|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * NET3:	Garbage Collector For AF_UNIX sockets | 
|  | * | 
|  | * Garbage Collector: | 
|  | *	Copyright (C) Barak A. Pearlmutter. | 
|  | * | 
|  | * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem. | 
|  | * If it doesn't work blame me, it worked when Barak sent it. | 
|  | * | 
|  | * Assumptions: | 
|  | * | 
|  | *  - object w/ a bit | 
|  | *  - free list | 
|  | * | 
|  | * Current optimizations: | 
|  | * | 
|  | *  - explicit stack instead of recursion | 
|  | *  - tail recurse on first born instead of immediate push/pop | 
|  | *  - we gather the stuff that should not be killed into tree | 
|  | *    and stack is just a path from root to the current pointer. | 
|  | * | 
|  | *  Future optimizations: | 
|  | * | 
|  | *  - don't just push entire root set; process in place | 
|  | * | 
|  | *  Fixes: | 
|  | *	Alan Cox	07 Sept	1997	Vmalloc internal stack as needed. | 
|  | *					Cope with changing max_files. | 
|  | *	Al Viro		11 Oct 1998 | 
|  | *		Graph may have cycles. That is, we can send the descriptor | 
|  | *		of foo to bar and vice versa. Current code chokes on that. | 
|  | *		Fix: move SCM_RIGHTS ones into the separate list and then | 
|  | *		skb_free() them all instead of doing explicit fput's. | 
|  | *		Another problem: since fput() may block somebody may | 
|  | *		create a new unix_socket when we are in the middle of sweep | 
|  | *		phase. Fix: revert the logic wrt MARKED. Mark everything | 
|  | *		upon the beginning and unmark non-junk ones. | 
|  | * | 
|  | *		[12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS | 
|  | *		sent to connect()'ed but still not accept()'ed sockets. | 
|  | *		Fixed. Old code had slightly different problem here: | 
|  | *		extra fput() in situation when we passed the descriptor via | 
|  | *		such socket and closed it (descriptor). That would happen on | 
|  | *		each unix_gc() until the accept(). Since the struct file in | 
|  | *		question would go to the free list and might be reused... | 
|  | *		That might be the reason of random oopses on filp_close() | 
|  | *		in unrelated processes. | 
|  | * | 
|  | *	AV		28 Feb 1999 | 
|  | *		Kill the explicit allocation of stack. Now we keep the tree | 
|  | *		with root in dummy + pointer (gc_current) to one of the nodes. | 
|  | *		Stack is represented as path from gc_current to dummy. Unmark | 
|  | *		now means "add to tree". Push == "make it a son of gc_current". | 
|  | *		Pop == "move gc_current to parent". We keep only pointers to | 
|  | *		parents (->gc_tree). | 
|  | *	AV		1 Mar 1999 | 
|  | *		Damn. Added missing check for ->dead in listen queues scanning. | 
|  | * | 
|  | *	Miklos Szeredi 25 Jun 2007 | 
|  | *		Reimplement with a cycle collecting algorithm. This should | 
|  | *		solve several problems with the previous code, like being racy | 
|  | *		wrt receive and holding up unrelated socket operations. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <net/af_unix.h> | 
|  | #include <net/scm.h> | 
|  | #include <net/tcp_states.h> | 
|  |  | 
|  | #include "af_unix.h" | 
|  |  | 
|  | struct unix_vertex { | 
|  | struct list_head edges; | 
|  | struct list_head entry; | 
|  | struct list_head scc_entry; | 
|  | unsigned long out_degree; | 
|  | unsigned long index; | 
|  | unsigned long scc_index; | 
|  | }; | 
|  |  | 
|  | struct unix_edge { | 
|  | struct unix_sock *predecessor; | 
|  | struct unix_sock *successor; | 
|  | struct list_head vertex_entry; | 
|  | struct list_head stack_entry; | 
|  | }; | 
|  |  | 
|  | struct unix_sock *unix_get_socket(struct file *filp) | 
|  | { | 
|  | struct inode *inode = file_inode(filp); | 
|  |  | 
|  | /* Socket ? */ | 
|  | if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { | 
|  | struct socket *sock = SOCKET_I(inode); | 
|  | const struct proto_ops *ops; | 
|  | struct sock *sk = sock->sk; | 
|  |  | 
|  | ops = READ_ONCE(sock->ops); | 
|  |  | 
|  | /* PF_UNIX ? */ | 
|  | if (sk && ops && ops->family == PF_UNIX) | 
|  | return unix_sk(sk); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct unix_vertex *unix_edge_successor(struct unix_edge *edge) | 
|  | { | 
|  | /* If an embryo socket has a fd, | 
|  | * the listener indirectly holds the fd's refcnt. | 
|  | */ | 
|  | if (edge->successor->listener) | 
|  | return unix_sk(edge->successor->listener)->vertex; | 
|  |  | 
|  | return edge->successor->vertex; | 
|  | } | 
|  |  | 
|  | static bool unix_graph_maybe_cyclic; | 
|  | static bool unix_graph_grouped; | 
|  |  | 
|  | static void unix_update_graph(struct unix_vertex *vertex) | 
|  | { | 
|  | /* If the receiver socket is not inflight, no cyclic | 
|  | * reference could be formed. | 
|  | */ | 
|  | if (!vertex) | 
|  | return; | 
|  |  | 
|  | unix_graph_maybe_cyclic = true; | 
|  | unix_graph_grouped = false; | 
|  | } | 
|  |  | 
|  | static LIST_HEAD(unix_unvisited_vertices); | 
|  |  | 
|  | enum unix_vertex_index { | 
|  | UNIX_VERTEX_INDEX_MARK1, | 
|  | UNIX_VERTEX_INDEX_MARK2, | 
|  | UNIX_VERTEX_INDEX_START, | 
|  | }; | 
|  |  | 
|  | static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1; | 
|  |  | 
|  | static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge) | 
|  | { | 
|  | struct unix_vertex *vertex = edge->predecessor->vertex; | 
|  |  | 
|  | if (!vertex) { | 
|  | vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry); | 
|  | vertex->index = unix_vertex_unvisited_index; | 
|  | vertex->out_degree = 0; | 
|  | INIT_LIST_HEAD(&vertex->edges); | 
|  | INIT_LIST_HEAD(&vertex->scc_entry); | 
|  |  | 
|  | list_move_tail(&vertex->entry, &unix_unvisited_vertices); | 
|  | edge->predecessor->vertex = vertex; | 
|  | } | 
|  |  | 
|  | vertex->out_degree++; | 
|  | list_add_tail(&edge->vertex_entry, &vertex->edges); | 
|  |  | 
|  | unix_update_graph(unix_edge_successor(edge)); | 
|  | } | 
|  |  | 
|  | static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge) | 
|  | { | 
|  | struct unix_vertex *vertex = edge->predecessor->vertex; | 
|  |  | 
|  | if (!fpl->dead) | 
|  | unix_update_graph(unix_edge_successor(edge)); | 
|  |  | 
|  | list_del(&edge->vertex_entry); | 
|  | vertex->out_degree--; | 
|  |  | 
|  | if (!vertex->out_degree) { | 
|  | edge->predecessor->vertex = NULL; | 
|  | list_move_tail(&vertex->entry, &fpl->vertices); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void unix_free_vertices(struct scm_fp_list *fpl) | 
|  | { | 
|  | struct unix_vertex *vertex, *next_vertex; | 
|  |  | 
|  | list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) { | 
|  | list_del(&vertex->entry); | 
|  | kfree(vertex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static DEFINE_SPINLOCK(unix_gc_lock); | 
|  | unsigned int unix_tot_inflight; | 
|  |  | 
|  | void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver) | 
|  | { | 
|  | int i = 0, j = 0; | 
|  |  | 
|  | spin_lock(&unix_gc_lock); | 
|  |  | 
|  | if (!fpl->count_unix) | 
|  | goto out; | 
|  |  | 
|  | do { | 
|  | struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]); | 
|  | struct unix_edge *edge; | 
|  |  | 
|  | if (!inflight) | 
|  | continue; | 
|  |  | 
|  | edge = fpl->edges + i++; | 
|  | edge->predecessor = inflight; | 
|  | edge->successor = receiver; | 
|  |  | 
|  | unix_add_edge(fpl, edge); | 
|  | } while (i < fpl->count_unix); | 
|  |  | 
|  | receiver->scm_stat.nr_unix_fds += fpl->count_unix; | 
|  | WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix); | 
|  | out: | 
|  | WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count); | 
|  |  | 
|  | spin_unlock(&unix_gc_lock); | 
|  |  | 
|  | fpl->inflight = true; | 
|  |  | 
|  | unix_free_vertices(fpl); | 
|  | } | 
|  |  | 
|  | void unix_del_edges(struct scm_fp_list *fpl) | 
|  | { | 
|  | struct unix_sock *receiver; | 
|  | int i = 0; | 
|  |  | 
|  | spin_lock(&unix_gc_lock); | 
|  |  | 
|  | if (!fpl->count_unix) | 
|  | goto out; | 
|  |  | 
|  | do { | 
|  | struct unix_edge *edge = fpl->edges + i++; | 
|  |  | 
|  | unix_del_edge(fpl, edge); | 
|  | } while (i < fpl->count_unix); | 
|  |  | 
|  | if (!fpl->dead) { | 
|  | receiver = fpl->edges[0].successor; | 
|  | receiver->scm_stat.nr_unix_fds -= fpl->count_unix; | 
|  | } | 
|  | WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix); | 
|  | out: | 
|  | WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count); | 
|  |  | 
|  | spin_unlock(&unix_gc_lock); | 
|  |  | 
|  | fpl->inflight = false; | 
|  | } | 
|  |  | 
|  | void unix_update_edges(struct unix_sock *receiver) | 
|  | { | 
|  | /* nr_unix_fds is only updated under unix_state_lock(). | 
|  | * If it's 0 here, the embryo socket is not part of the | 
|  | * inflight graph, and GC will not see it, so no lock needed. | 
|  | */ | 
|  | if (!receiver->scm_stat.nr_unix_fds) { | 
|  | receiver->listener = NULL; | 
|  | } else { | 
|  | spin_lock(&unix_gc_lock); | 
|  | unix_update_graph(unix_sk(receiver->listener)->vertex); | 
|  | receiver->listener = NULL; | 
|  | spin_unlock(&unix_gc_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | int unix_prepare_fpl(struct scm_fp_list *fpl) | 
|  | { | 
|  | struct unix_vertex *vertex; | 
|  | int i; | 
|  |  | 
|  | if (!fpl->count_unix) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < fpl->count_unix; i++) { | 
|  | vertex = kmalloc(sizeof(*vertex), GFP_KERNEL); | 
|  | if (!vertex) | 
|  | goto err; | 
|  |  | 
|  | list_add(&vertex->entry, &fpl->vertices); | 
|  | } | 
|  |  | 
|  | fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges), | 
|  | GFP_KERNEL_ACCOUNT); | 
|  | if (!fpl->edges) | 
|  | goto err; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | unix_free_vertices(fpl); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void unix_destroy_fpl(struct scm_fp_list *fpl) | 
|  | { | 
|  | if (fpl->inflight) | 
|  | unix_del_edges(fpl); | 
|  |  | 
|  | kvfree(fpl->edges); | 
|  | unix_free_vertices(fpl); | 
|  | } | 
|  |  | 
|  | static bool unix_vertex_dead(struct unix_vertex *vertex) | 
|  | { | 
|  | struct unix_edge *edge; | 
|  | struct unix_sock *u; | 
|  | long total_ref; | 
|  |  | 
|  | list_for_each_entry(edge, &vertex->edges, vertex_entry) { | 
|  | struct unix_vertex *next_vertex = unix_edge_successor(edge); | 
|  |  | 
|  | /* The vertex's fd can be received by a non-inflight socket. */ | 
|  | if (!next_vertex) | 
|  | return false; | 
|  |  | 
|  | /* The vertex's fd can be received by an inflight socket in | 
|  | * another SCC. | 
|  | */ | 
|  | if (next_vertex->scc_index != vertex->scc_index) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* No receiver exists out of the same SCC. */ | 
|  |  | 
|  | edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); | 
|  | u = edge->predecessor; | 
|  | total_ref = file_count(u->sk.sk_socket->file); | 
|  |  | 
|  | /* If not close()d, total_ref > out_degree. */ | 
|  | if (total_ref != vertex->out_degree) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist) | 
|  | { | 
|  | struct unix_vertex *vertex; | 
|  |  | 
|  | list_for_each_entry_reverse(vertex, scc, scc_entry) { | 
|  | struct sk_buff_head *queue; | 
|  | struct unix_edge *edge; | 
|  | struct unix_sock *u; | 
|  |  | 
|  | edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); | 
|  | u = edge->predecessor; | 
|  | queue = &u->sk.sk_receive_queue; | 
|  |  | 
|  | spin_lock(&queue->lock); | 
|  |  | 
|  | if (u->sk.sk_state == TCP_LISTEN) { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb_queue_walk(queue, skb) { | 
|  | struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue; | 
|  |  | 
|  | spin_lock(&embryo_queue->lock); | 
|  | skb_queue_splice_init(embryo_queue, hitlist); | 
|  | spin_unlock(&embryo_queue->lock); | 
|  | } | 
|  | } else { | 
|  | skb_queue_splice_init(queue, hitlist); | 
|  | } | 
|  |  | 
|  | spin_unlock(&queue->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool unix_scc_cyclic(struct list_head *scc) | 
|  | { | 
|  | struct unix_vertex *vertex; | 
|  | struct unix_edge *edge; | 
|  |  | 
|  | /* SCC containing multiple vertices ? */ | 
|  | if (!list_is_singular(scc)) | 
|  | return true; | 
|  |  | 
|  | vertex = list_first_entry(scc, typeof(*vertex), scc_entry); | 
|  |  | 
|  | /* Self-reference or a embryo-listener circle ? */ | 
|  | list_for_each_entry(edge, &vertex->edges, vertex_entry) { | 
|  | if (unix_edge_successor(edge) == vertex) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static LIST_HEAD(unix_visited_vertices); | 
|  | static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2; | 
|  |  | 
|  | static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index, | 
|  | struct sk_buff_head *hitlist) | 
|  | { | 
|  | LIST_HEAD(vertex_stack); | 
|  | struct unix_edge *edge; | 
|  | LIST_HEAD(edge_stack); | 
|  |  | 
|  | next_vertex: | 
|  | /* Push vertex to vertex_stack and mark it as on-stack | 
|  | * (index >= UNIX_VERTEX_INDEX_START). | 
|  | * The vertex will be popped when finalising SCC later. | 
|  | */ | 
|  | list_add(&vertex->scc_entry, &vertex_stack); | 
|  |  | 
|  | vertex->index = *last_index; | 
|  | vertex->scc_index = *last_index; | 
|  | (*last_index)++; | 
|  |  | 
|  | /* Explore neighbour vertices (receivers of the current vertex's fd). */ | 
|  | list_for_each_entry(edge, &vertex->edges, vertex_entry) { | 
|  | struct unix_vertex *next_vertex = unix_edge_successor(edge); | 
|  |  | 
|  | if (!next_vertex) | 
|  | continue; | 
|  |  | 
|  | if (next_vertex->index == unix_vertex_unvisited_index) { | 
|  | /* Iterative deepening depth first search | 
|  | * | 
|  | *   1. Push a forward edge to edge_stack and set | 
|  | *      the successor to vertex for the next iteration. | 
|  | */ | 
|  | list_add(&edge->stack_entry, &edge_stack); | 
|  |  | 
|  | vertex = next_vertex; | 
|  | goto next_vertex; | 
|  |  | 
|  | /*   2. Pop the edge directed to the current vertex | 
|  | *      and restore the ancestor for backtracking. | 
|  | */ | 
|  | prev_vertex: | 
|  | edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry); | 
|  | list_del_init(&edge->stack_entry); | 
|  |  | 
|  | next_vertex = vertex; | 
|  | vertex = edge->predecessor->vertex; | 
|  |  | 
|  | /* If the successor has a smaller scc_index, two vertices | 
|  | * are in the same SCC, so propagate the smaller scc_index | 
|  | * to skip SCC finalisation. | 
|  | */ | 
|  | vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); | 
|  | } else if (next_vertex->index != unix_vertex_grouped_index) { | 
|  | /* Loop detected by a back/cross edge. | 
|  | * | 
|  | * The successor is on vertex_stack, so two vertices are in | 
|  | * the same SCC.  If the successor has a smaller *scc_index*, | 
|  | * propagate it to skip SCC finalisation. | 
|  | */ | 
|  | vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); | 
|  | } else { | 
|  | /* The successor was already grouped as another SCC */ | 
|  | } | 
|  | } | 
|  |  | 
|  | if (vertex->index == vertex->scc_index) { | 
|  | struct unix_vertex *v; | 
|  | struct list_head scc; | 
|  | bool scc_dead = true; | 
|  |  | 
|  | /* SCC finalised. | 
|  | * | 
|  | * If the scc_index was not updated, all the vertices above on | 
|  | * vertex_stack are in the same SCC.  Group them using scc_entry. | 
|  | */ | 
|  | __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry); | 
|  |  | 
|  | list_for_each_entry_reverse(v, &scc, scc_entry) { | 
|  | /* Don't restart DFS from this vertex in unix_walk_scc(). */ | 
|  | list_move_tail(&v->entry, &unix_visited_vertices); | 
|  |  | 
|  | /* Mark vertex as off-stack. */ | 
|  | v->index = unix_vertex_grouped_index; | 
|  |  | 
|  | if (scc_dead) | 
|  | scc_dead = unix_vertex_dead(v); | 
|  | } | 
|  |  | 
|  | if (scc_dead) | 
|  | unix_collect_skb(&scc, hitlist); | 
|  | else if (!unix_graph_maybe_cyclic) | 
|  | unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); | 
|  |  | 
|  | list_del(&scc); | 
|  | } | 
|  |  | 
|  | /* Need backtracking ? */ | 
|  | if (!list_empty(&edge_stack)) | 
|  | goto prev_vertex; | 
|  | } | 
|  |  | 
|  | static void unix_walk_scc(struct sk_buff_head *hitlist) | 
|  | { | 
|  | unsigned long last_index = UNIX_VERTEX_INDEX_START; | 
|  |  | 
|  | unix_graph_maybe_cyclic = false; | 
|  |  | 
|  | /* Visit every vertex exactly once. | 
|  | * __unix_walk_scc() moves visited vertices to unix_visited_vertices. | 
|  | */ | 
|  | while (!list_empty(&unix_unvisited_vertices)) { | 
|  | struct unix_vertex *vertex; | 
|  |  | 
|  | vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); | 
|  | __unix_walk_scc(vertex, &last_index, hitlist); | 
|  | } | 
|  |  | 
|  | list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); | 
|  | swap(unix_vertex_unvisited_index, unix_vertex_grouped_index); | 
|  |  | 
|  | unix_graph_grouped = true; | 
|  | } | 
|  |  | 
|  | static void unix_walk_scc_fast(struct sk_buff_head *hitlist) | 
|  | { | 
|  | unix_graph_maybe_cyclic = false; | 
|  |  | 
|  | while (!list_empty(&unix_unvisited_vertices)) { | 
|  | struct unix_vertex *vertex; | 
|  | struct list_head scc; | 
|  | bool scc_dead = true; | 
|  |  | 
|  | vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); | 
|  | list_add(&scc, &vertex->scc_entry); | 
|  |  | 
|  | list_for_each_entry_reverse(vertex, &scc, scc_entry) { | 
|  | list_move_tail(&vertex->entry, &unix_visited_vertices); | 
|  |  | 
|  | if (scc_dead) | 
|  | scc_dead = unix_vertex_dead(vertex); | 
|  | } | 
|  |  | 
|  | if (scc_dead) | 
|  | unix_collect_skb(&scc, hitlist); | 
|  | else if (!unix_graph_maybe_cyclic) | 
|  | unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); | 
|  |  | 
|  | list_del(&scc); | 
|  | } | 
|  |  | 
|  | list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); | 
|  | } | 
|  |  | 
|  | static bool gc_in_progress; | 
|  |  | 
|  | static void __unix_gc(struct work_struct *work) | 
|  | { | 
|  | struct sk_buff_head hitlist; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | spin_lock(&unix_gc_lock); | 
|  |  | 
|  | if (!unix_graph_maybe_cyclic) { | 
|  | spin_unlock(&unix_gc_lock); | 
|  | goto skip_gc; | 
|  | } | 
|  |  | 
|  | __skb_queue_head_init(&hitlist); | 
|  |  | 
|  | if (unix_graph_grouped) | 
|  | unix_walk_scc_fast(&hitlist); | 
|  | else | 
|  | unix_walk_scc(&hitlist); | 
|  |  | 
|  | spin_unlock(&unix_gc_lock); | 
|  |  | 
|  | skb_queue_walk(&hitlist, skb) { | 
|  | if (UNIXCB(skb).fp) | 
|  | UNIXCB(skb).fp->dead = true; | 
|  | } | 
|  |  | 
|  | __skb_queue_purge_reason(&hitlist, SKB_DROP_REASON_SOCKET_CLOSE); | 
|  | skip_gc: | 
|  | WRITE_ONCE(gc_in_progress, false); | 
|  | } | 
|  |  | 
|  | static DECLARE_WORK(unix_gc_work, __unix_gc); | 
|  |  | 
|  | void unix_gc(void) | 
|  | { | 
|  | WRITE_ONCE(gc_in_progress, true); | 
|  | queue_work(system_unbound_wq, &unix_gc_work); | 
|  | } | 
|  |  | 
|  | #define UNIX_INFLIGHT_TRIGGER_GC 16000 | 
|  | #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8) | 
|  |  | 
|  | void wait_for_unix_gc(struct scm_fp_list *fpl) | 
|  | { | 
|  | /* If number of inflight sockets is insane, | 
|  | * force a garbage collect right now. | 
|  | * | 
|  | * Paired with the WRITE_ONCE() in unix_inflight(), | 
|  | * unix_notinflight(), and __unix_gc(). | 
|  | */ | 
|  | if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC && | 
|  | !READ_ONCE(gc_in_progress)) | 
|  | unix_gc(); | 
|  |  | 
|  | /* Penalise users who want to send AF_UNIX sockets | 
|  | * but whose sockets have not been received yet. | 
|  | */ | 
|  | if (!fpl || !fpl->count_unix || | 
|  | READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER) | 
|  | return; | 
|  |  | 
|  | if (READ_ONCE(gc_in_progress)) | 
|  | flush_work(&unix_gc_work); | 
|  | } |