|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include <linux/iversion.h> | 
|  |  | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_defer.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_attr.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_trans_space.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_iunlink_item.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_bmap_util.h" | 
|  | #include "xfs_errortag.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_filestream.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_icache.h" | 
|  | #include "xfs_symlink.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_reflink.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_log_priv.h" | 
|  | #include "xfs_health.h" | 
|  | #include "xfs_pnfs.h" | 
|  | #include "xfs_parent.h" | 
|  | #include "xfs_xattr.h" | 
|  | #include "xfs_inode_util.h" | 
|  | #include "xfs_metafile.h" | 
|  |  | 
|  | struct kmem_cache *xfs_inode_cache; | 
|  |  | 
|  | /* | 
|  | * These two are wrapper routines around the xfs_ilock() routine used to | 
|  | * centralize some grungy code.  They are used in places that wish to lock the | 
|  | * inode solely for reading the extents.  The reason these places can't just | 
|  | * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to | 
|  | * bringing in of the extents from disk for a file in b-tree format.  If the | 
|  | * inode is in b-tree format, then we need to lock the inode exclusively until | 
|  | * the extents are read in.  Locking it exclusively all the time would limit | 
|  | * our parallelism unnecessarily, though.  What we do instead is check to see | 
|  | * if the extents have been read in yet, and only lock the inode exclusively | 
|  | * if they have not. | 
|  | * | 
|  | * The functions return a value which should be given to the corresponding | 
|  | * xfs_iunlock() call. | 
|  | */ | 
|  | uint | 
|  | xfs_ilock_data_map_shared( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | uint			lock_mode = XFS_ILOCK_SHARED; | 
|  |  | 
|  | if (xfs_need_iread_extents(&ip->i_df)) | 
|  | lock_mode = XFS_ILOCK_EXCL; | 
|  | xfs_ilock(ip, lock_mode); | 
|  | return lock_mode; | 
|  | } | 
|  |  | 
|  | uint | 
|  | xfs_ilock_attr_map_shared( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | uint			lock_mode = XFS_ILOCK_SHARED; | 
|  |  | 
|  | if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) | 
|  | lock_mode = XFS_ILOCK_EXCL; | 
|  | xfs_ilock(ip, lock_mode); | 
|  | return lock_mode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, | 
|  | * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values | 
|  | * to set in lock_flags. | 
|  | */ | 
|  | static inline void | 
|  | xfs_lock_flags_assert( | 
|  | uint		lock_flags) | 
|  | { | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != | 
|  | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); | 
|  | ASSERT(lock_flags != 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 | 
|  | * multi-reader locks: invalidate_lock and the i_lock.  This routine allows | 
|  | * various combinations of the locks to be obtained. | 
|  | * | 
|  | * The 3 locks should always be ordered so that the IO lock is obtained first, | 
|  | * the mmap lock second and the ilock last in order to prevent deadlock. | 
|  | * | 
|  | * Basic locking order: | 
|  | * | 
|  | * i_rwsem -> invalidate_lock -> page_lock -> i_ilock | 
|  | * | 
|  | * mmap_lock locking order: | 
|  | * | 
|  | * i_rwsem -> page lock -> mmap_lock | 
|  | * mmap_lock -> invalidate_lock -> page_lock | 
|  | * | 
|  | * The difference in mmap_lock locking order mean that we cannot hold the | 
|  | * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths | 
|  | * can fault in pages during copy in/out (for buffered IO) or require the | 
|  | * mmap_lock in get_user_pages() to map the user pages into the kernel address | 
|  | * space for direct IO. Similarly the i_rwsem cannot be taken inside a page | 
|  | * fault because page faults already hold the mmap_lock. | 
|  | * | 
|  | * Hence to serialise fully against both syscall and mmap based IO, we need to | 
|  | * take both the i_rwsem and the invalidate_lock. These locks should *only* be | 
|  | * both taken in places where we need to invalidate the page cache in a race | 
|  | * free manner (e.g. truncate, hole punch and other extent manipulation | 
|  | * functions). | 
|  | */ | 
|  | void | 
|  | xfs_ilock( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | trace_xfs_ilock(ip, lock_flags, _RET_IP_); | 
|  |  | 
|  | xfs_lock_flags_assert(lock_flags); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) { | 
|  | down_write_nested(&VFS_I(ip)->i_rwsem, | 
|  | XFS_IOLOCK_DEP(lock_flags)); | 
|  | } else if (lock_flags & XFS_IOLOCK_SHARED) { | 
|  | down_read_nested(&VFS_I(ip)->i_rwsem, | 
|  | XFS_IOLOCK_DEP(lock_flags)); | 
|  | } | 
|  |  | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) { | 
|  | down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, | 
|  | XFS_MMAPLOCK_DEP(lock_flags)); | 
|  | } else if (lock_flags & XFS_MMAPLOCK_SHARED) { | 
|  | down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, | 
|  | XFS_MMAPLOCK_DEP(lock_flags)); | 
|  | } | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) | 
|  | down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
|  | else if (lock_flags & XFS_ILOCK_SHARED) | 
|  | down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is just like xfs_ilock(), except that the caller | 
|  | * is guaranteed not to sleep.  It returns 1 if it gets | 
|  | * the requested locks and 0 otherwise.  If the IO lock is | 
|  | * obtained but the inode lock cannot be, then the IO lock | 
|  | * is dropped before returning. | 
|  | * | 
|  | * ip -- the inode being locked | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be locked.  See the comment for xfs_ilock() for a list | 
|  | *	 of valid values. | 
|  | */ | 
|  | int | 
|  | xfs_ilock_nowait( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); | 
|  |  | 
|  | xfs_lock_flags_assert(lock_flags); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) { | 
|  | if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) | 
|  | goto out; | 
|  | } else if (lock_flags & XFS_IOLOCK_SHARED) { | 
|  | if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) { | 
|  | if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) | 
|  | goto out_undo_iolock; | 
|  | } else if (lock_flags & XFS_MMAPLOCK_SHARED) { | 
|  | if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) | 
|  | goto out_undo_iolock; | 
|  | } | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) { | 
|  | if (!down_write_trylock(&ip->i_lock)) | 
|  | goto out_undo_mmaplock; | 
|  | } else if (lock_flags & XFS_ILOCK_SHARED) { | 
|  | if (!down_read_trylock(&ip->i_lock)) | 
|  | goto out_undo_mmaplock; | 
|  | } | 
|  | return 1; | 
|  |  | 
|  | out_undo_mmaplock: | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) | 
|  | up_write(&VFS_I(ip)->i_mapping->invalidate_lock); | 
|  | else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
|  | up_read(&VFS_I(ip)->i_mapping->invalidate_lock); | 
|  | out_undo_iolock: | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | up_write(&VFS_I(ip)->i_rwsem); | 
|  | else if (lock_flags & XFS_IOLOCK_SHARED) | 
|  | up_read(&VFS_I(ip)->i_rwsem); | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_iunlock() is used to drop the inode locks acquired with | 
|  | * xfs_ilock() and xfs_ilock_nowait().  The caller must pass | 
|  | * in the flags given to xfs_ilock() or xfs_ilock_nowait() so | 
|  | * that we know which locks to drop. | 
|  | * | 
|  | * ip -- the inode being unlocked | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be unlocked.  See the comment for xfs_ilock() for a list | 
|  | *	 of valid values for this parameter. | 
|  | * | 
|  | */ | 
|  | void | 
|  | xfs_iunlock( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | xfs_lock_flags_assert(lock_flags); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | up_write(&VFS_I(ip)->i_rwsem); | 
|  | else if (lock_flags & XFS_IOLOCK_SHARED) | 
|  | up_read(&VFS_I(ip)->i_rwsem); | 
|  |  | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) | 
|  | up_write(&VFS_I(ip)->i_mapping->invalidate_lock); | 
|  | else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
|  | up_read(&VFS_I(ip)->i_mapping->invalidate_lock); | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) | 
|  | up_write(&ip->i_lock); | 
|  | else if (lock_flags & XFS_ILOCK_SHARED) | 
|  | up_read(&ip->i_lock); | 
|  |  | 
|  | trace_xfs_iunlock(ip, lock_flags, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * give up write locks.  the i/o lock cannot be held nested | 
|  | * if it is being demoted. | 
|  | */ | 
|  | void | 
|  | xfs_ilock_demote( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & | 
|  | ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) | 
|  | downgrade_write(&ip->i_lock); | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) | 
|  | downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | downgrade_write(&VFS_I(ip)->i_rwsem); | 
|  |  | 
|  | trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_assert_ilocked( | 
|  | struct xfs_inode	*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | /* | 
|  | * Sometimes we assert the ILOCK is held exclusively, but we're in | 
|  | * a workqueue, so lockdep doesn't know we're the owner. | 
|  | */ | 
|  | if (lock_flags & XFS_ILOCK_SHARED) | 
|  | rwsem_assert_held(&ip->i_lock); | 
|  | else if (lock_flags & XFS_ILOCK_EXCL) | 
|  | rwsem_assert_held_write_nolockdep(&ip->i_lock); | 
|  |  | 
|  | if (lock_flags & XFS_MMAPLOCK_SHARED) | 
|  | rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock); | 
|  | else if (lock_flags & XFS_MMAPLOCK_EXCL) | 
|  | rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_SHARED) | 
|  | rwsem_assert_held(&VFS_I(ip)->i_rwsem); | 
|  | else if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | rwsem_assert_held_write(&VFS_I(ip)->i_rwsem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when | 
|  | * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined | 
|  | * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build | 
|  | * errors and warnings. | 
|  | */ | 
|  | #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) | 
|  | static bool | 
|  | xfs_lockdep_subclass_ok( | 
|  | int subclass) | 
|  | { | 
|  | return subclass < MAX_LOCKDEP_SUBCLASSES; | 
|  | } | 
|  | #else | 
|  | #define xfs_lockdep_subclass_ok(subclass)	(true) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Bump the subclass so xfs_lock_inodes() acquires each lock with a different | 
|  | * value. This can be called for any type of inode lock combination, including | 
|  | * parent locking. Care must be taken to ensure we don't overrun the subclass | 
|  | * storage fields in the class mask we build. | 
|  | */ | 
|  | static inline uint | 
|  | xfs_lock_inumorder( | 
|  | uint	lock_mode, | 
|  | uint	subclass) | 
|  | { | 
|  | uint	class = 0; | 
|  |  | 
|  | ASSERT(!(lock_mode & XFS_ILOCK_PARENT)); | 
|  | ASSERT(xfs_lockdep_subclass_ok(subclass)); | 
|  |  | 
|  | if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { | 
|  | ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); | 
|  | class += subclass << XFS_IOLOCK_SHIFT; | 
|  | } | 
|  |  | 
|  | if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { | 
|  | ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); | 
|  | class += subclass << XFS_MMAPLOCK_SHIFT; | 
|  | } | 
|  |  | 
|  | if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { | 
|  | ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); | 
|  | class += subclass << XFS_ILOCK_SHIFT; | 
|  | } | 
|  |  | 
|  | return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following routine will lock n inodes in exclusive mode.  We assume the | 
|  | * caller calls us with the inodes in i_ino order. | 
|  | * | 
|  | * We need to detect deadlock where an inode that we lock is in the AIL and we | 
|  | * start waiting for another inode that is locked by a thread in a long running | 
|  | * transaction (such as truncate). This can result in deadlock since the long | 
|  | * running trans might need to wait for the inode we just locked in order to | 
|  | * push the tail and free space in the log. | 
|  | * | 
|  | * xfs_lock_inodes() can only be used to lock one type of lock at a time - | 
|  | * the iolock, the mmaplock or the ilock, but not more than one at a time. If we | 
|  | * lock more than one at a time, lockdep will report false positives saying we | 
|  | * have violated locking orders. | 
|  | */ | 
|  | void | 
|  | xfs_lock_inodes( | 
|  | struct xfs_inode	**ips, | 
|  | int			inodes, | 
|  | uint			lock_mode) | 
|  | { | 
|  | int			attempts = 0; | 
|  | uint			i; | 
|  | int			j; | 
|  | bool			try_lock; | 
|  | struct xfs_log_item	*lp; | 
|  |  | 
|  | /* | 
|  | * Currently supports between 2 and 5 inodes with exclusive locking.  We | 
|  | * support an arbitrary depth of locking here, but absolute limits on | 
|  | * inodes depend on the type of locking and the limits placed by | 
|  | * lockdep annotations in xfs_lock_inumorder.  These are all checked by | 
|  | * the asserts. | 
|  | */ | 
|  | ASSERT(ips && inodes >= 2 && inodes <= 5); | 
|  | ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | | 
|  | XFS_ILOCK_EXCL)); | 
|  | ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | | 
|  | XFS_ILOCK_SHARED))); | 
|  | ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || | 
|  | inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); | 
|  | ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || | 
|  | inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); | 
|  |  | 
|  | if (lock_mode & XFS_IOLOCK_EXCL) { | 
|  | ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); | 
|  | } else if (lock_mode & XFS_MMAPLOCK_EXCL) | 
|  | ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); | 
|  |  | 
|  | again: | 
|  | try_lock = false; | 
|  | i = 0; | 
|  | for (; i < inodes; i++) { | 
|  | ASSERT(ips[i]); | 
|  |  | 
|  | if (i && (ips[i] == ips[i - 1]))	/* Already locked */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If try_lock is not set yet, make sure all locked inodes are | 
|  | * not in the AIL.  If any are, set try_lock to be used later. | 
|  | */ | 
|  | if (!try_lock) { | 
|  | for (j = (i - 1); j >= 0 && !try_lock; j--) { | 
|  | lp = &ips[j]->i_itemp->ili_item; | 
|  | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) | 
|  | try_lock = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If any of the previous locks we have locked is in the AIL, | 
|  | * we must TRY to get the second and subsequent locks. If | 
|  | * we can't get any, we must release all we have | 
|  | * and try again. | 
|  | */ | 
|  | if (!try_lock) { | 
|  | xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* try_lock means we have an inode locked that is in the AIL. */ | 
|  | ASSERT(i != 0); | 
|  | if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Unlock all previous guys and try again.  xfs_iunlock will try | 
|  | * to push the tail if the inode is in the AIL. | 
|  | */ | 
|  | attempts++; | 
|  | for (j = i - 1; j >= 0; j--) { | 
|  | /* | 
|  | * Check to see if we've already unlocked this one.  Not | 
|  | * the first one going back, and the inode ptr is the | 
|  | * same. | 
|  | */ | 
|  | if (j != (i - 1) && ips[j] == ips[j + 1]) | 
|  | continue; | 
|  |  | 
|  | xfs_iunlock(ips[j], lock_mode); | 
|  | } | 
|  |  | 
|  | if ((attempts % 5) == 0) { | 
|  | delay(1); /* Don't just spin the CPU */ | 
|  | } | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and | 
|  | * mmaplock must be double-locked separately since we use i_rwsem and | 
|  | * invalidate_lock for that. We now support taking one lock EXCL and the | 
|  | * other SHARED. | 
|  | */ | 
|  | void | 
|  | xfs_lock_two_inodes( | 
|  | struct xfs_inode	*ip0, | 
|  | uint			ip0_mode, | 
|  | struct xfs_inode	*ip1, | 
|  | uint			ip1_mode) | 
|  | { | 
|  | int			attempts = 0; | 
|  | struct xfs_log_item	*lp; | 
|  |  | 
|  | ASSERT(hweight32(ip0_mode) == 1); | 
|  | ASSERT(hweight32(ip1_mode) == 1); | 
|  | ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | 
|  | ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | 
|  | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); | 
|  | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); | 
|  | ASSERT(ip0->i_ino != ip1->i_ino); | 
|  |  | 
|  | if (ip0->i_ino > ip1->i_ino) { | 
|  | swap(ip0, ip1); | 
|  | swap(ip0_mode, ip1_mode); | 
|  | } | 
|  |  | 
|  | again: | 
|  | xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); | 
|  |  | 
|  | /* | 
|  | * If the first lock we have locked is in the AIL, we must TRY to get | 
|  | * the second lock. If we can't get it, we must release the first one | 
|  | * and try again. | 
|  | */ | 
|  | lp = &ip0->i_itemp->ili_item; | 
|  | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { | 
|  | if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { | 
|  | xfs_iunlock(ip0, ip0_mode); | 
|  | if ((++attempts % 5) == 0) | 
|  | delay(1); /* Don't just spin the CPU */ | 
|  | goto again; | 
|  | } | 
|  | } else { | 
|  | xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookups up an inode from "name". If ci_name is not NULL, then a CI match | 
|  | * is allowed, otherwise it has to be an exact match. If a CI match is found, | 
|  | * ci_name->name will point to a the actual name (caller must free) or | 
|  | * will be set to NULL if an exact match is found. | 
|  | */ | 
|  | int | 
|  | xfs_lookup( | 
|  | struct xfs_inode	*dp, | 
|  | const struct xfs_name	*name, | 
|  | struct xfs_inode	**ipp, | 
|  | struct xfs_name		*ci_name) | 
|  | { | 
|  | xfs_ino_t		inum; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_lookup(dp, name); | 
|  |  | 
|  | if (xfs_is_shutdown(dp->i_mount)) | 
|  | return -EIO; | 
|  | if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) | 
|  | return -EIO; | 
|  |  | 
|  | error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); | 
|  | if (error) | 
|  | goto out_free_name; | 
|  |  | 
|  | /* | 
|  | * Fail if a directory entry in the regular directory tree points to | 
|  | * a metadata file. | 
|  | */ | 
|  | if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) { | 
|  | xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR); | 
|  | error = -EFSCORRUPTED; | 
|  | goto out_irele; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_irele: | 
|  | xfs_irele(*ipp); | 
|  | out_free_name: | 
|  | if (ci_name) | 
|  | kfree(ci_name->name); | 
|  | out_unlock: | 
|  | *ipp = NULL; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise a newly allocated inode and return the in-core inode to the | 
|  | * caller locked exclusively. | 
|  | * | 
|  | * Caller is responsible for unlocking the inode manually upon return | 
|  | */ | 
|  | int | 
|  | xfs_icreate( | 
|  | struct xfs_trans	*tp, | 
|  | xfs_ino_t		ino, | 
|  | const struct xfs_icreate_args *args, | 
|  | struct xfs_inode	**ipp) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_inode	*ip = NULL; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * Get the in-core inode with the lock held exclusively to prevent | 
|  | * others from looking at until we're done. | 
|  | */ | 
|  | error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | ASSERT(ip != NULL); | 
|  | xfs_trans_ijoin(tp, ip, 0); | 
|  | xfs_inode_init(tp, args, ip); | 
|  |  | 
|  | /* now that we have an i_mode we can setup the inode structure */ | 
|  | xfs_setup_inode(ip); | 
|  |  | 
|  | *ipp = ip; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return dquots for the ids that will be assigned to a new file. */ | 
|  | int | 
|  | xfs_icreate_dqalloc( | 
|  | const struct xfs_icreate_args	*args, | 
|  | struct xfs_dquot		**udqpp, | 
|  | struct xfs_dquot		**gdqpp, | 
|  | struct xfs_dquot		**pdqpp) | 
|  | { | 
|  | struct inode			*dir = VFS_I(args->pip); | 
|  | kuid_t				uid = GLOBAL_ROOT_UID; | 
|  | kgid_t				gid = GLOBAL_ROOT_GID; | 
|  | prid_t				prid = 0; | 
|  | unsigned int			flags = XFS_QMOPT_QUOTALL; | 
|  |  | 
|  | if (args->idmap) { | 
|  | /* | 
|  | * The uid/gid computation code must match what the VFS uses to | 
|  | * assign i_[ug]id.  INHERIT adjusts the gid computation for | 
|  | * setgid/grpid systems. | 
|  | */ | 
|  | uid = mapped_fsuid(args->idmap, i_user_ns(dir)); | 
|  | gid = mapped_fsgid(args->idmap, i_user_ns(dir)); | 
|  | prid = xfs_get_initial_prid(args->pip); | 
|  | flags |= XFS_QMOPT_INHERIT; | 
|  | } | 
|  |  | 
|  | *udqpp = *gdqpp = *pdqpp = NULL; | 
|  |  | 
|  | return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp, | 
|  | gdqpp, pdqpp); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_create( | 
|  | const struct xfs_icreate_args *args, | 
|  | struct xfs_name		*name, | 
|  | struct xfs_inode	**ipp) | 
|  | { | 
|  | struct xfs_inode	*dp = args->pip; | 
|  | struct xfs_dir_update	du = { | 
|  | .dp		= dp, | 
|  | .name		= name, | 
|  | }; | 
|  | struct xfs_mount	*mp = dp->i_mount; | 
|  | struct xfs_trans	*tp = NULL; | 
|  | struct xfs_dquot	*udqp; | 
|  | struct xfs_dquot	*gdqp; | 
|  | struct xfs_dquot	*pdqp; | 
|  | struct xfs_trans_res	*tres; | 
|  | xfs_ino_t		ino; | 
|  | bool			unlock_dp_on_error = false; | 
|  | bool			is_dir = S_ISDIR(args->mode); | 
|  | uint			resblks; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_create(dp, name); | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  | if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) | 
|  | return -EIO; | 
|  |  | 
|  | /* Make sure that we have allocated dquot(s) on disk. */ | 
|  | error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (is_dir) { | 
|  | resblks = xfs_mkdir_space_res(mp, name->len); | 
|  | tres = &M_RES(mp)->tr_mkdir; | 
|  | } else { | 
|  | resblks = xfs_create_space_res(mp, name->len); | 
|  | tres = &M_RES(mp)->tr_create; | 
|  | } | 
|  |  | 
|  | error = xfs_parent_start(mp, &du.ppargs); | 
|  | if (error) | 
|  | goto out_release_dquots; | 
|  |  | 
|  | /* | 
|  | * Initially assume that the file does not exist and | 
|  | * reserve the resources for that case.  If that is not | 
|  | * the case we'll drop the one we have and get a more | 
|  | * appropriate transaction later. | 
|  | */ | 
|  | error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, | 
|  | &tp); | 
|  | if (error == -ENOSPC) { | 
|  | /* flush outstanding delalloc blocks and retry */ | 
|  | xfs_flush_inodes(mp); | 
|  | error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, | 
|  | resblks, &tp); | 
|  | } | 
|  | if (error) | 
|  | goto out_parent; | 
|  |  | 
|  | xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); | 
|  | unlock_dp_on_error = true; | 
|  |  | 
|  | /* | 
|  | * A newly created regular or special file just has one directory | 
|  | * entry pointing to them, but a directory also the "." entry | 
|  | * pointing to itself. | 
|  | */ | 
|  | error = xfs_dialloc(&tp, args, &ino); | 
|  | if (!error) | 
|  | error = xfs_icreate(tp, ino, args, &du.ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * Now we join the directory inode to the transaction.  We do not do it | 
|  | * earlier because xfs_dialloc might commit the previous transaction | 
|  | * (and release all the locks).  An error from here on will result in | 
|  | * the transaction cancel unlocking dp so don't do it explicitly in the | 
|  | * error path. | 
|  | */ | 
|  | xfs_trans_ijoin(tp, dp, 0); | 
|  |  | 
|  | error = xfs_dir_create_child(tp, resblks, &du); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * If this is a synchronous mount, make sure that the | 
|  | * create transaction goes to disk before returning to | 
|  | * the user. | 
|  | */ | 
|  | if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | /* | 
|  | * Attach the dquot(s) to the inodes and modify them incore. | 
|  | * These ids of the inode couldn't have changed since the new | 
|  | * inode has been locked ever since it was created. | 
|  | */ | 
|  | xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp); | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto out_release_inode; | 
|  |  | 
|  | xfs_qm_dqrele(udqp); | 
|  | xfs_qm_dqrele(gdqp); | 
|  | xfs_qm_dqrele(pdqp); | 
|  |  | 
|  | *ipp = du.ip; | 
|  | xfs_iunlock(du.ip, XFS_ILOCK_EXCL); | 
|  | xfs_iunlock(dp, XFS_ILOCK_EXCL); | 
|  | xfs_parent_finish(mp, du.ppargs); | 
|  | return 0; | 
|  |  | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | out_release_inode: | 
|  | /* | 
|  | * Wait until after the current transaction is aborted to finish the | 
|  | * setup of the inode and release the inode.  This prevents recursive | 
|  | * transactions and deadlocks from xfs_inactive. | 
|  | */ | 
|  | if (du.ip) { | 
|  | xfs_iunlock(du.ip, XFS_ILOCK_EXCL); | 
|  | xfs_finish_inode_setup(du.ip); | 
|  | xfs_irele(du.ip); | 
|  | } | 
|  | out_parent: | 
|  | xfs_parent_finish(mp, du.ppargs); | 
|  | out_release_dquots: | 
|  | xfs_qm_dqrele(udqp); | 
|  | xfs_qm_dqrele(gdqp); | 
|  | xfs_qm_dqrele(pdqp); | 
|  |  | 
|  | if (unlock_dp_on_error) | 
|  | xfs_iunlock(dp, XFS_ILOCK_EXCL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_create_tmpfile( | 
|  | const struct xfs_icreate_args *args, | 
|  | struct xfs_inode	**ipp) | 
|  | { | 
|  | struct xfs_inode	*dp = args->pip; | 
|  | struct xfs_mount	*mp = dp->i_mount; | 
|  | struct xfs_inode	*ip = NULL; | 
|  | struct xfs_trans	*tp = NULL; | 
|  | struct xfs_dquot	*udqp; | 
|  | struct xfs_dquot	*gdqp; | 
|  | struct xfs_dquot	*pdqp; | 
|  | struct xfs_trans_res	*tres; | 
|  | xfs_ino_t		ino; | 
|  | uint			resblks; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(args->flags & XFS_ICREATE_TMPFILE); | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | /* Make sure that we have allocated dquot(s) on disk. */ | 
|  | error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | resblks = XFS_IALLOC_SPACE_RES(mp); | 
|  | tres = &M_RES(mp)->tr_create_tmpfile; | 
|  |  | 
|  | error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, | 
|  | &tp); | 
|  | if (error) | 
|  | goto out_release_dquots; | 
|  |  | 
|  | error = xfs_dialloc(&tp, args, &ino); | 
|  | if (!error) | 
|  | error = xfs_icreate(tp, ino, args, &ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | if (xfs_has_wsync(mp)) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | /* | 
|  | * Attach the dquot(s) to the inodes and modify them incore. | 
|  | * These ids of the inode couldn't have changed since the new | 
|  | * inode has been locked ever since it was created. | 
|  | */ | 
|  | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); | 
|  |  | 
|  | error = xfs_iunlink(tp, ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto out_release_inode; | 
|  |  | 
|  | xfs_qm_dqrele(udqp); | 
|  | xfs_qm_dqrele(gdqp); | 
|  | xfs_qm_dqrele(pdqp); | 
|  |  | 
|  | *ipp = ip; | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return 0; | 
|  |  | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | out_release_inode: | 
|  | /* | 
|  | * Wait until after the current transaction is aborted to finish the | 
|  | * setup of the inode and release the inode.  This prevents recursive | 
|  | * transactions and deadlocks from xfs_inactive. | 
|  | */ | 
|  | if (ip) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_finish_inode_setup(ip); | 
|  | xfs_irele(ip); | 
|  | } | 
|  | out_release_dquots: | 
|  | xfs_qm_dqrele(udqp); | 
|  | xfs_qm_dqrele(gdqp); | 
|  | xfs_qm_dqrele(pdqp); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_link( | 
|  | struct xfs_inode	*tdp, | 
|  | struct xfs_inode	*sip, | 
|  | struct xfs_name		*target_name) | 
|  | { | 
|  | struct xfs_dir_update	du = { | 
|  | .dp		= tdp, | 
|  | .name		= target_name, | 
|  | .ip		= sip, | 
|  | }; | 
|  | struct xfs_mount	*mp = tdp->i_mount; | 
|  | struct xfs_trans	*tp; | 
|  | int			error, nospace_error = 0; | 
|  | int			resblks; | 
|  |  | 
|  | trace_xfs_link(tdp, target_name); | 
|  |  | 
|  | ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  | if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) | 
|  | return -EIO; | 
|  |  | 
|  | error = xfs_qm_dqattach(sip); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | error = xfs_qm_dqattach(tdp); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | error = xfs_parent_start(mp, &du.ppargs); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | resblks = xfs_link_space_res(mp, target_name->len); | 
|  | error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, | 
|  | &tp, &nospace_error); | 
|  | if (error) | 
|  | goto out_parent; | 
|  |  | 
|  | /* | 
|  | * We don't allow reservationless or quotaless hardlinking when parent | 
|  | * pointers are enabled because we can't back out if the xattrs must | 
|  | * grow. | 
|  | */ | 
|  | if (du.ppargs && nospace_error) { | 
|  | error = nospace_error; | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are using project inheritance, we only allow hard link | 
|  | * creation in our tree when the project IDs are the same; else | 
|  | * the tree quota mechanism could be circumvented. | 
|  | */ | 
|  | if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && | 
|  | tdp->i_projid != sip->i_projid)) { | 
|  | /* | 
|  | * Project quota setup skips special files which can | 
|  | * leave inodes in a PROJINHERIT directory without a | 
|  | * project ID set. We need to allow links to be made | 
|  | * to these "project-less" inodes because userspace | 
|  | * expects them to succeed after project ID setup, | 
|  | * but everything else should be rejected. | 
|  | */ | 
|  | if (!special_file(VFS_I(sip)->i_mode) || | 
|  | sip->i_projid != 0) { | 
|  | error = -EXDEV; | 
|  | goto error_return; | 
|  | } | 
|  | } | 
|  |  | 
|  | error = xfs_dir_add_child(tp, resblks, &du); | 
|  | if (error) | 
|  | goto error_return; | 
|  |  | 
|  | /* | 
|  | * If this is a synchronous mount, make sure that the | 
|  | * link transaction goes to disk before returning to | 
|  | * the user. | 
|  | */ | 
|  | if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | xfs_iunlock(tdp, XFS_ILOCK_EXCL); | 
|  | xfs_iunlock(sip, XFS_ILOCK_EXCL); | 
|  | xfs_parent_finish(mp, du.ppargs); | 
|  | return error; | 
|  |  | 
|  | error_return: | 
|  | xfs_trans_cancel(tp); | 
|  | xfs_iunlock(tdp, XFS_ILOCK_EXCL); | 
|  | xfs_iunlock(sip, XFS_ILOCK_EXCL); | 
|  | out_parent: | 
|  | xfs_parent_finish(mp, du.ppargs); | 
|  | std_return: | 
|  | if (error == -ENOSPC && nospace_error) | 
|  | error = nospace_error; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Clear the reflink flag and the cowblocks tag if possible. */ | 
|  | static void | 
|  | xfs_itruncate_clear_reflink_flags( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_ifork	*dfork; | 
|  | struct xfs_ifork	*cfork; | 
|  |  | 
|  | if (!xfs_is_reflink_inode(ip)) | 
|  | return; | 
|  | dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); | 
|  | cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); | 
|  | if (dfork->if_bytes == 0 && cfork->if_bytes == 0) | 
|  | ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; | 
|  | if (cfork->if_bytes == 0) | 
|  | xfs_inode_clear_cowblocks_tag(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free up the underlying blocks past new_size.  The new size must be smaller | 
|  | * than the current size.  This routine can be used both for the attribute and | 
|  | * data fork, and does not modify the inode size, which is left to the caller. | 
|  | * | 
|  | * The transaction passed to this routine must have made a permanent log | 
|  | * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the | 
|  | * given transaction and start new ones, so make sure everything involved in | 
|  | * the transaction is tidy before calling here.  Some transaction will be | 
|  | * returned to the caller to be committed.  The incoming transaction must | 
|  | * already include the inode, and both inode locks must be held exclusively. | 
|  | * The inode must also be "held" within the transaction.  On return the inode | 
|  | * will be "held" within the returned transaction.  This routine does NOT | 
|  | * require any disk space to be reserved for it within the transaction. | 
|  | * | 
|  | * If we get an error, we must return with the inode locked and linked into the | 
|  | * current transaction. This keeps things simple for the higher level code, | 
|  | * because it always knows that the inode is locked and held in the transaction | 
|  | * that returns to it whether errors occur or not.  We don't mark the inode | 
|  | * dirty on error so that transactions can be easily aborted if possible. | 
|  | */ | 
|  | int | 
|  | xfs_itruncate_extents_flags( | 
|  | struct xfs_trans	**tpp, | 
|  | struct xfs_inode	*ip, | 
|  | int			whichfork, | 
|  | xfs_fsize_t		new_size, | 
|  | int			flags) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_trans	*tp = *tpp; | 
|  | xfs_fileoff_t		first_unmap_block; | 
|  | int			error = 0; | 
|  |  | 
|  | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); | 
|  | if (atomic_read(&VFS_I(ip)->i_count)) | 
|  | xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); | 
|  | ASSERT(new_size <= XFS_ISIZE(ip)); | 
|  | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | 
|  | ASSERT(ip->i_itemp != NULL); | 
|  | ASSERT(ip->i_itemp->ili_lock_flags == 0); | 
|  | ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); | 
|  |  | 
|  | trace_xfs_itruncate_extents_start(ip, new_size); | 
|  |  | 
|  | flags |= xfs_bmapi_aflag(whichfork); | 
|  |  | 
|  | /* | 
|  | * Since it is possible for space to become allocated beyond | 
|  | * the end of the file (in a crash where the space is allocated | 
|  | * but the inode size is not yet updated), simply remove any | 
|  | * blocks which show up between the new EOF and the maximum | 
|  | * possible file size. | 
|  | * | 
|  | * We have to free all the blocks to the bmbt maximum offset, even if | 
|  | * the page cache can't scale that far. | 
|  | */ | 
|  | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
|  | if (!xfs_verify_fileoff(mp, first_unmap_block)) { | 
|  | WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, | 
|  | XFS_MAX_FILEOFF); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if (whichfork == XFS_DATA_FORK) { | 
|  | /* Remove all pending CoW reservations. */ | 
|  | error = xfs_reflink_cancel_cow_blocks(ip, &tp, | 
|  | first_unmap_block, XFS_MAX_FILEOFF, true); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | xfs_itruncate_clear_reflink_flags(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Always re-log the inode so that our permanent transaction can keep | 
|  | * on rolling it forward in the log. | 
|  | */ | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  |  | 
|  | trace_xfs_itruncate_extents_end(ip, new_size); | 
|  |  | 
|  | out: | 
|  | *tpp = tp; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark all the buffers attached to this directory stale.  In theory we should | 
|  | * never be freeing a directory with any blocks at all, but this covers the | 
|  | * case where we've recovered a directory swap with a "temporary" directory | 
|  | * created by online repair and now need to dump it. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_inactive_dir( | 
|  | struct xfs_inode	*dp) | 
|  | { | 
|  | struct xfs_iext_cursor	icur; | 
|  | struct xfs_bmbt_irec	got; | 
|  | struct xfs_mount	*mp = dp->i_mount; | 
|  | struct xfs_da_geometry	*geo = mp->m_dir_geo; | 
|  | struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK); | 
|  | xfs_fileoff_t		off; | 
|  |  | 
|  | /* | 
|  | * Invalidate each directory block.  All directory blocks are of | 
|  | * fsbcount length and alignment, so we only need to walk those same | 
|  | * offsets.  We hold the only reference to this inode, so we must wait | 
|  | * for the buffer locks. | 
|  | */ | 
|  | for_each_xfs_iext(ifp, &icur, &got) { | 
|  | for (off = round_up(got.br_startoff, geo->fsbcount); | 
|  | off < got.br_startoff + got.br_blockcount; | 
|  | off += geo->fsbcount) { | 
|  | struct xfs_buf	*bp = NULL; | 
|  | xfs_fsblock_t	fsbno; | 
|  | int		error; | 
|  |  | 
|  | fsbno = (off - got.br_startoff) + got.br_startblock; | 
|  | error = xfs_buf_incore(mp->m_ddev_targp, | 
|  | XFS_FSB_TO_DADDR(mp, fsbno), | 
|  | XFS_FSB_TO_BB(mp, geo->fsbcount), | 
|  | XBF_LIVESCAN, &bp); | 
|  | if (error) | 
|  | continue; | 
|  |  | 
|  | xfs_buf_stale(bp); | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_inactive_truncate | 
|  | * | 
|  | * Called to perform a truncate when an inode becomes unlinked. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inactive_truncate( | 
|  | struct xfs_inode *ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_trans	*tp; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); | 
|  | if (error) { | 
|  | ASSERT(xfs_is_shutdown(mp)); | 
|  | return error; | 
|  | } | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ijoin(tp, ip, 0); | 
|  |  | 
|  | /* | 
|  | * Log the inode size first to prevent stale data exposure in the event | 
|  | * of a system crash before the truncate completes. See the related | 
|  | * comment in xfs_vn_setattr_size() for details. | 
|  | */ | 
|  | ip->i_disk_size = 0; | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  |  | 
|  | error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); | 
|  | if (error) | 
|  | goto error_trans_cancel; | 
|  |  | 
|  | ASSERT(ip->i_df.if_nextents == 0); | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto error_unlock; | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return 0; | 
|  |  | 
|  | error_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | error_unlock: | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_inactive_ifree() | 
|  | * | 
|  | * Perform the inode free when an inode is unlinked. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inactive_ifree( | 
|  | struct xfs_inode *ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_trans	*tp; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * We try to use a per-AG reservation for any block needed by the finobt | 
|  | * tree, but as the finobt feature predates the per-AG reservation | 
|  | * support a degraded file system might not have enough space for the | 
|  | * reservation at mount time.  In that case try to dip into the reserved | 
|  | * pool and pray. | 
|  | * | 
|  | * Send a warning if the reservation does happen to fail, as the inode | 
|  | * now remains allocated and sits on the unlinked list until the fs is | 
|  | * repaired. | 
|  | */ | 
|  | if (unlikely(mp->m_finobt_nores)) { | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, | 
|  | XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, | 
|  | &tp); | 
|  | } else { | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); | 
|  | } | 
|  | if (error) { | 
|  | if (error == -ENOSPC) { | 
|  | xfs_warn_ratelimited(mp, | 
|  | "Failed to remove inode(s) from unlinked list. " | 
|  | "Please free space, unmount and run xfs_repair."); | 
|  | } else { | 
|  | ASSERT(xfs_is_shutdown(mp)); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We do not hold the inode locked across the entire rolling transaction | 
|  | * here. We only need to hold it for the first transaction that | 
|  | * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the | 
|  | * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode | 
|  | * here breaks the relationship between cluster buffer invalidation and | 
|  | * stale inode invalidation on cluster buffer item journal commit | 
|  | * completion, and can result in leaving dirty stale inodes hanging | 
|  | * around in memory. | 
|  | * | 
|  | * We have no need for serialising this inode operation against other | 
|  | * operations - we freed the inode and hence reallocation is required | 
|  | * and that will serialise on reallocating the space the deferops need | 
|  | * to free. Hence we can unlock the inode on the first commit of | 
|  | * the transaction rather than roll it right through the deferops. This | 
|  | * avoids relogging the XFS_ISTALE inode. | 
|  | * | 
|  | * We check that xfs_ifree() hasn't grown an internal transaction roll | 
|  | * by asserting that the inode is still locked when it returns. | 
|  | */ | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | error = xfs_ifree(tp, ip); | 
|  | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); | 
|  | if (error) { | 
|  | /* | 
|  | * If we fail to free the inode, shut down.  The cancel | 
|  | * might do that, we need to make sure.  Otherwise the | 
|  | * inode might be lost for a long time or forever. | 
|  | */ | 
|  | if (!xfs_is_shutdown(mp)) { | 
|  | xfs_notice(mp, "%s: xfs_ifree returned error %d", | 
|  | __func__, error); | 
|  | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
|  | } | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Credit the quota account(s). The inode is gone. | 
|  | */ | 
|  | xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); | 
|  |  | 
|  | return xfs_trans_commit(tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if we need to update the on-disk metadata before we can free | 
|  | * the memory used by this inode.  Updates include freeing post-eof | 
|  | * preallocations; freeing COW staging extents; and marking the inode free in | 
|  | * the inobt if it is on the unlinked list. | 
|  | */ | 
|  | bool | 
|  | xfs_inode_needs_inactive( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); | 
|  |  | 
|  | /* | 
|  | * If the inode is already free, then there can be nothing | 
|  | * to clean up here. | 
|  | */ | 
|  | if (VFS_I(ip)->i_mode == 0) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If this is a read-only mount, don't do this (would generate I/O) | 
|  | * unless we're in log recovery and cleaning the iunlinked list. | 
|  | */ | 
|  | if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) | 
|  | return false; | 
|  |  | 
|  | /* If the log isn't running, push inodes straight to reclaim. */ | 
|  | if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) | 
|  | return false; | 
|  |  | 
|  | /* Metadata inodes require explicit resource cleanup. */ | 
|  | if (xfs_is_internal_inode(ip)) | 
|  | return false; | 
|  |  | 
|  | /* Want to clean out the cow blocks if there are any. */ | 
|  | if (cow_ifp && cow_ifp->if_bytes > 0) | 
|  | return true; | 
|  |  | 
|  | /* Unlinked files must be freed. */ | 
|  | if (VFS_I(ip)->i_nlink == 0) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * This file isn't being freed, so check if there are post-eof blocks | 
|  | * to free. | 
|  | * | 
|  | * Note: don't bother with iolock here since lockdep complains about | 
|  | * acquiring it in reclaim context. We have the only reference to the | 
|  | * inode at this point anyways. | 
|  | */ | 
|  | return xfs_can_free_eofblocks(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save health status somewhere, if we're dumping an inode with uncorrected | 
|  | * errors and online repair isn't running. | 
|  | */ | 
|  | static inline void | 
|  | xfs_inactive_health( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_perag	*pag; | 
|  | unsigned int		sick; | 
|  | unsigned int		checked; | 
|  |  | 
|  | xfs_inode_measure_sickness(ip, &sick, &checked); | 
|  | if (!sick) | 
|  | return; | 
|  |  | 
|  | trace_xfs_inode_unfixed_corruption(ip, sick); | 
|  |  | 
|  | if (sick & XFS_SICK_INO_FORGET) | 
|  | return; | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | if (!pag) { | 
|  | /* There had better still be a perag structure! */ | 
|  | ASSERT(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_inactive | 
|  | * | 
|  | * This is called when the vnode reference count for the vnode | 
|  | * goes to zero.  If the file has been unlinked, then it must | 
|  | * now be truncated.  Also, we clear all of the read-ahead state | 
|  | * kept for the inode here since the file is now closed. | 
|  | */ | 
|  | int | 
|  | xfs_inactive( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp; | 
|  | int			error = 0; | 
|  | int			truncate = 0; | 
|  |  | 
|  | /* | 
|  | * If the inode is already free, then there can be nothing | 
|  | * to clean up here. | 
|  | */ | 
|  | if (VFS_I(ip)->i_mode == 0) { | 
|  | ASSERT(ip->i_df.if_broot_bytes == 0); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mp = ip->i_mount; | 
|  | ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); | 
|  |  | 
|  | xfs_inactive_health(ip); | 
|  |  | 
|  | /* | 
|  | * If this is a read-only mount, don't do this (would generate I/O) | 
|  | * unless we're in log recovery and cleaning the iunlinked list. | 
|  | */ | 
|  | if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) | 
|  | goto out; | 
|  |  | 
|  | /* Metadata inodes require explicit resource cleanup. */ | 
|  | if (xfs_is_internal_inode(ip)) | 
|  | goto out; | 
|  |  | 
|  | /* Try to clean out the cow blocks if there are any. */ | 
|  | if (xfs_inode_has_cow_data(ip)) { | 
|  | error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); | 
|  | if (error) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (VFS_I(ip)->i_nlink != 0) { | 
|  | /* | 
|  | * Note: don't bother with iolock here since lockdep complains | 
|  | * about acquiring it in reclaim context. We have the only | 
|  | * reference to the inode at this point anyways. | 
|  | */ | 
|  | if (xfs_can_free_eofblocks(ip)) | 
|  | error = xfs_free_eofblocks(ip); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (S_ISREG(VFS_I(ip)->i_mode) && | 
|  | (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || | 
|  | xfs_inode_has_filedata(ip))) | 
|  | truncate = 1; | 
|  |  | 
|  | if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { | 
|  | /* | 
|  | * If this inode is being inactivated during a quotacheck and | 
|  | * has not yet been scanned by quotacheck, we /must/ remove | 
|  | * the dquots from the inode before inactivation changes the | 
|  | * block and inode counts.  Most probably this is a result of | 
|  | * reloading the incore iunlinked list to purge unrecovered | 
|  | * unlinked inodes. | 
|  | */ | 
|  | xfs_qm_dqdetach(ip); | 
|  | } else { | 
|  | error = xfs_qm_dqattach(ip); | 
|  | if (error) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) { | 
|  | xfs_inactive_dir(ip); | 
|  | truncate = 1; | 
|  | } | 
|  |  | 
|  | if (S_ISLNK(VFS_I(ip)->i_mode)) | 
|  | error = xfs_inactive_symlink(ip); | 
|  | else if (truncate) | 
|  | error = xfs_inactive_truncate(ip); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If there are attributes associated with the file then blow them away | 
|  | * now.  The code calls a routine that recursively deconstructs the | 
|  | * attribute fork. If also blows away the in-core attribute fork. | 
|  | */ | 
|  | if (xfs_inode_has_attr_fork(ip)) { | 
|  | error = xfs_attr_inactive(ip); | 
|  | if (error) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ASSERT(ip->i_forkoff == 0); | 
|  |  | 
|  | /* | 
|  | * Free the inode. | 
|  | */ | 
|  | error = xfs_inactive_ifree(ip); | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * We're done making metadata updates for this inode, so we can release | 
|  | * the attached dquots. | 
|  | */ | 
|  | xfs_qm_dqdetach(ip); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find an inode on the unlinked list. This does not take references to the | 
|  | * inode as we have existence guarantees by holding the AGI buffer lock and that | 
|  | * only unlinked, referenced inodes can be on the unlinked inode list.  If we | 
|  | * don't find the inode in cache, then let the caller handle the situation. | 
|  | */ | 
|  | struct xfs_inode * | 
|  | xfs_iunlink_lookup( | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agino_t		agino) | 
|  | { | 
|  | struct xfs_inode	*ip; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ip = radix_tree_lookup(&pag->pag_ici_root, agino); | 
|  | if (!ip) { | 
|  | /* Caller can handle inode not being in memory. */ | 
|  | rcu_read_unlock(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inode in RCU freeing limbo should not happen.  Warn about this and | 
|  | * let the caller handle the failure. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!ip->i_ino)) { | 
|  | rcu_read_unlock(); | 
|  | return NULL; | 
|  | } | 
|  | ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); | 
|  | rcu_read_unlock(); | 
|  | return ip; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load the inode @next_agino into the cache and set its prev_unlinked pointer | 
|  | * to @prev_agino.  Caller must hold the AGI to synchronize with other changes | 
|  | * to the unlinked list. | 
|  | */ | 
|  | int | 
|  | xfs_iunlink_reload_next( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_buf		*agibp, | 
|  | xfs_agino_t		prev_agino, | 
|  | xfs_agino_t		next_agino) | 
|  | { | 
|  | struct xfs_perag	*pag = agibp->b_pag; | 
|  | struct xfs_mount	*mp = pag_mount(pag); | 
|  | struct xfs_inode	*next_ip = NULL; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(next_agino != NULLAGINO); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | rcu_read_lock(); | 
|  | next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); | 
|  | ASSERT(next_ip == NULL); | 
|  | rcu_read_unlock(); | 
|  | #endif | 
|  |  | 
|  | xfs_info_ratelimited(mp, | 
|  | "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.", | 
|  | next_agino, pag_agno(pag)); | 
|  |  | 
|  | /* | 
|  | * Use an untrusted lookup just to be cautious in case the AGI has been | 
|  | * corrupted and now points at a free inode.  That shouldn't happen, | 
|  | * but we'd rather shut down now since we're already running in a weird | 
|  | * situation. | 
|  | */ | 
|  | error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino), | 
|  | XFS_IGET_UNTRUSTED, 0, &next_ip); | 
|  | if (error) { | 
|  | xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* If this is not an unlinked inode, something is very wrong. */ | 
|  | if (VFS_I(next_ip)->i_nlink != 0) { | 
|  | xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); | 
|  | error = -EFSCORRUPTED; | 
|  | goto rele; | 
|  | } | 
|  |  | 
|  | next_ip->i_prev_unlinked = prev_agino; | 
|  | trace_xfs_iunlink_reload_next(next_ip); | 
|  | rele: | 
|  | ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); | 
|  | if (xfs_is_quotacheck_running(mp) && next_ip) | 
|  | xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); | 
|  | xfs_irele(next_ip); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up the inode number specified and if it is not already marked XFS_ISTALE | 
|  | * mark it stale. We should only find clean inodes in this lookup that aren't | 
|  | * already stale. | 
|  | */ | 
|  | static void | 
|  | xfs_ifree_mark_inode_stale( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_inode	*free_ip, | 
|  | xfs_ino_t		inum) | 
|  | { | 
|  | struct xfs_mount	*mp = pag_mount(pag); | 
|  | struct xfs_inode_log_item *iip; | 
|  | struct xfs_inode	*ip; | 
|  |  | 
|  | retry: | 
|  | rcu_read_lock(); | 
|  | ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); | 
|  |  | 
|  | /* Inode not in memory, nothing to do */ | 
|  | if (!ip) { | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * because this is an RCU protected lookup, we could find a recently | 
|  | * freed or even reallocated inode during the lookup. We need to check | 
|  | * under the i_flags_lock for a valid inode here. Skip it if it is not | 
|  | * valid, the wrong inode or stale. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) | 
|  | goto out_iflags_unlock; | 
|  |  | 
|  | /* | 
|  | * Don't try to lock/unlock the current inode, but we _cannot_ skip the | 
|  | * other inodes that we did not find in the list attached to the buffer | 
|  | * and are not already marked stale. If we can't lock it, back off and | 
|  | * retry. | 
|  | */ | 
|  | if (ip != free_ip) { | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  | delay(1); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  | ip->i_flags |= XFS_ISTALE; | 
|  |  | 
|  | /* | 
|  | * If the inode is flushing, it is already attached to the buffer.  All | 
|  | * we needed to do here is mark the inode stale so buffer IO completion | 
|  | * will remove it from the AIL. | 
|  | */ | 
|  | iip = ip->i_itemp; | 
|  | if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { | 
|  | ASSERT(!list_empty(&iip->ili_item.li_bio_list)); | 
|  | ASSERT(iip->ili_last_fields || xlog_is_shutdown(mp->m_log)); | 
|  | goto out_iunlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inodes not attached to the buffer can be released immediately. | 
|  | * Everything else has to go through xfs_iflush_abort() on journal | 
|  | * commit as the flock synchronises removal of the inode from the | 
|  | * cluster buffer against inode reclaim. | 
|  | */ | 
|  | if (!iip || list_empty(&iip->ili_item.li_bio_list)) | 
|  | goto out_iunlock; | 
|  |  | 
|  | __xfs_iflags_set(ip, XFS_IFLUSHING); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* we have a dirty inode in memory that has not yet been flushed. */ | 
|  | spin_lock(&iip->ili_lock); | 
|  | iip->ili_last_fields = iip->ili_fields; | 
|  | iip->ili_fields = 0; | 
|  | iip->ili_fsync_fields = 0; | 
|  | spin_unlock(&iip->ili_lock); | 
|  | ASSERT(iip->ili_last_fields); | 
|  |  | 
|  | if (ip != free_ip) | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return; | 
|  |  | 
|  | out_iunlock: | 
|  | if (ip != free_ip) | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | out_iflags_unlock: | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A big issue when freeing the inode cluster is that we _cannot_ skip any | 
|  | * inodes that are in memory - they all must be marked stale and attached to | 
|  | * the cluster buffer. | 
|  | */ | 
|  | static int | 
|  | xfs_ifree_cluster( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_inode	*free_ip, | 
|  | struct xfs_icluster	*xic) | 
|  | { | 
|  | struct xfs_mount	*mp = free_ip->i_mount; | 
|  | struct xfs_ino_geometry	*igeo = M_IGEO(mp); | 
|  | struct xfs_buf		*bp; | 
|  | xfs_daddr_t		blkno; | 
|  | xfs_ino_t		inum = xic->first_ino; | 
|  | int			nbufs; | 
|  | int			i, j; | 
|  | int			ioffset; | 
|  | int			error; | 
|  |  | 
|  | nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; | 
|  |  | 
|  | for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { | 
|  | /* | 
|  | * The allocation bitmap tells us which inodes of the chunk were | 
|  | * physically allocated. Skip the cluster if an inode falls into | 
|  | * a sparse region. | 
|  | */ | 
|  | ioffset = inum - xic->first_ino; | 
|  | if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { | 
|  | ASSERT(ioffset % igeo->inodes_per_cluster == 0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | 
|  | XFS_INO_TO_AGBNO(mp, inum)); | 
|  |  | 
|  | /* | 
|  | * We obtain and lock the backing buffer first in the process | 
|  | * here to ensure dirty inodes attached to the buffer remain in | 
|  | * the flushing state while we mark them stale. | 
|  | * | 
|  | * If we scan the in-memory inodes first, then buffer IO can | 
|  | * complete before we get a lock on it, and hence we may fail | 
|  | * to mark all the active inodes on the buffer stale. | 
|  | */ | 
|  | error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, | 
|  | mp->m_bsize * igeo->blocks_per_cluster, 0, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * This buffer may not have been correctly initialised as we | 
|  | * didn't read it from disk. That's not important because we are | 
|  | * only using to mark the buffer as stale in the log, and to | 
|  | * attach stale cached inodes on it. | 
|  | * | 
|  | * For the inode that triggered the cluster freeing, this | 
|  | * attachment may occur in xfs_inode_item_precommit() after we | 
|  | * have marked this buffer stale.  If this buffer was not in | 
|  | * memory before xfs_ifree_cluster() started, it will not be | 
|  | * marked XBF_DONE and this will cause problems later in | 
|  | * xfs_inode_item_precommit() when we trip over a (stale, !done) | 
|  | * buffer to attached to the transaction. | 
|  | * | 
|  | * Hence we have to mark the buffer as XFS_DONE here. This is | 
|  | * safe because we are also marking the buffer as XBF_STALE and | 
|  | * XFS_BLI_STALE. That means it will never be dispatched for | 
|  | * IO and it won't be unlocked until the cluster freeing has | 
|  | * been committed to the journal and the buffer unpinned. If it | 
|  | * is written, we want to know about it, and we want it to | 
|  | * fail. We can acheive this by adding a write verifier to the | 
|  | * buffer. | 
|  | */ | 
|  | bp->b_flags |= XBF_DONE; | 
|  | bp->b_ops = &xfs_inode_buf_ops; | 
|  |  | 
|  | /* | 
|  | * Now we need to set all the cached clean inodes as XFS_ISTALE, | 
|  | * too. This requires lookups, and will skip inodes that we've | 
|  | * already marked XFS_ISTALE. | 
|  | */ | 
|  | for (i = 0; i < igeo->inodes_per_cluster; i++) | 
|  | xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); | 
|  |  | 
|  | xfs_trans_stale_inode_buf(tp, bp); | 
|  | xfs_trans_binval(tp, bp); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to return an inode to the inode free list.  The inode should | 
|  | * already be truncated to 0 length and have no pages associated with it.  This | 
|  | * routine also assumes that the inode is already a part of the transaction. | 
|  | * | 
|  | * The on-disk copy of the inode will have been added to the list of unlinked | 
|  | * inodes in the AGI. We need to remove the inode from that list atomically with | 
|  | * respect to freeing it here. | 
|  | */ | 
|  | int | 
|  | xfs_ifree( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_perag	*pag; | 
|  | struct xfs_icluster	xic = { 0 }; | 
|  | struct xfs_inode_log_item *iip = ip->i_itemp; | 
|  | int			error; | 
|  |  | 
|  | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); | 
|  | ASSERT(VFS_I(ip)->i_nlink == 0); | 
|  | ASSERT(ip->i_df.if_nextents == 0); | 
|  | ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); | 
|  | ASSERT(ip->i_nblocks == 0); | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  |  | 
|  | error = xfs_inode_uninit(tp, pag, ip, &xic); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) | 
|  | xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); | 
|  |  | 
|  | /* Don't attempt to replay owner changes for a deleted inode */ | 
|  | spin_lock(&iip->ili_lock); | 
|  | iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); | 
|  | spin_unlock(&iip->ili_lock); | 
|  |  | 
|  | if (xic.deleted) | 
|  | error = xfs_ifree_cluster(tp, pag, ip, &xic); | 
|  | out: | 
|  | xfs_perag_put(pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to unpin an inode.  The caller must have the inode locked | 
|  | * in at least shared mode so that the buffer cannot be subsequently pinned | 
|  | * once someone is waiting for it to be unpinned. | 
|  | */ | 
|  | static void | 
|  | xfs_iunpin( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); | 
|  |  | 
|  | trace_xfs_inode_unpin_nowait(ip, _RET_IP_); | 
|  |  | 
|  | /* Give the log a push to start the unpinning I/O */ | 
|  | xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void | 
|  | __xfs_iunpin_wait( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); | 
|  | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); | 
|  |  | 
|  | xfs_iunpin(ip); | 
|  |  | 
|  | do { | 
|  | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
|  | if (xfs_ipincount(ip)) | 
|  | io_schedule(); | 
|  | } while (xfs_ipincount(ip)); | 
|  | finish_wait(wq, &wait.wq_entry); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_iunpin_wait( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | if (xfs_ipincount(ip)) | 
|  | __xfs_iunpin_wait(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Removing an inode from the namespace involves removing the directory entry | 
|  | * and dropping the link count on the inode. Removing the directory entry can | 
|  | * result in locking an AGF (directory blocks were freed) and removing a link | 
|  | * count can result in placing the inode on an unlinked list which results in | 
|  | * locking an AGI. | 
|  | * | 
|  | * The big problem here is that we have an ordering constraint on AGF and AGI | 
|  | * locking - inode allocation locks the AGI, then can allocate a new extent for | 
|  | * new inodes, locking the AGF after the AGI. Similarly, freeing the inode | 
|  | * removes the inode from the unlinked list, requiring that we lock the AGI | 
|  | * first, and then freeing the inode can result in an inode chunk being freed | 
|  | * and hence freeing disk space requiring that we lock an AGF. | 
|  | * | 
|  | * Hence the ordering that is imposed by other parts of the code is AGI before | 
|  | * AGF. This means we cannot remove the directory entry before we drop the inode | 
|  | * reference count and put it on the unlinked list as this results in a lock | 
|  | * order of AGF then AGI, and this can deadlock against inode allocation and | 
|  | * freeing. Therefore we must drop the link counts before we remove the | 
|  | * directory entry. | 
|  | * | 
|  | * This is still safe from a transactional point of view - it is not until we | 
|  | * get to xfs_defer_finish() that we have the possibility of multiple | 
|  | * transactions in this operation. Hence as long as we remove the directory | 
|  | * entry and drop the link count in the first transaction of the remove | 
|  | * operation, there are no transactional constraints on the ordering here. | 
|  | */ | 
|  | int | 
|  | xfs_remove( | 
|  | struct xfs_inode	*dp, | 
|  | struct xfs_name		*name, | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_dir_update	du = { | 
|  | .dp		= dp, | 
|  | .name		= name, | 
|  | .ip		= ip, | 
|  | }; | 
|  | struct xfs_mount	*mp = dp->i_mount; | 
|  | struct xfs_trans	*tp = NULL; | 
|  | int			is_dir = S_ISDIR(VFS_I(ip)->i_mode); | 
|  | int			dontcare; | 
|  | int                     error = 0; | 
|  | uint			resblks; | 
|  |  | 
|  | trace_xfs_remove(dp, name); | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  | if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) | 
|  | return -EIO; | 
|  |  | 
|  | error = xfs_qm_dqattach(dp); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | error = xfs_qm_dqattach(ip); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | error = xfs_parent_start(mp, &du.ppargs); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | /* | 
|  | * We try to get the real space reservation first, allowing for | 
|  | * directory btree deletion(s) implying possible bmap insert(s).  If we | 
|  | * can't get the space reservation then we use 0 instead, and avoid the | 
|  | * bmap btree insert(s) in the directory code by, if the bmap insert | 
|  | * tries to happen, instead trimming the LAST block from the directory. | 
|  | * | 
|  | * Ignore EDQUOT and ENOSPC being returned via nospace_error because | 
|  | * the directory code can handle a reservationless update and we don't | 
|  | * want to prevent a user from trying to free space by deleting things. | 
|  | */ | 
|  | resblks = xfs_remove_space_res(mp, name->len); | 
|  | error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, | 
|  | &tp, &dontcare); | 
|  | if (error) { | 
|  | ASSERT(error != -ENOSPC); | 
|  | goto out_parent; | 
|  | } | 
|  |  | 
|  | error = xfs_dir_remove_child(tp, resblks, &du); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * If this is a synchronous mount, make sure that the | 
|  | * remove transaction goes to disk before returning to | 
|  | * the user. | 
|  | */ | 
|  | if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (is_dir && xfs_inode_is_filestream(ip)) | 
|  | xfs_filestream_deassociate(ip); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_iunlock(dp, XFS_ILOCK_EXCL); | 
|  | xfs_parent_finish(mp, du.ppargs); | 
|  | return 0; | 
|  |  | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | out_unlock: | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_iunlock(dp, XFS_ILOCK_EXCL); | 
|  | out_parent: | 
|  | xfs_parent_finish(mp, du.ppargs); | 
|  | std_return: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | xfs_iunlock_rename( | 
|  | struct xfs_inode	**i_tab, | 
|  | int			num_inodes) | 
|  | { | 
|  | int			i; | 
|  |  | 
|  | for (i = num_inodes - 1; i >= 0; i--) { | 
|  | /* Skip duplicate inodes if src and target dps are the same */ | 
|  | if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1])) | 
|  | continue; | 
|  | xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enter all inodes for a rename transaction into a sorted array. | 
|  | */ | 
|  | #define __XFS_SORT_INODES	5 | 
|  | STATIC void | 
|  | xfs_sort_for_rename( | 
|  | struct xfs_inode	*dp1,	/* in: old (source) directory inode */ | 
|  | struct xfs_inode	*dp2,	/* in: new (target) directory inode */ | 
|  | struct xfs_inode	*ip1,	/* in: inode of old entry */ | 
|  | struct xfs_inode	*ip2,	/* in: inode of new entry */ | 
|  | struct xfs_inode	*wip,	/* in: whiteout inode */ | 
|  | struct xfs_inode	**i_tab,/* out: sorted array of inodes */ | 
|  | int			*num_inodes)  /* in/out: inodes in array */ | 
|  | { | 
|  | int			i; | 
|  |  | 
|  | ASSERT(*num_inodes == __XFS_SORT_INODES); | 
|  | memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); | 
|  |  | 
|  | /* | 
|  | * i_tab contains a list of pointers to inodes.  We initialize | 
|  | * the table here & we'll sort it.  We will then use it to | 
|  | * order the acquisition of the inode locks. | 
|  | * | 
|  | * Note that the table may contain duplicates.  e.g., dp1 == dp2. | 
|  | */ | 
|  | i = 0; | 
|  | i_tab[i++] = dp1; | 
|  | i_tab[i++] = dp2; | 
|  | i_tab[i++] = ip1; | 
|  | if (ip2) | 
|  | i_tab[i++] = ip2; | 
|  | if (wip) | 
|  | i_tab[i++] = wip; | 
|  | *num_inodes = i; | 
|  |  | 
|  | xfs_sort_inodes(i_tab, *num_inodes); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_sort_inodes( | 
|  | struct xfs_inode	**i_tab, | 
|  | unsigned int		num_inodes) | 
|  | { | 
|  | int			i, j; | 
|  |  | 
|  | ASSERT(num_inodes <= __XFS_SORT_INODES); | 
|  |  | 
|  | /* | 
|  | * Sort the elements via bubble sort.  (Remember, there are at | 
|  | * most 5 elements to sort, so this is adequate.) | 
|  | */ | 
|  | for (i = 0; i < num_inodes; i++) { | 
|  | for (j = 1; j < num_inodes; j++) { | 
|  | if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) | 
|  | swap(i_tab[j], i_tab[j - 1]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_rename_alloc_whiteout() | 
|  | * | 
|  | * Return a referenced, unlinked, unlocked inode that can be used as a | 
|  | * whiteout in a rename transaction. We use a tmpfile inode here so that if we | 
|  | * crash between allocating the inode and linking it into the rename transaction | 
|  | * recovery will free the inode and we won't leak it. | 
|  | */ | 
|  | static int | 
|  | xfs_rename_alloc_whiteout( | 
|  | struct mnt_idmap	*idmap, | 
|  | struct xfs_name		*src_name, | 
|  | struct xfs_inode	*dp, | 
|  | struct xfs_inode	**wip) | 
|  | { | 
|  | struct xfs_icreate_args	args = { | 
|  | .idmap		= idmap, | 
|  | .pip		= dp, | 
|  | .mode		= S_IFCHR | WHITEOUT_MODE, | 
|  | .flags		= XFS_ICREATE_TMPFILE, | 
|  | }; | 
|  | struct xfs_inode	*tmpfile; | 
|  | struct qstr		name; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_create_tmpfile(&args, &tmpfile); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | name.name = src_name->name; | 
|  | name.len = src_name->len; | 
|  | error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); | 
|  | if (error) { | 
|  | xfs_finish_inode_setup(tmpfile); | 
|  | xfs_irele(tmpfile); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare the tmpfile inode as if it were created through the VFS. | 
|  | * Complete the inode setup and flag it as linkable.  nlink is already | 
|  | * zero, so we can skip the drop_nlink. | 
|  | */ | 
|  | xfs_setup_iops(tmpfile); | 
|  | xfs_finish_inode_setup(tmpfile); | 
|  | VFS_I(tmpfile)->i_state |= I_LINKABLE; | 
|  |  | 
|  | *wip = tmpfile; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_rename | 
|  | */ | 
|  | int | 
|  | xfs_rename( | 
|  | struct mnt_idmap	*idmap, | 
|  | struct xfs_inode	*src_dp, | 
|  | struct xfs_name		*src_name, | 
|  | struct xfs_inode	*src_ip, | 
|  | struct xfs_inode	*target_dp, | 
|  | struct xfs_name		*target_name, | 
|  | struct xfs_inode	*target_ip, | 
|  | unsigned int		flags) | 
|  | { | 
|  | struct xfs_dir_update	du_src = { | 
|  | .dp		= src_dp, | 
|  | .name		= src_name, | 
|  | .ip		= src_ip, | 
|  | }; | 
|  | struct xfs_dir_update	du_tgt = { | 
|  | .dp		= target_dp, | 
|  | .name		= target_name, | 
|  | .ip		= target_ip, | 
|  | }; | 
|  | struct xfs_dir_update	du_wip = { }; | 
|  | struct xfs_mount	*mp = src_dp->i_mount; | 
|  | struct xfs_trans	*tp; | 
|  | struct xfs_inode	*inodes[__XFS_SORT_INODES]; | 
|  | int			i; | 
|  | int			num_inodes = __XFS_SORT_INODES; | 
|  | bool			new_parent = (src_dp != target_dp); | 
|  | bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); | 
|  | int			spaceres; | 
|  | bool			retried = false; | 
|  | int			error, nospace_error = 0; | 
|  |  | 
|  | trace_xfs_rename(src_dp, target_dp, src_name, target_name); | 
|  |  | 
|  | if ((flags & RENAME_EXCHANGE) && !target_ip) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * If we are doing a whiteout operation, allocate the whiteout inode | 
|  | * we will be placing at the target and ensure the type is set | 
|  | * appropriately. | 
|  | */ | 
|  | if (flags & RENAME_WHITEOUT) { | 
|  | error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp, | 
|  | &du_wip.ip); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* setup target dirent info as whiteout */ | 
|  | src_name->type = XFS_DIR3_FT_CHRDEV; | 
|  | } | 
|  |  | 
|  | xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip, | 
|  | inodes, &num_inodes); | 
|  |  | 
|  | error = xfs_parent_start(mp, &du_src.ppargs); | 
|  | if (error) | 
|  | goto out_release_wip; | 
|  |  | 
|  | if (du_wip.ip) { | 
|  | error = xfs_parent_start(mp, &du_wip.ppargs); | 
|  | if (error) | 
|  | goto out_src_ppargs; | 
|  | } | 
|  |  | 
|  | if (target_ip) { | 
|  | error = xfs_parent_start(mp, &du_tgt.ppargs); | 
|  | if (error) | 
|  | goto out_wip_ppargs; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | nospace_error = 0; | 
|  | spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL, | 
|  | target_name->len, du_wip.ip != NULL); | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); | 
|  | if (error == -ENOSPC) { | 
|  | nospace_error = error; | 
|  | spaceres = 0; | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, | 
|  | &tp); | 
|  | } | 
|  | if (error) | 
|  | goto out_tgt_ppargs; | 
|  |  | 
|  | /* | 
|  | * We don't allow reservationless renaming when parent pointers are | 
|  | * enabled because we can't back out if the xattrs must grow. | 
|  | */ | 
|  | if (du_src.ppargs && nospace_error) { | 
|  | error = nospace_error; | 
|  | xfs_trans_cancel(tp); | 
|  | goto out_tgt_ppargs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach the dquots to the inodes | 
|  | */ | 
|  | error = xfs_qm_vop_rename_dqattach(inodes); | 
|  | if (error) { | 
|  | xfs_trans_cancel(tp); | 
|  | goto out_tgt_ppargs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock all the participating inodes. Depending upon whether | 
|  | * the target_name exists in the target directory, and | 
|  | * whether the target directory is the same as the source | 
|  | * directory, we can lock from 2 to 5 inodes. | 
|  | */ | 
|  | xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * Join all the inodes to the transaction. | 
|  | */ | 
|  | xfs_trans_ijoin(tp, src_dp, 0); | 
|  | if (new_parent) | 
|  | xfs_trans_ijoin(tp, target_dp, 0); | 
|  | xfs_trans_ijoin(tp, src_ip, 0); | 
|  | if (target_ip) | 
|  | xfs_trans_ijoin(tp, target_ip, 0); | 
|  | if (du_wip.ip) | 
|  | xfs_trans_ijoin(tp, du_wip.ip, 0); | 
|  |  | 
|  | /* | 
|  | * If we are using project inheritance, we only allow renames | 
|  | * into our tree when the project IDs are the same; else the | 
|  | * tree quota mechanism would be circumvented. | 
|  | */ | 
|  | if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && | 
|  | target_dp->i_projid != src_ip->i_projid)) { | 
|  | error = -EXDEV; | 
|  | goto out_trans_cancel; | 
|  | } | 
|  |  | 
|  | /* RENAME_EXCHANGE is unique from here on. */ | 
|  | if (flags & RENAME_EXCHANGE) { | 
|  | error = xfs_dir_exchange_children(tp, &du_src, &du_tgt, | 
|  | spaceres); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  | goto out_commit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to reserve quota to handle an expansion of the target directory. | 
|  | * We'll allow the rename to continue in reservationless mode if we hit | 
|  | * a space usage constraint.  If we trigger reservationless mode, save | 
|  | * the errno if there isn't any free space in the target directory. | 
|  | */ | 
|  | if (spaceres != 0) { | 
|  | error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, | 
|  | 0, false); | 
|  | if (error == -EDQUOT || error == -ENOSPC) { | 
|  | if (!retried) { | 
|  | xfs_trans_cancel(tp); | 
|  | xfs_iunlock_rename(inodes, num_inodes); | 
|  | xfs_blockgc_free_quota(target_dp, 0); | 
|  | retried = true; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | nospace_error = error; | 
|  | spaceres = 0; | 
|  | error = 0; | 
|  | } | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't allow quotaless renaming when parent pointers are enabled | 
|  | * because we can't back out if the xattrs must grow. | 
|  | */ | 
|  | if (du_src.ppargs && nospace_error) { | 
|  | error = nospace_error; | 
|  | goto out_trans_cancel; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock the AGI buffers we need to handle bumping the nlink of the | 
|  | * whiteout inode off the unlinked list and to handle dropping the | 
|  | * nlink of the target inode.  Per locking order rules, do this in | 
|  | * increasing AG order and before directory block allocation tries to | 
|  | * grab AGFs because we grab AGIs before AGFs. | 
|  | * | 
|  | * The (vfs) caller must ensure that if src is a directory then | 
|  | * target_ip is either null or an empty directory. | 
|  | */ | 
|  | for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { | 
|  | if (inodes[i] == du_wip.ip || | 
|  | (inodes[i] == target_ip && | 
|  | (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { | 
|  | struct xfs_perag	*pag; | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | pag = xfs_perag_get(mp, | 
|  | XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); | 
|  | error = xfs_read_agi(pag, tp, 0, &bp); | 
|  | xfs_perag_put(pag); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  | } | 
|  | } | 
|  |  | 
|  | error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres, | 
|  | &du_wip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | if (du_wip.ip) { | 
|  | /* | 
|  | * Now we have a real link, clear the "I'm a tmpfile" state | 
|  | * flag from the inode so it doesn't accidentally get misused in | 
|  | * future. | 
|  | */ | 
|  | VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE; | 
|  | } | 
|  |  | 
|  | out_commit: | 
|  | /* | 
|  | * If this is a synchronous mount, make sure that the rename | 
|  | * transaction goes to disk before returning to the user. | 
|  | */ | 
|  | if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | nospace_error = 0; | 
|  | goto out_unlock; | 
|  |  | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | out_unlock: | 
|  | xfs_iunlock_rename(inodes, num_inodes); | 
|  | out_tgt_ppargs: | 
|  | xfs_parent_finish(mp, du_tgt.ppargs); | 
|  | out_wip_ppargs: | 
|  | xfs_parent_finish(mp, du_wip.ppargs); | 
|  | out_src_ppargs: | 
|  | xfs_parent_finish(mp, du_src.ppargs); | 
|  | out_release_wip: | 
|  | if (du_wip.ip) | 
|  | xfs_irele(du_wip.ip); | 
|  | if (error == -ENOSPC && nospace_error) | 
|  | error = nospace_error; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_iflush( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_inode_log_item *iip = ip->i_itemp; | 
|  | struct xfs_dinode	*dip; | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | int			error; | 
|  |  | 
|  | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); | 
|  | ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); | 
|  | ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || | 
|  | ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); | 
|  | ASSERT(iip->ili_item.li_buf == bp); | 
|  |  | 
|  | dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); | 
|  |  | 
|  | /* | 
|  | * We don't flush the inode if any of the following checks fail, but we | 
|  | * do still update the log item and attach to the backing buffer as if | 
|  | * the flush happened. This is a formality to facilitate predictable | 
|  | * error handling as the caller will shutdown and fail the buffer. | 
|  | */ | 
|  | error = -EFSCORRUPTED; | 
|  | if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), | 
|  | mp, XFS_ERRTAG_IFLUSH_1)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); | 
|  | goto flush_out; | 
|  | } | 
|  | if (ip->i_df.if_format == XFS_DINODE_FMT_META_BTREE) { | 
|  | if (!S_ISREG(VFS_I(ip)->i_mode) || | 
|  | !(ip->i_diflags2 & XFS_DIFLAG2_METADATA)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: Bad %s meta btree inode %Lu, ptr "PTR_FMT, | 
|  | __func__, xfs_metafile_type_str(ip->i_metatype), | 
|  | ip->i_ino, ip); | 
|  | goto flush_out; | 
|  | } | 
|  | } else if (S_ISREG(VFS_I(ip)->i_mode)) { | 
|  | if (XFS_TEST_ERROR( | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_BTREE, | 
|  | mp, XFS_ERRTAG_IFLUSH_3)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: Bad regular inode %llu, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, ip); | 
|  | goto flush_out; | 
|  | } | 
|  | } else if (S_ISDIR(VFS_I(ip)->i_mode)) { | 
|  | if (XFS_TEST_ERROR( | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_BTREE && | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, | 
|  | mp, XFS_ERRTAG_IFLUSH_4)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: Bad directory inode %llu, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, ip); | 
|  | goto flush_out; | 
|  | } | 
|  | } | 
|  | if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > | 
|  | ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: detected corrupt incore inode %llu, " | 
|  | "total extents = %llu nblocks = %lld, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, | 
|  | ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), | 
|  | ip->i_nblocks, ip); | 
|  | goto flush_out; | 
|  | } | 
|  | if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, | 
|  | mp, XFS_ERRTAG_IFLUSH_6)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, ip->i_forkoff, ip); | 
|  | goto flush_out; | 
|  | } | 
|  |  | 
|  | if (xfs_inode_has_attr_fork(ip) && | 
|  | ip->i_af.if_format == XFS_DINODE_FMT_META_BTREE) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: meta btree in inode %Lu attr fork, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, ip); | 
|  | goto flush_out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inode item log recovery for v2 inodes are dependent on the flushiter | 
|  | * count for correct sequencing.  We bump the flush iteration count so | 
|  | * we can detect flushes which postdate a log record during recovery. | 
|  | * This is redundant as we now log every change and hence this can't | 
|  | * happen but we need to still do it to ensure backwards compatibility | 
|  | * with old kernels that predate logging all inode changes. | 
|  | */ | 
|  | if (!xfs_has_v3inodes(mp)) | 
|  | ip->i_flushiter++; | 
|  |  | 
|  | /* | 
|  | * If there are inline format data / attr forks attached to this inode, | 
|  | * make sure they are not corrupt. | 
|  | */ | 
|  | if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && | 
|  | xfs_ifork_verify_local_data(ip)) | 
|  | goto flush_out; | 
|  | if (xfs_inode_has_attr_fork(ip) && | 
|  | ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && | 
|  | xfs_ifork_verify_local_attr(ip)) | 
|  | goto flush_out; | 
|  |  | 
|  | /* | 
|  | * Copy the dirty parts of the inode into the on-disk inode.  We always | 
|  | * copy out the core of the inode, because if the inode is dirty at all | 
|  | * the core must be. | 
|  | */ | 
|  | xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); | 
|  |  | 
|  | /* Wrap, we never let the log put out DI_MAX_FLUSH */ | 
|  | if (!xfs_has_v3inodes(mp)) { | 
|  | if (ip->i_flushiter == DI_MAX_FLUSH) | 
|  | ip->i_flushiter = 0; | 
|  | } | 
|  |  | 
|  | xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); | 
|  | if (xfs_inode_has_attr_fork(ip)) | 
|  | xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); | 
|  |  | 
|  | /* | 
|  | * We've recorded everything logged in the inode, so we'd like to clear | 
|  | * the ili_fields bits so we don't log and flush things unnecessarily. | 
|  | * However, we can't stop logging all this information until the data | 
|  | * we've copied into the disk buffer is written to disk.  If we did we | 
|  | * might overwrite the copy of the inode in the log with all the data | 
|  | * after re-logging only part of it, and in the face of a crash we | 
|  | * wouldn't have all the data we need to recover. | 
|  | * | 
|  | * What we do is move the bits to the ili_last_fields field.  When | 
|  | * logging the inode, these bits are moved back to the ili_fields field. | 
|  | * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since | 
|  | * we know that the information those bits represent is permanently on | 
|  | * disk.  As long as the flush completes before the inode is logged | 
|  | * again, then both ili_fields and ili_last_fields will be cleared. | 
|  | */ | 
|  | error = 0; | 
|  | flush_out: | 
|  | spin_lock(&iip->ili_lock); | 
|  | iip->ili_last_fields = iip->ili_fields; | 
|  | iip->ili_fields = 0; | 
|  | iip->ili_fsync_fields = 0; | 
|  | set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags); | 
|  | spin_unlock(&iip->ili_lock); | 
|  |  | 
|  | /* | 
|  | * Store the current LSN of the inode so that we can tell whether the | 
|  | * item has moved in the AIL from xfs_buf_inode_iodone(). | 
|  | */ | 
|  | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, | 
|  | &iip->ili_item.li_lsn); | 
|  |  | 
|  | /* generate the checksum. */ | 
|  | xfs_dinode_calc_crc(mp, dip); | 
|  | if (error) | 
|  | xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-blocking flush of dirty inode metadata into the backing buffer. | 
|  | * | 
|  | * The caller must have a reference to the inode and hold the cluster buffer | 
|  | * locked. The function will walk across all the inodes on the cluster buffer it | 
|  | * can find and lock without blocking, and flush them to the cluster buffer. | 
|  | * | 
|  | * On successful flushing of at least one inode, the caller must write out the | 
|  | * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and | 
|  | * the caller needs to release the buffer. On failure, the filesystem will be | 
|  | * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED | 
|  | * will be returned. | 
|  | */ | 
|  | int | 
|  | xfs_iflush_cluster( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | struct xfs_log_item	*lip, *n; | 
|  | struct xfs_inode	*ip; | 
|  | struct xfs_inode_log_item *iip; | 
|  | int			clcount = 0; | 
|  | int			error = 0; | 
|  |  | 
|  | /* | 
|  | * We must use the safe variant here as on shutdown xfs_iflush_abort() | 
|  | * will remove itself from the list. | 
|  | */ | 
|  | list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { | 
|  | iip = (struct xfs_inode_log_item *)lip; | 
|  | ip = iip->ili_inode; | 
|  |  | 
|  | /* | 
|  | * Quick and dirty check to avoid locks if possible. | 
|  | */ | 
|  | if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) | 
|  | continue; | 
|  | if (xfs_ipincount(ip)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * The inode is still attached to the buffer, which means it is | 
|  | * dirty but reclaim might try to grab it. Check carefully for | 
|  | * that, and grab the ilock while still holding the i_flags_lock | 
|  | * to guarantee reclaim will not be able to reclaim this inode | 
|  | * once we drop the i_flags_lock. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); | 
|  | if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ILOCK will pin the inode against reclaim and prevent | 
|  | * concurrent transactions modifying the inode while we are | 
|  | * flushing the inode. If we get the lock, set the flushing | 
|  | * state before we drop the i_flags_lock. | 
|  | */ | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | continue; | 
|  | } | 
|  | __xfs_iflags_set(ip, XFS_IFLUSHING); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | /* | 
|  | * Abort flushing this inode if we are shut down because the | 
|  | * inode may not currently be in the AIL. This can occur when | 
|  | * log I/O failure unpins the inode without inserting into the | 
|  | * AIL, leaving a dirty/unpinned inode attached to the buffer | 
|  | * that otherwise looks like it should be flushed. | 
|  | */ | 
|  | if (xlog_is_shutdown(mp->m_log)) { | 
|  | xfs_iunpin_wait(ip); | 
|  | xfs_iflush_abort(ip); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | error = -EIO; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* don't block waiting on a log force to unpin dirty inodes */ | 
|  | if (xfs_ipincount(ip)) { | 
|  | xfs_iflags_clear(ip, XFS_IFLUSHING); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!xfs_inode_clean(ip)) | 
|  | error = xfs_iflush(ip, bp); | 
|  | else | 
|  | xfs_iflags_clear(ip, XFS_IFLUSHING); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | if (error) | 
|  | break; | 
|  | clcount++; | 
|  | } | 
|  |  | 
|  | if (error) { | 
|  | /* | 
|  | * Shutdown first so we kill the log before we release this | 
|  | * buffer. If it is an INODE_ALLOC buffer and pins the tail | 
|  | * of the log, failing it before the _log_ is shut down can | 
|  | * result in the log tail being moved forward in the journal | 
|  | * on disk because log writes can still be taking place. Hence | 
|  | * unpinning the tail will allow the ICREATE intent to be | 
|  | * removed from the log an recovery will fail with uninitialised | 
|  | * inode cluster buffers. | 
|  | */ | 
|  | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
|  | bp->b_flags |= XBF_ASYNC; | 
|  | xfs_buf_ioend_fail(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (!clcount) | 
|  | return -EAGAIN; | 
|  |  | 
|  | XFS_STATS_INC(mp, xs_icluster_flushcnt); | 
|  | XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Release an inode. */ | 
|  | void | 
|  | xfs_irele( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | trace_xfs_irele(ip, _RET_IP_); | 
|  | iput(VFS_I(ip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure all commited transactions touching the inode are written to the log. | 
|  | */ | 
|  | int | 
|  | xfs_log_force_inode( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | xfs_csn_t		seq = 0; | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_SHARED); | 
|  | if (xfs_ipincount(ip)) | 
|  | seq = ip->i_itemp->ili_commit_seq; | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  |  | 
|  | if (!seq) | 
|  | return 0; | 
|  | return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab the exclusive iolock for a data copy from src to dest, making sure to | 
|  | * abide vfs locking order (lowest pointer value goes first) and breaking the | 
|  | * layout leases before proceeding.  The loop is needed because we cannot call | 
|  | * the blocking break_layout() with the iolocks held, and therefore have to | 
|  | * back out both locks. | 
|  | */ | 
|  | static int | 
|  | xfs_iolock_two_inodes_and_break_layout( | 
|  | struct inode		*src, | 
|  | struct inode		*dest) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | if (src > dest) | 
|  | swap(src, dest); | 
|  |  | 
|  | retry: | 
|  | /* Wait to break both inodes' layouts before we start locking. */ | 
|  | error = break_layout(src, true); | 
|  | if (error) | 
|  | return error; | 
|  | if (src != dest) { | 
|  | error = break_layout(dest, true); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Lock one inode and make sure nobody got in and leased it. */ | 
|  | inode_lock(src); | 
|  | error = break_layout(src, false); | 
|  | if (error) { | 
|  | inode_unlock(src); | 
|  | if (error == -EWOULDBLOCK) | 
|  | goto retry; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (src == dest) | 
|  | return 0; | 
|  |  | 
|  | /* Lock the other inode and make sure nobody got in and leased it. */ | 
|  | inode_lock_nested(dest, I_MUTEX_NONDIR2); | 
|  | error = break_layout(dest, false); | 
|  | if (error) { | 
|  | inode_unlock(src); | 
|  | inode_unlock(dest); | 
|  | if (error == -EWOULDBLOCK) | 
|  | goto retry; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_mmaplock_two_inodes_and_break_dax_layout( | 
|  | struct xfs_inode	*ip1, | 
|  | struct xfs_inode	*ip2) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | if (ip1->i_ino > ip2->i_ino) | 
|  | swap(ip1, ip2); | 
|  |  | 
|  | again: | 
|  | /* Lock the first inode */ | 
|  | xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); | 
|  | error = xfs_break_dax_layouts(VFS_I(ip1)); | 
|  | if (error) { | 
|  | xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (ip1 == ip2) | 
|  | return 0; | 
|  |  | 
|  | /* Nested lock the second inode */ | 
|  | xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); | 
|  | /* | 
|  | * We cannot use xfs_break_dax_layouts() directly here because it may | 
|  | * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable | 
|  | * for this nested lock case. | 
|  | */ | 
|  | error = dax_break_layout(VFS_I(ip2), 0, -1, NULL); | 
|  | if (error) { | 
|  | xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); | 
|  | xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock two inodes so that userspace cannot initiate I/O via file syscalls or | 
|  | * mmap activity. | 
|  | */ | 
|  | int | 
|  | xfs_ilock2_io_mmap( | 
|  | struct xfs_inode	*ip1, | 
|  | struct xfs_inode	*ip2) | 
|  | { | 
|  | int			ret; | 
|  |  | 
|  | ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { | 
|  | ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); | 
|  | if (ret) { | 
|  | inode_unlock(VFS_I(ip2)); | 
|  | if (ip1 != ip2) | 
|  | inode_unlock(VFS_I(ip1)); | 
|  | return ret; | 
|  | } | 
|  | } else | 
|  | filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, | 
|  | VFS_I(ip2)->i_mapping); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Unlock both inodes to allow IO and mmap activity. */ | 
|  | void | 
|  | xfs_iunlock2_io_mmap( | 
|  | struct xfs_inode	*ip1, | 
|  | struct xfs_inode	*ip2) | 
|  | { | 
|  | if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { | 
|  | xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); | 
|  | if (ip1 != ip2) | 
|  | xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); | 
|  | } else | 
|  | filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, | 
|  | VFS_I(ip2)->i_mapping); | 
|  |  | 
|  | inode_unlock(VFS_I(ip2)); | 
|  | if (ip1 != ip2) | 
|  | inode_unlock(VFS_I(ip1)); | 
|  | } | 
|  |  | 
|  | /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ | 
|  | void | 
|  | xfs_iunlock2_remapping( | 
|  | struct xfs_inode	*ip1, | 
|  | struct xfs_inode	*ip2) | 
|  | { | 
|  | xfs_iflags_clear(ip1, XFS_IREMAPPING); | 
|  |  | 
|  | if (ip1 != ip2) | 
|  | xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); | 
|  | xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); | 
|  |  | 
|  | if (ip1 != ip2) | 
|  | inode_unlock_shared(VFS_I(ip1)); | 
|  | inode_unlock(VFS_I(ip2)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reload the incore inode list for this inode.  Caller should ensure that | 
|  | * the link count cannot change, either by taking ILOCK_SHARED or otherwise | 
|  | * preventing other threads from executing. | 
|  | */ | 
|  | int | 
|  | xfs_inode_reload_unlinked_bucket( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_buf		*agibp; | 
|  | struct xfs_agi		*agi; | 
|  | struct xfs_perag	*pag; | 
|  | xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | 
|  | xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
|  | xfs_agino_t		prev_agino, next_agino; | 
|  | unsigned int		bucket; | 
|  | bool			foundit = false; | 
|  | int			error; | 
|  |  | 
|  | /* Grab the first inode in the list */ | 
|  | pag = xfs_perag_get(mp, agno); | 
|  | error = xfs_ialloc_read_agi(pag, tp, 0, &agibp); | 
|  | xfs_perag_put(pag); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the | 
|  | * incore unlinked list pointers for this inode.  Check once more to | 
|  | * see if we raced with anyone else to reload the unlinked list. | 
|  | */ | 
|  | if (!xfs_inode_unlinked_incomplete(ip)) { | 
|  | foundit = true; | 
|  | goto out_agibp; | 
|  | } | 
|  |  | 
|  | bucket = agino % XFS_AGI_UNLINKED_BUCKETS; | 
|  | agi = agibp->b_addr; | 
|  |  | 
|  | trace_xfs_inode_reload_unlinked_bucket(ip); | 
|  |  | 
|  | xfs_info_ratelimited(mp, | 
|  | "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.", | 
|  | agino, agno); | 
|  |  | 
|  | prev_agino = NULLAGINO; | 
|  | next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); | 
|  | while (next_agino != NULLAGINO) { | 
|  | struct xfs_inode	*next_ip = NULL; | 
|  |  | 
|  | /* Found this caller's inode, set its backlink. */ | 
|  | if (next_agino == agino) { | 
|  | next_ip = ip; | 
|  | next_ip->i_prev_unlinked = prev_agino; | 
|  | foundit = true; | 
|  | goto next_inode; | 
|  | } | 
|  |  | 
|  | /* Try in-memory lookup first. */ | 
|  | next_ip = xfs_iunlink_lookup(pag, next_agino); | 
|  | if (next_ip) | 
|  | goto next_inode; | 
|  |  | 
|  | /* Inode not in memory, try reloading it. */ | 
|  | error = xfs_iunlink_reload_next(tp, agibp, prev_agino, | 
|  | next_agino); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | /* Grab the reloaded inode. */ | 
|  | next_ip = xfs_iunlink_lookup(pag, next_agino); | 
|  | if (!next_ip) { | 
|  | /* No incore inode at all?  We reloaded it... */ | 
|  | ASSERT(next_ip != NULL); | 
|  | error = -EFSCORRUPTED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | next_inode: | 
|  | prev_agino = next_agino; | 
|  | next_agino = next_ip->i_next_unlinked; | 
|  | } | 
|  |  | 
|  | out_agibp: | 
|  | xfs_trans_brelse(tp, agibp); | 
|  | /* Should have found this inode somewhere in the iunlinked bucket. */ | 
|  | if (!error && !foundit) | 
|  | error = -EFSCORRUPTED; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Decide if this inode is missing its unlinked list and reload it. */ | 
|  | int | 
|  | xfs_inode_reload_unlinked( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_trans	*tp; | 
|  | int			error = 0; | 
|  |  | 
|  | tp = xfs_trans_alloc_empty(ip->i_mount); | 
|  | xfs_ilock(ip, XFS_ILOCK_SHARED); | 
|  | if (xfs_inode_unlinked_incomplete(ip)) | 
|  | error = xfs_inode_reload_unlinked_bucket(tp, ip); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | xfs_trans_cancel(tp); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Has this inode fork been zapped by repair? */ | 
|  | bool | 
|  | xfs_ifork_zapped( | 
|  | const struct xfs_inode	*ip, | 
|  | int			whichfork) | 
|  | { | 
|  | unsigned int		datamask = 0; | 
|  |  | 
|  | switch (whichfork) { | 
|  | case XFS_DATA_FORK: | 
|  | switch (ip->i_vnode.i_mode & S_IFMT) { | 
|  | case S_IFDIR: | 
|  | datamask = XFS_SICK_INO_DIR_ZAPPED; | 
|  | break; | 
|  | case S_IFLNK: | 
|  | datamask = XFS_SICK_INO_SYMLINK_ZAPPED; | 
|  | break; | 
|  | } | 
|  | return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); | 
|  | case XFS_ATTR_FORK: | 
|  | return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compute the number of data and realtime blocks used by a file. */ | 
|  | void | 
|  | xfs_inode_count_blocks( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_inode	*ip, | 
|  | xfs_filblks_t		*dblocks, | 
|  | xfs_filblks_t		*rblocks) | 
|  | { | 
|  | struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); | 
|  |  | 
|  | *rblocks = 0; | 
|  | if (XFS_IS_REALTIME_INODE(ip)) | 
|  | xfs_bmap_count_leaves(ifp, rblocks); | 
|  | *dblocks = ip->i_nblocks - *rblocks; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_wait_dax_page( | 
|  | struct inode		*inode) | 
|  | { | 
|  | struct xfs_inode        *ip = XFS_I(inode); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); | 
|  | schedule(); | 
|  | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_break_dax_layouts( | 
|  | struct inode		*inode) | 
|  | { | 
|  | xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL); | 
|  |  | 
|  | return dax_break_layout_inode(inode, xfs_wait_dax_page); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_break_layouts( | 
|  | struct inode		*inode, | 
|  | uint			*iolock, | 
|  | enum layout_break_reason reason) | 
|  | { | 
|  | bool			retry; | 
|  | int			error; | 
|  |  | 
|  | xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL); | 
|  |  | 
|  | do { | 
|  | retry = false; | 
|  | switch (reason) { | 
|  | case BREAK_UNMAP: | 
|  | error = xfs_break_dax_layouts(inode); | 
|  | if (error) | 
|  | break; | 
|  | fallthrough; | 
|  | case BREAK_WRITE: | 
|  | error = xfs_break_leased_layouts(inode, iolock, &retry); | 
|  | break; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | error = -EINVAL; | 
|  | } | 
|  | } while (error == 0 && retry); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Returns the size of fundamental allocation unit for a file, in bytes. */ | 
|  | unsigned int | 
|  | xfs_inode_alloc_unitsize( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | unsigned int		blocks = 1; | 
|  |  | 
|  | if (XFS_IS_REALTIME_INODE(ip)) | 
|  | blocks = ip->i_mount->m_sb.sb_rextsize; | 
|  |  | 
|  | return XFS_FSB_TO_B(ip->i_mount, blocks); | 
|  | } | 
|  |  | 
|  | /* Should we always be using copy on write for file writes? */ | 
|  | bool | 
|  | xfs_is_always_cow_inode( | 
|  | const struct xfs_inode	*ip) | 
|  | { | 
|  | return xfs_is_zoned_inode(ip) || | 
|  | (ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount)); | 
|  | } |