blob: 35afe2a7f1d3475e718b6bec00a1ead4c43f97af [file] [log] [blame]
/*
* Disk Array driver for Compaq SMART2 Controllers
* Copyright 2000 Compaq Computer Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Questions/Comments/Bugfixes to arrays@compaq.com
*
*/
#include <linux/config.h> /* CONFIG_PROC_FS */
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/malloc.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/hdreg.h>
#include <linux/spinlock.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/blk.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
#define DRIVER_NAME "Compaq CISS Driver (v 2.4.0)"
#define DRIVER_VERSION CCISS_DRIVER_VERSION(2,4,0)
/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Charles M. White III - Compaq Computer Corporation");
MODULE_DESCRIPTION("Driver for Compaq Smart Array Controller 5300");
#include "cciss_cmd.h"
#include "cciss.h"
#include <linux/cciss_ioctl.h>
#define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type))
/* board_id = Subsystem Device ID & Vendor ID
* product = Marketing Name for the board
* access = Address of the struct of function pointers
*/
static struct board_type products[] = {
{ 0x40700E11, "Smart Array 5300", &SA5_access },
};
/* How long to wait (in millesconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 1000
#define READ_AHEAD 128
#define NR_CMDS 128 /* #commands that can be outstanding */
#define MAX_CTLR 8
static int nr_ctlr;
static ctlr_info_t *hba[MAX_CTLR];
static struct proc_dir_entry *proc_cciss;
static void do_cciss_request(int i);
/*
* This is a hack. This driver eats a major number for each controller, and
* sets blkdev[xxx].request_fn to each one of these so the real request
* function knows what controller its working with.
*/
#define DO_CCISS_REQUEST(x) { do_cciss_request(x); }
static void do_cciss_request0(request_queue_t * q) DO_CCISS_REQUEST(0);
static void do_cciss_request1(request_queue_t * q) DO_CCISS_REQUEST(1);
static void do_cciss_request2(request_queue_t * q) DO_CCISS_REQUEST(2);
static void do_cciss_request3(request_queue_t * q) DO_CCISS_REQUEST(3);
static void do_cciss_request4(request_queue_t * q) DO_CCISS_REQUEST(4);
static void do_cciss_request5(request_queue_t * q) DO_CCISS_REQUEST(5);
static void do_cciss_request6(request_queue_t * q) DO_CCISS_REQUEST(6);
static void do_cciss_request7(request_queue_t * q) DO_CCISS_REQUEST(7);
static int cciss_open(struct inode *inode, struct file *filep);
static int cciss_release(struct inode *inode, struct file *filep);
static int cciss_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg);
static int revalidate_allvol(kdev_t dev);
static int revalidate_logvol(kdev_t dev, int maxusage);
static int frevalidate_logvol(kdev_t dev);
static void cciss_getgeometry(int cntl_num);
static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c);
static void start_io( ctlr_info_t *h);
#ifdef CONFIG_PROC_FS
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data);
static void cciss_procinit(int i);
#else
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data) { return 0;}
static void cciss_procinit(int i) {}
#endif /* CONFIG_PROC_FS */
static struct block_device_operations cciss_fops = {
open: cciss_open,
release: cciss_release,
ioctl: cciss_ioctl,
revalidate: frevalidate_logvol,
};
/*
* Report information about this controller.
*/
#ifdef CONFIG_PROC_FS
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data)
{
off_t pos = 0;
off_t len = 0;
int size, i, ctlr;
ctlr_info_t *h = (ctlr_info_t*)data;
drive_info_struct *drv;
ctlr = h->ctlr;
size = sprintf(buffer, "%s: Compaq %s Controller\n"
" Board ID: %08lx\n"
" Firmware Version: %c%c%c%c\n"
" Memory Address: %08lx\n"
" IRQ: 0x%x\n"
" Logical drives: %d\n"
" Current Q depth: %d\n"
" Current # commands on controller %d\n"
" Max Q depth since init: %d\n"
" Max # commands on controller since init: %d\n"
" Max SG entries since init: %d\n\n",
h->devname,
h->product_name,
(unsigned long)h->board_id,
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3],
(unsigned long)h->vaddr,
(unsigned int)h->intr,
h->num_luns,
h->Qdepth, h->commands_outstanding,
h->maxQsinceinit, h->max_outstanding, h->maxSG);
pos += size; len += size;
for(i=0; i<h->num_luns; i++) {
drv = &h->drv[i];
size = sprintf(buffer+len, "cciss/c%dd%d: blksz=%d nr_blocks=%d\n",
ctlr, i, drv->block_size, drv->nr_blocks);
pos += size; len += size;
}
size = sprintf(buffer+len, "nr_allocs = %d\nnr_frees = %d\n",
h->nr_allocs, h->nr_frees);
pos += size; len += size;
*eof = 1;
*start = buffer+offset;
len -= offset;
if (len>length)
len = length;
return len;
}
/*
* Get us a file in /proc/cciss that says something about each controller.
* Create /proc/cciss if it doesn't exist yet.
*/
static void __init cciss_procinit(int i)
{
if (proc_cciss == NULL) {
proc_cciss = proc_mkdir("driver/cciss", NULL);
if (!proc_cciss)
return;
}
create_proc_read_entry(hba[i]->devname, 0, proc_cciss,
cciss_proc_get_info, hba[i]);
}
#endif /* CONFIG_PROC_FS */
/*
* For operations that cannot sleep, a command block is allocated at init,
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
* which ones are free or in use. For operations that can wait for kmalloc
* to possible sleep, this routine can be called with a NULL pointer.
* cmd_free() MUST be called with a NULL pointer if cmd_alloc was.
*/
static CommandList_struct * cmd_alloc(ctlr_info_t *h)
{
CommandList_struct *c;
int i;
u64bit temp64;
if (h == NULL)
{
c = (CommandList_struct *)kmalloc(sizeof(CommandList_struct),
GFP_KERNEL);
if(c==NULL)
return NULL;
memset(c, 0, sizeof(CommandList_struct));
c->err_info = (ErrorInfo_struct *)kmalloc(
sizeof(ErrorInfo_struct), GFP_KERNEL);
if (c->err_info == NULL)
{
kfree(c);
return NULL;
}
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
} else /* get it out of the controllers pool */
{
do {
i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
if (i == NR_CMDS)
return NULL;
} while(test_and_set_bit(i%32, h->cmd_pool_bits+(i/32)) != 0);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
#endif
c = h->cmd_pool + i;
memset(c, 0, sizeof(CommandList_struct));
c->err_info = h->errinfo_pool + i;
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
h->nr_allocs++;
}
temp64.val = (__u64) virt_to_bus(c->err_info);
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
c->busaddr = virt_to_bus(c);
return c;
}
/*
* Frees a command block that was previously allocated with cmd_alloc().
*/
static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
{
int i;
if( h == NULL)
{
kfree(c->err_info);
kfree(c);
} else
{
i = c - h->cmd_pool;
clear_bit(i%32, h->cmd_pool_bits+(i/32));
h->nr_frees++;
}
}
/*
* fills in the disk information.
*/
static void cciss_geninit( int ctlr)
{
drive_info_struct *drv;
int i,j;
/* Loop through each real device */
hba[ctlr]->gendisk.nr_real = 0;
for(i=0; i< NWD; i++)
{
drv = &(hba[ctlr]->drv[i]);
if( !(drv->nr_blocks))
continue;
hba[ctlr]->hd[i << NWD_SHIFT].nr_sects =
hba[ctlr]->sizes[i << NWD_SHIFT] = drv->nr_blocks;
/* for each partition */
for(j=0; j<MAX_PART; j++)
{
hba[ctlr]->blocksizes[(i<<NWD_SHIFT) + j] = 1024;
hba[ctlr]->hardsizes[ (i<<NWD_SHIFT) + j] =
drv->block_size;
}
hba[ctlr]->gendisk.nr_real++;
}
}
/*
* Open. Make sure the device is really there.
*/
static int cciss_open(struct inode *inode, struct file *filep)
{
int ctlr = MAJOR(inode->i_rdev) - MAJOR_NR;
int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_open %x (%x:%x)\n", inode->i_rdev, ctlr, dsk);
#endif /* CCISS_DEBUG */
if (ctlr > MAX_CTLR || hba[ctlr] == NULL)
return -ENXIO;
if (!suser() && hba[ctlr]->sizes[ MINOR(inode->i_rdev)] == 0)
return -ENXIO;
/*
* Root is allowed to open raw volume zero even if its not configured
* so array config can still work. I don't think I really like this,
* but I'm already using way to many device nodes to claim another one
* for "raw controller".
*/
if (suser()
&& (hba[ctlr]->sizes[MINOR(inode->i_rdev)] == 0)
&& (MINOR(inode->i_rdev)!= 0))
return -ENXIO;
hba[ctlr]->drv[dsk].usage_count++;
hba[ctlr]->usage_count++;
MOD_INC_USE_COUNT;
return 0;
}
/*
* Close. Sync first.
*/
static int cciss_release(struct inode *inode, struct file *filep)
{
int ctlr = MAJOR(inode->i_rdev) - MAJOR_NR;
int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_release %x (%x:%x)\n", inode->i_rdev, ctlr, dsk);
#endif /* CCISS_DEBUG */
/* fsync_dev(inode->i_rdev); */
hba[ctlr]->drv[dsk].usage_count--;
hba[ctlr]->usage_count--;
MOD_DEC_USE_COUNT;
return 0;
}
/*
* ioctl
*/
static int cciss_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg)
{
int ctlr = MAJOR(inode->i_rdev) - MAJOR_NR;
int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT;
int diskinfo[4];
struct hd_geometry *geo = (struct hd_geometry *)arg;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
#endif /* CCISS_DEBUG */
switch(cmd) {
case HDIO_GETGEO:
if (hba[ctlr]->drv[dsk].cylinders) {
diskinfo[0] = hba[ctlr]->drv[dsk].heads;
diskinfo[1] = hba[ctlr]->drv[dsk].sectors;
diskinfo[2] = hba[ctlr]->drv[dsk].cylinders;
} else {
diskinfo[0] = 0xff;
diskinfo[1] = 0x3f;
diskinfo[2] = hba[ctlr]->drv[dsk].nr_blocks / (0xff*0x3f); }
put_user(diskinfo[0], &geo->heads);
put_user(diskinfo[1], &geo->sectors);
put_user(diskinfo[2], &geo->cylinders);
put_user(hba[ctlr]->hd[MINOR(inode->i_rdev)].start_sect, &geo->start);
return 0;
case BLKGETSIZE:
if (!arg) return -EINVAL;
put_user(hba[ctlr]->hd[MINOR(inode->i_rdev)].nr_sects, (long*)arg);
return 0;
case BLKRRPART:
return revalidate_logvol(inode->i_rdev, 1);
case BLKFLSBUF:
case BLKROSET:
case BLKROGET:
case BLKRASET:
case BLKRAGET:
case BLKPG:
return( blk_ioctl(inode->i_rdev, cmd, arg));
case CCISS_GETPCIINFO:
{
cciss_pci_info_struct pciinfo;
if (!arg) return -EINVAL;
pciinfo.bus = hba[ctlr]->pci_bus;
pciinfo.dev_fn = hba[ctlr]->pci_dev_fn;
pciinfo.board_id = hba[ctlr]->board_id;
if (copy_to_user((void *) arg, &pciinfo, sizeof( cciss_pci_info_struct )))
return -EFAULT;
return(0);
}
case CCISS_GETINTINFO:
{
cciss_coalint_struct intinfo;
ctlr_info_t *c = hba[ctlr];
if (!arg) return -EINVAL;
intinfo.delay = readl(&c->cfgtable->HostWrite.CoalIntDelay);
intinfo.count = readl(&c->cfgtable->HostWrite.CoalIntCount);
if (copy_to_user((void *) arg, &intinfo, sizeof( cciss_coalint_struct )))
return -EFAULT;
return(0);
}
case CCISS_SETINTINFO:
{
cciss_coalint_struct intinfo;
ctlr_info_t *c = hba[ctlr];
unsigned long flags;
int i;
if (!arg) return -EINVAL;
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
if (copy_from_user(&intinfo, (void *) arg, sizeof( cciss_coalint_struct)))
return -EFAULT;
if ( (intinfo.delay == 0 ) && (intinfo.count == 0))
{
// printk("cciss_ioctl: delay and count cannot be 0\n");
return( -EINVAL);
}
spin_lock_irqsave(&io_request_lock, flags);
/* Can only safely update if no commands outstanding */
if (c->commands_outstanding > 0 )
{
// printk("cciss_ioctl: cannot change coalasing "
// "%d commands outstanding on controller\n",
// c->commands_outstanding);
spin_unlock_irqrestore(&io_request_lock, flags);
return(-EINVAL);
}
/* Update the field, and then ring the doorbell */
writel( intinfo.delay,
&(c->cfgtable->HostWrite.CoalIntDelay));
writel( intinfo.count,
&(c->cfgtable->HostWrite.CoalIntCount));
writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_CONFIG_WAIT;i++)
{
if (!(readl(c->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(&io_request_lock, flags);
if (i >= MAX_CONFIG_WAIT)
return( -EFAULT);
return(0);
}
case CCISS_GETNODENAME:
{
NodeName_type NodeName;
ctlr_info_t *c = hba[ctlr];
int i;
if (!arg) return -EINVAL;
for(i=0;i<16;i++)
NodeName[i] = readb(&c->cfgtable->ServerName[i]);
if (copy_to_user((void *) arg, NodeName, sizeof( NodeName_type)))
return -EFAULT;
return(0);
}
case CCISS_SETNODENAME:
{
NodeName_type NodeName;
ctlr_info_t *c = hba[ctlr];
unsigned long flags;
int i;
if (!arg) return -EINVAL;
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
if (copy_from_user(NodeName, (void *) arg, sizeof( NodeName_type)))
return -EFAULT;
spin_lock_irqsave(&io_request_lock, flags);
/* Update the field, and then ring the doorbell */
for(i=0;i<16;i++)
writeb( NodeName[i], &c->cfgtable->ServerName[i]);
writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_CONFIG_WAIT;i++)
{
if (!(readl(c->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(&io_request_lock, flags);
if (i >= MAX_CONFIG_WAIT)
return( -EFAULT);
return(0);
}
case CCISS_GETHEARTBEAT:
{
Heartbeat_type heartbeat;
ctlr_info_t *c = hba[ctlr];
if (!arg) return -EINVAL;
heartbeat = readl(&c->cfgtable->HeartBeat);
if (copy_to_user((void *) arg, &heartbeat, sizeof( Heartbeat_type)))
return -EFAULT;
return(0);
}
case CCISS_GETBUSTYPES:
{
BusTypes_type BusTypes;
ctlr_info_t *c = hba[ctlr];
if (!arg) return -EINVAL;
BusTypes = readl(&c->cfgtable->BusTypes);
if (copy_to_user((void *) arg, &BusTypes, sizeof( BusTypes_type) ))
return -EFAULT;
return(0);
}
case CCISS_GETFIRMVER:
{
FirmwareVer_type firmware;
if (!arg) return -EINVAL;
memcpy(firmware, hba[ctlr]->firm_ver, 4);
if (copy_to_user((void *) arg, firmware, sizeof( FirmwareVer_type)))
return -EFAULT;
return(0);
}
case CCISS_GETDRIVVER:
{
DriverVer_type DriverVer = DRIVER_VERSION;
if (!arg) return -EINVAL;
if (copy_to_user((void *) arg, &DriverVer, sizeof( DriverVer_type) ))
return -EFAULT;
return(0);
}
case CCISS_REVALIDVOLS:
return( revalidate_allvol(inode->i_rdev));
case CCISS_PASSTHRU:
{
IOCTL_Command_struct iocommand;
ctlr_info_t *h = hba[ctlr];
CommandList_struct *c;
char *buff = NULL;
u64bit temp64;
unsigned long flags;
if (!arg) return -EINVAL;
if (!capable(CAP_SYS_RAWIO)) return -EPERM;
if (copy_from_user(&iocommand, (void *) arg, sizeof( IOCTL_Command_struct) ))
return -EFAULT;
if((iocommand.buf_size < 1) &&
(iocommand.Request.Type.Direction != XFER_NONE))
{
return -EINVAL;
}
/* Check kmalloc limits */
if(iocommand.buf_size > 128000)
return -EINVAL;
if(iocommand.buf_size > 0)
{
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
if( buff == NULL)
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_WRITE)
{
/* Copy the data into the buffer we created */
if (copy_from_user(buff, iocommand.buf, iocommand.buf_size))
return -EFAULT;
}
if ((c = cmd_alloc(NULL)) == NULL)
{
if(buff!=NULL)
kfree(buff);
return -ENOMEM;
}
// Fill in the command type
c->cmd_type = CMD_IOCTL_PEND;
// Fill in Command Header
c->Header.ReplyQueue = 0; // unused in simple mode
if( iocommand.buf_size > 0) // buffer to fill
{
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else // no buffers to fill
{
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.LUN = iocommand.LUN_info;
c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
// Fill in Request block
c->Request = iocommand.Request;
// Fill in the scatter gather information
if (iocommand.buf_size > 0 )
{
temp64.val = (__u64) virt_to_bus(buff);
c->SG[0].Addr.lower = temp64.val32.lower;
c->SG[0].Addr.upper = temp64.val32.upper;
c->SG[0].Len = iocommand.buf_size;
c->SG[0].Ext = 0; // we are not chaining
}
/* Put the request on the tail of the request queue */
spin_lock_irqsave(&io_request_lock, flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(&io_request_lock, flags);
/* Wait for completion */
while(c->cmd_type != CMD_IOCTL_DONE)
schedule_timeout(1);
/* Copy the error information out */
iocommand.error_info = *(c->err_info);
if ( copy_to_user((void *) arg, &iocommand, sizeof( IOCTL_Command_struct) ) )
{
cmd_free(NULL, c);
if (buff != NULL)
kfree(buff);
return( -EFAULT);
}
if (iocommand.Request.Type.Direction == XFER_READ)
{
/* Copy the data out of the buffer we created */
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size))
{
cmd_free(NULL, c);
kfree(buff);
}
}
cmd_free(NULL, c);
if (buff != NULL)
kfree(buff);
return(0);
}
default:
return -EBADRQC;
}
}
/* Borrowed and adapted from sd.c */
static int revalidate_logvol(kdev_t dev, int maxusage)
{
int ctlr, target;
struct gendisk *gdev;
unsigned long flags;
int max_p;
int start;
int i;
target = MINOR(dev) >> NWD_SHIFT;
ctlr = MAJOR(dev) - MAJOR_NR;
gdev = &(hba[ctlr]->gendisk);
spin_lock_irqsave(&io_request_lock, flags);
if (hba[ctlr]->drv[target].usage_count > maxusage) {
spin_unlock_irqrestore(&io_request_lock, flags);
printk(KERN_WARNING "cpqarray: Device busy for "
"revalidation (usage=%d)\n",
hba[ctlr]->drv[target].usage_count);
return -EBUSY;
}
hba[ctlr]->drv[target].usage_count++;
spin_unlock_irqrestore(&io_request_lock, flags);
max_p = gdev->max_p;
start = target << gdev->minor_shift;
for(i=max_p; i>=0; i--) {
int minor = start+i;
kdev_t devi = MKDEV(MAJOR_NR + ctlr, minor);
struct super_block *sb = get_super(devi);
sync_dev(devi);
if (sb) invalidate_inodes(sb);
invalidate_buffers(devi);
gdev->part[minor].start_sect = 0;
gdev->part[minor].nr_sects = 0;
/* reset the blocksize so we can read the partition table */
blksize_size[MAJOR_NR+ctlr][minor] = 1024;
}
/* setup partitions per disk */
grok_partitions(gdev, target, MAX_PART,
hba[ctlr]->drv[target].nr_blocks);
hba[ctlr]->drv[target].usage_count--;
return 0;
}
static int frevalidate_logvol(kdev_t dev)
{
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: frevalidate has been called\n");
#endif /* CCISS_DEBUG */
return revalidate_logvol(dev, 0);
}
/*
* revalidate_allvol is for online array config utilities. After a
* utility reconfigures the drives in the array, it can use this function
* (through an ioctl) to make the driver zap any previous disk structs for
* that controller and get new ones.
*
* Right now I'm using the getgeometry() function to do this, but this
* function should probably be finer grained and allow you to revalidate one
* particualar logical volume (instead of all of them on a particular
* controller).
*/
static int revalidate_allvol(kdev_t dev)
{
int ctlr, i;
unsigned long flags;
ctlr = MAJOR(dev) - MAJOR_NR;
if (MINOR(dev) != 0)
return -ENXIO;
spin_lock_irqsave(&io_request_lock, flags);
if (hba[ctlr]->usage_count > 1) {
spin_unlock_irqrestore(&io_request_lock, flags);
printk(KERN_WARNING "cciss: Device busy for volume"
" revalidation (usage=%d)\n", hba[ctlr]->usage_count);
return -EBUSY;
}
spin_unlock_irqrestore(&io_request_lock, flags);
hba[ctlr]->usage_count++;
/*
* Set the partition and block size structures for all volumes
* on this controller to zero. We will reread all of this data
*/
memset(hba[ctlr]->hd, 0, sizeof(struct hd_struct) * 256);
memset(hba[ctlr]->sizes, 0, sizeof(int) * 256);
memset(hba[ctlr]->blocksizes, 0, sizeof(int) * 256);
memset(hba[ctlr]->hardsizes, 0, sizeof(int) * 256);
memset(hba[ctlr]->drv, 0, sizeof(drive_info_struct)
* CISS_MAX_LUN);
hba[ctlr]->gendisk.nr_real = 0;
/*
* Tell the array controller not to give us any interupts while
* we check the new geometry. Then turn interrupts back on when
* we're done.
*/
hba[ctlr]->access.set_intr_mask(hba[ctlr], CCISS_INTR_OFF);
cciss_getgeometry(ctlr);
hba[ctlr]->access.set_intr_mask(hba[ctlr], CCISS_INTR_ON);
cciss_geninit(ctlr);
for(i=0; i<NWD; i++)
if (hba[ctlr]->sizes[ i<<NWD_SHIFT ])
revalidate_logvol(dev+(i<<NWD_SHIFT), 2);
hba[ctlr]->usage_count--;
return 0;
}
/*
* Wait polling for a command to complete.
* The memory mapped FIFO is polled for the completion.
* Used only at init time, interrupts disabled.
*/
static unsigned long pollcomplete(int ctlr)
{
unsigned long done;
int i;
/* Wait (up to 2 seconds) for a command to complete */
for (i = 200000; i > 0; i--) {
done = hba[ctlr]->access.command_completed(hba[ctlr]);
if (done == FIFO_EMPTY) {
udelay(10); /* a short fixed delay */
} else
return (done);
}
/* Invalid address to tell caller we ran out of time */
return 1;
}
/*
* Send a command to the controller, and wait for it to complete.
* Only used at init time.
*/
static int sendcmd(
__u8 cmd,
int ctlr,
void *buff,
size_t size,
unsigned int use_unit_num,
unsigned int log_unit,
__u8 page_code )
{
CommandList_struct *c;
int i;
unsigned long complete;
ctlr_info_t *info_p= hba[ctlr];
u64bit temp64;
c = cmd_alloc(info_p);
if (c == NULL)
{
printk(KERN_WARNING "cciss: unable to get memory");
return(IO_ERROR);
}
// Fill in Command Header
c->Header.ReplyQueue = 0; // unused in simple mode
if( buff != NULL) // buffer to fill
{
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else // no buffers to fill
{
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
// Fill in Request block
switch(cmd)
{
case CISS_INQUIRY:
/* If the logical unit number is 0 then, this is going
to controller so It's a physical command
mode = 0 target = 0.
So we have nothing to write.
Otherwise
mode = 1 target = LUNID
*/
if(use_unit_num != 0)
{
c->Header.LUN.LogDev.VolId=
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
}
/* are we trying to read a vital product page */
if(page_code != 0)
{
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; // Read
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = CISS_INQUIRY;
c->Request.CDB[4] = size & 0xFF;
break;
case CISS_REPORT_LOG:
/* Talking to controller so It's a physical command
mode = 00 target = 0.
So we have nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; // Read
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = CISS_REPORT_LOG;
c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case CCISS_READ_CAPACITY:
c->Header.LUN.LogDev.VolId=
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; // Read
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = CCISS_READ_CAPACITY;
break;
default:
printk(KERN_WARNING
"cciss: Unknown Command 0x%c sent attempted\n",
cmd);
cmd_free(info_p, c);
return(IO_ERROR);
};
// Fill in the scatter gather information
if (size > 0 )
{
temp64.val = (__u64) virt_to_bus(buff);
c->SG[0].Addr.lower = temp64.val32.lower;
c->SG[0].Addr.upper = temp64.val32.upper;
c->SG[0].Len = size;
c->SG[0].Ext = 0; // we are not chaining
}
/*
* Disable interrupt
*/
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: turning intr off\n");
#endif /* CCISS_DEBUG */
info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
/* Make sure there is room in the command FIFO */
/* Actually it should be completely empty at this time. */
for (i = 200000; i > 0; i--)
{
/* if fifo isn't full go */
if (!(info_p->access.fifo_full(info_p)))
{
break;
}
udelay(10);
printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
" waiting!\n", ctlr);
}
/*
* Send the cmd
*/
info_p->access.submit_command(info_p, c);
complete = pollcomplete(ctlr);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: command completed\n");
#endif /* CCISS_DEBUG */
if (complete != 1) {
if ( (complete & CISS_ERROR_BIT)
&& (complete & ~CISS_ERROR_BIT) == c->busaddr)
{
/* if data overrun or underun on Report command
ignore it
*/
if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
(c->Request.CDB[0] == CISS_INQUIRY)) &&
((c->err_info->CommandStatus ==
CMD_DATA_OVERRUN) ||
(c->err_info->CommandStatus ==
CMD_DATA_UNDERRUN)
))
{
complete = c->busaddr;
} else
{
printk(KERN_WARNING "ciss ciss%d: sendcmd"
" Error %x \n", ctlr,
c->err_info->CommandStatus);
printk(KERN_WARNING "ciss ciss%d: sendcmd"
" offensive info\n"
" size %x\n num %x value %x\n", ctlr,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_size,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_num,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_value);
cmd_free(info_p,c);
return(IO_ERROR);
}
}
if (complete != c->busaddr) {
printk( KERN_WARNING "cciss cciss%d: SendCmd "
"Invalid command list address returned! (%lx)\n",
ctlr, complete);
cmd_free(info_p, c);
return (IO_ERROR);
}
} else {
printk( KERN_WARNING
"cciss cciss%d: SendCmd Timeout out, "
"No command list address returned!\n",
ctlr);
cmd_free(info_p, c);
return (IO_ERROR);
}
cmd_free(info_p, c);
return (IO_OK);
}
/*
* Map (physical) PCI mem into (virtual) kernel space
*/
static ulong remap_pci_mem(ulong base, ulong size)
{
ulong page_base = ((ulong) base) & PAGE_MASK;
ulong page_offs = ((ulong) base) - page_base;
ulong page_remapped = (ulong) ioremap(page_base, page_offs+size);
return (ulong) (page_remapped ? (page_remapped + page_offs) : 0UL);
}
/*
* Enqueuing and dequeuing functions for cmdlists.
*/
static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
{
if (*Qptr == NULL) {
*Qptr = c;
c->next = c->prev = c;
} else {
c->prev = (*Qptr)->prev;
c->next = (*Qptr);
(*Qptr)->prev->next = c;
(*Qptr)->prev = c;
}
}
static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
CommandList_struct *c)
{
if (c && c->next != c) {
if (*Qptr == c) *Qptr = c->next;
c->prev->next = c->next;
c->next->prev = c->prev;
} else {
*Qptr = NULL;
}
return c;
}
/*
* Takes jobs of the Q and sends them to the hardware, then puts it on
* the Q to wait for completion.
*/
static void start_io( ctlr_info_t *h)
{
CommandList_struct *c;
while(( c = h->reqQ) != NULL )
{
/* can't do anything if fifo is full */
if ((h->access.fifo_full(h)))
{
printk(KERN_WARNING "cciss: fifo full \n");
return;
}
/* Get the frist entry from the Request Q */
removeQ(&(h->reqQ), c);
h->Qdepth--;
/* Tell the controller execute command */
h->access.submit_command(h, c);
/* Put job onto the completed Q */
addQ (&(h->cmpQ), c);
}
}
static inline void complete_buffers( struct buffer_head *bh, int status)
{
struct buffer_head *xbh;
while(bh)
{
xbh = bh->b_reqnext;
bh->b_reqnext = NULL;
bh->b_end_io(bh, status);
bh = xbh;
}
}
/* checks the status of the job and calls complete buffers to mark all
* buffers for the completed job.
*/
static inline void complete_command( CommandList_struct *cmd, int timeout)
{
int status = 1;
if (timeout)
status = 0;
if(cmd->err_info->CommandStatus != 0)
{ /* an error has occured */
switch(cmd->err_info->CommandStatus)
{
case CMD_TARGET_STATUS:
printk(KERN_WARNING "cciss: cmd %p has "
" completed with errors\n", cmd);
if( cmd->err_info->ScsiStatus)
{
printk(KERN_WARNING "cciss: cmd %p "
"has SCSI Status = %x\n",
cmd,
cmd->err_info->ScsiStatus);
}
break;
case CMD_DATA_UNDERRUN:
printk(KERN_WARNING "cciss: cmd %p has"
" completed with data underrun "
"reported\n", cmd);
break;
case CMD_DATA_OVERRUN:
printk(KERN_WARNING "cciss: cmd %p has"
" completed with data overrun "
"reported\n", cmd);
break;
case CMD_INVALID:
printk(KERN_WARNING "cciss: cmd %p is "
"reported invalid\n", cmd);
status = 0;
break;
case CMD_PROTOCOL_ERR:
printk(KERN_WARNING "cciss: cmd %p has "
"protocol error \n", cmd);
status = 0;
break;
case CMD_HARDWARE_ERR:
printk(KERN_WARNING "cciss: cmd %p had "
" hardware error\n", cmd);
status = 0;
break;
case CMD_CONNECTION_LOST:
printk(KERN_WARNING "cciss: cmd %p had "
"connection lost\n", cmd);
status=0;
break;
case CMD_ABORTED:
printk(KERN_WARNING "cciss: cmd %p was "
"aborted\n", cmd);
status=0;
break;
case CMD_ABORT_FAILED:
printk(KERN_WARNING "cciss: cmd %p reports "
"abort failed\n", cmd);
status=0;
break;
case CMD_UNSOLICITED_ABORT:
printk(KERN_WARNING "cciss: cmd %p aborted "
"do to an unsolicited abort\n", cmd);
status=0;
break;
case CMD_TIMEOUT:
printk(KERN_WARNING "cciss: cmd %p timedout\n",
cmd);
status=0;
break;
default:
printk(KERN_WARNING "cciss: cmd %p returned "
"unknown status %x\n", cmd,
cmd->err_info->CommandStatus);
status=0;
}
}
complete_buffers(cmd->bh, status);
}
/*
* Get a request and submit it to the controller.
* Currently we do one request at a time. Ideally we would like to send
* everything to the controller on the first call, but there is a danger
* of holding the io_request_lock for to long.
*/
static void do_cciss_request(int ctlr)
{
ctlr_info_t *h= hba[ctlr];
CommandList_struct *c;
int log_unit, start_blk, seg, sect;
char *lastdataend;
struct buffer_head *bh;
struct list_head *queue_head;
struct request *creq;
u64bit temp64;
queue_head = &blk_dev[MAJOR_NR+ctlr].request_queue.queue_head;
if (list_empty(queue_head))
{
/* nothing to do... */
start_io(h);
return;
}
creq = blkdev_entry_next_request(queue_head);
if ((creq == NULL) || (creq->rq_status == RQ_INACTIVE))
{
/* nothing to do... restart processing and return */
start_io(h);
return;
}
if ((ctlr != (MAJOR(creq->rq_dev)-MAJOR_NR)) || (ctlr > nr_ctlr)
|| (h == NULL))
{
#ifdef CCISS_DEBUG
printk(KERN_WARNING "cciss: doreq cmd of %d, %x at %p\n",
ctlr, creq->rq_dev, creq);
#endif /* CCISS_DEBUG */
complete_buffers(creq->bh, 0);
start_io(h);
return;
}
if (( c = cmd_alloc(h)) == NULL)
{
start_io(h);
return;
}
c->cmd_type = CMD_RWREQ;
bh = c->bh = creq->bh;
/* fill in the request */
log_unit = MINOR(creq->rq_dev) >> NWD_SHIFT;
c->Header.ReplyQueue = 0; // unused in simple mode
c->Header.Tag.lower = c->busaddr; // use the physical address the cmd block for tag
c->Header.LUN.LogDev.VolId= hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction =
(creq->cmd == READ) ? XFER_READ: XFER_WRITE;
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = (creq->cmd == READ) ? CCISS_READ : CCISS_WRITE;
start_blk = hba[ctlr]->hd[MINOR(creq->rq_dev)].start_sect + creq->sector;
if (bh == NULL)
panic("cciss: bh== NULL?");
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",(int) creq->sector,
(int) creq->nr_sectors);
#endif /* CCISS_DEBUG */
seg = 0;
lastdataend = NULL;
sect = 0;
while(bh)
{
sect += bh->b_size/512;
if (bh->b_size % 512)
{
printk(KERN_CRIT "cciss: Oh Man. %d+%d, size=%d\n",
(int) creq->sector, sect, (int) bh->b_size);
panic("b_size 512 != 0\n");
}
if (bh->b_data == lastdataend)
{ // tack it on to the last segment
c->SG[seg-1].Len +=bh->b_size;
lastdataend += bh->b_size;
} else
{
c->SG[seg].Len = bh->b_size;
temp64.val = (__u64) virt_to_bus(bh->b_data);
c->SG[seg].Addr.lower = temp64.val32.lower;
c->SG[seg].Addr.upper = temp64.val32.upper;
c->SG[0].Ext = 0; // we are not chaining
lastdataend = bh->b_data + bh->b_size;
if( ++seg == MAXSGENTRIES)
{
break;
}
}
bh = bh->b_reqnext;
}
/* track how many SG entries we are using */
if( seg > h->maxSG)
h->maxSG = seg;
/* adjusting the remaining request, if any */
creq-> sector+= sect;
creq->nr_sectors -= sect;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", sect, seg);
#endif /* CCISS_DEBUG */
c->Header.SGList = c->Header.SGTotal = seg;
c->Request.CDB[1]= 0;
c->Request.CDB[2]= (start_blk >> 24) & 0xff; //MSB
c->Request.CDB[3]= (start_blk >> 16) & 0xff;
c->Request.CDB[4]= (start_blk >> 8) & 0xff;
c->Request.CDB[5]= start_blk & 0xff;
c->Request.CDB[6]= 0; // (sect >> 24) & 0xff; MSB
// c->Request.CDB[7]= (sect >> 16) & 0xff;
c->Request.CDB[7]= (sect >> 8) & 0xff;
c->Request.CDB[8]= sect & 0xff;
c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
/* check to see if we going to complete the entire request */
/* if so, mark this request as Done and ready the next one */
if (creq->nr_sectors)
{
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: More to do on the same request %p %ld\n",
creq, creq->nr_sectors);
#endif /* CCISS_DEBUG */
creq->bh = bh->b_reqnext;
bh->b_reqnext = NULL;
} else
{
#ifdef CCISS_DEBUG
printk("cciss: Done with %p, queueing %p\n", creq);
#endif /* CCISS_DEBUG */
blkdev_dequeue_request(creq);
end_that_request_last(creq);
}
addQ(&(h->reqQ),c);
h->Qdepth++;
if(h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
start_io(h);
}
static void do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs)
{
ctlr_info_t *h = dev_id;
CommandList_struct *c;
unsigned long flags;
__u32 a, a1;
/* Is this interrupt for us? */
if ( h->access.intr_pending(h) == 0)
return;
/*
* If there are completed commands in the completion queue,
* we had better do something about it.
*/
spin_lock_irqsave(&io_request_lock, flags);
while( h->access.intr_pending(h))
{
while((a = h->access.command_completed(h)) != FIFO_EMPTY)
{
a1 = a;
a &= ~3;
if ((c = h->cmpQ) == NULL)
{
printk(KERN_WARNING "cpqarray: Completion of %08lx ignored\n", (unsigned long)a1);
continue;
}
while(c->busaddr != a) {
c = c->next;
if (c == h->cmpQ)
break;
}
/*
* If we've found the command, take it off the
* completion Q and free it
*/
if (c->busaddr == a) {
removeQ(&h->cmpQ, c);
if (c->cmd_type == CMD_RWREQ) {
complete_command(c, 0);
cmd_free(h, c);
} else if (c->cmd_type == CMD_IOCTL_PEND) {
c->cmd_type = CMD_IOCTL_DONE;
}
continue;
}
}
}
/*
* See if we can queue up some more IO
*/
do_cciss_request(h->ctlr);
spin_unlock_irqrestore(&io_request_lock, flags);
}
/*
* We cannot read the structure directly, for portablity we must use
* the io functions.
* This is for debug only.
*/
#ifdef CCISS_DEBUG
static void print_cfg_table( CfgTable_struct *tb)
{
int i;
char temp_name[17];
printk("Controller Configuration information\n");
printk("------------------------------------\n");
for(i=0;i<4;i++)
temp_name[i] = readb(&(tb->Signature[i]));
temp_name[4]='\0';
printk(" Signature = %s\n", temp_name);
printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
printk(" Transport methods supported = 0x%x\n",
readl(&(tb-> TransportSupport)));
printk(" Transport methods active = 0x%x\n",
readl(&(tb->TransportActive)));
printk(" Requested transport Method = 0x%x\n",
readl(&(tb->HostWrite.TransportRequest)));
printk(" Coalese Interrupt Delay = 0x%x\n",
readl(&(tb->HostWrite.CoalIntDelay)));
printk(" Coalese Interrupt Count = 0x%x\n",
readl(&(tb->HostWrite.CoalIntCount)));
printk(" Max outstanding commands = 0x%d\n",
readl(&(tb->CmdsOutMax)));
printk(" Bus Types = 0x%x\n", readl(&(tb-> BusTypes)));
for(i=0;i<16;i++)
temp_name[i] = readb(&(tb->ServerName[i]));
temp_name[16] = '\0';
printk(" Server Name = %s\n", temp_name);
printk(" Heartbeat Counter = 0x%x\n\n\n",
readl(&(tb->HeartBeat)));
}
#endif /* CCISS_DEBUG */
static int cciss_pci_init(ctlr_info_t *c, unchar bus, unchar device_fn)
{
ushort vendor_id, device_id, command;
unchar cache_line_size, latency_timer;
unchar irq, revision;
uint addr[6];
__u32 board_id;
struct pci_dev *pdev;
int i;
pdev = pci_find_slot(bus, device_fn);
vendor_id = pdev->vendor;
device_id = pdev->device;
irq = pdev->irq;
for(i=0; i<6; i++)
addr[i] = pdev->resource[i].start;
if (pci_enable_device(pdev))
return( -1);
(void) pci_read_config_word(pdev, PCI_COMMAND,&command);
(void) pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
(void) pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
&cache_line_size);
(void) pci_read_config_byte(pdev, PCI_LATENCY_TIMER,
&latency_timer);
(void) pci_read_config_dword(pdev, PCI_SUBSYSTEM_VENDOR_ID,
&board_id);
#ifdef CCISS_DEBUG
printk("vendor_id = %x\n", vendor_id);
printk("device_id = %x\n", device_id);
printk("command = %x\n", command);
for(i=0; i<6; i++)
printk("addr[%d] = %x\n", i, addr[i]);
printk("revision = %x\n", revision);
printk("irq = %x\n", irq);
printk("cache_line_size = %x\n", cache_line_size);
printk("latency_timer = %x\n", latency_timer);
printk("board_id = %x\n", board_id);
#endif /* CCISS_DEBUG */
c->intr = irq;
/*
* Memory base addr is first addr , the second points to the config
* table
*/
c->paddr = pci_resource_start(pdev, 0);
c->vaddr = remap_pci_mem(c->paddr, 128);
c->cfgtable = (CfgTable_struct *) remap_pci_mem(addr[1],
sizeof(CfgTable_struct));
c->board_id = board_id;
#ifdef CCISS_DEBUG
print_cfg_table(c->cfgtable);
#endif /* CCISS_DEBUG */
for(i=0; i<NR_PRODUCTS; i++) {
if (board_id == products[i].board_id) {
c->product_name = products[i].product_name;
c->access = *(products[i].access);
break;
}
}
if (i == NR_PRODUCTS) {
printk(KERN_WARNING "cciss: Sorry, I don't know how"
" to access the Smart Array controller %08lx\n",
(unsigned long)board_id);
return -1;
}
#ifdef CCISS_DEBUG
printk("Trying to put board into Simple mode\n");
#endif /* CCISS_DEBUG */
c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
/* Update the field, and then ring the doorbell */
writel( CFGTBL_Trans_Simple,
&(c->cfgtable->HostWrite.TransportRequest));
writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_CONFIG_WAIT;i++)
{
if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL));
#endif /* CCISS_DEBUG */
#ifdef CCISS_DEBUG
print_cfg_table(c->cfgtable);
#endif /* CCISS_DEBUG */
if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
{
printk(KERN_WARNING "cciss: unable to get board into"
" simple mode\n");
return -1;
}
return 0;
}
/*
* Scans PCI space for any controllers that this driver can control.
*/
static int cciss_pci_detect(void)
{
int index;
unchar bus=0, dev_fn=0;
for(index=0; ; index++) {
if (pcibios_find_device(PCI_VENDOR_ID_COMPAQ,
PCI_DEVICE_ID_COMPAQ_CISS,
index, &bus, &dev_fn))
break;
printk(KERN_DEBUG "cciss: Device %x has been found at %x %x\n",
PCI_DEVICE_ID_COMPAQ_CISS, bus, dev_fn);
if (index == 1000000) break;
if (nr_ctlr == 8) {
printk(KERN_WARNING "cciss: This driver"
" supports a maximum of 8 controllers.\n");
break;
}
hba[nr_ctlr] = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL);
if(hba[nr_ctlr]==NULL)
{
printk(KERN_ERR "cciss: out of memory.\n");
continue;
}
memset(hba[nr_ctlr], 0, sizeof(ctlr_info_t));
if (cciss_pci_init(hba[nr_ctlr], bus, dev_fn) != 0)
{
kfree(hba[nr_ctlr]);
continue;
}
sprintf(hba[nr_ctlr]->devname, "cciss%d", nr_ctlr);
hba[nr_ctlr]->ctlr = nr_ctlr;
hba[nr_ctlr]->pci_bus = bus;
hba[nr_ctlr]->pci_dev_fn = dev_fn;
nr_ctlr++;
}
return nr_ctlr;
}
/*
* Gets information about the local volumes attached to the controller.
*/
static void cciss_getgeometry(int cntl_num)
{
ReportLunData_struct *ld_buff;
ReadCapdata_struct *size_buff;
InquiryData_struct *inq_buff;
int return_code;
int i;
int listlength = 0;
int lunid = 0;
int block_size;
int total_size;
ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
if (ld_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
return;
}
memset(ld_buff, 0, sizeof(ReportLunData_struct));
size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
if (size_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
return;
}
inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
kfree(size_buff);
return;
}
/* Get the firmware version */
return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
sizeof(InquiryData_struct), 0, 0 ,0 );
if (return_code == IO_OK)
{
hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
} else /* send command failed */
{
printk(KERN_WARNING "cciss: unable to determine firmware"
" version of controller\n");
}
/* Get the number of logical volumes */
return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
sizeof(ReportLunData_struct), 0, 0, 0 );
if( return_code == IO_OK)
{
#ifdef CCISS_DEBUG
printk("LUN Data\n--------------------------\n");
#endif /* CCISS_DEBUG */
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
} else /* reading number of logical volumes failed */
{
printk(KERN_WARNING "cciss: report logical volume"
" command failed\n");
listlength = 0;
}
hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
if (hba[cntl_num]->num_luns > CISS_MAX_LUN)
{
printk(KERN_ERR "ciss: only %d number of logical volumes supported\n",
CISS_MAX_LUN);
hba[cntl_num]->num_luns = CISS_MAX_LUN;
}
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
ld_buff->LUNListLength[3], hba[cntl_num]->num_luns);
#endif /* CCISS_DEBUG */
for(i=0; i< hba[cntl_num]->num_luns ; i++)
{
lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8;
lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
hba[cntl_num]->drv[i].LunID = lunid;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
ld_buff->LUN[i][0], ld_buff->LUN[i][1],ld_buff->LUN[i][2],
ld_buff->LUN[i][3], hba[cntl_num]->drv[i].LunID);
#endif /* CCISS_DEBUG */
memset(size_buff, 0, sizeof(ReadCapdata_struct));
return_code = sendcmd(CCISS_READ_CAPACITY, cntl_num, size_buff,
sizeof( ReadCapdata_struct), 1, i, 0 );
if (return_code == IO_OK)
{
total_size = (0xff &
(unsigned int)(size_buff->total_size[0])) << 24;
total_size |= (0xff &
(unsigned int)(size_buff->total_size[1])) << 16;
total_size |= (0xff &
(unsigned int)(size_buff->total_size[2])) << 8;
total_size |= (0xff & (unsigned int)
(size_buff->total_size[3]));
total_size++; // command returns highest block address
block_size = (0xff &
(unsigned int)(size_buff->block_size[0])) << 24;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[1])) << 16;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[2])) << 8;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[3]));
} else /* read capacity command failed */
{
printk(KERN_WARNING "cciss: read capacity failed\n");
total_size = block_size = 0;
}
printk(" blocks= %d block_size= %d\n", total_size,
block_size);
/* Execute the command to read the disk geometry */
memset(inq_buff, 0, sizeof(InquiryData_struct));
return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
sizeof(InquiryData_struct), 1, i ,0xC1 );
if (return_code == IO_OK)
{
if(inq_buff->data_byte[8] == 0xFF)
{
printk(KERN_WARNING "cciss: reading geometry failed, volume does not support reading geometry\n");
hba[cntl_num]->drv[i].block_size = block_size;
hba[cntl_num]->drv[i].nr_blocks = total_size;
hba[cntl_num]->drv[i].heads = 255;
hba[cntl_num]->drv[i].sectors = 32; // Sectors per track
hba[cntl_num]->drv[i].cylinders = total_size / 255 / 32; } else
{
hba[cntl_num]->drv[i].block_size = block_size;
hba[cntl_num]->drv[i].nr_blocks = total_size;
hba[cntl_num]->drv[i].heads =
inq_buff->data_byte[6];
hba[cntl_num]->drv[i].sectors =
inq_buff->data_byte[7];
hba[cntl_num]->drv[i].cylinders =
(inq_buff->data_byte[4] & 0xff) << 8;
hba[cntl_num]->drv[i].cylinders +=
inq_buff->data_byte[5];
}
}
else /* Get geometry failed */
{
printk(KERN_WARNING "cciss: reading geometry failed, continuing with default geometry\n");
hba[cntl_num]->drv[i].block_size = block_size;
hba[cntl_num]->drv[i].nr_blocks = total_size;
hba[cntl_num]->drv[i].heads = 255;
hba[cntl_num]->drv[i].sectors = 32; // Sectors per track
hba[cntl_num]->drv[i].cylinders = total_size / 255 / 32;
}
printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d\n\n",
hba[cntl_num]->drv[i].heads,
hba[cntl_num]->drv[i].sectors,
hba[cntl_num]->drv[i].cylinders);
}
kfree(ld_buff);
kfree(size_buff);
}
/*
* This is it. Find all the controllers and register them. I really hate
* stealing all these major device numbers.
* returns the number of block devices registered.
*/
int __init cciss_init(void)
{
int num_cntlrs_reg = 0;
int i,j;
void (*request_fns[MAX_CTLR])(request_queue_t *) = {
do_cciss_request0, do_cciss_request1,
do_cciss_request2, do_cciss_request3,
do_cciss_request4, do_cciss_request5,
do_cciss_request6, do_cciss_request7,
};
/* detect controllers */
cciss_pci_detect();
if (nr_ctlr == 0)
return(num_cntlrs_reg);
printk(KERN_INFO DRIVER_NAME "\n");
printk(KERN_INFO "Found %d controller(s)\n", nr_ctlr);
for(i=0;i<nr_ctlr;i++)
{
if( register_blkdev(MAJOR_NR+i, hba[i]->devname, &cciss_fops))
{
printk(KERN_ERR "cciss: Unable to get major number "
"%d for %s\n", MAJOR_NR+i, hba[i]->devname);
continue;
}
/* make sure the board interrupts are off */
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
if( request_irq(hba[i]->intr, do_cciss_intr, SA_INTERRUPT|SA_SHIRQ, hba[i]->devname, hba[i]))
{
printk(KERN_ERR "ciss: Unable to get irq %d for %s\n",
hba[i]->intr, hba[i]->devname);
unregister_blkdev( MAJOR_NR+i, hba[i]->devname);
continue;
}
num_cntlrs_reg++;
hba[i]->cmd_pool_bits = (__u32*)kmalloc(
((NR_CMDS+31)/32)*sizeof(__u32), GFP_KERNEL);
hba[i]->cmd_pool = (CommandList_struct *)kmalloc(
NR_CMDS * sizeof(CommandList_struct),
GFP_KERNEL);
hba[i]->errinfo_pool = (ErrorInfo_struct *)kmalloc(
NR_CMDS * sizeof( ErrorInfo_struct),
GFP_KERNEL);
if((hba[i]->cmd_pool_bits == NULL)
|| (hba[i]->cmd_pool == NULL)
|| (hba[i]->errinfo_pool == NULL))
{
nr_ctlr = i;
if(hba[i]->cmd_pool_bits)
kfree(hba[i]->cmd_pool_bits);
if(hba[i]->cmd_pool)
kfree(hba[i]->cmd_pool);
if(hba[i]->errinfo_pool)
kfree(hba[i]->errinfo_pool);
free_irq(hba[i]->intr, hba[i]);
unregister_blkdev(MAJOR_NR+i, hba[i]->devname);
num_cntlrs_reg--;
printk( KERN_ERR "cciss: out of memory");
return(num_cntlrs_reg);
}
/* command and error info recs zeroed out before
they are used */
memset(hba[i]->cmd_pool_bits, 0,
((NR_CMDS+31)/32)*sizeof(__u32));
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n",i);
#endif /* CCISS_DEBUG */
cciss_getgeometry(i);
/* Turn the interrupts on so we can service requests */
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
cciss_procinit(i);
blk_init_queue(BLK_DEFAULT_QUEUE(MAJOR_NR+i),
request_fns[i]);
blk_queue_headactive(BLK_DEFAULT_QUEUE(MAJOR_NR+i), 0);
/* fill in the other Kernel structs */
blksize_size[MAJOR_NR+i] = hba[i]->blocksizes;
hardsect_size[MAJOR_NR+i] = hba[i]->hardsizes;
read_ahead[MAJOR_NR+i] = READ_AHEAD;
/* Fill in the gendisk data */
hba[i]->gendisk.major = MAJOR_NR + i;
hba[i]->gendisk.major_name = "cciss";
hba[i]->gendisk.minor_shift = NWD_SHIFT;
hba[i]->gendisk.max_p = MAX_PART;
hba[i]->gendisk.part = hba[i]->hd;
hba[i]->gendisk.sizes = hba[i]->sizes;
hba[i]->gendisk.nr_real = hba[i]->num_luns;
/* Get on the disk list */
hba[i]->gendisk.next = gendisk_head;
gendisk_head = &(hba[i]->gendisk);
cciss_geninit(i);
for(j=0; j<NWD; j++)
register_disk(&(hba[i]->gendisk),
MKDEV(MAJOR_NR+i, j <<4),
MAX_PART, &cciss_fops,
hba[i]->drv[j].nr_blocks);
}
return(nr_ctlr);
}
EXPORT_NO_SYMBOLS;
/* This is a bit of a hack... */
static int __init init_cciss_module(void)
{
if (cciss_init() == 0) /* all the block dev numbers already used */
return -EIO; /* or no controllers were found */
return 0;
}
static void __exit cleanup_cciss_module(void)
{
int i;
struct gendisk *g;
for(i=0; i<nr_ctlr; i++)
{
/* Turn board interrupts off */
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
free_irq(hba[i]->intr, hba[i]);
iounmap((void*)hba[i]->vaddr);
unregister_blkdev(MAJOR_NR+i, hba[i]->devname);
remove_proc_entry(hba[i]->devname, proc_cciss);
/* remove it from the disk list */
if (gendisk_head == &(hba[i]->gendisk))
{
gendisk_head = hba[i]->gendisk.next;
} else
{
for(g=gendisk_head; g ; g=g->next)
{
if(g->next == &(hba[i]->gendisk))
{
g->next = hba[i]->gendisk.next;
}
}
}
remove_proc_entry("driver/cciss", &proc_root);
kfree(hba[i]->cmd_pool);
kfree(hba[i]->errinfo_pool);
kfree(hba[i]->cmd_pool_bits);
kfree(hba[i]);
}
}
module_init(init_cciss_module);
module_exit(cleanup_cciss_module);