|  | /* | 
|  | *  drivers/cpufreq/cpufreq_ondemand.c | 
|  | * | 
|  | *  Copyright (C)  2001 Russell King | 
|  | *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. | 
|  | *                      Jun Nakajima <jun.nakajima@intel.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | /* | 
|  | * dbs is used in this file as a shortform for demandbased switching | 
|  | * It helps to keep variable names smaller, simpler | 
|  | */ | 
|  |  | 
|  | #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10) | 
|  | #define DEF_FREQUENCY_UP_THRESHOLD		(80) | 
|  | #define DEF_SAMPLING_DOWN_FACTOR		(1) | 
|  | #define MAX_SAMPLING_DOWN_FACTOR		(100000) | 
|  | #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3) | 
|  | #define MICRO_FREQUENCY_UP_THRESHOLD		(95) | 
|  | #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000) | 
|  | #define MIN_FREQUENCY_UP_THRESHOLD		(11) | 
|  | #define MAX_FREQUENCY_UP_THRESHOLD		(100) | 
|  |  | 
|  | /* | 
|  | * The polling frequency of this governor depends on the capability of | 
|  | * the processor. Default polling frequency is 1000 times the transition | 
|  | * latency of the processor. The governor will work on any processor with | 
|  | * transition latency <= 10mS, using appropriate sampling | 
|  | * rate. | 
|  | * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) | 
|  | * this governor will not work. | 
|  | * All times here are in uS. | 
|  | */ | 
|  | #define MIN_SAMPLING_RATE_RATIO			(2) | 
|  |  | 
|  | static unsigned int min_sampling_rate; | 
|  |  | 
|  | #define LATENCY_MULTIPLIER			(1000) | 
|  | #define MIN_LATENCY_MULTIPLIER			(100) | 
|  | #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000) | 
|  |  | 
|  | static void do_dbs_timer(struct work_struct *work); | 
|  | static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | 
|  | unsigned int event); | 
|  |  | 
|  | #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND | 
|  | static | 
|  | #endif | 
|  | struct cpufreq_governor cpufreq_gov_ondemand = { | 
|  | .name                   = "ondemand", | 
|  | .governor               = cpufreq_governor_dbs, | 
|  | .max_transition_latency = TRANSITION_LATENCY_LIMIT, | 
|  | .owner                  = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | /* Sampling types */ | 
|  | enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE}; | 
|  |  | 
|  | struct cpu_dbs_info_s { | 
|  | cputime64_t prev_cpu_idle; | 
|  | cputime64_t prev_cpu_iowait; | 
|  | cputime64_t prev_cpu_wall; | 
|  | cputime64_t prev_cpu_nice; | 
|  | struct cpufreq_policy *cur_policy; | 
|  | struct delayed_work work; | 
|  | struct cpufreq_frequency_table *freq_table; | 
|  | unsigned int freq_lo; | 
|  | unsigned int freq_lo_jiffies; | 
|  | unsigned int freq_hi_jiffies; | 
|  | unsigned int rate_mult; | 
|  | int cpu; | 
|  | unsigned int sample_type:1; | 
|  | /* | 
|  | * percpu mutex that serializes governor limit change with | 
|  | * do_dbs_timer invocation. We do not want do_dbs_timer to run | 
|  | * when user is changing the governor or limits. | 
|  | */ | 
|  | struct mutex timer_mutex; | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info); | 
|  |  | 
|  | static unsigned int dbs_enable;	/* number of CPUs using this policy */ | 
|  |  | 
|  | /* | 
|  | * dbs_mutex protects dbs_enable in governor start/stop. | 
|  | */ | 
|  | static DEFINE_MUTEX(dbs_mutex); | 
|  |  | 
|  | static struct dbs_tuners { | 
|  | unsigned int sampling_rate; | 
|  | unsigned int up_threshold; | 
|  | unsigned int down_differential; | 
|  | unsigned int ignore_nice; | 
|  | unsigned int sampling_down_factor; | 
|  | unsigned int powersave_bias; | 
|  | unsigned int io_is_busy; | 
|  | } dbs_tuners_ins = { | 
|  | .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, | 
|  | .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, | 
|  | .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL, | 
|  | .ignore_nice = 0, | 
|  | .powersave_bias = 0, | 
|  | }; | 
|  |  | 
|  | static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) | 
|  | { | 
|  | u64 idle_time; | 
|  | u64 cur_wall_time; | 
|  | u64 busy_time; | 
|  |  | 
|  | cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); | 
|  |  | 
|  | busy_time  = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; | 
|  | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; | 
|  | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; | 
|  | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; | 
|  | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; | 
|  | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; | 
|  |  | 
|  | idle_time = cur_wall_time - busy_time; | 
|  | if (wall) | 
|  | *wall = jiffies_to_usecs(cur_wall_time); | 
|  |  | 
|  | return jiffies_to_usecs(idle_time); | 
|  | } | 
|  |  | 
|  | static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) | 
|  | { | 
|  | u64 idle_time = get_cpu_idle_time_us(cpu, NULL); | 
|  |  | 
|  | if (idle_time == -1ULL) | 
|  | return get_cpu_idle_time_jiffy(cpu, wall); | 
|  | else | 
|  | idle_time += get_cpu_iowait_time_us(cpu, wall); | 
|  |  | 
|  | return idle_time; | 
|  | } | 
|  |  | 
|  | static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall) | 
|  | { | 
|  | u64 iowait_time = get_cpu_iowait_time_us(cpu, wall); | 
|  |  | 
|  | if (iowait_time == -1ULL) | 
|  | return 0; | 
|  |  | 
|  | return iowait_time; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find right freq to be set now with powersave_bias on. | 
|  | * Returns the freq_hi to be used right now and will set freq_hi_jiffies, | 
|  | * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. | 
|  | */ | 
|  | static unsigned int powersave_bias_target(struct cpufreq_policy *policy, | 
|  | unsigned int freq_next, | 
|  | unsigned int relation) | 
|  | { | 
|  | unsigned int freq_req, freq_reduc, freq_avg; | 
|  | unsigned int freq_hi, freq_lo; | 
|  | unsigned int index = 0; | 
|  | unsigned int jiffies_total, jiffies_hi, jiffies_lo; | 
|  | struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, | 
|  | policy->cpu); | 
|  |  | 
|  | if (!dbs_info->freq_table) { | 
|  | dbs_info->freq_lo = 0; | 
|  | dbs_info->freq_lo_jiffies = 0; | 
|  | return freq_next; | 
|  | } | 
|  |  | 
|  | cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, | 
|  | relation, &index); | 
|  | freq_req = dbs_info->freq_table[index].frequency; | 
|  | freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000; | 
|  | freq_avg = freq_req - freq_reduc; | 
|  |  | 
|  | /* Find freq bounds for freq_avg in freq_table */ | 
|  | index = 0; | 
|  | cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, | 
|  | CPUFREQ_RELATION_H, &index); | 
|  | freq_lo = dbs_info->freq_table[index].frequency; | 
|  | index = 0; | 
|  | cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, | 
|  | CPUFREQ_RELATION_L, &index); | 
|  | freq_hi = dbs_info->freq_table[index].frequency; | 
|  |  | 
|  | /* Find out how long we have to be in hi and lo freqs */ | 
|  | if (freq_hi == freq_lo) { | 
|  | dbs_info->freq_lo = 0; | 
|  | dbs_info->freq_lo_jiffies = 0; | 
|  | return freq_lo; | 
|  | } | 
|  | jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); | 
|  | jiffies_hi = (freq_avg - freq_lo) * jiffies_total; | 
|  | jiffies_hi += ((freq_hi - freq_lo) / 2); | 
|  | jiffies_hi /= (freq_hi - freq_lo); | 
|  | jiffies_lo = jiffies_total - jiffies_hi; | 
|  | dbs_info->freq_lo = freq_lo; | 
|  | dbs_info->freq_lo_jiffies = jiffies_lo; | 
|  | dbs_info->freq_hi_jiffies = jiffies_hi; | 
|  | return freq_hi; | 
|  | } | 
|  |  | 
|  | static void ondemand_powersave_bias_init_cpu(int cpu) | 
|  | { | 
|  | struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); | 
|  | dbs_info->freq_table = cpufreq_frequency_get_table(cpu); | 
|  | dbs_info->freq_lo = 0; | 
|  | } | 
|  |  | 
|  | static void ondemand_powersave_bias_init(void) | 
|  | { | 
|  | int i; | 
|  | for_each_online_cpu(i) { | 
|  | ondemand_powersave_bias_init_cpu(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /************************** sysfs interface ************************/ | 
|  |  | 
|  | static ssize_t show_sampling_rate_min(struct kobject *kobj, | 
|  | struct attribute *attr, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", min_sampling_rate); | 
|  | } | 
|  |  | 
|  | define_one_global_ro(sampling_rate_min); | 
|  |  | 
|  | /* cpufreq_ondemand Governor Tunables */ | 
|  | #define show_one(file_name, object)					\ | 
|  | static ssize_t show_##file_name						\ | 
|  | (struct kobject *kobj, struct attribute *attr, char *buf)              \ | 
|  | {									\ | 
|  | return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\ | 
|  | } | 
|  | show_one(sampling_rate, sampling_rate); | 
|  | show_one(io_is_busy, io_is_busy); | 
|  | show_one(up_threshold, up_threshold); | 
|  | show_one(sampling_down_factor, sampling_down_factor); | 
|  | show_one(ignore_nice_load, ignore_nice); | 
|  | show_one(powersave_bias, powersave_bias); | 
|  |  | 
|  | /** | 
|  | * update_sampling_rate - update sampling rate effective immediately if needed. | 
|  | * @new_rate: new sampling rate | 
|  | * | 
|  | * If new rate is smaller than the old, simply updaing | 
|  | * dbs_tuners_int.sampling_rate might not be appropriate. For example, | 
|  | * if the original sampling_rate was 1 second and the requested new sampling | 
|  | * rate is 10 ms because the user needs immediate reaction from ondemand | 
|  | * governor, but not sure if higher frequency will be required or not, | 
|  | * then, the governor may change the sampling rate too late; up to 1 second | 
|  | * later. Thus, if we are reducing the sampling rate, we need to make the | 
|  | * new value effective immediately. | 
|  | */ | 
|  | static void update_sampling_rate(unsigned int new_rate) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | dbs_tuners_ins.sampling_rate = new_rate | 
|  | = max(new_rate, min_sampling_rate); | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct cpufreq_policy *policy; | 
|  | struct cpu_dbs_info_s *dbs_info; | 
|  | unsigned long next_sampling, appointed_at; | 
|  |  | 
|  | policy = cpufreq_cpu_get(cpu); | 
|  | if (!policy) | 
|  | continue; | 
|  | dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu); | 
|  | cpufreq_cpu_put(policy); | 
|  |  | 
|  | mutex_lock(&dbs_info->timer_mutex); | 
|  |  | 
|  | if (!delayed_work_pending(&dbs_info->work)) { | 
|  | mutex_unlock(&dbs_info->timer_mutex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | next_sampling  = jiffies + usecs_to_jiffies(new_rate); | 
|  | appointed_at = dbs_info->work.timer.expires; | 
|  |  | 
|  |  | 
|  | if (time_before(next_sampling, appointed_at)) { | 
|  |  | 
|  | mutex_unlock(&dbs_info->timer_mutex); | 
|  | cancel_delayed_work_sync(&dbs_info->work); | 
|  | mutex_lock(&dbs_info->timer_mutex); | 
|  |  | 
|  | schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, | 
|  | usecs_to_jiffies(new_rate)); | 
|  |  | 
|  | } | 
|  | mutex_unlock(&dbs_info->timer_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  | update_sampling_rate(input); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  | dbs_tuners_ins.io_is_busy = !!input; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_up_threshold(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf(buf, "%u", &input); | 
|  |  | 
|  | if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || | 
|  | input < MIN_FREQUENCY_UP_THRESHOLD) { | 
|  | return -EINVAL; | 
|  | } | 
|  | dbs_tuners_ins.up_threshold = input; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_sampling_down_factor(struct kobject *a, | 
|  | struct attribute *b, const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input, j; | 
|  | int ret; | 
|  | ret = sscanf(buf, "%u", &input); | 
|  |  | 
|  | if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) | 
|  | return -EINVAL; | 
|  | dbs_tuners_ins.sampling_down_factor = input; | 
|  |  | 
|  | /* Reset down sampling multiplier in case it was active */ | 
|  | for_each_online_cpu(j) { | 
|  | struct cpu_dbs_info_s *dbs_info; | 
|  | dbs_info = &per_cpu(od_cpu_dbs_info, j); | 
|  | dbs_info->rate_mult = 1; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | unsigned int j; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (input > 1) | 
|  | input = 1; | 
|  |  | 
|  | if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */ | 
|  | return count; | 
|  | } | 
|  | dbs_tuners_ins.ignore_nice = input; | 
|  |  | 
|  | /* we need to re-evaluate prev_cpu_idle */ | 
|  | for_each_online_cpu(j) { | 
|  | struct cpu_dbs_info_s *dbs_info; | 
|  | dbs_info = &per_cpu(od_cpu_dbs_info, j); | 
|  | dbs_info->prev_cpu_idle = get_cpu_idle_time(j, | 
|  | &dbs_info->prev_cpu_wall); | 
|  | if (dbs_tuners_ins.ignore_nice) | 
|  | dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; | 
|  |  | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf(buf, "%u", &input); | 
|  |  | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (input > 1000) | 
|  | input = 1000; | 
|  |  | 
|  | dbs_tuners_ins.powersave_bias = input; | 
|  | ondemand_powersave_bias_init(); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | define_one_global_rw(sampling_rate); | 
|  | define_one_global_rw(io_is_busy); | 
|  | define_one_global_rw(up_threshold); | 
|  | define_one_global_rw(sampling_down_factor); | 
|  | define_one_global_rw(ignore_nice_load); | 
|  | define_one_global_rw(powersave_bias); | 
|  |  | 
|  | static struct attribute *dbs_attributes[] = { | 
|  | &sampling_rate_min.attr, | 
|  | &sampling_rate.attr, | 
|  | &up_threshold.attr, | 
|  | &sampling_down_factor.attr, | 
|  | &ignore_nice_load.attr, | 
|  | &powersave_bias.attr, | 
|  | &io_is_busy.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group dbs_attr_group = { | 
|  | .attrs = dbs_attributes, | 
|  | .name = "ondemand", | 
|  | }; | 
|  |  | 
|  | /************************** sysfs end ************************/ | 
|  |  | 
|  | static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq) | 
|  | { | 
|  | if (dbs_tuners_ins.powersave_bias) | 
|  | freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H); | 
|  | else if (p->cur == p->max) | 
|  | return; | 
|  |  | 
|  | __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ? | 
|  | CPUFREQ_RELATION_L : CPUFREQ_RELATION_H); | 
|  | } | 
|  |  | 
|  | static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) | 
|  | { | 
|  | unsigned int max_load_freq; | 
|  |  | 
|  | struct cpufreq_policy *policy; | 
|  | unsigned int j; | 
|  |  | 
|  | this_dbs_info->freq_lo = 0; | 
|  | policy = this_dbs_info->cur_policy; | 
|  |  | 
|  | /* | 
|  | * Every sampling_rate, we check, if current idle time is less | 
|  | * than 20% (default), then we try to increase frequency | 
|  | * Every sampling_rate, we look for a the lowest | 
|  | * frequency which can sustain the load while keeping idle time over | 
|  | * 30%. If such a frequency exist, we try to decrease to this frequency. | 
|  | * | 
|  | * Any frequency increase takes it to the maximum frequency. | 
|  | * Frequency reduction happens at minimum steps of | 
|  | * 5% (default) of current frequency | 
|  | */ | 
|  |  | 
|  | /* Get Absolute Load - in terms of freq */ | 
|  | max_load_freq = 0; | 
|  |  | 
|  | for_each_cpu(j, policy->cpus) { | 
|  | struct cpu_dbs_info_s *j_dbs_info; | 
|  | cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time; | 
|  | unsigned int idle_time, wall_time, iowait_time; | 
|  | unsigned int load, load_freq; | 
|  | int freq_avg; | 
|  |  | 
|  | j_dbs_info = &per_cpu(od_cpu_dbs_info, j); | 
|  |  | 
|  | cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); | 
|  | cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time); | 
|  |  | 
|  | wall_time = (unsigned int) | 
|  | (cur_wall_time - j_dbs_info->prev_cpu_wall); | 
|  | j_dbs_info->prev_cpu_wall = cur_wall_time; | 
|  |  | 
|  | idle_time = (unsigned int) | 
|  | (cur_idle_time - j_dbs_info->prev_cpu_idle); | 
|  | j_dbs_info->prev_cpu_idle = cur_idle_time; | 
|  |  | 
|  | iowait_time = (unsigned int) | 
|  | (cur_iowait_time - j_dbs_info->prev_cpu_iowait); | 
|  | j_dbs_info->prev_cpu_iowait = cur_iowait_time; | 
|  |  | 
|  | if (dbs_tuners_ins.ignore_nice) { | 
|  | u64 cur_nice; | 
|  | unsigned long cur_nice_jiffies; | 
|  |  | 
|  | cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] - | 
|  | j_dbs_info->prev_cpu_nice; | 
|  | /* | 
|  | * Assumption: nice time between sampling periods will | 
|  | * be less than 2^32 jiffies for 32 bit sys | 
|  | */ | 
|  | cur_nice_jiffies = (unsigned long) | 
|  | cputime64_to_jiffies64(cur_nice); | 
|  |  | 
|  | j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; | 
|  | idle_time += jiffies_to_usecs(cur_nice_jiffies); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For the purpose of ondemand, waiting for disk IO is an | 
|  | * indication that you're performance critical, and not that | 
|  | * the system is actually idle. So subtract the iowait time | 
|  | * from the cpu idle time. | 
|  | */ | 
|  |  | 
|  | if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time) | 
|  | idle_time -= iowait_time; | 
|  |  | 
|  | if (unlikely(!wall_time || wall_time < idle_time)) | 
|  | continue; | 
|  |  | 
|  | load = 100 * (wall_time - idle_time) / wall_time; | 
|  |  | 
|  | freq_avg = __cpufreq_driver_getavg(policy, j); | 
|  | if (freq_avg <= 0) | 
|  | freq_avg = policy->cur; | 
|  |  | 
|  | load_freq = load * freq_avg; | 
|  | if (load_freq > max_load_freq) | 
|  | max_load_freq = load_freq; | 
|  | } | 
|  |  | 
|  | /* Check for frequency increase */ | 
|  | if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) { | 
|  | /* If switching to max speed, apply sampling_down_factor */ | 
|  | if (policy->cur < policy->max) | 
|  | this_dbs_info->rate_mult = | 
|  | dbs_tuners_ins.sampling_down_factor; | 
|  | dbs_freq_increase(policy, policy->max); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check for frequency decrease */ | 
|  | /* if we cannot reduce the frequency anymore, break out early */ | 
|  | if (policy->cur == policy->min) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The optimal frequency is the frequency that is the lowest that | 
|  | * can support the current CPU usage without triggering the up | 
|  | * policy. To be safe, we focus 10 points under the threshold. | 
|  | */ | 
|  | if (max_load_freq < | 
|  | (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) * | 
|  | policy->cur) { | 
|  | unsigned int freq_next; | 
|  | freq_next = max_load_freq / | 
|  | (dbs_tuners_ins.up_threshold - | 
|  | dbs_tuners_ins.down_differential); | 
|  |  | 
|  | /* No longer fully busy, reset rate_mult */ | 
|  | this_dbs_info->rate_mult = 1; | 
|  |  | 
|  | if (freq_next < policy->min) | 
|  | freq_next = policy->min; | 
|  |  | 
|  | if (!dbs_tuners_ins.powersave_bias) { | 
|  | __cpufreq_driver_target(policy, freq_next, | 
|  | CPUFREQ_RELATION_L); | 
|  | } else { | 
|  | int freq = powersave_bias_target(policy, freq_next, | 
|  | CPUFREQ_RELATION_L); | 
|  | __cpufreq_driver_target(policy, freq, | 
|  | CPUFREQ_RELATION_L); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_dbs_timer(struct work_struct *work) | 
|  | { | 
|  | struct cpu_dbs_info_s *dbs_info = | 
|  | container_of(work, struct cpu_dbs_info_s, work.work); | 
|  | unsigned int cpu = dbs_info->cpu; | 
|  | int sample_type = dbs_info->sample_type; | 
|  |  | 
|  | int delay; | 
|  |  | 
|  | mutex_lock(&dbs_info->timer_mutex); | 
|  |  | 
|  | /* Common NORMAL_SAMPLE setup */ | 
|  | dbs_info->sample_type = DBS_NORMAL_SAMPLE; | 
|  | if (!dbs_tuners_ins.powersave_bias || | 
|  | sample_type == DBS_NORMAL_SAMPLE) { | 
|  | dbs_check_cpu(dbs_info); | 
|  | if (dbs_info->freq_lo) { | 
|  | /* Setup timer for SUB_SAMPLE */ | 
|  | dbs_info->sample_type = DBS_SUB_SAMPLE; | 
|  | delay = dbs_info->freq_hi_jiffies; | 
|  | } else { | 
|  | /* We want all CPUs to do sampling nearly on | 
|  | * same jiffy | 
|  | */ | 
|  | delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate | 
|  | * dbs_info->rate_mult); | 
|  |  | 
|  | if (num_online_cpus() > 1) | 
|  | delay -= jiffies % delay; | 
|  | } | 
|  | } else { | 
|  | __cpufreq_driver_target(dbs_info->cur_policy, | 
|  | dbs_info->freq_lo, CPUFREQ_RELATION_H); | 
|  | delay = dbs_info->freq_lo_jiffies; | 
|  | } | 
|  | schedule_delayed_work_on(cpu, &dbs_info->work, delay); | 
|  | mutex_unlock(&dbs_info->timer_mutex); | 
|  | } | 
|  |  | 
|  | static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info) | 
|  | { | 
|  | /* We want all CPUs to do sampling nearly on same jiffy */ | 
|  | int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); | 
|  |  | 
|  | if (num_online_cpus() > 1) | 
|  | delay -= jiffies % delay; | 
|  |  | 
|  | dbs_info->sample_type = DBS_NORMAL_SAMPLE; | 
|  | INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer); | 
|  | schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay); | 
|  | } | 
|  |  | 
|  | static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) | 
|  | { | 
|  | cancel_delayed_work_sync(&dbs_info->work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not all CPUs want IO time to be accounted as busy; this dependson how | 
|  | * efficient idling at a higher frequency/voltage is. | 
|  | * Pavel Machek says this is not so for various generations of AMD and old | 
|  | * Intel systems. | 
|  | * Mike Chan (androidlcom) calis this is also not true for ARM. | 
|  | * Because of this, whitelist specific known (series) of CPUs by default, and | 
|  | * leave all others up to the user. | 
|  | */ | 
|  | static int should_io_be_busy(void) | 
|  | { | 
|  | #if defined(CONFIG_X86) | 
|  | /* | 
|  | * For Intel, Core 2 (model 15) andl later have an efficient idle. | 
|  | */ | 
|  | if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && | 
|  | boot_cpu_data.x86 == 6 && | 
|  | boot_cpu_data.x86_model >= 15) | 
|  | return 1; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | 
|  | unsigned int event) | 
|  | { | 
|  | unsigned int cpu = policy->cpu; | 
|  | struct cpu_dbs_info_s *this_dbs_info; | 
|  | unsigned int j; | 
|  | int rc; | 
|  |  | 
|  | this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu); | 
|  |  | 
|  | switch (event) { | 
|  | case CPUFREQ_GOV_START: | 
|  | if ((!cpu_online(cpu)) || (!policy->cur)) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  |  | 
|  | dbs_enable++; | 
|  | for_each_cpu(j, policy->cpus) { | 
|  | struct cpu_dbs_info_s *j_dbs_info; | 
|  | j_dbs_info = &per_cpu(od_cpu_dbs_info, j); | 
|  | j_dbs_info->cur_policy = policy; | 
|  |  | 
|  | j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, | 
|  | &j_dbs_info->prev_cpu_wall); | 
|  | if (dbs_tuners_ins.ignore_nice) | 
|  | j_dbs_info->prev_cpu_nice = | 
|  | kcpustat_cpu(j).cpustat[CPUTIME_NICE]; | 
|  | } | 
|  | this_dbs_info->cpu = cpu; | 
|  | this_dbs_info->rate_mult = 1; | 
|  | ondemand_powersave_bias_init_cpu(cpu); | 
|  | /* | 
|  | * Start the timerschedule work, when this governor | 
|  | * is used for first time | 
|  | */ | 
|  | if (dbs_enable == 1) { | 
|  | unsigned int latency; | 
|  |  | 
|  | rc = sysfs_create_group(cpufreq_global_kobject, | 
|  | &dbs_attr_group); | 
|  | if (rc) { | 
|  | mutex_unlock(&dbs_mutex); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* policy latency is in nS. Convert it to uS first */ | 
|  | latency = policy->cpuinfo.transition_latency / 1000; | 
|  | if (latency == 0) | 
|  | latency = 1; | 
|  | /* Bring kernel and HW constraints together */ | 
|  | min_sampling_rate = max(min_sampling_rate, | 
|  | MIN_LATENCY_MULTIPLIER * latency); | 
|  | dbs_tuners_ins.sampling_rate = | 
|  | max(min_sampling_rate, | 
|  | latency * LATENCY_MULTIPLIER); | 
|  | dbs_tuners_ins.io_is_busy = should_io_be_busy(); | 
|  | } | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | mutex_init(&this_dbs_info->timer_mutex); | 
|  | dbs_timer_init(this_dbs_info); | 
|  | break; | 
|  |  | 
|  | case CPUFREQ_GOV_STOP: | 
|  | dbs_timer_exit(this_dbs_info); | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | mutex_destroy(&this_dbs_info->timer_mutex); | 
|  | dbs_enable--; | 
|  | mutex_unlock(&dbs_mutex); | 
|  | if (!dbs_enable) | 
|  | sysfs_remove_group(cpufreq_global_kobject, | 
|  | &dbs_attr_group); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case CPUFREQ_GOV_LIMITS: | 
|  | mutex_lock(&this_dbs_info->timer_mutex); | 
|  | if (policy->max < this_dbs_info->cur_policy->cur) | 
|  | __cpufreq_driver_target(this_dbs_info->cur_policy, | 
|  | policy->max, CPUFREQ_RELATION_H); | 
|  | else if (policy->min > this_dbs_info->cur_policy->cur) | 
|  | __cpufreq_driver_target(this_dbs_info->cur_policy, | 
|  | policy->min, CPUFREQ_RELATION_L); | 
|  | mutex_unlock(&this_dbs_info->timer_mutex); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init cpufreq_gov_dbs_init(void) | 
|  | { | 
|  | u64 idle_time; | 
|  | int cpu = get_cpu(); | 
|  |  | 
|  | idle_time = get_cpu_idle_time_us(cpu, NULL); | 
|  | put_cpu(); | 
|  | if (idle_time != -1ULL) { | 
|  | /* Idle micro accounting is supported. Use finer thresholds */ | 
|  | dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; | 
|  | dbs_tuners_ins.down_differential = | 
|  | MICRO_FREQUENCY_DOWN_DIFFERENTIAL; | 
|  | /* | 
|  | * In nohz/micro accounting case we set the minimum frequency | 
|  | * not depending on HZ, but fixed (very low). The deferred | 
|  | * timer might skip some samples if idle/sleeping as needed. | 
|  | */ | 
|  | min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; | 
|  | } else { | 
|  | /* For correct statistics, we need 10 ticks for each measure */ | 
|  | min_sampling_rate = | 
|  | MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10); | 
|  | } | 
|  |  | 
|  | return cpufreq_register_governor(&cpufreq_gov_ondemand); | 
|  | } | 
|  |  | 
|  | static void __exit cpufreq_gov_dbs_exit(void) | 
|  | { | 
|  | cpufreq_unregister_governor(&cpufreq_gov_ondemand); | 
|  | } | 
|  |  | 
|  |  | 
|  | MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); | 
|  | MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); | 
|  | MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " | 
|  | "Low Latency Frequency Transition capable processors"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND | 
|  | fs_initcall(cpufreq_gov_dbs_init); | 
|  | #else | 
|  | module_init(cpufreq_gov_dbs_init); | 
|  | #endif | 
|  | module_exit(cpufreq_gov_dbs_exit); |