blob: 567466f93cd5d9645020e3b89c282808d88397e4 [file] [log] [blame]
/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "nv50.h"
#include "rootnv50.h"
#include <core/client.h>
#include <core/enum.h>
#include <core/gpuobj.h>
#include <subdev/bios.h>
#include <subdev/bios/disp.h>
#include <subdev/bios/init.h>
#include <subdev/bios/pll.h>
#include <subdev/devinit.h>
#include <subdev/timer.h>
static const struct nvkm_disp_oclass *
nv50_disp_root_(struct nvkm_disp *base)
{
return nv50_disp(base)->func->root;
}
static int
nv50_disp_outp_internal_crt_(struct nvkm_disp *base, int index,
struct dcb_output *dcb, struct nvkm_output **poutp)
{
struct nv50_disp *disp = nv50_disp(base);
return disp->func->outp.internal.crt(base, index, dcb, poutp);
}
static int
nv50_disp_outp_internal_tmds_(struct nvkm_disp *base, int index,
struct dcb_output *dcb,
struct nvkm_output **poutp)
{
struct nv50_disp *disp = nv50_disp(base);
return disp->func->outp.internal.tmds(base, index, dcb, poutp);
}
static int
nv50_disp_outp_internal_lvds_(struct nvkm_disp *base, int index,
struct dcb_output *dcb,
struct nvkm_output **poutp)
{
struct nv50_disp *disp = nv50_disp(base);
return disp->func->outp.internal.lvds(base, index, dcb, poutp);
}
static int
nv50_disp_outp_internal_dp_(struct nvkm_disp *base, int index,
struct dcb_output *dcb, struct nvkm_output **poutp)
{
struct nv50_disp *disp = nv50_disp(base);
if (disp->func->outp.internal.dp)
return disp->func->outp.internal.dp(base, index, dcb, poutp);
return -ENODEV;
}
static int
nv50_disp_outp_external_tmds_(struct nvkm_disp *base, int index,
struct dcb_output *dcb,
struct nvkm_output **poutp)
{
struct nv50_disp *disp = nv50_disp(base);
if (disp->func->outp.external.tmds)
return disp->func->outp.external.tmds(base, index, dcb, poutp);
return -ENODEV;
}
static int
nv50_disp_outp_external_dp_(struct nvkm_disp *base, int index,
struct dcb_output *dcb, struct nvkm_output **poutp)
{
struct nv50_disp *disp = nv50_disp(base);
if (disp->func->outp.external.dp)
return disp->func->outp.external.dp(base, index, dcb, poutp);
return -ENODEV;
}
static void
nv50_disp_vblank_fini_(struct nvkm_disp *base, int head)
{
struct nv50_disp *disp = nv50_disp(base);
disp->func->head.vblank_fini(disp, head);
}
static void
nv50_disp_vblank_init_(struct nvkm_disp *base, int head)
{
struct nv50_disp *disp = nv50_disp(base);
disp->func->head.vblank_init(disp, head);
}
static void
nv50_disp_intr_(struct nvkm_disp *base)
{
struct nv50_disp *disp = nv50_disp(base);
disp->func->intr(disp);
}
static void *
nv50_disp_dtor_(struct nvkm_disp *base)
{
struct nv50_disp *disp = nv50_disp(base);
nvkm_event_fini(&disp->uevent);
return disp;
}
static const struct nvkm_disp_func
nv50_disp_ = {
.dtor = nv50_disp_dtor_,
.intr = nv50_disp_intr_,
.root = nv50_disp_root_,
.outp.internal.crt = nv50_disp_outp_internal_crt_,
.outp.internal.tmds = nv50_disp_outp_internal_tmds_,
.outp.internal.lvds = nv50_disp_outp_internal_lvds_,
.outp.internal.dp = nv50_disp_outp_internal_dp_,
.outp.external.tmds = nv50_disp_outp_external_tmds_,
.outp.external.dp = nv50_disp_outp_external_dp_,
.head.vblank_init = nv50_disp_vblank_init_,
.head.vblank_fini = nv50_disp_vblank_fini_,
};
int
nv50_disp_new_(const struct nv50_disp_func *func, struct nvkm_device *device,
int index, int heads, struct nvkm_disp **pdisp)
{
struct nv50_disp *disp;
int ret;
if (!(disp = kzalloc(sizeof(*disp), GFP_KERNEL)))
return -ENOMEM;
INIT_WORK(&disp->supervisor, func->super);
disp->func = func;
*pdisp = &disp->base;
ret = nvkm_disp_ctor(&nv50_disp_, device, index, heads, &disp->base);
if (ret)
return ret;
return nvkm_event_init(func->uevent, 1, 1 + (heads * 4), &disp->uevent);
}
void
nv50_disp_vblank_fini(struct nv50_disp *disp, int head)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
nvkm_mask(device, 0x61002c, (4 << head), 0);
}
void
nv50_disp_vblank_init(struct nv50_disp *disp, int head)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
nvkm_mask(device, 0x61002c, (4 << head), (4 << head));
}
static const struct nvkm_enum
nv50_disp_intr_error_type[] = {
{ 3, "ILLEGAL_MTHD" },
{ 4, "INVALID_VALUE" },
{ 5, "INVALID_STATE" },
{ 7, "INVALID_HANDLE" },
{}
};
static const struct nvkm_enum
nv50_disp_intr_error_code[] = {
{ 0x00, "" },
{}
};
static void
nv50_disp_intr_error(struct nv50_disp *disp, int chid)
{
struct nvkm_subdev *subdev = &disp->base.engine.subdev;
struct nvkm_device *device = subdev->device;
u32 data = nvkm_rd32(device, 0x610084 + (chid * 0x08));
u32 addr = nvkm_rd32(device, 0x610080 + (chid * 0x08));
u32 code = (addr & 0x00ff0000) >> 16;
u32 type = (addr & 0x00007000) >> 12;
u32 mthd = (addr & 0x00000ffc);
const struct nvkm_enum *ec, *et;
et = nvkm_enum_find(nv50_disp_intr_error_type, type);
ec = nvkm_enum_find(nv50_disp_intr_error_code, code);
nvkm_error(subdev,
"ERROR %d [%s] %02x [%s] chid %d mthd %04x data %08x\n",
type, et ? et->name : "", code, ec ? ec->name : "",
chid, mthd, data);
if (chid < ARRAY_SIZE(disp->chan)) {
switch (mthd) {
case 0x0080:
nv50_disp_chan_mthd(disp->chan[chid], NV_DBG_ERROR);
break;
default:
break;
}
}
nvkm_wr32(device, 0x610020, 0x00010000 << chid);
nvkm_wr32(device, 0x610080 + (chid * 0x08), 0x90000000);
}
static struct nvkm_output *
exec_lookup(struct nv50_disp *disp, int head, int or, u32 ctrl,
u32 *data, u8 *ver, u8 *hdr, u8 *cnt, u8 *len,
struct nvbios_outp *info)
{
struct nvkm_subdev *subdev = &disp->base.engine.subdev;
struct nvkm_bios *bios = subdev->device->bios;
struct nvkm_output *outp;
u16 mask, type;
if (or < 4) {
type = DCB_OUTPUT_ANALOG;
mask = 0;
} else
if (or < 8) {
switch (ctrl & 0x00000f00) {
case 0x00000000: type = DCB_OUTPUT_LVDS; mask = 1; break;
case 0x00000100: type = DCB_OUTPUT_TMDS; mask = 1; break;
case 0x00000200: type = DCB_OUTPUT_TMDS; mask = 2; break;
case 0x00000500: type = DCB_OUTPUT_TMDS; mask = 3; break;
case 0x00000800: type = DCB_OUTPUT_DP; mask = 1; break;
case 0x00000900: type = DCB_OUTPUT_DP; mask = 2; break;
default:
nvkm_error(subdev, "unknown SOR mc %08x\n", ctrl);
return NULL;
}
or -= 4;
} else {
or = or - 8;
type = 0x0010;
mask = 0;
switch (ctrl & 0x00000f00) {
case 0x00000000: type |= disp->pior.type[or]; break;
default:
nvkm_error(subdev, "unknown PIOR mc %08x\n", ctrl);
return NULL;
}
}
mask = 0x00c0 & (mask << 6);
mask |= 0x0001 << or;
mask |= 0x0100 << head;
list_for_each_entry(outp, &disp->base.outp, head) {
if ((outp->info.hasht & 0xff) == type &&
(outp->info.hashm & mask) == mask) {
*data = nvbios_outp_match(bios, outp->info.hasht, mask,
ver, hdr, cnt, len, info);
if (!*data)
return NULL;
return outp;
}
}
return NULL;
}
static struct nvkm_output *
exec_script(struct nv50_disp *disp, int head, int id)
{
struct nvkm_subdev *subdev = &disp->base.engine.subdev;
struct nvkm_device *device = subdev->device;
struct nvkm_bios *bios = device->bios;
struct nvkm_output *outp;
struct nvbios_outp info;
u8 ver, hdr, cnt, len;
u32 data, ctrl = 0;
u32 reg;
int i;
/* DAC */
for (i = 0; !(ctrl & (1 << head)) && i < disp->func->dac.nr; i++)
ctrl = nvkm_rd32(device, 0x610b5c + (i * 8));
/* SOR */
if (!(ctrl & (1 << head))) {
if (device->chipset < 0x90 ||
device->chipset == 0x92 ||
device->chipset == 0xa0) {
reg = 0x610b74;
} else {
reg = 0x610798;
}
for (i = 0; !(ctrl & (1 << head)) && i < disp->func->sor.nr; i++)
ctrl = nvkm_rd32(device, reg + (i * 8));
i += 4;
}
/* PIOR */
if (!(ctrl & (1 << head))) {
for (i = 0; !(ctrl & (1 << head)) && i < disp->func->pior.nr; i++)
ctrl = nvkm_rd32(device, 0x610b84 + (i * 8));
i += 8;
}
if (!(ctrl & (1 << head)))
return NULL;
i--;
outp = exec_lookup(disp, head, i, ctrl, &data, &ver, &hdr, &cnt, &len, &info);
if (outp) {
struct nvbios_init init = {
.subdev = subdev,
.bios = bios,
.offset = info.script[id],
.outp = &outp->info,
.crtc = head,
.execute = 1,
};
nvbios_exec(&init);
}
return outp;
}
static struct nvkm_output *
exec_clkcmp(struct nv50_disp *disp, int head, int id, u32 pclk, u32 *conf)
{
struct nvkm_subdev *subdev = &disp->base.engine.subdev;
struct nvkm_device *device = subdev->device;
struct nvkm_bios *bios = device->bios;
struct nvkm_output *outp;
struct nvbios_outp info1;
struct nvbios_ocfg info2;
u8 ver, hdr, cnt, len;
u32 data, ctrl = 0;
u32 reg;
int i;
/* DAC */
for (i = 0; !(ctrl & (1 << head)) && i < disp->func->dac.nr; i++)
ctrl = nvkm_rd32(device, 0x610b58 + (i * 8));
/* SOR */
if (!(ctrl & (1 << head))) {
if (device->chipset < 0x90 ||
device->chipset == 0x92 ||
device->chipset == 0xa0) {
reg = 0x610b70;
} else {
reg = 0x610794;
}
for (i = 0; !(ctrl & (1 << head)) && i < disp->func->sor.nr; i++)
ctrl = nvkm_rd32(device, reg + (i * 8));
i += 4;
}
/* PIOR */
if (!(ctrl & (1 << head))) {
for (i = 0; !(ctrl & (1 << head)) && i < disp->func->pior.nr; i++)
ctrl = nvkm_rd32(device, 0x610b80 + (i * 8));
i += 8;
}
if (!(ctrl & (1 << head)))
return NULL;
i--;
outp = exec_lookup(disp, head, i, ctrl, &data, &ver, &hdr, &cnt, &len, &info1);
if (!outp)
return NULL;
*conf = (ctrl & 0x00000f00) >> 8;
if (outp->info.location == 0) {
switch (outp->info.type) {
case DCB_OUTPUT_TMDS:
if (*conf == 5)
*conf |= 0x0100;
break;
case DCB_OUTPUT_LVDS:
*conf |= disp->sor.lvdsconf;
break;
default:
break;
}
} else {
*conf = (ctrl & 0x00000f00) >> 8;
pclk = pclk / 2;
}
data = nvbios_ocfg_match(bios, data, *conf & 0xff, *conf >> 8,
&ver, &hdr, &cnt, &len, &info2);
if (data && id < 0xff) {
data = nvbios_oclk_match(bios, info2.clkcmp[id], pclk);
if (data) {
struct nvbios_init init = {
.subdev = subdev,
.bios = bios,
.offset = data,
.outp = &outp->info,
.crtc = head,
.execute = 1,
};
nvbios_exec(&init);
}
}
return outp;
}
static bool
nv50_disp_dptmds_war(struct nvkm_device *device)
{
switch (device->chipset) {
case 0x94:
case 0x96:
case 0x98:
case 0xaa:
case 0xac:
return true;
default:
break;
}
return false;
}
static bool
nv50_disp_dptmds_war_needed(struct nv50_disp *disp, struct dcb_output *outp)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
const u32 soff = __ffs(outp->or) * 0x800;
if (nv50_disp_dptmds_war(device) && outp->type == DCB_OUTPUT_TMDS) {
switch (nvkm_rd32(device, 0x614300 + soff) & 0x00030000) {
case 0x00000000:
case 0x00030000:
return true;
default:
break;
}
}
return false;
}
static void
nv50_disp_dptmds_war_2(struct nv50_disp *disp, struct dcb_output *outp)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
const u32 soff = __ffs(outp->or) * 0x800;
if (!nv50_disp_dptmds_war_needed(disp, outp))
return;
nvkm_mask(device, 0x00e840, 0x80000000, 0x80000000);
nvkm_mask(device, 0x614300 + soff, 0x03000000, 0x03000000);
nvkm_mask(device, 0x61c10c + soff, 0x00000001, 0x00000001);
nvkm_mask(device, 0x61c00c + soff, 0x0f000000, 0x00000000);
nvkm_mask(device, 0x61c008 + soff, 0xff000000, 0x14000000);
nvkm_usec(device, 400, NVKM_DELAY);
nvkm_mask(device, 0x61c008 + soff, 0xff000000, 0x00000000);
nvkm_mask(device, 0x61c00c + soff, 0x0f000000, 0x01000000);
if (nvkm_rd32(device, 0x61c004 + soff) & 0x00000001) {
u32 seqctl = nvkm_rd32(device, 0x61c030 + soff);
u32 pu_pc = seqctl & 0x0000000f;
nvkm_wr32(device, 0x61c040 + soff + pu_pc * 4, 0x1f008000);
}
}
static void
nv50_disp_dptmds_war_3(struct nv50_disp *disp, struct dcb_output *outp)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
const u32 soff = __ffs(outp->or) * 0x800;
u32 sorpwr;
if (!nv50_disp_dptmds_war_needed(disp, outp))
return;
sorpwr = nvkm_rd32(device, 0x61c004 + soff);
if (sorpwr & 0x00000001) {
u32 seqctl = nvkm_rd32(device, 0x61c030 + soff);
u32 pd_pc = (seqctl & 0x00000f00) >> 8;
u32 pu_pc = seqctl & 0x0000000f;
nvkm_wr32(device, 0x61c040 + soff + pd_pc * 4, 0x1f008000);
nvkm_msec(device, 2000,
if (!(nvkm_rd32(device, 0x61c030 + soff) & 0x10000000))
break;
);
nvkm_mask(device, 0x61c004 + soff, 0x80000001, 0x80000000);
nvkm_msec(device, 2000,
if (!(nvkm_rd32(device, 0x61c030 + soff) & 0x10000000))
break;
);
nvkm_wr32(device, 0x61c040 + soff + pd_pc * 4, 0x00002000);
nvkm_wr32(device, 0x61c040 + soff + pu_pc * 4, 0x1f000000);
}
nvkm_mask(device, 0x61c10c + soff, 0x00000001, 0x00000000);
nvkm_mask(device, 0x614300 + soff, 0x03000000, 0x00000000);
if (sorpwr & 0x00000001) {
nvkm_mask(device, 0x61c004 + soff, 0x80000001, 0x80000001);
}
}
static void
nv50_disp_update_sppll1(struct nv50_disp *disp)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
bool used = false;
int sor;
if (!nv50_disp_dptmds_war(device))
return;
for (sor = 0; sor < disp->func->sor.nr; sor++) {
u32 clksor = nvkm_rd32(device, 0x614300 + (sor * 0x800));
switch (clksor & 0x03000000) {
case 0x02000000:
case 0x03000000:
used = true;
break;
default:
break;
}
}
if (used)
return;
nvkm_mask(device, 0x00e840, 0x80000000, 0x00000000);
}
static void
nv50_disp_intr_unk10_0(struct nv50_disp *disp, int head)
{
exec_script(disp, head, 1);
}
static void
nv50_disp_intr_unk20_0(struct nv50_disp *disp, int head)
{
struct nvkm_subdev *subdev = &disp->base.engine.subdev;
struct nvkm_output *outp = exec_script(disp, head, 2);
/* the binary driver does this outside of the supervisor handling
* (after the third supervisor from a detach). we (currently?)
* allow both detach/attach to happen in the same set of
* supervisor interrupts, so it would make sense to execute this
* (full power down?) script after all the detach phases of the
* supervisor handling. like with training if needed from the
* second supervisor, nvidia doesn't do this, so who knows if it's
* entirely safe, but it does appear to work..
*
* without this script being run, on some configurations i've
* seen, switching from DP to TMDS on a DP connector may result
* in a blank screen (SOR_PWR off/on can restore it)
*/
if (outp && outp->info.type == DCB_OUTPUT_DP) {
struct nvkm_output_dp *outpdp = nvkm_output_dp(outp);
struct nvbios_init init = {
.subdev = subdev,
.bios = subdev->device->bios,
.outp = &outp->info,
.crtc = head,
.offset = outpdp->info.script[4],
.execute = 1,
};
nvkm_notify_put(&outpdp->irq);
nvbios_exec(&init);
atomic_set(&outpdp->lt.done, 0);
}
}
static void
nv50_disp_intr_unk20_1(struct nv50_disp *disp, int head)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
struct nvkm_devinit *devinit = device->devinit;
u32 pclk = nvkm_rd32(device, 0x610ad0 + (head * 0x540)) & 0x3fffff;
if (pclk)
nvkm_devinit_pll_set(devinit, PLL_VPLL0 + head, pclk);
}
static void
nv50_disp_intr_unk20_2_dp(struct nv50_disp *disp, int head,
struct dcb_output *outp, u32 pclk)
{
struct nvkm_subdev *subdev = &disp->base.engine.subdev;
struct nvkm_device *device = subdev->device;
const int link = !(outp->sorconf.link & 1);
const int or = ffs(outp->or) - 1;
const u32 soff = ( or * 0x800);
const u32 loff = (link * 0x080) + soff;
const u32 ctrl = nvkm_rd32(device, 0x610794 + (or * 8));
const u32 symbol = 100000;
const s32 vactive = nvkm_rd32(device, 0x610af8 + (head * 0x540)) & 0xffff;
const s32 vblanke = nvkm_rd32(device, 0x610ae8 + (head * 0x540)) & 0xffff;
const s32 vblanks = nvkm_rd32(device, 0x610af0 + (head * 0x540)) & 0xffff;
u32 dpctrl = nvkm_rd32(device, 0x61c10c + loff);
u32 clksor = nvkm_rd32(device, 0x614300 + soff);
int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0;
int TU, VTUi, VTUf, VTUa;
u64 link_data_rate, link_ratio, unk;
u32 best_diff = 64 * symbol;
u32 link_nr, link_bw, bits;
u64 value;
link_bw = (clksor & 0x000c0000) ? 270000 : 162000;
link_nr = hweight32(dpctrl & 0x000f0000);
/* symbols/hblank - algorithm taken from comments in tegra driver */
value = vblanke + vactive - vblanks - 7;
value = value * link_bw;
do_div(value, pclk);
value = value - (3 * !!(dpctrl & 0x00004000)) - (12 / link_nr);
nvkm_mask(device, 0x61c1e8 + soff, 0x0000ffff, value);
/* symbols/vblank - algorithm taken from comments in tegra driver */
value = vblanks - vblanke - 25;
value = value * link_bw;
do_div(value, pclk);
value = value - ((36 / link_nr) + 3) - 1;
nvkm_mask(device, 0x61c1ec + soff, 0x00ffffff, value);
/* watermark / activesym */
if ((ctrl & 0xf0000) == 0x60000) bits = 30;
else if ((ctrl & 0xf0000) == 0x50000) bits = 24;
else bits = 18;
link_data_rate = (pclk * bits / 8) / link_nr;
/* calculate ratio of packed data rate to link symbol rate */
link_ratio = link_data_rate * symbol;
do_div(link_ratio, link_bw);
for (TU = 64; TU >= 32; TU--) {
/* calculate average number of valid symbols in each TU */
u32 tu_valid = link_ratio * TU;
u32 calc, diff;
/* find a hw representation for the fraction.. */
VTUi = tu_valid / symbol;
calc = VTUi * symbol;
diff = tu_valid - calc;
if (diff) {
if (diff >= (symbol / 2)) {
VTUf = symbol / (symbol - diff);
if (symbol - (VTUf * diff))
VTUf++;
if (VTUf <= 15) {
VTUa = 1;
calc += symbol - (symbol / VTUf);
} else {
VTUa = 0;
VTUf = 1;
calc += symbol;
}
} else {
VTUa = 0;
VTUf = min((int)(symbol / diff), 15);
calc += symbol / VTUf;
}
diff = calc - tu_valid;
} else {
/* no remainder, but the hw doesn't like the fractional
* part to be zero. decrement the integer part and
* have the fraction add a whole symbol back
*/
VTUa = 0;
VTUf = 1;
VTUi--;
}
if (diff < best_diff) {
best_diff = diff;
bestTU = TU;
bestVTUa = VTUa;
bestVTUf = VTUf;
bestVTUi = VTUi;
if (diff == 0)
break;
}
}
if (!bestTU) {
nvkm_error(subdev, "unable to find suitable dp config\n");
return;
}
/* XXX close to vbios numbers, but not right */
unk = (symbol - link_ratio) * bestTU;
unk *= link_ratio;
do_div(unk, symbol);
do_div(unk, symbol);
unk += 6;
nvkm_mask(device, 0x61c10c + loff, 0x000001fc, bestTU << 2);
nvkm_mask(device, 0x61c128 + loff, 0x010f7f3f, bestVTUa << 24 |
bestVTUf << 16 |
bestVTUi << 8 | unk);
}
static void
nv50_disp_intr_unk20_2(struct nv50_disp *disp, int head)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
struct nvkm_output *outp;
u32 pclk = nvkm_rd32(device, 0x610ad0 + (head * 0x540)) & 0x3fffff;
u32 hval, hreg = 0x614200 + (head * 0x800);
u32 oval, oreg;
u32 mask, conf;
outp = exec_clkcmp(disp, head, 0xff, pclk, &conf);
if (!outp)
return;
/* we allow both encoder attach and detach operations to occur
* within a single supervisor (ie. modeset) sequence. the
* encoder detach scripts quite often switch off power to the
* lanes, which requires the link to be re-trained.
*
* this is not generally an issue as the sink "must" (heh)
* signal an irq when it's lost sync so the driver can
* re-train.
*
* however, on some boards, if one does not configure at least
* the gpu side of the link *before* attaching, then various
* things can go horribly wrong (PDISP disappearing from mmio,
* third supervisor never happens, etc).
*
* the solution is simply to retrain here, if necessary. last
* i checked, the binary driver userspace does not appear to
* trigger this situation (it forces an UPDATE between steps).
*/
if (outp->info.type == DCB_OUTPUT_DP) {
u32 soff = (ffs(outp->info.or) - 1) * 0x08;
u32 ctrl, datarate;
if (outp->info.location == 0) {
ctrl = nvkm_rd32(device, 0x610794 + soff);
soff = 1;
} else {
ctrl = nvkm_rd32(device, 0x610b80 + soff);
soff = 2;
}
switch ((ctrl & 0x000f0000) >> 16) {
case 6: datarate = pclk * 30; break;
case 5: datarate = pclk * 24; break;
case 2:
default:
datarate = pclk * 18;
break;
}
if (nvkm_output_dp_train(outp, datarate / soff))
OUTP_ERR(outp, "link not trained before attach");
}
exec_clkcmp(disp, head, 0, pclk, &conf);
if (!outp->info.location && outp->info.type == DCB_OUTPUT_ANALOG) {
oreg = 0x614280 + (ffs(outp->info.or) - 1) * 0x800;
oval = 0x00000000;
hval = 0x00000000;
mask = 0xffffffff;
} else
if (!outp->info.location) {
if (outp->info.type == DCB_OUTPUT_DP)
nv50_disp_intr_unk20_2_dp(disp, head, &outp->info, pclk);
oreg = 0x614300 + (ffs(outp->info.or) - 1) * 0x800;
oval = (conf & 0x0100) ? 0x00000101 : 0x00000000;
hval = 0x00000000;
mask = 0x00000707;
} else {
oreg = 0x614380 + (ffs(outp->info.or) - 1) * 0x800;
oval = 0x00000001;
hval = 0x00000001;
mask = 0x00000707;
}
nvkm_mask(device, hreg, 0x0000000f, hval);
nvkm_mask(device, oreg, mask, oval);
nv50_disp_dptmds_war_2(disp, &outp->info);
}
/* If programming a TMDS output on a SOR that can also be configured for
* DisplayPort, make sure NV50_SOR_DP_CTRL_ENABLE is forced off.
*
* It looks like the VBIOS TMDS scripts make an attempt at this, however,
* the VBIOS scripts on at least one board I have only switch it off on
* link 0, causing a blank display if the output has previously been
* programmed for DisplayPort.
*/
static void
nv50_disp_intr_unk40_0_tmds(struct nv50_disp *disp,
struct dcb_output *outp)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
struct nvkm_bios *bios = device->bios;
const int link = !(outp->sorconf.link & 1);
const int or = ffs(outp->or) - 1;
const u32 loff = (or * 0x800) + (link * 0x80);
const u16 mask = (outp->sorconf.link << 6) | outp->or;
struct dcb_output match;
u8 ver, hdr;
if (dcb_outp_match(bios, DCB_OUTPUT_DP, mask, &ver, &hdr, &match))
nvkm_mask(device, 0x61c10c + loff, 0x00000001, 0x00000000);
}
static void
nv50_disp_intr_unk40_0(struct nv50_disp *disp, int head)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
struct nvkm_output *outp;
u32 pclk = nvkm_rd32(device, 0x610ad0 + (head * 0x540)) & 0x3fffff;
u32 conf;
outp = exec_clkcmp(disp, head, 1, pclk, &conf);
if (!outp)
return;
if (outp->info.location == 0 && outp->info.type == DCB_OUTPUT_TMDS)
nv50_disp_intr_unk40_0_tmds(disp, &outp->info);
nv50_disp_dptmds_war_3(disp, &outp->info);
}
void
nv50_disp_intr_supervisor(struct work_struct *work)
{
struct nv50_disp *disp =
container_of(work, struct nv50_disp, supervisor);
struct nvkm_subdev *subdev = &disp->base.engine.subdev;
struct nvkm_device *device = subdev->device;
u32 super = nvkm_rd32(device, 0x610030);
int head;
nvkm_debug(subdev, "supervisor %08x %08x\n", disp->super, super);
if (disp->super & 0x00000010) {
nv50_disp_chan_mthd(disp->chan[0], NV_DBG_DEBUG);
for (head = 0; head < disp->base.head.nr; head++) {
if (!(super & (0x00000020 << head)))
continue;
if (!(super & (0x00000080 << head)))
continue;
nv50_disp_intr_unk10_0(disp, head);
}
} else
if (disp->super & 0x00000020) {
for (head = 0; head < disp->base.head.nr; head++) {
if (!(super & (0x00000080 << head)))
continue;
nv50_disp_intr_unk20_0(disp, head);
}
for (head = 0; head < disp->base.head.nr; head++) {
if (!(super & (0x00000200 << head)))
continue;
nv50_disp_intr_unk20_1(disp, head);
}
for (head = 0; head < disp->base.head.nr; head++) {
if (!(super & (0x00000080 << head)))
continue;
nv50_disp_intr_unk20_2(disp, head);
}
} else
if (disp->super & 0x00000040) {
for (head = 0; head < disp->base.head.nr; head++) {
if (!(super & (0x00000080 << head)))
continue;
nv50_disp_intr_unk40_0(disp, head);
}
nv50_disp_update_sppll1(disp);
}
nvkm_wr32(device, 0x610030, 0x80000000);
}
void
nv50_disp_intr(struct nv50_disp *disp)
{
struct nvkm_device *device = disp->base.engine.subdev.device;
u32 intr0 = nvkm_rd32(device, 0x610020);
u32 intr1 = nvkm_rd32(device, 0x610024);
while (intr0 & 0x001f0000) {
u32 chid = __ffs(intr0 & 0x001f0000) - 16;
nv50_disp_intr_error(disp, chid);
intr0 &= ~(0x00010000 << chid);
}
while (intr0 & 0x0000001f) {
u32 chid = __ffs(intr0 & 0x0000001f);
nv50_disp_chan_uevent_send(disp, chid);
intr0 &= ~(0x00000001 << chid);
}
if (intr1 & 0x00000004) {
nvkm_disp_vblank(&disp->base, 0);
nvkm_wr32(device, 0x610024, 0x00000004);
}
if (intr1 & 0x00000008) {
nvkm_disp_vblank(&disp->base, 1);
nvkm_wr32(device, 0x610024, 0x00000008);
}
if (intr1 & 0x00000070) {
disp->super = (intr1 & 0x00000070);
schedule_work(&disp->supervisor);
nvkm_wr32(device, 0x610024, disp->super);
}
}
static const struct nv50_disp_func
nv50_disp = {
.intr = nv50_disp_intr,
.uevent = &nv50_disp_chan_uevent,
.super = nv50_disp_intr_supervisor,
.root = &nv50_disp_root_oclass,
.head.vblank_init = nv50_disp_vblank_init,
.head.vblank_fini = nv50_disp_vblank_fini,
.head.scanoutpos = nv50_disp_root_scanoutpos,
.outp.internal.crt = nv50_dac_output_new,
.outp.internal.tmds = nv50_sor_output_new,
.outp.internal.lvds = nv50_sor_output_new,
.outp.external.tmds = nv50_pior_output_new,
.outp.external.dp = nv50_pior_dp_new,
.dac.nr = 3,
.dac.power = nv50_dac_power,
.dac.sense = nv50_dac_sense,
.sor.nr = 2,
.sor.power = nv50_sor_power,
.pior.nr = 3,
.pior.power = nv50_pior_power,
};
int
nv50_disp_new(struct nvkm_device *device, int index, struct nvkm_disp **pdisp)
{
return nv50_disp_new_(&nv50_disp, device, index, 2, pdisp);
}