|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * CAAM/SEC 4.x QI transport/backend driver | 
|  | * Queue Interface backend functionality | 
|  | * | 
|  | * Copyright 2013-2016 Freescale Semiconductor, Inc. | 
|  | * Copyright 2016-2017, 2019-2020 NXP | 
|  | */ | 
|  |  | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <soc/fsl/qman.h> | 
|  |  | 
|  | #include "debugfs.h" | 
|  | #include "regs.h" | 
|  | #include "qi.h" | 
|  | #include "desc.h" | 
|  | #include "intern.h" | 
|  | #include "desc_constr.h" | 
|  |  | 
|  | #define PREHDR_RSLS_SHIFT	31 | 
|  | #define PREHDR_ABS		BIT(25) | 
|  |  | 
|  | /* | 
|  | * Use a reasonable backlog of frames (per CPU) as congestion threshold, | 
|  | * so that resources used by the in-flight buffers do not become a memory hog. | 
|  | */ | 
|  | #define MAX_RSP_FQ_BACKLOG_PER_CPU	256 | 
|  |  | 
|  | #define CAAM_QI_ENQUEUE_RETRIES	10000 | 
|  |  | 
|  | #define CAAM_NAPI_WEIGHT	63 | 
|  |  | 
|  | /* | 
|  | * caam_napi - struct holding CAAM NAPI-related params | 
|  | * @irqtask: IRQ task for QI backend | 
|  | * @p: QMan portal | 
|  | */ | 
|  | struct caam_napi { | 
|  | struct napi_struct irqtask; | 
|  | struct qman_portal *p; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * caam_qi_pcpu_priv - percpu private data structure to main list of pending | 
|  | *                     responses expected on each cpu. | 
|  | * @caam_napi: CAAM NAPI params | 
|  | * @net_dev: netdev used by NAPI | 
|  | * @rsp_fq: response FQ from CAAM | 
|  | */ | 
|  | struct caam_qi_pcpu_priv { | 
|  | struct caam_napi caam_napi; | 
|  | struct net_device *net_dev; | 
|  | struct qman_fq *rsp_fq; | 
|  | } ____cacheline_aligned; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv); | 
|  | static DEFINE_PER_CPU(int, last_cpu); | 
|  |  | 
|  | /* | 
|  | * caam_qi_priv - CAAM QI backend private params | 
|  | * @cgr: QMan congestion group | 
|  | */ | 
|  | struct caam_qi_priv { | 
|  | struct qman_cgr cgr; | 
|  | }; | 
|  |  | 
|  | static struct caam_qi_priv qipriv ____cacheline_aligned; | 
|  |  | 
|  | /* | 
|  | * This is written by only one core - the one that initialized the CGR - and | 
|  | * read by multiple cores (all the others). | 
|  | */ | 
|  | bool caam_congested __read_mostly; | 
|  | EXPORT_SYMBOL(caam_congested); | 
|  |  | 
|  | /* | 
|  | * This is a cache of buffers, from which the users of CAAM QI driver | 
|  | * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than | 
|  | * doing malloc on the hotpath. | 
|  | * NOTE: A more elegant solution would be to have some headroom in the frames | 
|  | *       being processed. This could be added by the dpaa-ethernet driver. | 
|  | *       This would pose a problem for userspace application processing which | 
|  | *       cannot know of this limitation. So for now, this will work. | 
|  | * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here | 
|  | */ | 
|  | static struct kmem_cache *qi_cache; | 
|  |  | 
|  | static void *caam_iova_to_virt(struct iommu_domain *domain, | 
|  | dma_addr_t iova_addr) | 
|  | { | 
|  | phys_addr_t phys_addr; | 
|  |  | 
|  | phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; | 
|  |  | 
|  | return phys_to_virt(phys_addr); | 
|  | } | 
|  |  | 
|  | int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req) | 
|  | { | 
|  | struct qm_fd fd; | 
|  | dma_addr_t addr; | 
|  | int ret; | 
|  | int num_retries = 0; | 
|  |  | 
|  | qm_fd_clear_fd(&fd); | 
|  | qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1])); | 
|  |  | 
|  | addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt), | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (dma_mapping_error(qidev, addr)) { | 
|  | dev_err(qidev, "DMA mapping error for QI enqueue request\n"); | 
|  | return -EIO; | 
|  | } | 
|  | qm_fd_addr_set64(&fd, addr); | 
|  |  | 
|  | do { | 
|  | refcount_inc(&req->drv_ctx->refcnt); | 
|  | ret = qman_enqueue(req->drv_ctx->req_fq, &fd); | 
|  | if (likely(!ret)) | 
|  | return 0; | 
|  |  | 
|  | refcount_dec(&req->drv_ctx->refcnt); | 
|  | if (ret != -EBUSY) | 
|  | break; | 
|  | num_retries++; | 
|  | } while (num_retries < CAAM_QI_ENQUEUE_RETRIES); | 
|  |  | 
|  | dev_err(qidev, "qman_enqueue failed: %d\n", ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(caam_qi_enqueue); | 
|  |  | 
|  | static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq, | 
|  | const union qm_mr_entry *msg) | 
|  | { | 
|  | const struct qm_fd *fd; | 
|  | struct caam_drv_req *drv_req; | 
|  | struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev->dev); | 
|  | struct caam_drv_private *priv = dev_get_drvdata(qidev); | 
|  |  | 
|  | fd = &msg->ern.fd; | 
|  |  | 
|  | drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); | 
|  | if (!drv_req) { | 
|  | dev_err(qidev, | 
|  | "Can't find original request for CAAM response\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | refcount_dec(&drv_req->drv_ctx->refcnt); | 
|  |  | 
|  | if (qm_fd_get_format(fd) != qm_fd_compound) { | 
|  | dev_err(qidev, "Non-compound FD from CAAM\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), | 
|  | sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); | 
|  |  | 
|  | if (fd->status) | 
|  | drv_req->cbk(drv_req, be32_to_cpu(fd->status)); | 
|  | else | 
|  | drv_req->cbk(drv_req, JRSTA_SSRC_QI); | 
|  | } | 
|  |  | 
|  | static struct qman_fq *create_caam_req_fq(struct device *qidev, | 
|  | struct qman_fq *rsp_fq, | 
|  | dma_addr_t hwdesc, | 
|  | int fq_sched_flag) | 
|  | { | 
|  | int ret; | 
|  | struct qman_fq *req_fq; | 
|  | struct qm_mcc_initfq opts; | 
|  |  | 
|  | req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC); | 
|  | if (!req_fq) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | req_fq->cb.ern = caam_fq_ern_cb; | 
|  | req_fq->cb.fqs = NULL; | 
|  |  | 
|  | ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID | | 
|  | QMAN_FQ_FLAG_TO_DCPORTAL, req_fq); | 
|  | if (ret) { | 
|  | dev_err(qidev, "Failed to create session req FQ\n"); | 
|  | goto create_req_fq_fail; | 
|  | } | 
|  |  | 
|  | memset(&opts, 0, sizeof(opts)); | 
|  | opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | | 
|  | QM_INITFQ_WE_CONTEXTB | | 
|  | QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); | 
|  | opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); | 
|  | qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2); | 
|  | opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq)); | 
|  | qm_fqd_context_a_set64(&opts.fqd, hwdesc); | 
|  | opts.fqd.cgid = qipriv.cgr.cgrid; | 
|  |  | 
|  | ret = qman_init_fq(req_fq, fq_sched_flag, &opts); | 
|  | if (ret) { | 
|  | dev_err(qidev, "Failed to init session req FQ\n"); | 
|  | goto init_req_fq_fail; | 
|  | } | 
|  |  | 
|  | dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid, | 
|  | smp_processor_id()); | 
|  | return req_fq; | 
|  |  | 
|  | init_req_fq_fail: | 
|  | qman_destroy_fq(req_fq); | 
|  | create_req_fq_fail: | 
|  | kfree(req_fq); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static int empty_retired_fq(struct device *qidev, struct qman_fq *fq) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT | | 
|  | QMAN_VOLATILE_FLAG_FINISH, | 
|  | QM_VDQCR_PRECEDENCE_VDQCR | | 
|  | QM_VDQCR_NUMFRAMES_TILLEMPTY); | 
|  | if (ret) { | 
|  | dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | do { | 
|  | struct qman_portal *p; | 
|  |  | 
|  | p = qman_get_affine_portal(smp_processor_id()); | 
|  | qman_p_poll_dqrr(p, 16); | 
|  | } while (fq->flags & QMAN_FQ_STATE_NE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kill_fq(struct device *qidev, struct qman_fq *fq) | 
|  | { | 
|  | u32 flags; | 
|  | int ret; | 
|  |  | 
|  | ret = qman_retire_fq(fq, &flags); | 
|  | if (ret < 0) { | 
|  | dev_err(qidev, "qman_retire_fq failed: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | goto empty_fq; | 
|  |  | 
|  | /* Async FQ retirement condition */ | 
|  | if (ret == 1) { | 
|  | /* Retry till FQ gets in retired state */ | 
|  | do { | 
|  | msleep(20); | 
|  | } while (fq->state != qman_fq_state_retired); | 
|  |  | 
|  | WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS); | 
|  | WARN_ON(fq->flags & QMAN_FQ_STATE_ORL); | 
|  | } | 
|  |  | 
|  | empty_fq: | 
|  | if (fq->flags & QMAN_FQ_STATE_NE) { | 
|  | ret = empty_retired_fq(qidev, fq); | 
|  | if (ret) { | 
|  | dev_err(qidev, "empty_retired_fq fail for FQ: %u\n", | 
|  | fq->fqid); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = qman_oos_fq(fq); | 
|  | if (ret) | 
|  | dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid); | 
|  |  | 
|  | qman_destroy_fq(fq); | 
|  | kfree(fq); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx) | 
|  | { | 
|  | int ret; | 
|  | int retries = 10; | 
|  | struct qm_mcr_queryfq_np np; | 
|  |  | 
|  | /* Wait till the older CAAM FQ get empty */ | 
|  | do { | 
|  | ret = qman_query_fq_np(fq, &np); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!qm_mcr_np_get(&np, frm_cnt)) | 
|  | break; | 
|  |  | 
|  | msleep(20); | 
|  | } while (1); | 
|  |  | 
|  | /* Wait until pending jobs from this FQ are processed by CAAM */ | 
|  | do { | 
|  | if (refcount_read(&drv_ctx->refcnt) == 1) | 
|  | break; | 
|  |  | 
|  | msleep(20); | 
|  | } while (--retries); | 
|  |  | 
|  | if (!retries) | 
|  | dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n", | 
|  | refcount_read(&drv_ctx->refcnt), fq->fqid); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc) | 
|  | { | 
|  | int ret; | 
|  | u32 num_words; | 
|  | struct qman_fq *new_fq, *old_fq; | 
|  | struct device *qidev = drv_ctx->qidev; | 
|  |  | 
|  | num_words = desc_len(sh_desc); | 
|  | if (num_words > MAX_SDLEN) { | 
|  | dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Note down older req FQ */ | 
|  | old_fq = drv_ctx->req_fq; | 
|  |  | 
|  | /* Create a new req FQ in parked state */ | 
|  | new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq, | 
|  | drv_ctx->context_a, 0); | 
|  | if (IS_ERR(new_fq)) { | 
|  | dev_err(qidev, "FQ allocation for shdesc update failed\n"); | 
|  | return PTR_ERR(new_fq); | 
|  | } | 
|  |  | 
|  | /* Hook up new FQ to context so that new requests keep queuing */ | 
|  | drv_ctx->req_fq = new_fq; | 
|  |  | 
|  | /* Empty and remove the older FQ */ | 
|  | ret = empty_caam_fq(old_fq, drv_ctx); | 
|  | if (ret) { | 
|  | dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret); | 
|  |  | 
|  | /* We can revert to older FQ */ | 
|  | drv_ctx->req_fq = old_fq; | 
|  |  | 
|  | if (kill_fq(qidev, new_fq)) | 
|  | dev_warn(qidev, "New CAAM FQ kill failed\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-initialise pre-header. Set RSLS and SDLEN. | 
|  | * Update the shared descriptor for driver context. | 
|  | */ | 
|  | drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | | 
|  | num_words); | 
|  | drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); | 
|  | memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); | 
|  | dma_sync_single_for_device(qidev, drv_ctx->context_a, | 
|  | sizeof(drv_ctx->sh_desc) + | 
|  | sizeof(drv_ctx->prehdr), | 
|  | DMA_BIDIRECTIONAL); | 
|  |  | 
|  | /* Put the new FQ in scheduled state */ | 
|  | ret = qman_schedule_fq(new_fq); | 
|  | if (ret) { | 
|  | dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret); | 
|  |  | 
|  | /* | 
|  | * We can kill new FQ and revert to old FQ. | 
|  | * Since the desc is already modified, it is success case | 
|  | */ | 
|  |  | 
|  | drv_ctx->req_fq = old_fq; | 
|  |  | 
|  | if (kill_fq(qidev, new_fq)) | 
|  | dev_warn(qidev, "New CAAM FQ kill failed\n"); | 
|  | } else if (kill_fq(qidev, old_fq)) { | 
|  | dev_warn(qidev, "Old CAAM FQ kill failed\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(caam_drv_ctx_update); | 
|  |  | 
|  | struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev, | 
|  | int *cpu, | 
|  | u32 *sh_desc) | 
|  | { | 
|  | size_t size; | 
|  | u32 num_words; | 
|  | dma_addr_t hwdesc; | 
|  | struct caam_drv_ctx *drv_ctx; | 
|  | const cpumask_t *cpus = qman_affine_cpus(); | 
|  |  | 
|  | num_words = desc_len(sh_desc); | 
|  | if (num_words > MAX_SDLEN) { | 
|  | dev_err(qidev, "Invalid descriptor len: %d words\n", | 
|  | num_words); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC); | 
|  | if (!drv_ctx) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Initialise pre-header - set RSLS and SDLEN - and shared descriptor | 
|  | * and dma-map them. | 
|  | */ | 
|  | drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | | 
|  | num_words); | 
|  | drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); | 
|  | memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); | 
|  | size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc); | 
|  | hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (dma_mapping_error(qidev, hwdesc)) { | 
|  | dev_err(qidev, "DMA map error for preheader + shdesc\n"); | 
|  | kfree(drv_ctx); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | drv_ctx->context_a = hwdesc; | 
|  |  | 
|  | /* If given CPU does not own the portal, choose another one that does */ | 
|  | if (!cpumask_test_cpu(*cpu, cpus)) { | 
|  | int *pcpu = &get_cpu_var(last_cpu); | 
|  |  | 
|  | *pcpu = cpumask_next_wrap(*pcpu, cpus); | 
|  | *cpu = *pcpu; | 
|  | put_cpu_var(last_cpu); | 
|  | } | 
|  | drv_ctx->cpu = *cpu; | 
|  |  | 
|  | /* Find response FQ hooked with this CPU */ | 
|  | drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu); | 
|  |  | 
|  | /* Attach request FQ */ | 
|  | drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc, | 
|  | QMAN_INITFQ_FLAG_SCHED); | 
|  | if (IS_ERR(drv_ctx->req_fq)) { | 
|  | dev_err(qidev, "create_caam_req_fq failed\n"); | 
|  | dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL); | 
|  | kfree(drv_ctx); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /* init reference counter used to track references to request FQ */ | 
|  | refcount_set(&drv_ctx->refcnt, 1); | 
|  |  | 
|  | drv_ctx->qidev = qidev; | 
|  | return drv_ctx; | 
|  | } | 
|  | EXPORT_SYMBOL(caam_drv_ctx_init); | 
|  |  | 
|  | void *qi_cache_alloc(gfp_t flags) | 
|  | { | 
|  | return kmem_cache_alloc(qi_cache, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(qi_cache_alloc); | 
|  |  | 
|  | void qi_cache_free(void *obj) | 
|  | { | 
|  | kmem_cache_free(qi_cache, obj); | 
|  | } | 
|  | EXPORT_SYMBOL(qi_cache_free); | 
|  |  | 
|  | static int caam_qi_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct caam_napi *np = container_of(napi, struct caam_napi, irqtask); | 
|  |  | 
|  | int cleaned = qman_p_poll_dqrr(np->p, budget); | 
|  |  | 
|  | if (cleaned < budget) { | 
|  | napi_complete(napi); | 
|  | qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); | 
|  | } | 
|  |  | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx) | 
|  | { | 
|  | if (IS_ERR_OR_NULL(drv_ctx)) | 
|  | return; | 
|  |  | 
|  | /* Remove request FQ */ | 
|  | if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq)) | 
|  | dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n"); | 
|  |  | 
|  | dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a, | 
|  | sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), | 
|  | DMA_BIDIRECTIONAL); | 
|  | kfree(drv_ctx); | 
|  | } | 
|  | EXPORT_SYMBOL(caam_drv_ctx_rel); | 
|  |  | 
|  | static void caam_qi_shutdown(void *data) | 
|  | { | 
|  | int i; | 
|  | struct device *qidev = data; | 
|  | struct caam_qi_priv *priv = &qipriv; | 
|  | const cpumask_t *cpus = qman_affine_cpus(); | 
|  |  | 
|  | for_each_cpu(i, cpus) { | 
|  | struct napi_struct *irqtask; | 
|  |  | 
|  | irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask; | 
|  | napi_disable(irqtask); | 
|  | netif_napi_del(irqtask); | 
|  |  | 
|  | if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i))) | 
|  | dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i); | 
|  | free_netdev(per_cpu(pcpu_qipriv.net_dev, i)); | 
|  | } | 
|  |  | 
|  | qman_delete_cgr_safe(&priv->cgr); | 
|  | qman_release_cgrid(priv->cgr.cgrid); | 
|  |  | 
|  | kmem_cache_destroy(qi_cache); | 
|  | } | 
|  |  | 
|  | static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested) | 
|  | { | 
|  | caam_congested = congested; | 
|  |  | 
|  | if (congested) { | 
|  | caam_debugfs_qi_congested(); | 
|  |  | 
|  | pr_debug_ratelimited("CAAM entered congestion\n"); | 
|  |  | 
|  | } else { | 
|  | pr_debug_ratelimited("CAAM exited congestion\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np, | 
|  | bool sched_napi) | 
|  | { | 
|  | if (sched_napi) { | 
|  | /* Disable QMan IRQ source and invoke NAPI */ | 
|  | qman_p_irqsource_remove(p, QM_PIRQ_DQRI); | 
|  | np->p = p; | 
|  | napi_schedule(&np->irqtask); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p, | 
|  | struct qman_fq *rsp_fq, | 
|  | const struct qm_dqrr_entry *dqrr, | 
|  | bool sched_napi) | 
|  | { | 
|  | struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi); | 
|  | struct caam_drv_req *drv_req; | 
|  | const struct qm_fd *fd; | 
|  | struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev->dev); | 
|  | struct caam_drv_private *priv = dev_get_drvdata(qidev); | 
|  | u32 status; | 
|  |  | 
|  | if (caam_qi_napi_schedule(p, caam_napi, sched_napi)) | 
|  | return qman_cb_dqrr_stop; | 
|  |  | 
|  | fd = &dqrr->fd; | 
|  |  | 
|  | drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); | 
|  | if (unlikely(!drv_req)) { | 
|  | dev_err(qidev, | 
|  | "Can't find original request for caam response\n"); | 
|  | return qman_cb_dqrr_consume; | 
|  | } | 
|  |  | 
|  | refcount_dec(&drv_req->drv_ctx->refcnt); | 
|  |  | 
|  | status = be32_to_cpu(fd->status); | 
|  | if (unlikely(status)) { | 
|  | u32 ssrc = status & JRSTA_SSRC_MASK; | 
|  | u8 err_id = status & JRSTA_CCBERR_ERRID_MASK; | 
|  |  | 
|  | if (ssrc != JRSTA_SSRC_CCB_ERROR || | 
|  | err_id != JRSTA_CCBERR_ERRID_ICVCHK) | 
|  | dev_err_ratelimited(qidev, | 
|  | "Error: %#x in CAAM response FD\n", | 
|  | status); | 
|  | } | 
|  |  | 
|  | if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) { | 
|  | dev_err(qidev, "Non-compound FD from CAAM\n"); | 
|  | return qman_cb_dqrr_consume; | 
|  | } | 
|  |  | 
|  | dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), | 
|  | sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); | 
|  |  | 
|  | drv_req->cbk(drv_req, status); | 
|  | return qman_cb_dqrr_consume; | 
|  | } | 
|  |  | 
|  | static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu) | 
|  | { | 
|  | struct qm_mcc_initfq opts; | 
|  | struct qman_fq *fq; | 
|  | int ret; | 
|  |  | 
|  | fq = kzalloc(sizeof(*fq), GFP_KERNEL); | 
|  | if (!fq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fq->cb.dqrr = caam_rsp_fq_dqrr_cb; | 
|  |  | 
|  | ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE | | 
|  | QMAN_FQ_FLAG_DYNAMIC_FQID, fq); | 
|  | if (ret) { | 
|  | dev_err(qidev, "Rsp FQ create failed\n"); | 
|  | kfree(fq); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | memset(&opts, 0, sizeof(opts)); | 
|  | opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | | 
|  | QM_INITFQ_WE_CONTEXTB | | 
|  | QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); | 
|  | opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING | | 
|  | QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); | 
|  | qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3); | 
|  | opts.fqd.cgid = qipriv.cgr.cgrid; | 
|  | opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX | | 
|  | QM_STASHING_EXCL_DATA; | 
|  | qm_fqd_set_stashing(&opts.fqd, 0, 1, 1); | 
|  |  | 
|  | ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts); | 
|  | if (ret) { | 
|  | dev_err(qidev, "Rsp FQ init failed\n"); | 
|  | kfree(fq); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq; | 
|  |  | 
|  | dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int init_cgr(struct device *qidev) | 
|  | { | 
|  | int ret; | 
|  | struct qm_mcc_initcgr opts; | 
|  | const u64 val = (u64)cpumask_weight(qman_affine_cpus()) * | 
|  | MAX_RSP_FQ_BACKLOG_PER_CPU; | 
|  |  | 
|  | ret = qman_alloc_cgrid(&qipriv.cgr.cgrid); | 
|  | if (ret) { | 
|  | dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | qipriv.cgr.cb = cgr_cb; | 
|  | memset(&opts, 0, sizeof(opts)); | 
|  | opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES | | 
|  | QM_CGR_WE_MODE); | 
|  | opts.cgr.cscn_en = QM_CGR_EN; | 
|  | opts.cgr.mode = QMAN_CGR_MODE_FRAME; | 
|  | qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1); | 
|  |  | 
|  | ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts); | 
|  | if (ret) { | 
|  | dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret, | 
|  | qipriv.cgr.cgrid); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dev_dbg(qidev, "Congestion threshold set to %llu\n", val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int alloc_rsp_fqs(struct device *qidev) | 
|  | { | 
|  | int ret, i; | 
|  | const cpumask_t *cpus = qman_affine_cpus(); | 
|  |  | 
|  | /*Now create response FQs*/ | 
|  | for_each_cpu(i, cpus) { | 
|  | ret = alloc_rsp_fq_cpu(qidev, i); | 
|  | if (ret) { | 
|  | dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_rsp_fqs(void) | 
|  | { | 
|  | int i; | 
|  | const cpumask_t *cpus = qman_affine_cpus(); | 
|  |  | 
|  | for_each_cpu(i, cpus) | 
|  | kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); | 
|  | } | 
|  |  | 
|  | static void free_caam_qi_pcpu_netdev(const cpumask_t *cpus) | 
|  | { | 
|  | struct caam_qi_pcpu_priv *priv; | 
|  | int i; | 
|  |  | 
|  | for_each_cpu(i, cpus) { | 
|  | priv = per_cpu_ptr(&pcpu_qipriv, i); | 
|  | free_netdev(priv->net_dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | int caam_qi_init(struct platform_device *caam_pdev) | 
|  | { | 
|  | int err, i; | 
|  | struct device *qidev = &caam_pdev->dev; | 
|  | struct caam_drv_private *ctrlpriv; | 
|  | const cpumask_t *cpus = qman_affine_cpus(); | 
|  | cpumask_var_t clean_mask; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | if (!zalloc_cpumask_var(&clean_mask, GFP_KERNEL)) | 
|  | goto fail_cpumask; | 
|  |  | 
|  | ctrlpriv = dev_get_drvdata(qidev); | 
|  |  | 
|  | /* Initialize the congestion detection */ | 
|  | err = init_cgr(qidev); | 
|  | if (err) { | 
|  | dev_err(qidev, "CGR initialization failed: %d\n", err); | 
|  | goto fail_cgr; | 
|  | } | 
|  |  | 
|  | /* Initialise response FQs */ | 
|  | err = alloc_rsp_fqs(qidev); | 
|  | if (err) { | 
|  | dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err); | 
|  | goto fail_fqs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable the NAPI contexts on each of the core which has an affine | 
|  | * portal. | 
|  | */ | 
|  | for_each_cpu(i, cpus) { | 
|  | struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i); | 
|  | struct caam_napi *caam_napi = &priv->caam_napi; | 
|  | struct napi_struct *irqtask = &caam_napi->irqtask; | 
|  | struct net_device *net_dev; | 
|  |  | 
|  | net_dev = alloc_netdev_dummy(0); | 
|  | if (!net_dev) { | 
|  | err = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | cpumask_set_cpu(i, clean_mask); | 
|  | priv->net_dev = net_dev; | 
|  | net_dev->dev = *qidev; | 
|  |  | 
|  | netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll, | 
|  | CAAM_NAPI_WEIGHT); | 
|  |  | 
|  | napi_enable(irqtask); | 
|  | } | 
|  |  | 
|  | qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, | 
|  | dma_get_cache_alignment(), 0, NULL); | 
|  | if (!qi_cache) { | 
|  | dev_err(qidev, "Can't allocate CAAM cache\n"); | 
|  | err = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | caam_debugfs_qi_init(ctrlpriv); | 
|  |  | 
|  | err = devm_add_action_or_reset(qidev, caam_qi_shutdown, qidev); | 
|  | if (err) | 
|  | goto fail2; | 
|  |  | 
|  | dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n"); | 
|  | goto free_cpumask; | 
|  |  | 
|  | fail2: | 
|  | kmem_cache_destroy(qi_cache); | 
|  | fail: | 
|  | free_caam_qi_pcpu_netdev(clean_mask); | 
|  | fail_fqs: | 
|  | free_rsp_fqs(); | 
|  | qman_delete_cgr_safe(&qipriv.cgr); | 
|  | qman_release_cgrid(qipriv.cgr.cgrid); | 
|  | fail_cgr: | 
|  | free_cpumask: | 
|  | free_cpumask_var(clean_mask); | 
|  | fail_cpumask: | 
|  | return err; | 
|  | } |