
 | check_undo_next: | 
 | 	if (lcb_ctx_undo_next == lcb->ctx_mode) | 
 | 		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); | 
 | 	else if (lcb_ctx_prev == lcb->ctx_mode) | 
 | 		next_lsn = le64_to_cpu(hdr->client_prev_lsn); | 
 | 	else | 
 | 		return 0; | 
 |  | 
 | 	if (!next_lsn) | 
 | 		return 0; | 
 |  | 
 | 	if (!verify_client_lsn( | 
 | 		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), | 
 | 		    next_lsn)) | 
 | 		return 0; | 
 |  | 
 | 	hdr = NULL; | 
 | 	err = read_log_page(log, lsn_to_vbo(log, next_lsn), | 
 | 			    (struct RECORD_PAGE_HDR **)&hdr, NULL); | 
 | 	if (err) | 
 | 		return err; | 
 | 	kfree(lcb->lrh); | 
 | 	lcb->lrh = hdr; | 
 |  | 
 | 	*lsn = next_lsn; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = find_client_next_lsn(log, lcb, lsn); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (!*lsn) | 
 | 		return 0; | 
 |  | 
 | 	if (lcb->alloc) | 
 | 		kfree(lcb->log_rec); | 
 |  | 
 | 	lcb->log_rec = NULL; | 
 | 	lcb->alloc = false; | 
 | 	kfree(lcb->lrh); | 
 | 	lcb->lrh = NULL; | 
 |  | 
 | 	return find_log_rec(log, *lsn, lcb); | 
 | } | 
 |  | 
 | bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) | 
 | { | 
 | 	__le16 mask; | 
 | 	u32 min_de, de_off, used, total; | 
 | 	const struct NTFS_DE *e; | 
 |  | 
 | 	if (hdr_has_subnode(hdr)) { | 
 | 		min_de = sizeof(struct NTFS_DE) + sizeof(u64); | 
 | 		mask = NTFS_IE_HAS_SUBNODES; | 
 | 	} else { | 
 | 		min_de = sizeof(struct NTFS_DE); | 
 | 		mask = 0; | 
 | 	} | 
 |  | 
 | 	de_off = le32_to_cpu(hdr->de_off); | 
 | 	used = le32_to_cpu(hdr->used); | 
 | 	total = le32_to_cpu(hdr->total); | 
 |  | 
 | 	if (de_off > bytes - min_de || used > bytes || total > bytes || | 
 | 	    de_off + min_de > used || used > total) { | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	e = Add2Ptr(hdr, de_off); | 
 | 	for (;;) { | 
 | 		u16 esize = le16_to_cpu(e->size); | 
 | 		struct NTFS_DE *next = Add2Ptr(e, esize); | 
 |  | 
 | 		if (esize < min_de || PtrOffset(hdr, next) > used || | 
 | 		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { | 
 | 			return false; | 
 | 		} | 
 |  | 
 | 		if (de_is_last(e)) | 
 | 			break; | 
 |  | 
 | 		e = next; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) | 
 | { | 
 | 	u16 fo; | 
 | 	const struct NTFS_RECORD_HEADER *r = &ib->rhdr; | 
 |  | 
 | 	if (r->sign != NTFS_INDX_SIGNATURE) | 
 | 		return false; | 
 |  | 
 | 	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); | 
 |  | 
 | 	if (le16_to_cpu(r->fix_off) > fo) | 
 | 		return false; | 
 |  | 
 | 	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) | 
 | 		return false; | 
 |  | 
 | 	return check_index_header(&ib->ihdr, | 
 | 				  bytes - offsetof(struct INDEX_BUFFER, ihdr)); | 
 | } | 
 |  | 
 | static inline bool check_index_root(const struct ATTRIB *attr, | 
 | 				    struct ntfs_sb_info *sbi) | 
 | { | 
 | 	bool ret; | 
 | 	const struct INDEX_ROOT *root = resident_data(attr); | 
 | 	u8 index_bits = le32_to_cpu(root->index_block_size) >= | 
 | 					sbi->cluster_size ? | 
 | 				sbi->cluster_bits : | 
 | 				SECTOR_SHIFT; | 
 | 	u8 block_clst = root->index_block_clst; | 
 |  | 
 | 	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || | 
 | 	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) || | 
 | 	    (root->type == ATTR_NAME && | 
 | 	     root->rule != NTFS_COLLATION_TYPE_FILENAME) || | 
 | 	    (le32_to_cpu(root->index_block_size) != | 
 | 	     (block_clst << index_bits)) || | 
 | 	    (block_clst != 1 && block_clst != 2 && block_clst != 4 && | 
 | 	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && | 
 | 	     block_clst != 0x40 && block_clst != 0x80)) { | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	ret = check_index_header(&root->ihdr, | 
 | 				 le32_to_cpu(attr->res.data_size) - | 
 | 					 offsetof(struct INDEX_ROOT, ihdr)); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool check_attr(const struct MFT_REC *rec, | 
 | 			      const struct ATTRIB *attr, | 
 | 			      struct ntfs_sb_info *sbi) | 
 | { | 
 | 	u32 asize = le32_to_cpu(attr->size); | 
 | 	u32 rsize = 0; | 
 | 	u64 dsize, svcn, evcn; | 
 | 	u16 run_off; | 
 |  | 
 | 	/* Check the fixed part of the attribute record header. */ | 
 | 	if (asize >= sbi->record_size || | 
 | 	    asize + PtrOffset(rec, attr) >= sbi->record_size || | 
 | 	    (attr->name_len && | 
 | 	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > | 
 | 		     asize)) { | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* Check the attribute fields. */ | 
 | 	switch (attr->non_res) { | 
 | 	case 0: | 
 | 		rsize = le32_to_cpu(attr->res.data_size); | 
 | 		if (rsize >= asize || | 
 | 		    le16_to_cpu(attr->res.data_off) + rsize > asize) { | 
 | 			return false; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 1: | 
 | 		dsize = le64_to_cpu(attr->nres.data_size); | 
 | 		svcn = le64_to_cpu(attr->nres.svcn); | 
 | 		evcn = le64_to_cpu(attr->nres.evcn); | 
 | 		run_off = le16_to_cpu(attr->nres.run_off); | 
 |  | 
 | 		if (svcn > evcn + 1 || run_off >= asize || | 
 | 		    le64_to_cpu(attr->nres.valid_size) > dsize || | 
 | 		    dsize > le64_to_cpu(attr->nres.alloc_size)) { | 
 | 			return false; | 
 | 		} | 
 |  | 
 | 		if (run_off > asize) | 
 | 			return false; | 
 |  | 
 | 		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, | 
 | 			       Add2Ptr(attr, run_off), asize - run_off) < 0) { | 
 | 			return false; | 
 | 		} | 
 |  | 
 | 		return true; | 
 |  | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	switch (attr->type) { | 
 | 	case ATTR_NAME: | 
 | 		if (fname_full_size(Add2Ptr( | 
 | 			    attr, le16_to_cpu(attr->res.data_off))) > asize) { | 
 | 			return false; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case ATTR_ROOT: | 
 | 		return check_index_root(attr, sbi); | 
 |  | 
 | 	case ATTR_STD: | 
 | 		if (rsize < sizeof(struct ATTR_STD_INFO5) && | 
 | 		    rsize != sizeof(struct ATTR_STD_INFO)) { | 
 | 			return false; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case ATTR_LIST: | 
 | 	case ATTR_ID: | 
 | 	case ATTR_SECURE: | 
 | 	case ATTR_LABEL: | 
 | 	case ATTR_VOL_INFO: | 
 | 	case ATTR_DATA: | 
 | 	case ATTR_ALLOC: | 
 | 	case ATTR_BITMAP: | 
 | 	case ATTR_REPARSE: | 
 | 	case ATTR_EA_INFO: | 
 | 	case ATTR_EA: | 
 | 	case ATTR_PROPERTYSET: | 
 | 	case ATTR_LOGGED_UTILITY_STREAM: | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool check_file_record(const struct MFT_REC *rec, | 
 | 				     const struct MFT_REC *rec2, | 
 | 				     struct ntfs_sb_info *sbi) | 
 | { | 
 | 	const struct ATTRIB *attr; | 
 | 	u16 fo = le16_to_cpu(rec->rhdr.fix_off); | 
 | 	u16 fn = le16_to_cpu(rec->rhdr.fix_num); | 
 | 	u16 ao = le16_to_cpu(rec->attr_off); | 
 | 	u32 rs = sbi->record_size; | 
 |  | 
 | 	/* Check the file record header for consistency. */ | 
 | 	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || | 
 | 	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || | 
 | 	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || | 
 | 	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || | 
 | 	    le32_to_cpu(rec->total) != rs) { | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* Loop to check all of the attributes. */ | 
 | 	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; | 
 | 	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { | 
 | 		if (check_attr(rec, attr, sbi)) | 
 | 			continue; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, | 
 | 			    const u64 *rlsn) | 
 | { | 
 | 	u64 lsn; | 
 |  | 
 | 	if (!rlsn) | 
 | 		return true; | 
 |  | 
 | 	lsn = le64_to_cpu(hdr->lsn); | 
 |  | 
 | 	if (hdr->sign == NTFS_HOLE_SIGNATURE) | 
 | 		return false; | 
 |  | 
 | 	if (*rlsn > lsn) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline bool check_if_attr(const struct MFT_REC *rec, | 
 | 				 const struct LOG_REC_HDR *lrh) | 
 | { | 
 | 	u16 ro = le16_to_cpu(lrh->record_off); | 
 | 	u16 o = le16_to_cpu(rec->attr_off); | 
 | 	const struct ATTRIB *attr = Add2Ptr(rec, o); | 
 |  | 
 | 	while (o < ro) { | 
 | 		u32 asize; | 
 |  | 
 | 		if (attr->type == ATTR_END) | 
 | 			break; | 
 |  | 
 | 		asize = le32_to_cpu(attr->size); | 
 | 		if (!asize) | 
 | 			break; | 
 |  | 
 | 		o += asize; | 
 | 		attr = Add2Ptr(attr, asize); | 
 | 	} | 
 |  | 
 | 	return o == ro; | 
 | } | 
 |  | 
 | static inline bool check_if_index_root(const struct MFT_REC *rec, | 
 | 				       const struct LOG_REC_HDR *lrh) | 
 | { | 
 | 	u16 ro = le16_to_cpu(lrh->record_off); | 
 | 	u16 o = le16_to_cpu(rec->attr_off); | 
 | 	const struct ATTRIB *attr = Add2Ptr(rec, o); | 
 |  | 
 | 	while (o < ro) { | 
 | 		u32 asize; | 
 |  | 
 | 		if (attr->type == ATTR_END) | 
 | 			break; | 
 |  | 
 | 		asize = le32_to_cpu(attr->size); | 
 | 		if (!asize) | 
 | 			break; | 
 |  | 
 | 		o += asize; | 
 | 		attr = Add2Ptr(attr, asize); | 
 | 	} | 
 |  | 
 | 	return o == ro && attr->type == ATTR_ROOT; | 
 | } | 
 |  | 
 | static inline bool check_if_root_index(const struct ATTRIB *attr, | 
 | 				       const struct INDEX_HDR *hdr, | 
 | 				       const struct LOG_REC_HDR *lrh) | 
 | { | 
 | 	u16 ao = le16_to_cpu(lrh->attr_off); | 
 | 	u32 de_off = le32_to_cpu(hdr->de_off); | 
 | 	u32 o = PtrOffset(attr, hdr) + de_off; | 
 | 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off); | 
 | 	u32 asize = le32_to_cpu(attr->size); | 
 |  | 
 | 	while (o < ao) { | 
 | 		u16 esize; | 
 |  | 
 | 		if (o >= asize) | 
 | 			break; | 
 |  | 
 | 		esize = le16_to_cpu(e->size); | 
 | 		if (!esize) | 
 | 			break; | 
 |  | 
 | 		o += esize; | 
 | 		e = Add2Ptr(e, esize); | 
 | 	} | 
 |  | 
 | 	return o == ao; | 
 | } | 
 |  | 
 | static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, | 
 | 					u32 attr_off) | 
 | { | 
 | 	u32 de_off = le32_to_cpu(hdr->de_off); | 
 | 	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; | 
 | 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off); | 
 | 	u32 used = le32_to_cpu(hdr->used); | 
 |  | 
 | 	while (o < attr_off) { | 
 | 		u16 esize; | 
 |  | 
 | 		if (de_off >= used) | 
 | 			break; | 
 |  | 
 | 		esize = le16_to_cpu(e->size); | 
 | 		if (!esize) | 
 | 			break; | 
 |  | 
 | 		o += esize; | 
 | 		de_off += esize; | 
 | 		e = Add2Ptr(e, esize); | 
 | 	} | 
 |  | 
 | 	return o == attr_off; | 
 | } | 
 |  | 
 | static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, | 
 | 				    u32 nsize) | 
 | { | 
 | 	u32 asize = le32_to_cpu(attr->size); | 
 | 	int dsize = nsize - asize; | 
 | 	u8 *next = Add2Ptr(attr, asize); | 
 | 	u32 used = le32_to_cpu(rec->used); | 
 |  | 
 | 	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); | 
 |  | 
 | 	rec->used = cpu_to_le32(used + dsize); | 
 | 	attr->size = cpu_to_le32(nsize); | 
 | } | 
 |  | 
 | struct OpenAttr { | 
 | 	struct ATTRIB *attr; | 
 | 	struct runs_tree *run1; | 
 | 	struct runs_tree run0; | 
 | 	struct ntfs_inode *ni; | 
 | 	// CLST rno; | 
 | }; | 
 |  | 
 | /* | 
 |  * cmp_type_and_name | 
 |  * | 
 |  * Return: 0 if 'attr' has the same type and name. | 
 |  */ | 
 | static inline int cmp_type_and_name(const struct ATTRIB *a1, | 
 | 				    const struct ATTRIB *a2) | 
 | { | 
 | 	return a1->type != a2->type || a1->name_len != a2->name_len || | 
 | 	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2), | 
 | 				       a1->name_len * sizeof(short))); | 
 | } | 
 |  | 
 | static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, | 
 | 					 const struct ATTRIB *attr, CLST rno) | 
 | { | 
 | 	struct OPEN_ATTR_ENRTY *oe = NULL; | 
 |  | 
 | 	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { | 
 | 		struct OpenAttr *op_attr; | 
 |  | 
 | 		if (ino_get(&oe->ref) != rno) | 
 | 			continue; | 
 |  | 
 | 		op_attr = (struct OpenAttr *)oe->ptr; | 
 | 		if (!cmp_type_and_name(op_attr->attr, attr)) | 
 | 			return op_attr; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, | 
 | 					     enum ATTR_TYPE type, u64 size, | 
 | 					     const u16 *name, size_t name_len, | 
 | 					     __le16 flags) | 
 | { | 
 | 	struct ATTRIB *attr; | 
 | 	u32 name_size = ALIGN(name_len * sizeof(short), 8); | 
 | 	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); | 
 | 	u32 asize = name_size + | 
 | 		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); | 
 |  | 
 | 	attr = kzalloc(asize, GFP_NOFS); | 
 | 	if (!attr) | 
 | 		return NULL; | 
 |  | 
 | 	attr->type = type; | 
 | 	attr->size = cpu_to_le32(asize); | 
 | 	attr->flags = flags; | 
 | 	attr->non_res = 1; | 
 | 	attr->name_len = name_len; | 
 |  | 
 | 	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); | 
 | 	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); | 
 | 	attr->nres.data_size = cpu_to_le64(size); | 
 | 	attr->nres.valid_size = attr->nres.data_size; | 
 | 	if (is_ext) { | 
 | 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE; | 
 | 		if (is_attr_compressed(attr)) | 
 | 			attr->nres.c_unit = NTFS_LZNT_CUNIT; | 
 |  | 
 | 		attr->nres.run_off = | 
 | 			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); | 
 | 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, | 
 | 		       name_len * sizeof(short)); | 
 | 	} else { | 
 | 		attr->name_off = SIZEOF_NONRESIDENT_LE; | 
 | 		attr->nres.run_off = | 
 | 			cpu_to_le16(SIZEOF_NONRESIDENT + name_size); | 
 | 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, | 
 | 		       name_len * sizeof(short)); | 
 | 	} | 
 |  | 
 | 	return attr; | 
 | } | 
 |  | 
 | /* | 
 |  * do_action - Common routine for the Redo and Undo Passes. | 
 |  * @rlsn: If it is NULL then undo. | 
 |  */ | 
 | static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, | 
 | 		     const struct LOG_REC_HDR *lrh, u32 op, void *data, | 
 | 		     u32 dlen, u32 rec_len, const u64 *rlsn) | 
 | { | 
 | 	int err = 0; | 
 | 	struct ntfs_sb_info *sbi = log->ni->mi.sbi; | 
 | 	struct inode *inode = NULL, *inode_parent; | 
 | 	struct mft_inode *mi = NULL, *mi2_child = NULL; | 
 | 	CLST rno = 0, rno_base = 0; | 
 | 	struct INDEX_BUFFER *ib = NULL; | 
 | 	struct MFT_REC *rec = NULL; | 
 | 	struct ATTRIB *attr = NULL, *attr2; | 
 | 	struct INDEX_HDR *hdr; | 
 | 	struct INDEX_ROOT *root; | 
 | 	struct NTFS_DE *e, *e1, *e2; | 
 | 	struct NEW_ATTRIBUTE_SIZES *new_sz; | 
 | 	struct ATTR_FILE_NAME *fname; | 
 | 	struct OpenAttr *oa, *oa2; | 
 | 	u32 nsize, t32, asize, used, esize, off, bits; | 
 | 	u16 id, id2; | 
 | 	u32 record_size = sbi->record_size; | 
 | 	u64 t64; | 
 | 	u16 roff = le16_to_cpu(lrh->record_off); | 
 | 	u16 aoff = le16_to_cpu(lrh->attr_off); | 
 | 	u64 lco = 0; | 
 | 	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; | 
 | 	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; | 
 | 	u64 vbo = cbo + tvo; | 
 | 	void *buffer_le = NULL; | 
 | 	u32 bytes = 0; | 
 | 	bool a_dirty = false; | 
 | 	u16 data_off; | 
 |  | 
 | 	oa = oe->ptr; | 
 |  | 
 | 	/* Big switch to prepare. */ | 
 | 	switch (op) { | 
 | 	/* ============================================================ | 
 | 	 * Process MFT records, as described by the current log record. | 
 | 	 * ============================================================ | 
 | 	 */ | 
 | 	case InitializeFileRecordSegment: | 
 | 	case DeallocateFileRecordSegment: | 
 | 	case WriteEndOfFileRecordSegment: | 
 | 	case CreateAttribute: | 
 | 	case DeleteAttribute: | 
 | 	case UpdateResidentValue: | 
 | 	case UpdateMappingPairs: | 
 | 	case SetNewAttributeSizes: | 
 | 	case AddIndexEntryRoot: | 
 | 	case DeleteIndexEntryRoot: | 
 | 	case SetIndexEntryVcnRoot: | 
 | 	case UpdateFileNameRoot: | 
 | 	case UpdateRecordDataRoot: | 
 | 	case ZeroEndOfFileRecord: | 
 | 		rno = vbo >> sbi->record_bits; | 
 | 		inode = ilookup(sbi->sb, rno); | 
 | 		if (inode) { | 
 | 			mi = &ntfs_i(inode)->mi; | 
 | 		} else { | 
 | 			/* Read from disk. */ | 
 | 			err = mi_get(sbi, rno, &mi); | 
 | 			if (err && op == InitializeFileRecordSegment) { | 
 | 				mi = kzalloc(sizeof(struct mft_inode), | 
 | 					     GFP_NOFS); | 
 | 				if (!mi) | 
 | 					return -ENOMEM; | 
 | 				err = mi_format_new(mi, sbi, rno, 0, false); | 
 | 			} | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 		rec = mi->mrec; | 
 |  | 
 | 		if (op == DeallocateFileRecordSegment) | 
 | 			goto skip_load_parent; | 
 |  | 
 | 		if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) | 
 | 			goto dirty_vol; | 
 | 		if (!check_lsn(&rec->rhdr, rlsn)) | 
 | 			goto out; | 
 | 		if (!check_file_record(rec, NULL, sbi)) | 
 | 			goto dirty_vol; | 
 | 		attr = Add2Ptr(rec, roff); | 
 |  | 
 | 		if (is_rec_base(rec) || InitializeFileRecordSegment == op) { | 
 | 			rno_base = rno; | 
 | 			goto skip_load_parent; | 
 | 		} | 
 |  | 
 | 		rno_base = ino_get(&rec->parent_ref); | 
 | 		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); | 
 | 		if (IS_ERR(inode_parent)) | 
 | 			goto skip_load_parent; | 
 |  | 
 | 		if (is_bad_inode(inode_parent)) { | 
 | 			iput(inode_parent); | 
 | 			goto skip_load_parent; | 
 | 		} | 
 |  | 
 | 		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { | 
 | 			iput(inode_parent); | 
 | 		} else { | 
 | 			if (mi2_child->mrec != mi->mrec) | 
 | 				memcpy(mi2_child->mrec, mi->mrec, | 
 | 				       sbi->record_size); | 
 |  | 
 | 			if (inode) | 
 | 				iput(inode); | 
 | 			else | 
 | 				mi_put(mi); | 
 |  | 
 | 			inode = inode_parent; | 
 | 			mi = mi2_child; | 
 | 			rec = mi2_child->mrec; | 
 | 			attr = Add2Ptr(rec, roff); | 
 | 		} | 
 |  | 
 | skip_load_parent: | 
 | 		inode_parent = NULL; | 
 | 		break; | 
 |  | 
 | 	/* | 
 | 	 * Process attributes, as described by the current log record. | 
 | 	 */ | 
 | 	case UpdateNonresidentValue: | 
 | 	case AddIndexEntryAllocation: | 
 | 	case DeleteIndexEntryAllocation: | 
 | 	case WriteEndOfIndexBuffer: | 
 | 	case SetIndexEntryVcnAllocation: | 
 | 	case UpdateFileNameAllocation: | 
 | 	case SetBitsInNonresidentBitMap: | 
 | 	case ClearBitsInNonresidentBitMap: | 
 | 	case UpdateRecordDataAllocation: | 
 | 		attr = oa->attr; | 
 | 		bytes = UpdateNonresidentValue == op ? dlen : 0; | 
 | 		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; | 
 |  | 
 | 		if (attr->type == ATTR_ALLOC) { | 
 | 			t32 = le32_to_cpu(oe->bytes_per_index); | 
 | 			if (bytes < t32) | 
 | 				bytes = t32; | 
 | 		} | 
 |  | 
 | 		if (!bytes) | 
 | 			bytes = lco - cbo; | 
 |  | 
 | 		bytes += roff; | 
 | 		if (attr->type == ATTR_ALLOC) | 
 | 			bytes = (bytes + 511) & ~511; // align | 
 |  | 
 | 		buffer_le = kmalloc(bytes, GFP_NOFS); | 
 | 		if (!buffer_le) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, | 
 | 				       NULL); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		if (attr->type == ATTR_ALLOC && *(int *)buffer_le) | 
 | 			ntfs_fix_post_read(buffer_le, bytes, false); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	/* Big switch to do operation. */ | 
 | 	switch (op) { | 
 | 	case InitializeFileRecordSegment: | 
 | 		if (roff + dlen > record_size) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		memcpy(Add2Ptr(rec, roff), data, dlen); | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case DeallocateFileRecordSegment: | 
 | 		clear_rec_inuse(rec); | 
 | 		le16_add_cpu(&rec->seq, 1); | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case WriteEndOfFileRecordSegment: | 
 | 		attr2 = (struct ATTRIB *)data; | 
 | 		if (!check_if_attr(rec, lrh) || roff + dlen > record_size) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		memmove(attr, attr2, dlen); | 
 | 		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); | 
 |  | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case CreateAttribute: | 
 | 		attr2 = (struct ATTRIB *)data; | 
 | 		asize = le32_to_cpu(attr2->size); | 
 | 		used = le32_to_cpu(rec->used); | 
 |  | 
 | 		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || | 
 | 		    !IS_ALIGNED(asize, 8) || | 
 | 		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || | 
 | 		    dlen > record_size - used) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		memmove(Add2Ptr(attr, asize), attr, used - roff); | 
 | 		memcpy(attr, attr2, asize); | 
 |  | 
 | 		rec->used = cpu_to_le32(used + asize); | 
 | 		id = le16_to_cpu(rec->next_attr_id); | 
 | 		id2 = le16_to_cpu(attr2->id); | 
 | 		if (id <= id2) | 
 | 			rec->next_attr_id = cpu_to_le16(id2 + 1); | 
 | 		if (is_attr_indexed(attr)) | 
 | 			le16_add_cpu(&rec->hard_links, 1); | 
 |  | 
 | 		oa2 = find_loaded_attr(log, attr, rno_base); | 
 | 		if (oa2) { | 
 | 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size), | 
 | 					   GFP_NOFS); | 
 | 			if (p2) { | 
 | 				// run_close(oa2->run1); | 
 | 				kfree(oa2->attr); | 
 | 				oa2->attr = p2; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case DeleteAttribute: | 
 | 		asize = le32_to_cpu(attr->size); | 
 | 		used = le32_to_cpu(rec->used); | 
 |  | 
 | 		if (!check_if_attr(rec, lrh)) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		rec->used = cpu_to_le32(used - asize); | 
 | 		if (is_attr_indexed(attr)) | 
 | 			le16_add_cpu(&rec->hard_links, -1); | 
 |  | 
 | 		memmove(attr, Add2Ptr(attr, asize), used - asize - roff); | 
 |  | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case UpdateResidentValue: | 
 | 		nsize = aoff + dlen; | 
 |  | 
 | 		if (!check_if_attr(rec, lrh)) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		asize = le32_to_cpu(attr->size); | 
 | 		used = le32_to_cpu(rec->used); | 
 |  | 
 | 		if (lrh->redo_len == lrh->undo_len) { | 
 | 			if (nsize > asize) | 
 | 				goto dirty_vol; | 
 | 			goto move_data; | 
 | 		} | 
 |  | 
 | 		if (nsize > asize && nsize - asize > record_size - used) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		nsize = ALIGN(nsize, 8); | 
 | 		data_off = le16_to_cpu(attr->res.data_off); | 
 |  | 
 | 		if (nsize < asize) { | 
 | 			memmove(Add2Ptr(attr, aoff), data, dlen); | 
 | 			data = NULL; // To skip below memmove(). | 
 | 		} | 
 |  | 
 | 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), | 
 | 			used - le16_to_cpu(lrh->record_off) - asize); | 
 |  | 
 | 		rec->used = cpu_to_le32(used + nsize - asize); | 
 | 		attr->size = cpu_to_le32(nsize); | 
 | 		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); | 
 |  | 
 | move_data: | 
 | 		if (data) | 
 | 			memmove(Add2Ptr(attr, aoff), data, dlen); | 
 |  | 
 | 		oa2 = find_loaded_attr(log, attr, rno_base); | 
 | 		if (oa2) { | 
 | 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size), | 
 | 					   GFP_NOFS); | 
 | 			if (p2) { | 
 | 				// run_close(&oa2->run0); | 
 | 				oa2->run1 = &oa2->run0; | 
 | 				kfree(oa2->attr); | 
 | 				oa2->attr = p2; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case UpdateMappingPairs: | 
 | 		nsize = aoff + dlen; | 
 | 		asize = le32_to_cpu(attr->size); | 
 | 		used = le32_to_cpu(rec->used); | 
 |  | 
 | 		if (!check_if_attr(rec, lrh) || !attr->non_res || | 
 | 		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || | 
 | 		    (nsize > asize && nsize - asize > record_size - used)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		nsize = ALIGN(nsize, 8); | 
 |  | 
 | 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), | 
 | 			used - le16_to_cpu(lrh->record_off) - asize); | 
 | 		rec->used = cpu_to_le32(used + nsize - asize); | 
 | 		attr->size = cpu_to_le32(nsize); | 
 | 		memmove(Add2Ptr(attr, aoff), data, dlen); | 
 |  | 
 | 		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), | 
 | 					attr_run(attr), &t64)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		attr->nres.evcn = cpu_to_le64(t64); | 
 | 		oa2 = find_loaded_attr(log, attr, rno_base); | 
 | 		if (oa2 && oa2->attr->non_res) | 
 | 			oa2->attr->nres.evcn = attr->nres.evcn; | 
 |  | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case SetNewAttributeSizes: | 
 | 		new_sz = data; | 
 | 		if (!check_if_attr(rec, lrh) || !attr->non_res) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		attr->nres.alloc_size = new_sz->alloc_size; | 
 | 		attr->nres.data_size = new_sz->data_size; | 
 | 		attr->nres.valid_size = new_sz->valid_size; | 
 |  | 
 | 		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) | 
 | 			attr->nres.total_size = new_sz->total_size; | 
 |  | 
 | 		oa2 = find_loaded_attr(log, attr, rno_base); | 
 | 		if (oa2) { | 
 | 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size), | 
 | 					   GFP_NOFS); | 
 | 			if (p2) { | 
 | 				kfree(oa2->attr); | 
 | 				oa2->attr = p2; | 
 | 			} | 
 | 		} | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case AddIndexEntryRoot: | 
 | 		e = (struct NTFS_DE *)data; | 
 | 		esize = le16_to_cpu(e->size); | 
 | 		root = resident_data(attr); | 
 | 		hdr = &root->ihdr; | 
 | 		used = le32_to_cpu(hdr->used); | 
 |  | 
 | 		if (!check_if_index_root(rec, lrh) || | 
 | 		    !check_if_root_index(attr, hdr, lrh) || | 
 | 		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || | 
 | 		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); | 
 |  | 
 | 		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); | 
 |  | 
 | 		memmove(Add2Ptr(e1, esize), e1, | 
 | 			PtrOffset(e1, Add2Ptr(hdr, used))); | 
 | 		memmove(e1, e, esize); | 
 |  | 
 | 		le32_add_cpu(&attr->res.data_size, esize); | 
 | 		hdr->used = cpu_to_le32(used + esize); | 
 | 		le32_add_cpu(&hdr->total, esize); | 
 |  | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case DeleteIndexEntryRoot: | 
 | 		root = resident_data(attr); | 
 | 		hdr = &root->ihdr; | 
 | 		used = le32_to_cpu(hdr->used); | 
 |  | 
 | 		if (!check_if_index_root(rec, lrh) || | 
 | 		    !check_if_root_index(attr, hdr, lrh)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); | 
 | 		esize = le16_to_cpu(e1->size); | 
 | 		e2 = Add2Ptr(e1, esize); | 
 |  | 
 | 		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); | 
 |  | 
 | 		le32_sub_cpu(&attr->res.data_size, esize); | 
 | 		hdr->used = cpu_to_le32(used - esize); | 
 | 		le32_sub_cpu(&hdr->total, esize); | 
 |  | 
 | 		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); | 
 |  | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case SetIndexEntryVcnRoot: | 
 | 		root = resident_data(attr); | 
 | 		hdr = &root->ihdr; | 
 |  | 
 | 		if (!check_if_index_root(rec, lrh) || | 
 | 		    !check_if_root_index(attr, hdr, lrh)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); | 
 |  | 
 | 		de_set_vbn_le(e, *(__le64 *)data); | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case UpdateFileNameRoot: | 
 | 		root = resident_data(attr); | 
 | 		hdr = &root->ihdr; | 
 |  | 
 | 		if (!check_if_index_root(rec, lrh) || | 
 | 		    !check_if_root_index(attr, hdr, lrh)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); | 
 | 		fname = (struct ATTR_FILE_NAME *)(e + 1); | 
 | 		memmove(&fname->dup, data, sizeof(fname->dup)); // | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case UpdateRecordDataRoot: | 
 | 		root = resident_data(attr); | 
 | 		hdr = &root->ihdr; | 
 |  | 
 | 		if (!check_if_index_root(rec, lrh) || | 
 | 		    !check_if_root_index(attr, hdr, lrh)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); | 
 |  | 
 | 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); | 
 |  | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case ZeroEndOfFileRecord: | 
 | 		if (roff + dlen > record_size) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		memset(attr, 0, dlen); | 
 | 		mi->dirty = true; | 
 | 		break; | 
 |  | 
 | 	case UpdateNonresidentValue: | 
 | 		if (lco < cbo + roff + dlen) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		memcpy(Add2Ptr(buffer_le, roff), data, dlen); | 
 |  | 
 | 		a_dirty = true; | 
 | 		if (attr->type == ATTR_ALLOC) | 
 | 			ntfs_fix_pre_write(buffer_le, bytes); | 
 | 		break; | 
 |  | 
 | 	case AddIndexEntryAllocation: | 
 | 		ib = Add2Ptr(buffer_le, roff); | 
 | 		hdr = &ib->ihdr; | 
 | 		e = data; | 
 | 		esize = le16_to_cpu(e->size); | 
 | 		e1 = Add2Ptr(ib, aoff); | 
 |  | 
 | 		if (is_baad(&ib->rhdr)) | 
 | 			goto dirty_vol; | 
 | 		if (!check_lsn(&ib->rhdr, rlsn)) | 
 | 			goto out; | 
 |  | 
 | 		used = le32_to_cpu(hdr->used); | 
 |  | 
 | 		if (!check_index_buffer(ib, bytes) || | 
 | 		    !check_if_alloc_index(hdr, aoff) || | 
 | 		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || | 
 | 		    used + esize > le32_to_cpu(hdr->total)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		memmove(Add2Ptr(e1, esize), e1, | 
 | 			PtrOffset(e1, Add2Ptr(hdr, used))); | 
 | 		memcpy(e1, e, esize); | 
 |  | 
 | 		hdr->used = cpu_to_le32(used + esize); | 
 |  | 
 | 		a_dirty = true; | 
 |  | 
 | 		ntfs_fix_pre_write(&ib->rhdr, bytes); | 
 | 		break; | 
 |  | 
 | 	case DeleteIndexEntryAllocation: | 
 | 		ib = Add2Ptr(buffer_le, roff); | 
 | 		hdr = &ib->ihdr; | 
 | 		e = Add2Ptr(ib, aoff); | 
 | 		esize = le16_to_cpu(e->size); | 
 |  | 
 | 		if (is_baad(&ib->rhdr)) | 
 | 			goto dirty_vol; | 
 | 		if (!check_lsn(&ib->rhdr, rlsn)) | 
 | 			goto out; | 
 |  | 
 | 		if (!check_index_buffer(ib, bytes) || | 
 | 		    !check_if_alloc_index(hdr, aoff)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		e1 = Add2Ptr(e, esize); | 
 | 		nsize = esize; | 
 | 		used = le32_to_cpu(hdr->used); | 
 |  | 
 | 		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); | 
 |  | 
 | 		hdr->used = cpu_to_le32(used - nsize); | 
 |  | 
 | 		a_dirty = true; | 
 |  | 
 | 		ntfs_fix_pre_write(&ib->rhdr, bytes); | 
 | 		break; | 
 |  | 
 | 	case WriteEndOfIndexBuffer: | 
 | 		ib = Add2Ptr(buffer_le, roff); | 
 | 		hdr = &ib->ihdr; | 
 | 		e = Add2Ptr(ib, aoff); | 
 |  | 
 | 		if (is_baad(&ib->rhdr)) | 
 | 			goto dirty_vol; | 
 | 		if (!check_lsn(&ib->rhdr, rlsn)) | 
 | 			goto out; | 
 | 		if (!check_index_buffer(ib, bytes) || | 
 | 		    !check_if_alloc_index(hdr, aoff) || | 
 | 		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + | 
 | 					  le32_to_cpu(hdr->total)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); | 
 | 		memmove(e, data, dlen); | 
 |  | 
 | 		a_dirty = true; | 
 | 		ntfs_fix_pre_write(&ib->rhdr, bytes); | 
 | 		break; | 
 |  | 
 | 	case SetIndexEntryVcnAllocation: | 
 | 		ib = Add2Ptr(buffer_le, roff); | 
 | 		hdr = &ib->ihdr; | 
 | 		e = Add2Ptr(ib, aoff); | 
 |  | 
 | 		if (is_baad(&ib->rhdr)) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		if (!check_lsn(&ib->rhdr, rlsn)) | 
 | 			goto out; | 
 | 		if (!check_index_buffer(ib, bytes) || | 
 | 		    !check_if_alloc_index(hdr, aoff)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		de_set_vbn_le(e, *(__le64 *)data); | 
 |  | 
 | 		a_dirty = true; | 
 | 		ntfs_fix_pre_write(&ib->rhdr, bytes); | 
 | 		break; | 
 |  | 
 | 	case UpdateFileNameAllocation: | 
 | 		ib = Add2Ptr(buffer_le, roff); | 
 | 		hdr = &ib->ihdr; | 
 | 		e = Add2Ptr(ib, aoff); | 
 |  | 
 | 		if (is_baad(&ib->rhdr)) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		if (!check_lsn(&ib->rhdr, rlsn)) | 
 | 			goto out; | 
 | 		if (!check_index_buffer(ib, bytes) || | 
 | 		    !check_if_alloc_index(hdr, aoff)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		fname = (struct ATTR_FILE_NAME *)(e + 1); | 
 | 		memmove(&fname->dup, data, sizeof(fname->dup)); | 
 |  | 
 | 		a_dirty = true; | 
 | 		ntfs_fix_pre_write(&ib->rhdr, bytes); | 
 | 		break; | 
 |  | 
 | 	case SetBitsInNonresidentBitMap: | 
 | 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); | 
 | 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); | 
 |  | 
 | 		if (cbo + (off + 7) / 8 > lco || | 
 | 		    cbo + ((off + bits + 7) / 8) > lco) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits); | 
 | 		a_dirty = true; | 
 | 		break; | 
 |  | 
 | 	case ClearBitsInNonresidentBitMap: | 
 | 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); | 
 | 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); | 
 |  | 
 | 		if (cbo + (off + 7) / 8 > lco || | 
 | 		    cbo + ((off + bits + 7) / 8) > lco) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits); | 
 | 		a_dirty = true; | 
 | 		break; | 
 |  | 
 | 	case UpdateRecordDataAllocation: | 
 | 		ib = Add2Ptr(buffer_le, roff); | 
 | 		hdr = &ib->ihdr; | 
 | 		e = Add2Ptr(ib, aoff); | 
 |  | 
 | 		if (is_baad(&ib->rhdr)) | 
 | 			goto dirty_vol; | 
 |  | 
 | 		if (!check_lsn(&ib->rhdr, rlsn)) | 
 | 			goto out; | 
 | 		if (!check_index_buffer(ib, bytes) || | 
 | 		    !check_if_alloc_index(hdr, aoff)) { | 
 | 			goto dirty_vol; | 
 | 		} | 
 |  | 
 | 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); | 
 |  | 
 | 		a_dirty = true; | 
 | 		ntfs_fix_pre_write(&ib->rhdr, bytes); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	if (rlsn) { | 
 | 		__le64 t64 = cpu_to_le64(*rlsn); | 
 |  | 
 | 		if (rec) | 
 | 			rec->rhdr.lsn = t64; | 
 | 		if (ib) | 
 | 			ib->rhdr.lsn = t64; | 
 | 	} | 
 |  | 
 | 	if (mi && mi->dirty) { | 
 | 		err = mi_write(mi, 0); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (a_dirty) { | 
 | 		attr = oa->attr; | 
 | 		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, | 
 | 					0); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | out: | 
 |  | 
 | 	if (inode) | 
 | 		iput(inode); | 
 | 	else if (mi != mi2_child) | 
 | 		mi_put(mi); | 
 |  | 
 | 	kfree(buffer_le); | 
 |  | 
 | 	return err; | 
 |  | 
 | dirty_vol: | 
 | 	log->set_dirty = true; | 
 | 	goto out; | 
 | } | 
 |  | 
 | /* | 
 |  * log_replay - Replays log and empties it. | 
 |  * | 
 |  * This function is called during mount operation. | 
 |  * It replays log and empties it. | 
 |  * Initialized is set false if logfile contains '-1'. | 
 |  */ | 
 | int log_replay(struct ntfs_inode *ni, bool *initialized) | 
 | { | 
 | 	int err; | 
 | 	struct ntfs_sb_info *sbi = ni->mi.sbi; | 
 | 	struct ntfs_log *log; | 
 |  | 
 | 	u64 rec_lsn, checkpt_lsn = 0, rlsn = 0; | 
 | 	struct ATTR_NAME_ENTRY *attr_names = NULL; | 
 | 	u32 attr_names_bytes = 0; | 
 | 	u32 oatbl_bytes = 0; | 
 | 	struct RESTART_TABLE *dptbl = NULL; | 
 | 	struct RESTART_TABLE *trtbl = NULL; | 
 | 	const struct RESTART_TABLE *rt; | 
 | 	struct RESTART_TABLE *oatbl = NULL; | 
 | 	struct inode *inode; | 
 | 	struct OpenAttr *oa; | 
 | 	struct ntfs_inode *ni_oe; | 
 | 	struct ATTRIB *attr = NULL; | 
 | 	u64 size, vcn, undo_next_lsn; | 
 | 	CLST rno, lcn, lcn0, len0, clen; | 
 | 	void *data; | 
 | 	struct NTFS_RESTART *rst = NULL; | 
 | 	struct lcb *lcb = NULL; | 
 | 	struct OPEN_ATTR_ENRTY *oe; | 
 | 	struct ATTR_NAME_ENTRY *ane; | 
 | 	struct TRANSACTION_ENTRY *tr; | 
 | 	struct DIR_PAGE_ENTRY *dp; | 
 | 	u32 i, bytes_per_attr_entry; | 
 | 	u32 vbo, tail, off, dlen; | 
 | 	u32 saved_len, rec_len, transact_id; | 
 | 	bool use_second_page; | 
 | 	struct RESTART_AREA *ra2, *ra = NULL; | 
 | 	struct CLIENT_REC *ca, *cr; | 
 | 	__le16 client; | 
 | 	struct RESTART_HDR *rh; | 
 | 	const struct LFS_RECORD_HDR *frh; | 
 | 	const struct LOG_REC_HDR *lrh; | 
 | 	bool is_mapped; | 
 | 	bool is_ro = sb_rdonly(sbi->sb); | 
 | 	u64 t64; | 
 | 	u16 t16; | 
 | 	u32 t32; | 
 |  | 
 | 	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); | 
 | 	if (!log) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	log->ni = ni; | 
 | 	log->l_size = log->orig_file_size = ni->vfs_inode.i_size; | 
 |  | 
 | 	/* Get the size of page. NOTE: To replay we can use default page. */ | 
 | #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 | 
 | 	log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true); | 
 | #else | 
 | 	log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false); | 
 | #endif | 
 | 	if (!log->page_size) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	log->one_page_buf = kmalloc(log->page_size, GFP_NOFS); | 
 | 	if (!log->one_page_buf) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	log->page_mask = log->page_size - 1; | 
 | 	log->page_bits = blksize_bits(log->page_size); | 
 |  | 
 | 	/* Look for a restart area on the disk. */ | 
 | 	err = log_read_rst(log, true, &log->rst_info); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* remember 'initialized' */ | 
 | 	*initialized = log->rst_info.initialized; | 
 |  | 
 | 	if (!log->rst_info.restart) { | 
 | 		if (log->rst_info.initialized) { | 
 | 			/* No restart area but the file is not initialized. */ | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		log_init_pg_hdr(log, 1, 1); | 
 | 		log_create(log, 0, get_random_u32(), false, false); | 
 |  | 
 | 		ra = log_create_ra(log); | 
 | 		if (!ra) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		log->ra = ra; | 
 | 		log->init_ra = true; | 
 |  | 
 | 		goto process_log; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the restart offset above wasn't zero then we won't | 
 | 	 * look for a second restart. | 
 | 	 */ | 
 | 	if (log->rst_info.vbo) | 
 | 		goto check_restart_area; | 
 |  | 
 | 	err = log_read_rst(log, false, &log->rst_info2); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Determine which restart area to use. */ | 
 | 	if (!log->rst_info2.restart || | 
 | 	    log->rst_info2.last_lsn <= log->rst_info.last_lsn) | 
 | 		goto use_first_page; | 
 |  | 
 | 	use_second_page = true; | 
 |  | 
 | 	if (log->rst_info.chkdsk_was_run && | 
 | 	    log->page_size != log->rst_info.vbo) { | 
 | 		struct RECORD_PAGE_HDR *sp = NULL; | 
 | 		bool usa_error; | 
 |  | 
 | 		if (!read_log_page(log, log->page_size, &sp, &usa_error) && | 
 | 		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { | 
 | 			use_second_page = false; | 
 | 		} | 
 | 		kfree(sp); | 
 | 	} | 
 |  | 
 | 	if (use_second_page) { | 
 | 		kfree(log->rst_info.r_page); | 
 | 		memcpy(&log->rst_info, &log->rst_info2, | 
 | 		       sizeof(struct restart_info)); | 
 | 		log->rst_info2.r_page = NULL; | 
 | 	} | 
 |  | 
 | use_first_page: | 
 | 	kfree(log->rst_info2.r_page); | 
 |  | 
 | check_restart_area: | 
 | 	/* | 
 | 	 * If the restart area is at offset 0, we want | 
 | 	 * to write the second restart area first. | 
 | 	 */ | 
 | 	log->init_ra = !!log->rst_info.vbo; | 
 |  | 
 | 	/* If we have a valid page then grab a pointer to the restart area. */ | 
 | 	ra2 = log->rst_info.valid_page ? | 
 | 		      Add2Ptr(log->rst_info.r_page, | 
 | 			      le16_to_cpu(log->rst_info.r_page->ra_off)) : | 
 | 		      NULL; | 
 |  | 
 | 	if (log->rst_info.chkdsk_was_run || | 
 | 	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { | 
 | 		bool wrapped = false; | 
 | 		bool use_multi_page = false; | 
 | 		u32 open_log_count; | 
 |  | 
 | 		/* Do some checks based on whether we have a valid log page. */ | 
 | 		open_log_count = log->rst_info.valid_page ? | 
 | 					 le32_to_cpu(ra2->open_log_count) : | 
 | 					 get_random_u32(); | 
 |  | 
 | 		log_init_pg_hdr(log, 1, 1); | 
 |  | 
 | 		log_create(log, log->rst_info.last_lsn, open_log_count, wrapped, | 
 | 			   use_multi_page); | 
 |  | 
 | 		ra = log_create_ra(log); | 
 | 		if (!ra) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		log->ra = ra; | 
 |  | 
 | 		/* Put the restart areas and initialize | 
 | 		 * the log file as required. | 
 | 		 */ | 
 | 		goto process_log; | 
 | 	} | 
 |  | 
 | 	if (!ra2) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the log page or the system page sizes have changed, we can't | 
 | 	 * use the log file. We must use the system page size instead of the | 
 | 	 * default size if there is not a clean shutdown. | 
 | 	 */ | 
 | 	t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size); | 
 | 	if (log->page_size != t32) { | 
 | 		log->l_size = log->orig_file_size; | 
 | 		log->page_size = norm_file_page(t32, &log->l_size, | 
 | 						t32 == DefaultLogPageSize); | 
 | 	} | 
 |  | 
 | 	if (log->page_size != t32 || | 
 | 	    log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	log->page_mask = log->page_size - 1; | 
 | 	log->page_bits = blksize_bits(log->page_size); | 
 |  | 
 | 	/* If the file size has shrunk then we won't mount it. */ | 
 | 	if (log->l_size < le64_to_cpu(ra2->l_size)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver), | 
 | 			le16_to_cpu(log->rst_info.r_page->minor_ver)); | 
 |  | 
 | 	log->l_size = le64_to_cpu(ra2->l_size); | 
 | 	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); | 
 | 	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; | 
 | 	log->seq_num_mask = (8 << log->file_data_bits) - 1; | 
 | 	log->last_lsn = le64_to_cpu(ra2->current_lsn); | 
 | 	log->seq_num = log->last_lsn >> log->file_data_bits; | 
 | 	log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off); | 
 | 	log->restart_size = log->sys_page_size - log->ra_off; | 
 | 	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); | 
 | 	log->ra_size = le16_to_cpu(ra2->ra_len); | 
 | 	log->data_off = le16_to_cpu(ra2->data_off); | 
 | 	log->data_size = log->page_size - log->data_off; | 
 | 	log->reserved = log->data_size - log->record_header_len; | 
 |  | 
 | 	vbo = lsn_to_vbo(log, log->last_lsn); | 
 |  | 
 | 	if (vbo < log->first_page) { | 
 | 		/* This is a pseudo lsn. */ | 
 | 		log->l_flags |= NTFSLOG_NO_LAST_LSN; | 
 | 		log->next_page = log->first_page; | 
 | 		goto find_oldest; | 
 | 	} | 
 |  | 
 | 	/* Find the end of this log record. */ | 
 | 	off = final_log_off(log, log->last_lsn, | 
 | 			    le32_to_cpu(ra2->last_lsn_data_len)); | 
 |  | 
 | 	/* If we wrapped the file then increment the sequence number. */ | 
 | 	if (off <= vbo) { | 
 | 		log->seq_num += 1; | 
 | 		log->l_flags |= NTFSLOG_WRAPPED; | 
 | 	} | 
 |  | 
 | 	/* Now compute the next log page to use. */ | 
 | 	vbo &= ~log->sys_page_mask; | 
 | 	tail = log->page_size - (off & log->page_mask) - 1; | 
 |  | 
 | 	/* | 
 | 	 *If we can fit another log record on the page, | 
 | 	 * move back a page the log file. | 
 | 	 */ | 
 | 	if (tail >= log->record_header_len) { | 
 | 		log->l_flags |= NTFSLOG_REUSE_TAIL; | 
 | 		log->next_page = vbo; | 
 | 	} else { | 
 | 		log->next_page = next_page_off(log, vbo); | 
 | 	} | 
 |  | 
 | find_oldest: | 
 | 	/* | 
 | 	 * Find the oldest client lsn. Use the last | 
 | 	 * flushed lsn as a starting point. | 
 | 	 */ | 
 | 	log->oldest_lsn = log->last_lsn; | 
 | 	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), | 
 | 			  ra2->client_idx[1], &log->oldest_lsn); | 
 | 	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); | 
 |  | 
 | 	if (log->oldest_lsn_off < log->first_page) | 
 | 		log->l_flags |= NTFSLOG_NO_OLDEST_LSN; | 
 |  | 
 | 	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) | 
 | 		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; | 
 |  | 
 | 	log->current_openlog_count = le32_to_cpu(ra2->open_log_count); | 
 | 	log->total_avail_pages = log->l_size - log->first_page; | 
 | 	log->total_avail = log->total_avail_pages >> log->page_bits; | 
 | 	log->max_current_avail = log->total_avail * log->reserved; | 
 | 	log->total_avail = log->total_avail * log->data_size; | 
 |  | 
 | 	log->current_avail = current_log_avail(log); | 
 |  | 
 | 	ra = kzalloc(log->restart_size, GFP_NOFS); | 
 | 	if (!ra) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	log->ra = ra; | 
 |  | 
 | 	t16 = le16_to_cpu(ra2->client_off); | 
 | 	if (t16 == offsetof(struct RESTART_AREA, clients)) { | 
 | 		memcpy(ra, ra2, log->ra_size); | 
 | 	} else { | 
 | 		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); | 
 | 		memcpy(ra->clients, Add2Ptr(ra2, t16), | 
 | 		       le16_to_cpu(ra2->ra_len) - t16); | 
 |  | 
 | 		log->current_openlog_count = get_random_u32(); | 
 | 		ra->open_log_count = cpu_to_le32(log->current_openlog_count); | 
 | 		log->ra_size = offsetof(struct RESTART_AREA, clients) + | 
 | 			       sizeof(struct CLIENT_REC); | 
 | 		ra->client_off = | 
 | 			cpu_to_le16(offsetof(struct RESTART_AREA, clients)); | 
 | 		ra->ra_len = cpu_to_le16(log->ra_size); | 
 | 	} | 
 |  | 
 | 	le32_add_cpu(&ra->open_log_count, 1); | 
 |  | 
 | 	/* Now we need to walk through looking for the last lsn. */ | 
 | 	err = last_log_lsn(log); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	log->current_avail = current_log_avail(log); | 
 |  | 
 | 	/* Remember which restart area to write first. */ | 
 | 	log->init_ra = log->rst_info.vbo; | 
 |  | 
 | process_log: | 
 | 	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ | 
 | 	switch ((log->major_ver << 16) + log->minor_ver) { | 
 | 	case 0x10000: | 
 | 	case 0x10001: | 
 | 	case 0x20000: | 
 | 		break; | 
 | 	default: | 
 | 		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", | 
 | 			  log->major_ver, log->minor_ver); | 
 | 		err = -EOPNOTSUPP; | 
 | 		log->set_dirty = true; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* One client "NTFS" per logfile. */ | 
 | 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); | 
 |  | 
 | 	for (client = ra->client_idx[1];; client = cr->next_client) { | 
 | 		if (client == LFS_NO_CLIENT_LE) { | 
 | 			/* Insert "NTFS" client LogFile. */ | 
 | 			client = ra->client_idx[0]; | 
 | 			if (client == LFS_NO_CLIENT_LE) { | 
 | 				err = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			t16 = le16_to_cpu(client); | 
 | 			cr = ca + t16; | 
 |  | 
 | 			remove_client(ca, cr, &ra->client_idx[0]); | 
 |  | 
 | 			cr->restart_lsn = 0; | 
 | 			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); | 
 | 			cr->name_bytes = cpu_to_le32(8); | 
 | 			cr->name[0] = cpu_to_le16('N'); | 
 | 			cr->name[1] = cpu_to_le16('T'); | 
 | 			cr->name[2] = cpu_to_le16('F'); | 
 | 			cr->name[3] = cpu_to_le16('S'); | 
 |  | 
 | 			add_client(ca, t16, &ra->client_idx[1]); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		cr = ca + le16_to_cpu(client); | 
 |  | 
 | 		if (cpu_to_le32(8) == cr->name_bytes && | 
 | 		    cpu_to_le16('N') == cr->name[0] && | 
 | 		    cpu_to_le16('T') == cr->name[1] && | 
 | 		    cpu_to_le16('F') == cr->name[2] && | 
 | 		    cpu_to_le16('S') == cr->name[3]) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Update the client handle with the client block information. */ | 
 | 	log->client_id.seq_num = cr->seq_num; | 
 | 	log->client_id.client_idx = client; | 
 |  | 
 | 	err = read_rst_area(log, &rst, &checkpt_lsn); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (!rst) | 
 | 		goto out; | 
 |  | 
 | 	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; | 
 |  | 
 | 	if (rst->check_point_start) | 
 | 		checkpt_lsn = le64_to_cpu(rst->check_point_start); | 
 |  | 
 | 	/* Allocate and Read the Transaction Table. */ | 
 | 	if (!rst->transact_table_len) | 
 | 		goto check_dirty_page_table; /* reduce tab pressure. */ | 
 |  | 
 | 	t64 = le64_to_cpu(rst->transact_table_lsn); | 
 | 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	lrh = lcb->log_rec; | 
 | 	frh = lcb->lrh; | 
 | 	rec_len = le32_to_cpu(frh->client_data_len); | 
 |  | 
 | 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), | 
 | 			   bytes_per_attr_entry)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	t16 = le16_to_cpu(lrh->redo_off); | 
 |  | 
 | 	rt = Add2Ptr(lrh, t16); | 
 | 	t32 = rec_len - t16; | 
 |  | 
 | 	/* Now check that this is a valid restart table. */ | 
 | 	if (!check_rstbl(rt, t32)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trtbl = kmemdup(rt, t32, GFP_NOFS); | 
 | 	if (!trtbl) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	lcb_put(lcb); | 
 | 	lcb = NULL; | 
 |  | 
 | check_dirty_page_table: | 
 | 	/* The next record back should be the Dirty Pages Table. */ | 
 | 	if (!rst->dirty_pages_len) | 
 | 		goto check_attribute_names; /* reduce tab pressure. */ | 
 |  | 
 | 	t64 = le64_to_cpu(rst->dirty_pages_table_lsn); | 
 | 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	lrh = lcb->log_rec; | 
 | 	frh = lcb->lrh; | 
 | 	rec_len = le32_to_cpu(frh->client_data_len); | 
 |  | 
 | 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), | 
 | 			   bytes_per_attr_entry)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	t16 = le16_to_cpu(lrh->redo_off); | 
 |  | 
 | 	rt = Add2Ptr(lrh, t16); | 
 | 	t32 = rec_len - t16; | 
 |  | 
 | 	/* Now check that this is a valid restart table. */ | 
 | 	if (!check_rstbl(rt, t32)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dptbl = kmemdup(rt, t32, GFP_NOFS); | 
 | 	if (!dptbl) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Convert Ra version '0' into version '1'. */ | 
 | 	if (rst->major_ver) | 
 | 		goto end_conv_1; /* reduce tab pressure. */ | 
 |  | 
 | 	dp = NULL; | 
 | 	while ((dp = enum_rstbl(dptbl, dp))) { | 
 | 		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; | 
 | 		// NOTE: Danger. Check for of boundary. | 
 | 		memmove(&dp->vcn, &dp0->vcn_low, | 
 | 			2 * sizeof(u64) + | 
 | 				le32_to_cpu(dp->lcns_follow) * sizeof(u64)); | 
 | 	} | 
 |  | 
 | end_conv_1: | 
 | 	lcb_put(lcb); | 
 | 	lcb = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Go through the table and remove the duplicates, | 
 | 	 * remembering the oldest lsn values. | 
 | 	 */ | 
 | 	if (sbi->cluster_size <= log->page_size) | 
 | 		goto trace_dp_table; /* reduce tab pressure. */ | 
 | 	dp = NULL; | 
 | 	while ((dp = enum_rstbl(dptbl, dp))) { | 
 | 		struct DIR_PAGE_ENTRY *next = dp; | 
 |  | 
 | 		while ((next = enum_rstbl(dptbl, next))) { | 
 | 			if (next->target_attr == dp->target_attr && | 
 | 			    next->vcn == dp->vcn) { | 
 | 				if (le64_to_cpu(next->oldest_lsn) < | 
 | 				    le64_to_cpu(dp->oldest_lsn)) { | 
 | 					dp->oldest_lsn = next->oldest_lsn; | 
 | 				} | 
 |  | 
 | 				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | trace_dp_table: | 
 | check_attribute_names: | 
 | 	/* The next record should be the Attribute Names. */ | 
 | 	if (!rst->attr_names_len) | 
 | 		goto check_attr_table; /* reduce tab pressure. */ | 
 |  | 
 | 	t64 = le64_to_cpu(rst->attr_names_lsn); | 
 | 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	lrh = lcb->log_rec; | 
 | 	frh = lcb->lrh; | 
 | 	rec_len = le32_to_cpu(frh->client_data_len); | 
 |  | 
 | 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), | 
 | 			   bytes_per_attr_entry)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	t32 = lrh_length(lrh); | 
 | 	attr_names_bytes = rec_len - t32; | 
 |  | 
 | 	attr_names = kmemdup(Add2Ptr(lrh, t32), attr_names_bytes, GFP_NOFS); | 
 | 	if (!attr_names) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	lcb_put(lcb); | 
 | 	lcb = NULL; | 
 |  | 
 | check_attr_table: | 
 | 	/* The next record should be the attribute Table. */ | 
 | 	if (!rst->open_attr_len) | 
 | 		goto check_attribute_names2; /* reduce tab pressure. */ | 
 |  | 
 | 	t64 = le64_to_cpu(rst->open_attr_table_lsn); | 
 | 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	lrh = lcb->log_rec; | 
 | 	frh = lcb->lrh; | 
 | 	rec_len = le32_to_cpu(frh->client_data_len); | 
 |  | 
 | 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), | 
 | 			   bytes_per_attr_entry)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	t16 = le16_to_cpu(lrh->redo_off); | 
 |  | 
 | 	rt = Add2Ptr(lrh, t16); | 
 | 	oatbl_bytes = rec_len - t16; | 
 |  | 
 | 	if (!check_rstbl(rt, oatbl_bytes)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	oatbl = kmemdup(rt, oatbl_bytes, GFP_NOFS); | 
 | 	if (!oatbl) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	log->open_attr_tbl = oatbl; | 
 |  | 
 | 	/* Clear all of the Attr pointers. */ | 
 | 	oe = NULL; | 
 | 	while ((oe = enum_rstbl(oatbl, oe))) { | 
 | 		if (!rst->major_ver) { | 
 | 			struct OPEN_ATTR_ENRTY_32 oe0; | 
 |  | 
 | 			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ | 
 | 			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); | 
 |  | 
 | 			oe->bytes_per_index = oe0.bytes_per_index; | 
 | 			oe->type = oe0.type; | 
 | 			oe->is_dirty_pages = oe0.is_dirty_pages; | 
 | 			oe->name_len = 0; | 
 | 			oe->ref = oe0.ref; | 
 | 			oe->open_record_lsn = oe0.open_record_lsn; | 
 | 		} | 
 |  | 
 | 		oe->is_attr_name = 0; | 
 | 		oe->ptr = NULL; | 
 | 	} | 
 |  | 
 | 	lcb_put(lcb); | 
 | 	lcb = NULL; | 
 |  | 
 | check_attribute_names2: | 
 | 	if (attr_names && oatbl) { | 
 | 		off = 0; | 
 | 		for (;;) { | 
 | 			/* Check we can use attribute name entry 'ane'. */ | 
 | 			static_assert(sizeof(*ane) == 4); | 
 | 			if (off + sizeof(*ane) > attr_names_bytes) { | 
 | 				/* just ignore the rest. */ | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			ane = Add2Ptr(attr_names, off); | 
 | 			t16 = le16_to_cpu(ane->off); | 
 | 			if (!t16) { | 
 | 				/* this is the only valid exit. */ | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* Check we can use open attribute entry 'oe'. */ | 
 | 			if (t16 + sizeof(*oe) > oatbl_bytes) { | 
 | 				/* just ignore the rest. */ | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* TODO: Clear table on exit! */ | 
 | 			oe = Add2Ptr(oatbl, t16); | 
 | 			t16 = le16_to_cpu(ane->name_bytes); | 
 | 			off += t16 + sizeof(*ane); | 
 | 			if (off > attr_names_bytes) { | 
 | 				/* just ignore the rest. */ | 
 | 				break; | 
 | 			} | 
 | 			oe->name_len = t16 / sizeof(short); | 
 | 			oe->ptr = ane->name; | 
 | 			oe->is_attr_name = 2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the checkpt_lsn is zero, then this is a freshly | 
 | 	 * formatted disk and we have no work to do. | 
 | 	 */ | 
 | 	if (!checkpt_lsn) { | 
 | 		err = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!oatbl) { | 
 | 		oatbl = init_rsttbl(bytes_per_attr_entry, 8); | 
 | 		if (!oatbl) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	log->open_attr_tbl = oatbl; | 
 |  | 
 | 	/* Start the analysis pass from the Checkpoint lsn. */ | 
 | 	rec_lsn = checkpt_lsn; | 
 |  | 
 | 	/* Read the first lsn. */ | 
 | 	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Loop to read all subsequent records to the end of the log file. */ | 
 | next_log_record_analyze: | 
 | 	err = read_next_log_rec(log, lcb, &rec_lsn); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (!rec_lsn) | 
 | 		goto end_log_records_enumerate; | 
 |  | 
 | 	frh = lcb->lrh; | 
 | 	transact_id = le32_to_cpu(frh->transact_id); | 
 | 	rec_len = le32_to_cpu(frh->client_data_len); | 
 | 	lrh = lcb->log_rec; | 
 |  | 
 | 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The first lsn after the previous lsn remembered | 
 | 	 * the checkpoint is the first candidate for the rlsn. | 
 | 	 */ | 
 | 	if (!rlsn) | 
 | 		rlsn = rec_lsn; | 
 |  | 
 | 	if (LfsClientRecord != frh->record_type) | 
 | 		goto next_log_record_analyze; | 
 |  | 
 | 	/* | 
 | 	 * Now update the Transaction Table for this transaction. If there | 
 | 	 * is no entry present or it is unallocated we allocate the entry. | 
 | 	 */ | 
 | 	if (!trtbl) { | 
 | 		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), | 
 | 				    INITIAL_NUMBER_TRANSACTIONS); | 
 | 		if (!trtbl) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tr = Add2Ptr(trtbl, transact_id); | 
 |  | 
 | 	if (transact_id >= bytes_per_rt(trtbl) || | 
 | 	    tr->next != RESTART_ENTRY_ALLOCATED_LE) { | 
 | 		tr = alloc_rsttbl_from_idx(&trtbl, transact_id); | 
 | 		if (!tr) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		tr->transact_state = TransactionActive; | 
 | 		tr->first_lsn = cpu_to_le64(rec_lsn); | 
 | 	} | 
 |  | 
 | 	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); | 
 |  | 
 | 	/* | 
 | 	 * If this is a compensation log record, then change | 
 | 	 * the undo_next_lsn to be the undo_next_lsn of this record. | 
 | 	 */ | 
 | 	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) | 
 | 		tr->undo_next_lsn = frh->client_undo_next_lsn; | 
 |  | 
 | 	/* Dispatch to handle log record depending on type. */ | 
 | 	switch (le16_to_cpu(lrh->redo_op)) { | 
 | 	case InitializeFileRecordSegment: | 
 | 	case DeallocateFileRecordSegment: | 
 | 	case WriteEndOfFileRecordSegment: | 
 | 	case CreateAttribute: | 
 | 	case DeleteAttribute: | 
 | 	case UpdateResidentValue: | 
 | 	case UpdateNonresidentValue: | 
 | 	case UpdateMappingPairs: | 
 | 	case SetNewAttributeSizes: | 
 | 	case AddIndexEntryRoot: | 
 | 	case DeleteIndexEntryRoot: | 
 | 	case AddIndexEntryAllocation: | 
 | 	case DeleteIndexEntryAllocation: | 
 | 	case WriteEndOfIndexBuffer: | 
 | 	case SetIndexEntryVcnRoot: | 
 | 	case SetIndexEntryVcnAllocation: | 
 | 	case UpdateFileNameRoot: | 
 | 	case UpdateFileNameAllocation: | 
 | 	case SetBitsInNonresidentBitMap: | 
 | 	case ClearBitsInNonresidentBitMap: | 
 | 	case UpdateRecordDataRoot: | 
 | 	case UpdateRecordDataAllocation: | 
 | 	case ZeroEndOfFileRecord: | 
 | 		t16 = le16_to_cpu(lrh->target_attr); | 
 | 		t64 = le64_to_cpu(lrh->target_vcn); | 
 | 		dp = find_dp(dptbl, t16, t64); | 
 |  | 
 | 		if (dp) | 
 | 			goto copy_lcns; | 
 |  | 
 | 		/* | 
 | 		 * Calculate the number of clusters per page the system | 
 | 		 * which wrote the checkpoint, possibly creating the table. | 
 | 		 */ | 
 | 		if (dptbl) { | 
 | 			t32 = (le16_to_cpu(dptbl->size) - | 
 | 			       sizeof(struct DIR_PAGE_ENTRY)) / | 
 | 			      sizeof(u64); | 
 | 		} else { | 
 | 			t32 = log->clst_per_page; | 
 | 			kfree(dptbl); | 
 | 			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), | 
 | 					    32); | 
 | 			if (!dptbl) { | 
 | 				err = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		dp = alloc_rsttbl_idx(&dptbl); | 
 | 		if (!dp) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		dp->target_attr = cpu_to_le32(t16); | 
 | 		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); | 
 | 		dp->lcns_follow = cpu_to_le32(t32); | 
 | 		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); | 
 | 		dp->oldest_lsn = cpu_to_le64(rec_lsn); | 
 |  | 
 | copy_lcns: | 
 | 		/* | 
 | 		 * Copy the Lcns from the log record into the Dirty Page Entry. | 
 | 		 * TODO: For different page size support, must somehow make | 
 | 		 * whole routine a loop, case Lcns do not fit below. | 
 | 		 */ | 
 | 		t16 = le16_to_cpu(lrh->lcns_follow); | 
 | 		for (i = 0; i < t16; i++) { | 
 | 			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - | 
 | 					    le64_to_cpu(dp->vcn)); | 
 | 			dp->page_lcns[j + i] = lrh->page_lcns[i]; | 
 | 		} | 
 |  | 
 | 		goto next_log_record_analyze; | 
 |  | 
 | 	case DeleteDirtyClusters: { | 
 | 		u32 range_count = | 
 | 			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); | 
 | 		const struct LCN_RANGE *r = | 
 | 			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); | 
 |  | 
 | 		/* Loop through all of the Lcn ranges this log record. */ | 
 | 		for (i = 0; i < range_count; i++, r++) { | 
 | 			u64 lcn0 = le64_to_cpu(r->lcn); | 
 | 			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; | 
 |  | 
 | 			dp = NULL; | 
 | 			while ((dp = enum_rstbl(dptbl, dp))) { | 
 | 				u32 j; | 
 |  | 
 | 				t32 = le32_to_cpu(dp->lcns_follow); | 
 | 				for (j = 0; j < t32; j++) { | 
 | 					t64 = le64_to_cpu(dp->page_lcns[j]); | 
 | 					if (t64 >= lcn0 && t64 <= lcn_e) | 
 | 						dp->page_lcns[j] = 0; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		goto next_log_record_analyze; | 
 | 	} | 
 |  | 
 | 	case OpenNonresidentAttribute: | 
 | 		t16 = le16_to_cpu(lrh->target_attr); | 
 | 		if (t16 >= bytes_per_rt(oatbl)) { | 
 | 			/* | 
 | 			 * Compute how big the table needs to be. | 
 | 			 * Add 10 extra entries for some cushion. | 
 | 			 */ | 
 | 			u32 new_e = t16 / le16_to_cpu(oatbl->size); | 
 |  | 
 | 			new_e += 10 - le16_to_cpu(oatbl->used); | 
 |  | 
 | 			oatbl = extend_rsttbl(oatbl, new_e, ~0u); | 
 | 			log->open_attr_tbl = oatbl; | 
 | 			if (!oatbl) { | 
 | 				err = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Point to the entry being opened. */ | 
 | 		oe = alloc_rsttbl_from_idx(&oatbl, t16); | 
 | 		log->open_attr_tbl = oatbl; | 
 | 		if (!oe) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* Initialize this entry from the log record. */ | 
 | 		t16 = le16_to_cpu(lrh->redo_off); | 
 | 		if (!rst->major_ver) { | 
 | 			/* Convert version '0' into version '1'. */ | 
 | 			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); | 
 |  | 
 | 			oe->bytes_per_index = oe0->bytes_per_index; | 
 | 			oe->type = oe0->type; | 
 | 			oe->is_dirty_pages = oe0->is_dirty_pages; | 
 | 			oe->name_len = 0; //oe0.name_len; | 
 | 			oe->ref = oe0->ref; | 
 | 			oe->open_record_lsn = oe0->open_record_lsn; | 
 | 		} else { | 
 | 			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); | 
 | 		} | 
 |  | 
 | 		t16 = le16_to_cpu(lrh->undo_len); | 
 | 		if (t16) { | 
 | 			oe->ptr = kmalloc(t16, GFP_NOFS); | 
 | 			if (!oe->ptr) { | 
 | 				err = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			oe->name_len = t16 / sizeof(short); | 
 | 			memcpy(oe->ptr, | 
 | 			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); | 
 | 			oe->is_attr_name = 1; | 
 | 		} else { | 
 | 			oe->ptr = NULL; | 
 | 			oe->is_attr_name = 0; | 
 | 		} | 
 |  | 
 | 		goto next_log_record_analyze; | 
 |  | 
 | 	case HotFix: | 
 | 		t16 = le16_to_cpu(lrh->target_attr); | 
 | 		t64 = le64_to_cpu(lrh->target_vcn); | 
 | 		dp = find_dp(dptbl, t16, t64); | 
 | 		if (dp) { | 
 | 			size_t j = le64_to_cpu(lrh->target_vcn) - | 
 | 				   le64_to_cpu(dp->vcn); | 
 | 			if (dp->page_lcns[j]) | 
 | 				dp->page_lcns[j] = lrh->page_lcns[0]; | 
 | 		} | 
 | 		goto next_log_record_analyze; | 
 |  | 
 | 	case EndTopLevelAction: | 
 | 		tr = Add2Ptr(trtbl, transact_id); | 
 | 		tr->prev_lsn = cpu_to_le64(rec_lsn); | 
 | 		tr->undo_next_lsn = frh->client_undo_next_lsn; | 
 | 		goto next_log_record_analyze; | 
 |  | 
 | 	case PrepareTransaction: | 
 | 		tr = Add2Ptr(trtbl, transact_id); | 
 | 		tr->transact_state = TransactionPrepared; | 
 | 		goto next_log_record_analyze; | 
 |  | 
 | 	case CommitTransaction: | 
 | 		tr = Add2Ptr(trtbl, transact_id); | 
 | 		tr->transact_state = TransactionCommitted; | 
 | 		goto next_log_record_analyze; | 
 |  | 
 | 	case ForgetTransaction: | 
 | 		free_rsttbl_idx(trtbl, transact_id); | 
 | 		goto next_log_record_analyze; | 
 |  | 
 | 	case Noop: | 
 | 	case OpenAttributeTableDump: | 
 | 	case AttributeNamesDump: | 
 | 	case DirtyPageTableDump: | 
 | 	case TransactionTableDump: | 
 | 		/* The following cases require no action the Analysis Pass. */ | 
 | 		goto next_log_record_analyze; | 
 |  | 
 | 	default: | 
 | 		/* | 
 | 		 * All codes will be explicitly handled. | 
 | 		 * If we see a code we do not expect, then we are trouble. | 
 | 		 */ | 
 | 		goto next_log_record_analyze; | 
 | 	} | 
 |  | 
 | end_log_records_enumerate: | 
 | 	lcb_put(lcb); | 
 | 	lcb = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Scan the Dirty Page Table and Transaction Table for | 
 | 	 * the lowest lsn, and return it as the Redo lsn. | 
 | 	 */ | 
 | 	dp = NULL; | 
 | 	while ((dp = enum_rstbl(dptbl, dp))) { | 
 | 		t64 = le64_to_cpu(dp->oldest_lsn); | 
 | 		if (t64 && t64 < rlsn) | 
 | 			rlsn = t64; | 
 | 	} | 
 |  | 
 | 	tr = NULL; | 
 | 	while ((tr = enum_rstbl(trtbl, tr))) { | 
 | 		t64 = le64_to_cpu(tr->first_lsn); | 
 | 		if (t64 && t64 < rlsn) | 
 | 			rlsn = t64; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only proceed if the Dirty Page Table or Transaction | 
 | 	 * table are not empty. | 
 | 	 */ | 
 | 	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) | 
 | 		goto end_replay; | 
 |  | 
 | 	sbi->flags |= NTFS_FLAGS_NEED_REPLAY; | 
 | 	if (is_ro) | 
 | 		goto out; | 
 |  | 
 | 	/* Reopen all of the attributes with dirty pages. */ | 
 | 	oe = NULL; | 
 | next_open_attribute: | 
 |  | 
 | 	oe = enum_rstbl(oatbl, oe); | 
 | 	if (!oe) { | 
 | 		err = 0; | 
 | 		dp = NULL; | 
 | 		goto next_dirty_page; | 
 | 	} | 
 |  | 
 | 	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); | 
 | 	if (!oa) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); | 
 | 	if (IS_ERR(inode)) | 
 | 		goto fake_attr; | 
 |  | 
 | 	if (is_bad_inode(inode)) { | 
 | 		iput(inode); | 
 | fake_attr: | 
 | 		if (oa->ni) { | 
 | 			iput(&oa->ni->vfs_inode); | 
 | 			oa->ni = NULL; | 
 | 		} | 
 |  | 
 | 		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, | 
 | 					      oe->name_len, 0); | 
 | 		if (!attr) { | 
 | 			kfree(oa); | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		oa->attr = attr; | 
 | 		oa->run1 = &oa->run0; | 
 | 		goto final_oe; | 
 | 	} | 
 |  | 
 | 	ni_oe = ntfs_i(inode); | 
 | 	oa->ni = ni_oe; | 
 |  | 
 | 	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, | 
 | 			    NULL, NULL); | 
 |  | 
 | 	if (!attr) | 
 | 		goto fake_attr; | 
 |  | 
 | 	t32 = le32_to_cpu(attr->size); | 
 | 	oa->attr = kmemdup(attr, t32, GFP_NOFS); | 
 | 	if (!oa->attr) | 
 | 		goto fake_attr; | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode)) { | 
 | 		if (attr->type == ATTR_DATA && !attr->name_len) { | 
 | 			oa->run1 = &ni_oe->file.run; | 
 | 			goto final_oe; | 
 | 		} | 
 | 	} else { | 
 | 		if (attr->type == ATTR_ALLOC && | 
 | 		    attr->name_len == ARRAY_SIZE(I30_NAME) && | 
 | 		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { | 
 | 			oa->run1 = &ni_oe->dir.alloc_run; | 
 | 			goto final_oe; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (attr->non_res) { | 
 | 		u16 roff = le16_to_cpu(attr->nres.run_off); | 
 | 		CLST svcn = le64_to_cpu(attr->nres.svcn); | 
 |  | 
 | 		if (roff > t32) { | 
 | 			kfree(oa->attr); | 
 | 			oa->attr = NULL; | 
 | 			goto fake_attr; | 
 | 		} | 
 |  | 
 | 		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, | 
 | 				 le64_to_cpu(attr->nres.evcn), svcn, | 
 | 				 Add2Ptr(attr, roff), t32 - roff); | 
 | 		if (err < 0) { | 
 | 			kfree(oa->attr); | 
 | 			oa->attr = NULL; | 
 | 			goto fake_attr; | 
 | 		} | 
 | 		err = 0; | 
 | 	} | 
 | 	oa->run1 = &oa->run0; | 
 | 	attr = oa->attr; | 
 |  | 
 | final_oe: | 
 | 	if (oe->is_attr_name == 1) | 
 | 		kfree(oe->ptr); | 
 | 	oe->is_attr_name = 0; | 
 | 	oe->ptr = oa; | 
 | 	oe->name_len = attr->name_len; | 
 |  | 
 | 	goto next_open_attribute; | 
 |  | 
 | 	/* | 
 | 	 * Now loop through the dirty page table to extract all of the Vcn/Lcn. | 
 | 	 * Mapping that we have, and insert it into the appropriate run. | 
 | 	 */ | 
 | next_dirty_page: | 
 | 	dp = enum_rstbl(dptbl, dp); | 
 | 	if (!dp) | 
 | 		goto do_redo_1; | 
 |  | 
 | 	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); | 
 |  | 
 | 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) | 
 | 		goto next_dirty_page; | 
 |  | 
 | 	oa = oe->ptr; | 
 | 	if (!oa) | 
 | 		goto next_dirty_page; | 
 |  | 
 | 	i = -1; | 
 | next_dirty_page_vcn: | 
 | 	i += 1; | 
 | 	if (i >= le32_to_cpu(dp->lcns_follow)) | 
 | 		goto next_dirty_page; | 
 |  | 
 | 	vcn = le64_to_cpu(dp->vcn) + i; | 
 | 	size = (vcn + 1) << sbi->cluster_bits; | 
 |  | 
 | 	if (!dp->page_lcns[i]) | 
 | 		goto next_dirty_page_vcn; | 
 |  | 
 | 	rno = ino_get(&oe->ref); | 
 | 	if (rno <= MFT_REC_MIRR && | 
 | 	    size < (MFT_REC_VOL + 1) * sbi->record_size && | 
 | 	    oe->type == ATTR_DATA) { | 
 | 		goto next_dirty_page_vcn; | 
 | 	} | 
 |  | 
 | 	lcn = le64_to_cpu(dp->page_lcns[i]); | 
 |  | 
 | 	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || | 
 | 	     lcn0 != lcn) && | 
 | 	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	attr = oa->attr; | 
 | 	if (size > le64_to_cpu(attr->nres.alloc_size)) { | 
 | 		attr->nres.valid_size = attr->nres.data_size = | 
 | 			attr->nres.alloc_size = cpu_to_le64(size); | 
 | 	} | 
 | 	goto next_dirty_page_vcn; | 
 |  | 
 | do_redo_1: | 
 | 	/* | 
 | 	 * Perform the Redo Pass, to restore all of the dirty pages to the same | 
 | 	 * contents that they had immediately before the crash. If the dirty | 
 | 	 * page table is empty, then we can skip the entire Redo Pass. | 
 | 	 */ | 
 | 	if (!dptbl || !dptbl->total) | 
 | 		goto do_undo_action; | 
 |  | 
 | 	rec_lsn = rlsn; | 
 |  | 
 | 	/* | 
 | 	 * Read the record at the Redo lsn, before falling | 
 | 	 * into common code to handle each record. | 
 | 	 */ | 
 | 	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Now loop to read all of our log records forwards, until | 
 | 	 * we hit the end of the file, cleaning up at the end. | 
 | 	 */ | 
 | do_action_next: | 
 | 	frh = lcb->lrh; | 
 |  | 
 | 	if (LfsClientRecord != frh->record_type) | 
 | 		goto read_next_log_do_action; | 
 |  | 
 | 	transact_id = le32_to_cpu(frh->transact_id); | 
 | 	rec_len = le32_to_cpu(frh->client_data_len); | 
 | 	lrh = lcb->log_rec; | 
 |  | 
 | 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Ignore log records that do not update pages. */ | 
 | 	if (lrh->lcns_follow) | 
 | 		goto find_dirty_page; | 
 |  | 
 | 	goto read_next_log_do_action; | 
 |  | 
 | find_dirty_page: | 
 | 	t16 = le16_to_cpu(lrh->target_attr); | 
 | 	t64 = le64_to_cpu(lrh->target_vcn); | 
 | 	dp = find_dp(dptbl, t16, t64); | 
 |  | 
 | 	if (!dp) | 
 | 		goto read_next_log_do_action; | 
 |  | 
 | 	if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) | 
 | 		goto read_next_log_do_action; | 
 |  | 
 | 	t16 = le16_to_cpu(lrh->target_attr); | 
 | 	if (t16 >= bytes_per_rt(oatbl)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	oe = Add2Ptr(oatbl, t16); | 
 |  | 
 | 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	oa = oe->ptr; | 
 |  | 
 | 	if (!oa) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	attr = oa->attr; | 
 |  | 
 | 	vcn = le64_to_cpu(lrh->target_vcn); | 
 |  | 
 | 	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || | 
 | 	    lcn == SPARSE_LCN) { | 
 | 		goto read_next_log_do_action; | 
 | 	} | 
 |  | 
 | 	/* Point to the Redo data and get its length. */ | 
 | 	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); | 
 | 	dlen = le16_to_cpu(lrh->redo_len); | 
 |  | 
 | 	/* Shorten length by any Lcns which were deleted. */ | 
 | 	saved_len = dlen; | 
 |  | 
 | 	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { | 
 | 		size_t j; | 
 | 		u32 alen, voff; | 
 |  | 
 | 		voff = le16_to_cpu(lrh->record_off) + | 
 | 		       le16_to_cpu(lrh->attr_off); | 
 | 		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; | 
 |  | 
 | 		/* If the Vcn question is allocated, we can just get out. */ | 
 | 		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); | 
 | 		if (dp->page_lcns[j + i - 1]) | 
 | 			break; | 
 |  | 
 | 		if (!saved_len) | 
 | 			saved_len = 1; | 
 |  | 
 | 		/* | 
 | 		 * Calculate the allocated space left relative to the | 
 | 		 * log record Vcn, after removing this unallocated Vcn. | 
 | 		 */ | 
 | 		alen = (i - 1) << sbi->cluster_bits; | 
 |  | 
 | 		/* | 
 | 		 * If the update described this log record goes beyond | 
 | 		 * the allocated space, then we will have to reduce the length. | 
 | 		 */ | 
 | 		if (voff >= alen) | 
 | 			dlen = 0; | 
 | 		else if (voff + dlen > alen) | 
 | 			dlen = alen - voff; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the resulting dlen from above is now zero, | 
 | 	 * we can skip this log record. | 
 | 	 */ | 
 | 	if (!dlen && saved_len) | 
 | 		goto read_next_log_do_action; | 
 |  | 
 | 	t16 = le16_to_cpu(lrh->redo_op); | 
 | 	if (can_skip_action(t16)) | 
 | 		goto read_next_log_do_action; | 
 |  | 
 | 	/* Apply the Redo operation a common routine. */ | 
 | 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Keep reading and looping back until end of file. */ | 
 | read_next_log_do_action: | 
 | 	err = read_next_log_rec(log, lcb, &rec_lsn); | 
 | 	if (!err && rec_lsn) | 
 | 		goto do_action_next; | 
 |  | 
 | 	lcb_put(lcb); | 
 | 	lcb = NULL; | 
 |  | 
 | do_undo_action: | 
 | 	/* Scan Transaction Table. */ | 
 | 	tr = NULL; | 
 | transaction_table_next: | 
 | 	tr = enum_rstbl(trtbl, tr); | 
 | 	if (!tr) | 
 | 		goto undo_action_done; | 
 |  | 
 | 	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { | 
 | 		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); | 
 | 		goto transaction_table_next; | 
 | 	} | 
 |  | 
 | 	log->transaction_id = PtrOffset(trtbl, tr); | 
 | 	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); | 
 |  | 
 | 	/* | 
 | 	 * We only have to do anything if the transaction has | 
 | 	 * something its undo_next_lsn field. | 
 | 	 */ | 
 | 	if (!undo_next_lsn) | 
 | 		goto commit_undo; | 
 |  | 
 | 	/* Read the first record to be undone by this transaction. */ | 
 | 	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Now loop to read all of our log records forwards, | 
 | 	 * until we hit the end of the file, cleaning up at the end. | 
 | 	 */ | 
 | undo_action_next: | 
 |  | 
 | 	lrh = lcb->log_rec; | 
 | 	frh = lcb->lrh; | 
 | 	transact_id = le32_to_cpu(frh->transact_id); | 
 | 	rec_len = le32_to_cpu(frh->client_data_len); | 
 |  | 
 | 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (lrh->undo_op == cpu_to_le16(Noop)) | 
 | 		goto read_next_log_undo_action; | 
 |  | 
 | 	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); | 
 | 	oa = oe->ptr; | 
 |  | 
 | 	t16 = le16_to_cpu(lrh->lcns_follow); | 
 | 	if (!t16) | 
 | 		goto add_allocated_vcns; | 
 |  | 
 | 	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), | 
 | 				     &lcn, &clen, NULL); | 
 |  | 
 | 	/* | 
 | 	 * If the mapping isn't already the table or the  mapping | 
 | 	 * corresponds to a hole the mapping, we need to make sure | 
 | 	 * there is no partial page already memory. | 
 | 	 */ | 
 | 	if (is_mapped && lcn != SPARSE_LCN && clen >= t16) | 
 | 		goto add_allocated_vcns; | 
 |  | 
 | 	vcn = le64_to_cpu(lrh->target_vcn); | 
 | 	vcn &= ~(u64)(log->clst_per_page - 1); | 
 |  | 
 | add_allocated_vcns: | 
 | 	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), | 
 | 	    size = (vcn + 1) << sbi->cluster_bits; | 
 | 	     i < t16; i++, vcn += 1, size += sbi->cluster_size) { | 
 | 		attr = oa->attr; | 
 | 		if (!attr->non_res) { | 
 | 			if (size > le32_to_cpu(attr->res.data_size)) | 
 | 				attr->res.data_size = cpu_to_le32(size); | 
 | 		} else { | 
 | 			if (size > le64_to_cpu(attr->nres.data_size)) | 
 | 				attr->nres.valid_size = attr->nres.data_size = | 
 | 					attr->nres.alloc_size = | 
 | 						cpu_to_le64(size); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	t16 = le16_to_cpu(lrh->undo_op); | 
 | 	if (can_skip_action(t16)) | 
 | 		goto read_next_log_undo_action; | 
 |  | 
 | 	/* Point to the Redo data and get its length. */ | 
 | 	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); | 
 | 	dlen = le16_to_cpu(lrh->undo_len); | 
 |  | 
 | 	/* It is time to apply the undo action. */ | 
 | 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); | 
 |  | 
 | read_next_log_undo_action: | 
 | 	/* | 
 | 	 * Keep reading and looping back until we have read the | 
 | 	 * last record for this transaction. | 
 | 	 */ | 
 | 	err = read_next_log_rec(log, lcb, &rec_lsn); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (rec_lsn) | 
 | 		goto undo_action_next; | 
 |  | 
 | 	lcb_put(lcb); | 
 | 	lcb = NULL; | 
 |  | 
 | commit_undo: | 
 | 	free_rsttbl_idx(trtbl, log->transaction_id); | 
 |  | 
 | 	log->transaction_id = 0; | 
 |  | 
 | 	goto transaction_table_next; | 
 |  | 
 | undo_action_done: | 
 |  | 
 | 	ntfs_update_mftmirr(sbi, 0); | 
 |  | 
 | 	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; | 
 |  | 
 | end_replay: | 
 |  | 
 | 	err = 0; | 
 | 	if (is_ro) | 
 | 		goto out; | 
 |  | 
 | 	rh = kzalloc(log->page_size, GFP_NOFS); | 
 | 	if (!rh) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	rh->rhdr.sign = NTFS_RSTR_SIGNATURE; | 
 | 	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); | 
 | 	t16 = (log->page_size >> SECTOR_SHIFT) + 1; | 
 | 	rh->rhdr.fix_num = cpu_to_le16(t16); | 
 | 	rh->sys_page_size = cpu_to_le32(log->page_size); | 
 | 	rh->page_size = cpu_to_le32(log->page_size); | 
 |  | 
 | 	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, | 
 | 		    8); | 
 | 	rh->ra_off = cpu_to_le16(t16); | 
 | 	rh->minor_ver = cpu_to_le16(1); // 0x1A: | 
 | 	rh->major_ver = cpu_to_le16(1); // 0x1C: | 
 |  | 
 | 	ra2 = Add2Ptr(rh, t16); | 
 | 	memcpy(ra2, ra, sizeof(struct RESTART_AREA)); | 
 |  | 
 | 	ra2->client_idx[0] = 0; | 
 | 	ra2->client_idx[1] = LFS_NO_CLIENT_LE; | 
 | 	ra2->flags = cpu_to_le16(2); | 
 |  | 
 | 	le32_add_cpu(&ra2->open_log_count, 1); | 
 |  | 
 | 	ntfs_fix_pre_write(&rh->rhdr, log->page_size); | 
 |  | 
 | 	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); | 
 | 	if (!err) | 
 | 		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, | 
 | 					rh, log->page_size, 0); | 
 |  | 
 | 	kfree(rh); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | out: | 
 | 	kfree(rst); | 
 | 	if (lcb) | 
 | 		lcb_put(lcb); | 
 |  | 
 | 	/* | 
 | 	 * Scan the Open Attribute Table to close all of | 
 | 	 * the open attributes. | 
 | 	 */ | 
 | 	oe = NULL; | 
 | 	while ((oe = enum_rstbl(oatbl, oe))) { | 
 | 		rno = ino_get(&oe->ref); | 
 |  | 
 | 		if (oe->is_attr_name == 1) { | 
 | 			kfree(oe->ptr); | 
 | 			oe->ptr = NULL; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (oe->is_attr_name) | 
 | 			continue; | 
 |  | 
 | 		oa = oe->ptr; | 
 | 		if (!oa) | 
 | 			continue; | 
 |  | 
 | 		run_close(&oa->run0); | 
 | 		kfree(oa->attr); | 
 | 		if (oa->ni) | 
 | 			iput(&oa->ni->vfs_inode); | 
 | 		kfree(oa); | 
 | 	} | 
 |  | 
 | 	kfree(trtbl); | 
 | 	kfree(oatbl); | 
 | 	kfree(dptbl); | 
 | 	kfree(attr_names); | 
 | 	kfree(log->rst_info.r_page); | 
 |  | 
 | 	kfree(ra); | 
 | 	kfree(log->one_page_buf); | 
 |  | 
 | 	if (err) | 
 | 		sbi->flags |= NTFS_FLAGS_NEED_REPLAY; | 
 |  | 
 | 	if (err == -EROFS) | 
 | 		err = 0; | 
 | 	else if (log->set_dirty) | 
 | 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR); | 
 |  | 
 | 	kfree(log); | 
 |  | 
 | 	return err; | 
 | } |