| /* | 
 |  *	This program is free software; you can redistribute it and/or | 
 |  *	modify it under the terms of the GNU General Public License | 
 |  *	as published by the Free Software Foundation; either version | 
 |  *	2 of the License, or (at your option) any later version. | 
 |  * | 
 |  *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> | 
 |  *	(c) Copyright 2000, 2001 Red Hat Inc | 
 |  * | 
 |  *	Development of this driver was funded by Equiinet Ltd | 
 |  *			http://www.equiinet.com | 
 |  * | 
 |  *	ChangeLog: | 
 |  * | 
 |  *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the | 
 |  *	unification of all the Z85x30 asynchronous drivers for real. | 
 |  * | 
 |  *	DMA now uses get_free_page as kmalloc buffers may span a 64K  | 
 |  *	boundary. | 
 |  * | 
 |  *	Modified for SMP safety and SMP locking by Alan Cox | 
 |  *					<alan@lxorguk.ukuu.org.uk> | 
 |  * | 
 |  *	Performance | 
 |  * | 
 |  *	Z85230: | 
 |  *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud | 
 |  *	X.25 is not unrealistic on all machines. DMA mode can in theory | 
 |  *	handle T1/E1 quite nicely. In practice the limit seems to be about | 
 |  *	512Kbit->1Mbit depending on motherboard. | 
 |  * | 
 |  *	Z85C30: | 
 |  *	64K will take DMA, 9600 baud X.25 should be ok. | 
 |  * | 
 |  *	Z8530: | 
 |  *	Synchronous mode without DMA is unlikely to pass about 2400 baud. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/net.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/if_arp.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/hdlc.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/init.h> | 
 | #include <linux/gfp.h> | 
 | #include <asm/dma.h> | 
 | #include <asm/io.h> | 
 | #define RT_LOCK | 
 | #define RT_UNLOCK | 
 | #include <linux/spinlock.h> | 
 |  | 
 | #include "z85230.h" | 
 |  | 
 |  | 
 | /** | 
 |  *	z8530_read_port - Architecture specific interface function | 
 |  *	@p: port to read | 
 |  * | 
 |  *	Provided port access methods. The Comtrol SV11 requires no delays | 
 |  *	between accesses and uses PC I/O. Some drivers may need a 5uS delay | 
 |  *	 | 
 |  *	In the longer term this should become an architecture specific | 
 |  *	section so that this can become a generic driver interface for all | 
 |  *	platforms. For now we only handle PC I/O ports with or without the | 
 |  *	dread 5uS sanity delay. | 
 |  * | 
 |  *	The caller must hold sufficient locks to avoid violating the horrible | 
 |  *	5uS delay rule. | 
 |  */ | 
 |  | 
 | static inline int z8530_read_port(unsigned long p) | 
 | { | 
 | 	u8 r=inb(Z8530_PORT_OF(p)); | 
 | 	if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */ | 
 | 		udelay(5); | 
 | 	return r; | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_write_port - Architecture specific interface function | 
 |  *	@p: port to write | 
 |  *	@d: value to write | 
 |  * | 
 |  *	Write a value to a port with delays if need be. Note that the | 
 |  *	caller must hold locks to avoid read/writes from other contexts | 
 |  *	violating the 5uS rule | 
 |  * | 
 |  *	In the longer term this should become an architecture specific | 
 |  *	section so that this can become a generic driver interface for all | 
 |  *	platforms. For now we only handle PC I/O ports with or without the | 
 |  *	dread 5uS sanity delay. | 
 |  */ | 
 |  | 
 |  | 
 | static inline void z8530_write_port(unsigned long p, u8 d) | 
 | { | 
 | 	outb(d,Z8530_PORT_OF(p)); | 
 | 	if(p&Z8530_PORT_SLEEP) | 
 | 		udelay(5); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | static void z8530_rx_done(struct z8530_channel *c); | 
 | static void z8530_tx_done(struct z8530_channel *c); | 
 |  | 
 |  | 
 | /** | 
 |  *	read_zsreg - Read a register from a Z85230  | 
 |  *	@c: Z8530 channel to read from (2 per chip) | 
 |  *	@reg: Register to read | 
 |  *	FIXME: Use a spinlock. | 
 |  *	 | 
 |  *	Most of the Z8530 registers are indexed off the control registers. | 
 |  *	A read is done by writing to the control register and reading the | 
 |  *	register back.  The caller must hold the lock | 
 |  */ | 
 |   | 
 | static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) | 
 | { | 
 | 	if(reg) | 
 | 		z8530_write_port(c->ctrlio, reg); | 
 | 	return z8530_read_port(c->ctrlio); | 
 | } | 
 |  | 
 | /** | 
 |  *	read_zsdata - Read the data port of a Z8530 channel | 
 |  *	@c: The Z8530 channel to read the data port from | 
 |  * | 
 |  *	The data port provides fast access to some things. We still | 
 |  *	have all the 5uS delays to worry about. | 
 |  */ | 
 |  | 
 | static inline u8 read_zsdata(struct z8530_channel *c) | 
 | { | 
 | 	u8 r; | 
 | 	r=z8530_read_port(c->dataio); | 
 | 	return r; | 
 | } | 
 |  | 
 | /** | 
 |  *	write_zsreg - Write to a Z8530 channel register | 
 |  *	@c: The Z8530 channel | 
 |  *	@reg: Register number | 
 |  *	@val: Value to write | 
 |  * | 
 |  *	Write a value to an indexed register. The caller must hold the lock | 
 |  *	to honour the irritating delay rules. We know about register 0 | 
 |  *	being fast to access. | 
 |  * | 
 |  *      Assumes c->lock is held. | 
 |  */ | 
 | static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val) | 
 | { | 
 | 	if(reg) | 
 | 		z8530_write_port(c->ctrlio, reg); | 
 | 	z8530_write_port(c->ctrlio, val); | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  *	write_zsctrl - Write to a Z8530 control register | 
 |  *	@c: The Z8530 channel | 
 |  *	@val: Value to write | 
 |  * | 
 |  *	Write directly to the control register on the Z8530 | 
 |  */ | 
 |  | 
 | static inline void write_zsctrl(struct z8530_channel *c, u8 val) | 
 | { | 
 | 	z8530_write_port(c->ctrlio, val); | 
 | } | 
 |  | 
 | /** | 
 |  *	write_zsdata - Write to a Z8530 control register | 
 |  *	@c: The Z8530 channel | 
 |  *	@val: Value to write | 
 |  * | 
 |  *	Write directly to the data register on the Z8530 | 
 |  */ | 
 |  | 
 |  | 
 | static inline void write_zsdata(struct z8530_channel *c, u8 val) | 
 | { | 
 | 	z8530_write_port(c->dataio, val); | 
 | } | 
 |  | 
 | /* | 
 |  *	Register loading parameters for a dead port | 
 |  */ | 
 |   | 
 | u8 z8530_dead_port[]= | 
 | { | 
 | 	255 | 
 | }; | 
 |  | 
 | EXPORT_SYMBOL(z8530_dead_port); | 
 |  | 
 | /* | 
 |  *	Register loading parameters for currently supported circuit types | 
 |  */ | 
 |  | 
 |  | 
 | /* | 
 |  *	Data clocked by telco end. This is the correct data for the UK | 
 |  *	"kilostream" service, and most other similar services. | 
 |  */ | 
 |   | 
 | u8 z8530_hdlc_kilostream[]= | 
 | { | 
 | 	4,	SYNC_ENAB|SDLC|X1CLK, | 
 | 	2,	0,	/* No vector */ | 
 | 	1,	0, | 
 | 	3,	ENT_HM|RxCRC_ENAB|Rx8, | 
 | 	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, | 
 | 	9,	0,		/* Disable interrupts */ | 
 | 	6,	0xFF, | 
 | 	7,	FLAG, | 
 | 	10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/ | 
 | 	11,	TCTRxCP, | 
 | 	14,	DISDPLL, | 
 | 	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, | 
 | 	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, | 
 | 	9,	NV|MIE|NORESET, | 
 | 	255 | 
 | }; | 
 |  | 
 | EXPORT_SYMBOL(z8530_hdlc_kilostream); | 
 |  | 
 | /* | 
 |  *	As above but for enhanced chips. | 
 |  */ | 
 |   | 
 | u8 z8530_hdlc_kilostream_85230[]= | 
 | { | 
 | 	4,	SYNC_ENAB|SDLC|X1CLK, | 
 | 	2,	0,	/* No vector */ | 
 | 	1,	0, | 
 | 	3,	ENT_HM|RxCRC_ENAB|Rx8, | 
 | 	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, | 
 | 	9,	0,		/* Disable interrupts */ | 
 | 	6,	0xFF, | 
 | 	7,	FLAG, | 
 | 	10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */ | 
 | 	11,	TCTRxCP, | 
 | 	14,	DISDPLL, | 
 | 	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, | 
 | 	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, | 
 | 	9,	NV|MIE|NORESET, | 
 | 	23,	3,		/* Extended mode AUTO TX and EOM*/ | 
 | 	 | 
 | 	255 | 
 | }; | 
 |  | 
 | EXPORT_SYMBOL(z8530_hdlc_kilostream_85230); | 
 |  | 
 | /** | 
 |  *	z8530_flush_fifo - Flush on chip RX FIFO | 
 |  *	@c: Channel to flush | 
 |  * | 
 |  *	Flush the receive FIFO. There is no specific option for this, we  | 
 |  *	blindly read bytes and discard them. Reading when there is no data | 
 |  *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes. | 
 |  *	 | 
 |  *	All locking is handled for the caller. On return data may still be | 
 |  *	present if it arrived during the flush. | 
 |  */ | 
 |   | 
 | static void z8530_flush_fifo(struct z8530_channel *c) | 
 | { | 
 | 	read_zsreg(c, R1); | 
 | 	read_zsreg(c, R1); | 
 | 	read_zsreg(c, R1); | 
 | 	read_zsreg(c, R1); | 
 | 	if(c->dev->type==Z85230) | 
 | 	{ | 
 | 		read_zsreg(c, R1); | 
 | 		read_zsreg(c, R1); | 
 | 		read_zsreg(c, R1); | 
 | 		read_zsreg(c, R1); | 
 | 	} | 
 | }	 | 
 |  | 
 | /** | 
 |  *	z8530_rtsdtr - Control the outgoing DTS/RTS line | 
 |  *	@c: The Z8530 channel to control; | 
 |  *	@set: 1 to set, 0 to clear | 
 |  * | 
 |  *	Sets or clears DTR/RTS on the requested line. All locking is handled | 
 |  *	by the caller. For now we assume all boards use the actual RTS/DTR | 
 |  *	on the chip. Apparently one or two don't. We'll scream about them | 
 |  *	later. | 
 |  */ | 
 |  | 
 | static void z8530_rtsdtr(struct z8530_channel *c, int set) | 
 | { | 
 | 	if (set) | 
 | 		c->regs[5] |= (RTS | DTR); | 
 | 	else | 
 | 		c->regs[5] &= ~(RTS | DTR); | 
 | 	write_zsreg(c, R5, c->regs[5]); | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_rx - Handle a PIO receive event | 
 |  *	@c: Z8530 channel to process | 
 |  * | 
 |  *	Receive handler for receiving in PIO mode. This is much like the  | 
 |  *	async one but not quite the same or as complex | 
 |  * | 
 |  *	Note: Its intended that this handler can easily be separated from | 
 |  *	the main code to run realtime. That'll be needed for some machines | 
 |  *	(eg to ever clock 64kbits on a sparc ;)). | 
 |  * | 
 |  *	The RT_LOCK macros don't do anything now. Keep the code covered | 
 |  *	by them as short as possible in all circumstances - clocks cost | 
 |  *	baud. The interrupt handler is assumed to be atomic w.r.t. to | 
 |  *	other code - this is true in the RT case too. | 
 |  * | 
 |  *	We only cover the sync cases for this. If you want 2Mbit async | 
 |  *	do it yourself but consider medical assistance first. This non DMA  | 
 |  *	synchronous mode is portable code. The DMA mode assumes PCI like  | 
 |  *	ISA DMA | 
 |  * | 
 |  *	Called with the device lock held | 
 |  */ | 
 |   | 
 | static void z8530_rx(struct z8530_channel *c) | 
 | { | 
 | 	u8 ch,stat; | 
 |  | 
 | 	while(1) | 
 | 	{ | 
 | 		/* FIFO empty ? */ | 
 | 		if(!(read_zsreg(c, R0)&1)) | 
 | 			break; | 
 | 		ch=read_zsdata(c); | 
 | 		stat=read_zsreg(c, R1); | 
 | 	 | 
 | 		/* | 
 | 		 *	Overrun ? | 
 | 		 */ | 
 | 		if(c->count < c->max) | 
 | 		{ | 
 | 			*c->dptr++=ch; | 
 | 			c->count++; | 
 | 		} | 
 |  | 
 | 		if(stat&END_FR) | 
 | 		{ | 
 | 		 | 
 | 			/* | 
 | 			 *	Error ? | 
 | 			 */ | 
 | 			if(stat&(Rx_OVR|CRC_ERR)) | 
 | 			{ | 
 | 				/* Rewind the buffer and return */ | 
 | 				if(c->skb) | 
 | 					c->dptr=c->skb->data; | 
 | 				c->count=0; | 
 | 				if(stat&Rx_OVR) | 
 | 				{ | 
 | 					pr_warn("%s: overrun\n", c->dev->name); | 
 | 					c->rx_overrun++; | 
 | 				} | 
 | 				if(stat&CRC_ERR) | 
 | 				{ | 
 | 					c->rx_crc_err++; | 
 | 					/* printk("crc error\n"); */ | 
 | 				} | 
 | 				/* Shove the frame upstream */ | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				/* | 
 | 				 *	Drop the lock for RX processing, or | 
 | 		 		 *	there are deadlocks | 
 | 		 		 */ | 
 | 				z8530_rx_done(c); | 
 | 				write_zsctrl(c, RES_Rx_CRC); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 *	Clear irq | 
 | 	 */ | 
 | 	write_zsctrl(c, ERR_RES); | 
 | 	write_zsctrl(c, RES_H_IUS); | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  *	z8530_tx - Handle a PIO transmit event | 
 |  *	@c: Z8530 channel to process | 
 |  * | 
 |  *	Z8530 transmit interrupt handler for the PIO mode. The basic | 
 |  *	idea is to attempt to keep the FIFO fed. We fill as many bytes | 
 |  *	in as possible, its quite possible that we won't keep up with the | 
 |  *	data rate otherwise. | 
 |  */ | 
 |   | 
 | static void z8530_tx(struct z8530_channel *c) | 
 | { | 
 | 	while(c->txcount) { | 
 | 		/* FIFO full ? */ | 
 | 		if(!(read_zsreg(c, R0)&4)) | 
 | 			return; | 
 | 		c->txcount--; | 
 | 		/* | 
 | 		 *	Shovel out the byte | 
 | 		 */ | 
 | 		write_zsreg(c, R8, *c->tx_ptr++); | 
 | 		write_zsctrl(c, RES_H_IUS); | 
 | 		/* We are about to underflow */ | 
 | 		if(c->txcount==0) | 
 | 		{ | 
 | 			write_zsctrl(c, RES_EOM_L); | 
 | 			write_zsreg(c, R10, c->regs[10]&~ABUNDER); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	 | 
 | 	/* | 
 | 	 *	End of frame TX - fire another one | 
 | 	 */ | 
 | 	  | 
 | 	write_zsctrl(c, RES_Tx_P); | 
 |  | 
 | 	z8530_tx_done(c);	  | 
 | 	write_zsctrl(c, RES_H_IUS); | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_status - Handle a PIO status exception | 
 |  *	@chan: Z8530 channel to process | 
 |  * | 
 |  *	A status event occurred in PIO synchronous mode. There are several | 
 |  *	reasons the chip will bother us here. A transmit underrun means we | 
 |  *	failed to feed the chip fast enough and just broke a packet. A DCD | 
 |  *	change is a line up or down. | 
 |  */ | 
 |  | 
 | static void z8530_status(struct z8530_channel *chan) | 
 | { | 
 | 	u8 status, altered; | 
 |  | 
 | 	status = read_zsreg(chan, R0); | 
 | 	altered = chan->status ^ status; | 
 |  | 
 | 	chan->status = status; | 
 |  | 
 | 	if (status & TxEOM) { | 
 | /*		printk("%s: Tx underrun.\n", chan->dev->name); */ | 
 | 		chan->netdevice->stats.tx_fifo_errors++; | 
 | 		write_zsctrl(chan, ERR_RES); | 
 | 		z8530_tx_done(chan); | 
 | 	} | 
 |  | 
 | 	if (altered & chan->dcdcheck) | 
 | 	{ | 
 | 		if (status & chan->dcdcheck) { | 
 | 			pr_info("%s: DCD raised\n", chan->dev->name); | 
 | 			write_zsreg(chan, R3, chan->regs[3] | RxENABLE); | 
 | 			if (chan->netdevice) | 
 | 				netif_carrier_on(chan->netdevice); | 
 | 		} else { | 
 | 			pr_info("%s: DCD lost\n", chan->dev->name); | 
 | 			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); | 
 | 			z8530_flush_fifo(chan); | 
 | 			if (chan->netdevice) | 
 | 				netif_carrier_off(chan->netdevice); | 
 | 		} | 
 |  | 
 | 	} | 
 | 	write_zsctrl(chan, RES_EXT_INT); | 
 | 	write_zsctrl(chan, RES_H_IUS); | 
 | } | 
 |  | 
 | struct z8530_irqhandler z8530_sync = | 
 | { | 
 | 	z8530_rx, | 
 | 	z8530_tx, | 
 | 	z8530_status | 
 | }; | 
 |  | 
 | EXPORT_SYMBOL(z8530_sync); | 
 |  | 
 | /** | 
 |  *	z8530_dma_rx - Handle a DMA RX event | 
 |  *	@chan: Channel to handle | 
 |  * | 
 |  *	Non bus mastering DMA interfaces for the Z8x30 devices. This | 
 |  *	is really pretty PC specific. The DMA mode means that most receive | 
 |  *	events are handled by the DMA hardware. We get a kick here only if | 
 |  *	a frame ended. | 
 |  */ | 
 |   | 
 | static void z8530_dma_rx(struct z8530_channel *chan) | 
 | { | 
 | 	if(chan->rxdma_on) | 
 | 	{ | 
 | 		/* Special condition check only */ | 
 | 		u8 status; | 
 | 	 | 
 | 		read_zsreg(chan, R7); | 
 | 		read_zsreg(chan, R6); | 
 | 		 | 
 | 		status=read_zsreg(chan, R1); | 
 | 	 | 
 | 		if(status&END_FR) | 
 | 		{ | 
 | 			z8530_rx_done(chan);	/* Fire up the next one */ | 
 | 		}		 | 
 | 		write_zsctrl(chan, ERR_RES); | 
 | 		write_zsctrl(chan, RES_H_IUS); | 
 | 	} | 
 | 	else | 
 | 	{ | 
 | 		/* DMA is off right now, drain the slow way */ | 
 | 		z8530_rx(chan); | 
 | 	}	 | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_dma_tx - Handle a DMA TX event | 
 |  *	@chan:	The Z8530 channel to handle | 
 |  * | 
 |  *	We have received an interrupt while doing DMA transmissions. It | 
 |  *	shouldn't happen. Scream loudly if it does. | 
 |  */ | 
 |   | 
 | static void z8530_dma_tx(struct z8530_channel *chan) | 
 | { | 
 | 	if(!chan->dma_tx) | 
 | 	{ | 
 | 		pr_warn("Hey who turned the DMA off?\n"); | 
 | 		z8530_tx(chan); | 
 | 		return; | 
 | 	} | 
 | 	/* This shouldn't occur in DMA mode */ | 
 | 	pr_err("DMA tx - bogus event!\n"); | 
 | 	z8530_tx(chan); | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_dma_status - Handle a DMA status exception | 
 |  *	@chan: Z8530 channel to process | 
 |  *	 | 
 |  *	A status event occurred on the Z8530. We receive these for two reasons | 
 |  *	when in DMA mode. Firstly if we finished a packet transfer we get one | 
 |  *	and kick the next packet out. Secondly we may see a DCD change. | 
 |  * | 
 |  */ | 
 |   | 
 | static void z8530_dma_status(struct z8530_channel *chan) | 
 | { | 
 | 	u8 status, altered; | 
 |  | 
 | 	status=read_zsreg(chan, R0); | 
 | 	altered=chan->status^status; | 
 | 	 | 
 | 	chan->status=status; | 
 |  | 
 |  | 
 | 	if(chan->dma_tx) | 
 | 	{ | 
 | 		if(status&TxEOM) | 
 | 		{ | 
 | 			unsigned long flags; | 
 | 	 | 
 | 			flags=claim_dma_lock(); | 
 | 			disable_dma(chan->txdma); | 
 | 			clear_dma_ff(chan->txdma);	 | 
 | 			chan->txdma_on=0; | 
 | 			release_dma_lock(flags); | 
 | 			z8530_tx_done(chan); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (altered & chan->dcdcheck) | 
 | 	{ | 
 | 		if (status & chan->dcdcheck) { | 
 | 			pr_info("%s: DCD raised\n", chan->dev->name); | 
 | 			write_zsreg(chan, R3, chan->regs[3] | RxENABLE); | 
 | 			if (chan->netdevice) | 
 | 				netif_carrier_on(chan->netdevice); | 
 | 		} else { | 
 | 			pr_info("%s: DCD lost\n", chan->dev->name); | 
 | 			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); | 
 | 			z8530_flush_fifo(chan); | 
 | 			if (chan->netdevice) | 
 | 				netif_carrier_off(chan->netdevice); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	write_zsctrl(chan, RES_EXT_INT); | 
 | 	write_zsctrl(chan, RES_H_IUS); | 
 | } | 
 |  | 
 | static struct z8530_irqhandler z8530_dma_sync = { | 
 | 	z8530_dma_rx, | 
 | 	z8530_dma_tx, | 
 | 	z8530_dma_status | 
 | }; | 
 |  | 
 | static struct z8530_irqhandler z8530_txdma_sync = { | 
 | 	z8530_rx, | 
 | 	z8530_dma_tx, | 
 | 	z8530_dma_status | 
 | }; | 
 |  | 
 | /** | 
 |  *	z8530_rx_clear - Handle RX events from a stopped chip | 
 |  *	@c: Z8530 channel to shut up | 
 |  * | 
 |  *	Receive interrupt vectors for a Z8530 that is in 'parked' mode. | 
 |  *	For machines with PCI Z85x30 cards, or level triggered interrupts | 
 |  *	(eg the MacII) we must clear the interrupt cause or die. | 
 |  */ | 
 |  | 
 |  | 
 | static void z8530_rx_clear(struct z8530_channel *c) | 
 | { | 
 | 	/* | 
 | 	 *	Data and status bytes | 
 | 	 */ | 
 | 	u8 stat; | 
 |  | 
 | 	read_zsdata(c); | 
 | 	stat=read_zsreg(c, R1); | 
 | 	 | 
 | 	if(stat&END_FR) | 
 | 		write_zsctrl(c, RES_Rx_CRC); | 
 | 	/* | 
 | 	 *	Clear irq | 
 | 	 */ | 
 | 	write_zsctrl(c, ERR_RES); | 
 | 	write_zsctrl(c, RES_H_IUS); | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_tx_clear - Handle TX events from a stopped chip | 
 |  *	@c: Z8530 channel to shut up | 
 |  * | 
 |  *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode. | 
 |  *	For machines with PCI Z85x30 cards, or level triggered interrupts | 
 |  *	(eg the MacII) we must clear the interrupt cause or die. | 
 |  */ | 
 |  | 
 | static void z8530_tx_clear(struct z8530_channel *c) | 
 | { | 
 | 	write_zsctrl(c, RES_Tx_P); | 
 | 	write_zsctrl(c, RES_H_IUS); | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_status_clear - Handle status events from a stopped chip | 
 |  *	@chan: Z8530 channel to shut up | 
 |  * | 
 |  *	Status interrupt vectors for a Z8530 that is in 'parked' mode. | 
 |  *	For machines with PCI Z85x30 cards, or level triggered interrupts | 
 |  *	(eg the MacII) we must clear the interrupt cause or die. | 
 |  */ | 
 |  | 
 | static void z8530_status_clear(struct z8530_channel *chan) | 
 | { | 
 | 	u8 status=read_zsreg(chan, R0); | 
 | 	if(status&TxEOM) | 
 | 		write_zsctrl(chan, ERR_RES); | 
 | 	write_zsctrl(chan, RES_EXT_INT); | 
 | 	write_zsctrl(chan, RES_H_IUS); | 
 | } | 
 |  | 
 | struct z8530_irqhandler z8530_nop= | 
 | { | 
 | 	z8530_rx_clear, | 
 | 	z8530_tx_clear, | 
 | 	z8530_status_clear | 
 | }; | 
 |  | 
 |  | 
 | EXPORT_SYMBOL(z8530_nop); | 
 |  | 
 | /** | 
 |  *	z8530_interrupt - Handle an interrupt from a Z8530 | 
 |  *	@irq: 	Interrupt number | 
 |  *	@dev_id: The Z8530 device that is interrupting. | 
 |  * | 
 |  *	A Z85[2]30 device has stuck its hand in the air for attention. | 
 |  *	We scan both the channels on the chip for events and then call | 
 |  *	the channel specific call backs for each channel that has events. | 
 |  *	We have to use callback functions because the two channels can be | 
 |  *	in different modes. | 
 |  * | 
 |  *	Locking is done for the handlers. Note that locking is done | 
 |  *	at the chip level (the 5uS delay issue is per chip not per | 
 |  *	channel). c->lock for both channels points to dev->lock | 
 |  */ | 
 |  | 
 | irqreturn_t z8530_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct z8530_dev *dev=dev_id; | 
 | 	u8 uninitialized_var(intr); | 
 | 	static volatile int locker=0; | 
 | 	int work=0; | 
 | 	struct z8530_irqhandler *irqs; | 
 | 	 | 
 | 	if(locker) | 
 | 	{ | 
 | 		pr_err("IRQ re-enter\n"); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 | 	locker=1; | 
 |  | 
 | 	spin_lock(&dev->lock); | 
 |  | 
 | 	while(++work<5000) | 
 | 	{ | 
 |  | 
 | 		intr = read_zsreg(&dev->chanA, R3); | 
 | 		if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT))) | 
 | 			break; | 
 | 	 | 
 | 		/* This holds the IRQ status. On the 8530 you must read it from chan  | 
 | 		   A even though it applies to the whole chip */ | 
 | 		 | 
 | 		/* Now walk the chip and see what it is wanting - it may be | 
 | 		   an IRQ for someone else remember */ | 
 | 		    | 
 | 		irqs=dev->chanA.irqs; | 
 |  | 
 | 		if(intr & (CHARxIP|CHATxIP|CHAEXT)) | 
 | 		{ | 
 | 			if(intr&CHARxIP) | 
 | 				irqs->rx(&dev->chanA); | 
 | 			if(intr&CHATxIP) | 
 | 				irqs->tx(&dev->chanA); | 
 | 			if(intr&CHAEXT) | 
 | 				irqs->status(&dev->chanA); | 
 | 		} | 
 |  | 
 | 		irqs=dev->chanB.irqs; | 
 |  | 
 | 		if(intr & (CHBRxIP|CHBTxIP|CHBEXT)) | 
 | 		{ | 
 | 			if(intr&CHBRxIP) | 
 | 				irqs->rx(&dev->chanB); | 
 | 			if(intr&CHBTxIP) | 
 | 				irqs->tx(&dev->chanB); | 
 | 			if(intr&CHBEXT) | 
 | 				irqs->status(&dev->chanB); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&dev->lock); | 
 | 	if(work==5000) | 
 | 		pr_err("%s: interrupt jammed - abort(0x%X)!\n", | 
 | 		       dev->name, intr); | 
 | 	/* Ok all done */ | 
 | 	locker=0; | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_interrupt); | 
 |  | 
 | static const u8 reg_init[16]= | 
 | { | 
 | 	0,0,0,0, | 
 | 	0,0,0,0, | 
 | 	0,0,0,0, | 
 | 	0x55,0,0,0 | 
 | }; | 
 |  | 
 |  | 
 | /** | 
 |  *	z8530_sync_open - Open a Z8530 channel for PIO | 
 |  *	@dev:	The network interface we are using | 
 |  *	@c:	The Z8530 channel to open in synchronous PIO mode | 
 |  * | 
 |  *	Switch a Z8530 into synchronous mode without DMA assist. We | 
 |  *	raise the RTS/DTR and commence network operation. | 
 |  */ | 
 |   | 
 | int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(c->lock, flags); | 
 |  | 
 | 	c->sync = 1; | 
 | 	c->mtu = dev->mtu+64; | 
 | 	c->count = 0; | 
 | 	c->skb = NULL; | 
 | 	c->skb2 = NULL; | 
 | 	c->irqs = &z8530_sync; | 
 |  | 
 | 	/* This loads the double buffer up */ | 
 | 	z8530_rx_done(c);	/* Load the frame ring */ | 
 | 	z8530_rx_done(c);	/* Load the backup frame */ | 
 | 	z8530_rtsdtr(c,1); | 
 | 	c->dma_tx = 0; | 
 | 	c->regs[R1]|=TxINT_ENAB; | 
 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 	write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
 |  | 
 | 	spin_unlock_irqrestore(c->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | EXPORT_SYMBOL(z8530_sync_open); | 
 |  | 
 | /** | 
 |  *	z8530_sync_close - Close a PIO Z8530 channel | 
 |  *	@dev: Network device to close | 
 |  *	@c: Z8530 channel to disassociate and move to idle | 
 |  * | 
 |  *	Close down a Z8530 interface and switch its interrupt handlers | 
 |  *	to discard future events. | 
 |  */ | 
 |   | 
 | int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) | 
 | { | 
 | 	u8 chk; | 
 | 	unsigned long flags; | 
 | 	 | 
 | 	spin_lock_irqsave(c->lock, flags); | 
 | 	c->irqs = &z8530_nop; | 
 | 	c->max = 0; | 
 | 	c->sync = 0; | 
 | 	 | 
 | 	chk=read_zsreg(c,R0); | 
 | 	write_zsreg(c, R3, c->regs[R3]); | 
 | 	z8530_rtsdtr(c,0); | 
 |  | 
 | 	spin_unlock_irqrestore(c->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_sync_close); | 
 |  | 
 | /** | 
 |  *	z8530_sync_dma_open - Open a Z8530 for DMA I/O | 
 |  *	@dev: The network device to attach | 
 |  *	@c: The Z8530 channel to configure in sync DMA mode. | 
 |  * | 
 |  *	Set up a Z85x30 device for synchronous DMA in both directions. Two | 
 |  *	ISA DMA channels must be available for this to work. We assume ISA | 
 |  *	DMA driven I/O and PC limits on access. | 
 |  */ | 
 |   | 
 | int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) | 
 | { | 
 | 	unsigned long cflags, dflags; | 
 | 	 | 
 | 	c->sync = 1; | 
 | 	c->mtu = dev->mtu+64; | 
 | 	c->count = 0; | 
 | 	c->skb = NULL; | 
 | 	c->skb2 = NULL; | 
 | 	/* | 
 | 	 *	Load the DMA interfaces up | 
 | 	 */ | 
 | 	c->rxdma_on = 0; | 
 | 	c->txdma_on = 0; | 
 | 	 | 
 | 	/* | 
 | 	 *	Allocate the DMA flip buffers. Limit by page size. | 
 | 	 *	Everyone runs 1500 mtu or less on wan links so this | 
 | 	 *	should be fine. | 
 | 	 */ | 
 | 	  | 
 | 	if(c->mtu  > PAGE_SIZE/2) | 
 | 		return -EMSGSIZE; | 
 | 	  | 
 | 	c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); | 
 | 	if(c->rx_buf[0]==NULL) | 
 | 		return -ENOBUFS; | 
 | 	c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2; | 
 | 	 | 
 | 	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); | 
 | 	if(c->tx_dma_buf[0]==NULL) | 
 | 	{ | 
 | 		free_page((unsigned long)c->rx_buf[0]); | 
 | 		c->rx_buf[0]=NULL; | 
 | 		return -ENOBUFS; | 
 | 	} | 
 | 	c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2; | 
 |  | 
 | 	c->tx_dma_used=0; | 
 | 	c->dma_tx = 1; | 
 | 	c->dma_num=0; | 
 | 	c->dma_ready=1; | 
 | 	 | 
 | 	/* | 
 | 	 *	Enable DMA control mode | 
 | 	 */ | 
 |  | 
 | 	spin_lock_irqsave(c->lock, cflags); | 
 | 	  | 
 | 	/* | 
 | 	 *	TX DMA via DIR/REQ | 
 | 	 */ | 
 | 	  | 
 | 	c->regs[R14]|= DTRREQ; | 
 | 	write_zsreg(c, R14, c->regs[R14]);      | 
 |  | 
 | 	c->regs[R1]&= ~TxINT_ENAB; | 
 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 	 | 
 | 	/* | 
 | 	 *	RX DMA via W/Req | 
 | 	 */	  | 
 |  | 
 | 	c->regs[R1]|= WT_FN_RDYFN; | 
 | 	c->regs[R1]|= WT_RDY_RT; | 
 | 	c->regs[R1]|= INT_ERR_Rx; | 
 | 	c->regs[R1]&= ~TxINT_ENAB; | 
 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 	c->regs[R1]|= WT_RDY_ENAB; | 
 | 	write_zsreg(c, R1, c->regs[R1]);             | 
 | 	 | 
 | 	/* | 
 | 	 *	DMA interrupts | 
 | 	 */ | 
 | 	  | 
 | 	/* | 
 | 	 *	Set up the DMA configuration | 
 | 	 */	 | 
 | 	  | 
 | 	dflags=claim_dma_lock(); | 
 | 	  | 
 | 	disable_dma(c->rxdma); | 
 | 	clear_dma_ff(c->rxdma); | 
 | 	set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); | 
 | 	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0])); | 
 | 	set_dma_count(c->rxdma, c->mtu); | 
 | 	enable_dma(c->rxdma); | 
 |  | 
 | 	disable_dma(c->txdma); | 
 | 	clear_dma_ff(c->txdma); | 
 | 	set_dma_mode(c->txdma, DMA_MODE_WRITE); | 
 | 	disable_dma(c->txdma); | 
 | 	 | 
 | 	release_dma_lock(dflags); | 
 | 	 | 
 | 	/* | 
 | 	 *	Select the DMA interrupt handlers | 
 | 	 */ | 
 |  | 
 | 	c->rxdma_on = 1; | 
 | 	c->txdma_on = 1; | 
 | 	c->tx_dma_used = 1; | 
 | 	  | 
 | 	c->irqs = &z8530_dma_sync; | 
 | 	z8530_rtsdtr(c,1); | 
 | 	write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
 |  | 
 | 	spin_unlock_irqrestore(c->lock, cflags); | 
 | 	 | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_sync_dma_open); | 
 |  | 
 | /** | 
 |  *	z8530_sync_dma_close - Close down DMA I/O | 
 |  *	@dev: Network device to detach | 
 |  *	@c: Z8530 channel to move into discard mode | 
 |  * | 
 |  *	Shut down a DMA mode synchronous interface. Halt the DMA, and | 
 |  *	free the buffers. | 
 |  */ | 
 |   | 
 | int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) | 
 | { | 
 | 	u8 chk; | 
 | 	unsigned long flags; | 
 | 	 | 
 | 	c->irqs = &z8530_nop; | 
 | 	c->max = 0; | 
 | 	c->sync = 0; | 
 | 	 | 
 | 	/* | 
 | 	 *	Disable the PC DMA channels | 
 | 	 */ | 
 | 	 | 
 | 	flags=claim_dma_lock();  | 
 | 	disable_dma(c->rxdma); | 
 | 	clear_dma_ff(c->rxdma); | 
 | 	 | 
 | 	c->rxdma_on = 0; | 
 | 	 | 
 | 	disable_dma(c->txdma); | 
 | 	clear_dma_ff(c->txdma); | 
 | 	release_dma_lock(flags); | 
 | 	 | 
 | 	c->txdma_on = 0; | 
 | 	c->tx_dma_used = 0; | 
 |  | 
 | 	spin_lock_irqsave(c->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 *	Disable DMA control mode | 
 | 	 */ | 
 | 	  | 
 | 	c->regs[R1]&= ~WT_RDY_ENAB; | 
 | 	write_zsreg(c, R1, c->regs[R1]);             | 
 | 	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); | 
 | 	c->regs[R1]|= INT_ALL_Rx; | 
 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 	c->regs[R14]&= ~DTRREQ; | 
 | 	write_zsreg(c, R14, c->regs[R14]);    | 
 | 	 | 
 | 	if(c->rx_buf[0]) | 
 | 	{ | 
 | 		free_page((unsigned long)c->rx_buf[0]); | 
 | 		c->rx_buf[0]=NULL; | 
 | 	} | 
 | 	if(c->tx_dma_buf[0]) | 
 | 	{ | 
 | 		free_page((unsigned  long)c->tx_dma_buf[0]); | 
 | 		c->tx_dma_buf[0]=NULL; | 
 | 	} | 
 | 	chk=read_zsreg(c,R0); | 
 | 	write_zsreg(c, R3, c->regs[R3]); | 
 | 	z8530_rtsdtr(c,0); | 
 |  | 
 | 	spin_unlock_irqrestore(c->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_sync_dma_close); | 
 |  | 
 | /** | 
 |  *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA | 
 |  *	@dev: The network device to attach | 
 |  *	@c: The Z8530 channel to configure in sync DMA mode. | 
 |  * | 
 |  *	Set up a Z85x30 device for synchronous DMA tranmission. One | 
 |  *	ISA DMA channel must be available for this to work. The receive | 
 |  *	side is run in PIO mode, but then it has the bigger FIFO. | 
 |  */ | 
 |  | 
 | int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) | 
 | { | 
 | 	unsigned long cflags, dflags; | 
 |  | 
 | 	printk("Opening sync interface for TX-DMA\n"); | 
 | 	c->sync = 1; | 
 | 	c->mtu = dev->mtu+64; | 
 | 	c->count = 0; | 
 | 	c->skb = NULL; | 
 | 	c->skb2 = NULL; | 
 | 	 | 
 | 	/* | 
 | 	 *	Allocate the DMA flip buffers. Limit by page size. | 
 | 	 *	Everyone runs 1500 mtu or less on wan links so this | 
 | 	 *	should be fine. | 
 | 	 */ | 
 | 	  | 
 | 	if(c->mtu  > PAGE_SIZE/2) | 
 | 		return -EMSGSIZE; | 
 | 	  | 
 | 	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); | 
 | 	if(c->tx_dma_buf[0]==NULL) | 
 | 		return -ENOBUFS; | 
 |  | 
 | 	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2; | 
 |  | 
 |  | 
 | 	spin_lock_irqsave(c->lock, cflags); | 
 |  | 
 | 	/* | 
 | 	 *	Load the PIO receive ring | 
 | 	 */ | 
 |  | 
 | 	z8530_rx_done(c); | 
 | 	z8530_rx_done(c); | 
 |  | 
 |  	/* | 
 | 	 *	Load the DMA interfaces up | 
 | 	 */ | 
 |  | 
 | 	c->rxdma_on = 0; | 
 | 	c->txdma_on = 0; | 
 | 	 | 
 | 	c->tx_dma_used=0; | 
 | 	c->dma_num=0; | 
 | 	c->dma_ready=1; | 
 | 	c->dma_tx = 1; | 
 |  | 
 |  	/* | 
 | 	 *	Enable DMA control mode | 
 | 	 */ | 
 |  | 
 |  	/* | 
 | 	 *	TX DMA via DIR/REQ | 
 |  	 */ | 
 | 	c->regs[R14]|= DTRREQ; | 
 | 	write_zsreg(c, R14, c->regs[R14]);      | 
 | 	 | 
 | 	c->regs[R1]&= ~TxINT_ENAB; | 
 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 	 | 
 | 	/* | 
 | 	 *	Set up the DMA configuration | 
 | 	 */	 | 
 | 	  | 
 | 	dflags = claim_dma_lock(); | 
 |  | 
 | 	disable_dma(c->txdma); | 
 | 	clear_dma_ff(c->txdma); | 
 | 	set_dma_mode(c->txdma, DMA_MODE_WRITE); | 
 | 	disable_dma(c->txdma); | 
 |  | 
 | 	release_dma_lock(dflags); | 
 | 	 | 
 | 	/* | 
 | 	 *	Select the DMA interrupt handlers | 
 | 	 */ | 
 |  | 
 | 	c->rxdma_on = 0; | 
 | 	c->txdma_on = 1; | 
 | 	c->tx_dma_used = 1; | 
 | 	  | 
 | 	c->irqs = &z8530_txdma_sync; | 
 | 	z8530_rtsdtr(c,1); | 
 | 	write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
 | 	spin_unlock_irqrestore(c->lock, cflags); | 
 | 	 | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_sync_txdma_open); | 
 |  | 
 | /** | 
 |  *	z8530_sync_txdma_close - Close down a TX driven DMA channel | 
 |  *	@dev: Network device to detach | 
 |  *	@c: Z8530 channel to move into discard mode | 
 |  * | 
 |  *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,  | 
 |  *	and  free the buffers. | 
 |  */ | 
 |  | 
 | int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) | 
 | { | 
 | 	unsigned long dflags, cflags; | 
 | 	u8 chk; | 
 |  | 
 | 	 | 
 | 	spin_lock_irqsave(c->lock, cflags); | 
 | 	 | 
 | 	c->irqs = &z8530_nop; | 
 | 	c->max = 0; | 
 | 	c->sync = 0; | 
 | 	 | 
 | 	/* | 
 | 	 *	Disable the PC DMA channels | 
 | 	 */ | 
 | 	  | 
 | 	dflags = claim_dma_lock(); | 
 |  | 
 | 	disable_dma(c->txdma); | 
 | 	clear_dma_ff(c->txdma); | 
 | 	c->txdma_on = 0; | 
 | 	c->tx_dma_used = 0; | 
 |  | 
 | 	release_dma_lock(dflags); | 
 |  | 
 | 	/* | 
 | 	 *	Disable DMA control mode | 
 | 	 */ | 
 | 	  | 
 | 	c->regs[R1]&= ~WT_RDY_ENAB; | 
 | 	write_zsreg(c, R1, c->regs[R1]);             | 
 | 	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); | 
 | 	c->regs[R1]|= INT_ALL_Rx; | 
 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 	c->regs[R14]&= ~DTRREQ; | 
 | 	write_zsreg(c, R14, c->regs[R14]);    | 
 | 	 | 
 | 	if(c->tx_dma_buf[0]) | 
 | 	{ | 
 | 		free_page((unsigned long)c->tx_dma_buf[0]); | 
 | 		c->tx_dma_buf[0]=NULL; | 
 | 	} | 
 | 	chk=read_zsreg(c,R0); | 
 | 	write_zsreg(c, R3, c->regs[R3]); | 
 | 	z8530_rtsdtr(c,0); | 
 |  | 
 | 	spin_unlock_irqrestore(c->lock, cflags); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | EXPORT_SYMBOL(z8530_sync_txdma_close); | 
 |  | 
 |  | 
 | /* | 
 |  *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny | 
 |  *	it exists... | 
 |  */ | 
 |   | 
 | static const char *z8530_type_name[]={ | 
 | 	"Z8530", | 
 | 	"Z85C30", | 
 | 	"Z85230" | 
 | }; | 
 |  | 
 | /** | 
 |  *	z8530_describe - Uniformly describe a Z8530 port | 
 |  *	@dev: Z8530 device to describe | 
 |  *	@mapping: string holding mapping type (eg "I/O" or "Mem") | 
 |  *	@io: the port value in question | 
 |  * | 
 |  *	Describe a Z8530 in a standard format. We must pass the I/O as | 
 |  *	the port offset isn't predictable. The main reason for this function | 
 |  *	is to try and get a common format of report. | 
 |  */ | 
 |  | 
 | void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io) | 
 | { | 
 | 	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n", | 
 | 		dev->name,  | 
 | 		z8530_type_name[dev->type], | 
 | 		mapping, | 
 | 		Z8530_PORT_OF(io), | 
 | 		dev->irq); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_describe); | 
 |  | 
 | /* | 
 |  *	Locked operation part of the z8530 init code | 
 |  */ | 
 |   | 
 | static inline int do_z8530_init(struct z8530_dev *dev) | 
 | { | 
 | 	/* NOP the interrupt handlers first - we might get a | 
 | 	   floating IRQ transition when we reset the chip */ | 
 | 	dev->chanA.irqs=&z8530_nop; | 
 | 	dev->chanB.irqs=&z8530_nop; | 
 | 	dev->chanA.dcdcheck=DCD; | 
 | 	dev->chanB.dcdcheck=DCD; | 
 |  | 
 | 	/* Reset the chip */ | 
 | 	write_zsreg(&dev->chanA, R9, 0xC0); | 
 | 	udelay(200); | 
 | 	/* Now check its valid */ | 
 | 	write_zsreg(&dev->chanA, R12, 0xAA); | 
 | 	if(read_zsreg(&dev->chanA, R12)!=0xAA) | 
 | 		return -ENODEV; | 
 | 	write_zsreg(&dev->chanA, R12, 0x55); | 
 | 	if(read_zsreg(&dev->chanA, R12)!=0x55) | 
 | 		return -ENODEV; | 
 | 		 | 
 | 	dev->type=Z8530; | 
 | 	 | 
 | 	/* | 
 | 	 *	See the application note. | 
 | 	 */ | 
 | 	  | 
 | 	write_zsreg(&dev->chanA, R15, 0x01); | 
 | 	 | 
 | 	/* | 
 | 	 *	If we can set the low bit of R15 then | 
 | 	 *	the chip is enhanced. | 
 | 	 */ | 
 | 	  | 
 | 	if(read_zsreg(&dev->chanA, R15)==0x01) | 
 | 	{ | 
 | 		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */ | 
 | 		/* Put a char in the fifo */ | 
 | 		write_zsreg(&dev->chanA, R8, 0); | 
 | 		if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP) | 
 | 			dev->type = Z85230;	/* Has a FIFO */ | 
 | 		else | 
 | 			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */ | 
 | 	} | 
 | 		 | 
 | 	/* | 
 | 	 *	The code assumes R7' and friends are | 
 | 	 *	off. Use write_zsext() for these and keep | 
 | 	 *	this bit clear. | 
 | 	 */ | 
 | 	  | 
 | 	write_zsreg(&dev->chanA, R15, 0); | 
 | 		 | 
 | 	/* | 
 | 	 *	At this point it looks like the chip is behaving | 
 | 	 */ | 
 | 	  | 
 | 	memcpy(dev->chanA.regs, reg_init, 16); | 
 | 	memcpy(dev->chanB.regs, reg_init ,16); | 
 | 	 | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_init - Initialise a Z8530 device | 
 |  *	@dev: Z8530 device to initialise. | 
 |  * | 
 |  *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device | 
 |  *	is present, identify the type and then program it to hopefully | 
 |  *	keep quite and behave. This matters a lot, a Z8530 in the wrong | 
 |  *	state will sometimes get into stupid modes generating 10Khz | 
 |  *	interrupt streams and the like. | 
 |  * | 
 |  *	We set the interrupt handler up to discard any events, in case | 
 |  *	we get them during reset or setp. | 
 |  * | 
 |  *	Return 0 for success, or a negative value indicating the problem | 
 |  *	in errno form. | 
 |  */ | 
 |  | 
 | int z8530_init(struct z8530_dev *dev) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	/* Set up the chip level lock */ | 
 | 	spin_lock_init(&dev->lock); | 
 | 	dev->chanA.lock = &dev->lock; | 
 | 	dev->chanB.lock = &dev->lock; | 
 |  | 
 | 	spin_lock_irqsave(&dev->lock, flags); | 
 | 	ret = do_z8530_init(dev); | 
 | 	spin_unlock_irqrestore(&dev->lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | EXPORT_SYMBOL(z8530_init); | 
 |  | 
 | /** | 
 |  *	z8530_shutdown - Shutdown a Z8530 device | 
 |  *	@dev: The Z8530 chip to shutdown | 
 |  * | 
 |  *	We set the interrupt handlers to silence any interrupts. We then  | 
 |  *	reset the chip and wait 100uS to be sure the reset completed. Just | 
 |  *	in case the caller then tries to do stuff. | 
 |  * | 
 |  *	This is called without the lock held | 
 |  */ | 
 |   | 
 | int z8530_shutdown(struct z8530_dev *dev) | 
 | { | 
 | 	unsigned long flags; | 
 | 	/* Reset the chip */ | 
 |  | 
 | 	spin_lock_irqsave(&dev->lock, flags); | 
 | 	dev->chanA.irqs=&z8530_nop; | 
 | 	dev->chanB.irqs=&z8530_nop; | 
 | 	write_zsreg(&dev->chanA, R9, 0xC0); | 
 | 	/* We must lock the udelay, the chip is offlimits here */ | 
 | 	udelay(100); | 
 | 	spin_unlock_irqrestore(&dev->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_shutdown); | 
 |  | 
 | /** | 
 |  *	z8530_channel_load - Load channel data | 
 |  *	@c: Z8530 channel to configure | 
 |  *	@rtable: table of register, value pairs | 
 |  *	FIXME: ioctl to allow user uploaded tables | 
 |  * | 
 |  *	Load a Z8530 channel up from the system data. We use +16 to  | 
 |  *	indicate the "prime" registers. The value 255 terminates the | 
 |  *	table. | 
 |  */ | 
 |  | 
 | int z8530_channel_load(struct z8530_channel *c, u8 *rtable) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(c->lock, flags); | 
 |  | 
 | 	while(*rtable!=255) | 
 | 	{ | 
 | 		int reg=*rtable++; | 
 | 		if(reg>0x0F) | 
 | 			write_zsreg(c, R15, c->regs[15]|1); | 
 | 		write_zsreg(c, reg&0x0F, *rtable); | 
 | 		if(reg>0x0F) | 
 | 			write_zsreg(c, R15, c->regs[15]&~1); | 
 | 		c->regs[reg]=*rtable++; | 
 | 	} | 
 | 	c->rx_function=z8530_null_rx; | 
 | 	c->skb=NULL; | 
 | 	c->tx_skb=NULL; | 
 | 	c->tx_next_skb=NULL; | 
 | 	c->mtu=1500; | 
 | 	c->max=0; | 
 | 	c->count=0; | 
 | 	c->status=read_zsreg(c, R0); | 
 | 	c->sync=1; | 
 | 	write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
 |  | 
 | 	spin_unlock_irqrestore(c->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_channel_load); | 
 |  | 
 |  | 
 | /** | 
 |  *	z8530_tx_begin - Begin packet transmission | 
 |  *	@c: The Z8530 channel to kick | 
 |  * | 
 |  *	This is the speed sensitive side of transmission. If we are called | 
 |  *	and no buffer is being transmitted we commence the next buffer. If | 
 |  *	nothing is queued we idle the sync.  | 
 |  * | 
 |  *	Note: We are handling this code path in the interrupt path, keep it | 
 |  *	fast or bad things will happen. | 
 |  * | 
 |  *	Called with the lock held. | 
 |  */ | 
 |  | 
 | static void z8530_tx_begin(struct z8530_channel *c) | 
 | { | 
 | 	unsigned long flags; | 
 | 	if(c->tx_skb) | 
 | 		return; | 
 | 		 | 
 | 	c->tx_skb=c->tx_next_skb; | 
 | 	c->tx_next_skb=NULL; | 
 | 	c->tx_ptr=c->tx_next_ptr; | 
 | 	 | 
 | 	if(c->tx_skb==NULL) | 
 | 	{ | 
 | 		/* Idle on */ | 
 | 		if(c->dma_tx) | 
 | 		{ | 
 | 			flags=claim_dma_lock(); | 
 | 			disable_dma(c->txdma); | 
 | 			/* | 
 | 			 *	Check if we crapped out. | 
 | 			 */ | 
 | 			if (get_dma_residue(c->txdma)) | 
 | 			{ | 
 | 				c->netdevice->stats.tx_dropped++; | 
 | 				c->netdevice->stats.tx_fifo_errors++; | 
 | 			} | 
 | 			release_dma_lock(flags); | 
 | 		} | 
 | 		c->txcount=0; | 
 | 	} | 
 | 	else | 
 | 	{ | 
 | 		c->txcount=c->tx_skb->len; | 
 | 		 | 
 | 		 | 
 | 		if(c->dma_tx) | 
 | 		{ | 
 | 			/* | 
 | 			 *	FIXME. DMA is broken for the original 8530, | 
 | 			 *	on the older parts we need to set a flag and | 
 | 			 *	wait for a further TX interrupt to fire this | 
 | 			 *	stage off	 | 
 | 			 */ | 
 | 			  | 
 | 			flags=claim_dma_lock(); | 
 | 			disable_dma(c->txdma); | 
 |  | 
 | 			/* | 
 | 			 *	These two are needed by the 8530/85C30 | 
 | 			 *	and must be issued when idling. | 
 | 			 */ | 
 | 			  | 
 | 			if(c->dev->type!=Z85230) | 
 | 			{ | 
 | 				write_zsctrl(c, RES_Tx_CRC); | 
 | 				write_zsctrl(c, RES_EOM_L); | 
 | 			}	 | 
 | 			write_zsreg(c, R10, c->regs[10]&~ABUNDER); | 
 | 			clear_dma_ff(c->txdma); | 
 | 			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr)); | 
 | 			set_dma_count(c->txdma, c->txcount); | 
 | 			enable_dma(c->txdma); | 
 | 			release_dma_lock(flags); | 
 | 			write_zsctrl(c, RES_EOM_L); | 
 | 			write_zsreg(c, R5, c->regs[R5]|TxENAB); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 |  | 
 | 			/* ABUNDER off */ | 
 | 			write_zsreg(c, R10, c->regs[10]); | 
 | 			write_zsctrl(c, RES_Tx_CRC); | 
 | 	 | 
 | 			while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP)) | 
 | 			{		 | 
 | 				write_zsreg(c, R8, *c->tx_ptr++); | 
 | 				c->txcount--; | 
 | 			} | 
 |  | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 *	Since we emptied tx_skb we can ask for more | 
 | 	 */ | 
 | 	netif_wake_queue(c->netdevice); | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_tx_done - TX complete callback | 
 |  *	@c: The channel that completed a transmit. | 
 |  * | 
 |  *	This is called when we complete a packet send. We wake the queue, | 
 |  *	start the next packet going and then free the buffer of the existing | 
 |  *	packet. This code is fairly timing sensitive. | 
 |  * | 
 |  *	Called with the register lock held. | 
 |  */ | 
 |  | 
 | static void z8530_tx_done(struct z8530_channel *c) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	/* Actually this can happen.*/ | 
 | 	if (c->tx_skb == NULL) | 
 | 		return; | 
 |  | 
 | 	skb = c->tx_skb; | 
 | 	c->tx_skb = NULL; | 
 | 	z8530_tx_begin(c); | 
 | 	c->netdevice->stats.tx_packets++; | 
 | 	c->netdevice->stats.tx_bytes += skb->len; | 
 | 	dev_kfree_skb_irq(skb); | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_null_rx - Discard a packet | 
 |  *	@c: The channel the packet arrived on | 
 |  *	@skb: The buffer | 
 |  * | 
 |  *	We point the receive handler at this function when idle. Instead | 
 |  *	of processing the frames we get to throw them away. | 
 |  */ | 
 |   | 
 | void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb) | 
 | { | 
 | 	dev_kfree_skb_any(skb); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_null_rx); | 
 |  | 
 | /** | 
 |  *	z8530_rx_done - Receive completion callback | 
 |  *	@c: The channel that completed a receive | 
 |  * | 
 |  *	A new packet is complete. Our goal here is to get back into receive | 
 |  *	mode as fast as possible. On the Z85230 we could change to using | 
 |  *	ESCC mode, but on the older chips we have no choice. We flip to the | 
 |  *	new buffer immediately in DMA mode so that the DMA of the next | 
 |  *	frame can occur while we are copying the previous buffer to an sk_buff | 
 |  * | 
 |  *	Called with the lock held | 
 |  */ | 
 |   | 
 | static void z8530_rx_done(struct z8530_channel *c) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	int ct; | 
 | 	 | 
 | 	/* | 
 | 	 *	Is our receive engine in DMA mode | 
 | 	 */ | 
 | 	  | 
 | 	if(c->rxdma_on) | 
 | 	{ | 
 | 		/* | 
 | 		 *	Save the ready state and the buffer currently | 
 | 		 *	being used as the DMA target | 
 | 		 */ | 
 | 		  | 
 | 		int ready=c->dma_ready; | 
 | 		unsigned char *rxb=c->rx_buf[c->dma_num]; | 
 | 		unsigned long flags; | 
 | 		 | 
 | 		/* | 
 | 		 *	Complete this DMA. Necessary to find the length | 
 | 		 */		 | 
 | 		  | 
 | 		flags=claim_dma_lock(); | 
 | 		 | 
 | 		disable_dma(c->rxdma); | 
 | 		clear_dma_ff(c->rxdma); | 
 | 		c->rxdma_on=0; | 
 | 		ct=c->mtu-get_dma_residue(c->rxdma); | 
 | 		if(ct<0) | 
 | 			ct=2;	/* Shit happens.. */ | 
 | 		c->dma_ready=0; | 
 | 		 | 
 | 		/* | 
 | 		 *	Normal case: the other slot is free, start the next DMA | 
 | 		 *	into it immediately. | 
 | 		 */ | 
 | 		  | 
 | 		if(ready) | 
 | 		{ | 
 | 			c->dma_num^=1; | 
 | 			set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); | 
 | 			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num])); | 
 | 			set_dma_count(c->rxdma, c->mtu); | 
 | 			c->rxdma_on = 1; | 
 | 			enable_dma(c->rxdma); | 
 | 			/* Stop any frames that we missed the head of  | 
 | 			   from passing */ | 
 | 			write_zsreg(c, R0, RES_Rx_CRC); | 
 | 		} | 
 | 		else | 
 | 			/* Can't occur as we dont reenable the DMA irq until | 
 | 			   after the flip is done */ | 
 | 			netdev_warn(c->netdevice, "DMA flip overrun!\n"); | 
 |  | 
 | 		release_dma_lock(flags); | 
 |  | 
 | 		/* | 
 | 		 *	Shove the old buffer into an sk_buff. We can't DMA | 
 | 		 *	directly into one on a PC - it might be above the 16Mb | 
 | 		 *	boundary. Optimisation - we could check to see if we | 
 | 		 *	can avoid the copy. Optimisation 2 - make the memcpy | 
 | 		 *	a copychecksum. | 
 | 		 */ | 
 |  | 
 | 		skb = dev_alloc_skb(ct); | 
 | 		if (skb == NULL) { | 
 | 			c->netdevice->stats.rx_dropped++; | 
 | 			netdev_warn(c->netdevice, "Memory squeeze\n"); | 
 | 		} else { | 
 | 			skb_put(skb, ct); | 
 | 			skb_copy_to_linear_data(skb, rxb, ct); | 
 | 			c->netdevice->stats.rx_packets++; | 
 | 			c->netdevice->stats.rx_bytes += ct; | 
 | 		} | 
 | 		c->dma_ready = 1; | 
 | 	} else { | 
 | 		RT_LOCK; | 
 | 		skb = c->skb; | 
 |  | 
 | 		/* | 
 | 		 *	The game we play for non DMA is similar. We want to | 
 | 		 *	get the controller set up for the next packet as fast | 
 | 		 *	as possible. We potentially only have one byte + the | 
 | 		 *	fifo length for this. Thus we want to flip to the new | 
 | 		 *	buffer and then mess around copying and allocating | 
 | 		 *	things. For the current case it doesn't matter but | 
 | 		 *	if you build a system where the sync irq isn't blocked | 
 | 		 *	by the kernel IRQ disable then you need only block the | 
 | 		 *	sync IRQ for the RT_LOCK area. | 
 | 		 * | 
 | 		 */ | 
 | 		ct=c->count; | 
 |  | 
 | 		c->skb = c->skb2; | 
 | 		c->count = 0; | 
 | 		c->max = c->mtu; | 
 | 		if (c->skb) { | 
 | 			c->dptr = c->skb->data; | 
 | 			c->max = c->mtu; | 
 | 		} else { | 
 | 			c->count = 0; | 
 | 			c->max = 0; | 
 | 		} | 
 | 		RT_UNLOCK; | 
 |  | 
 | 		c->skb2 = dev_alloc_skb(c->mtu); | 
 | 		if (c->skb2 == NULL) | 
 | 			netdev_warn(c->netdevice, "memory squeeze\n"); | 
 | 		else | 
 | 			skb_put(c->skb2, c->mtu); | 
 | 		c->netdevice->stats.rx_packets++; | 
 | 		c->netdevice->stats.rx_bytes += ct; | 
 | 	} | 
 | 	/* | 
 | 	 *	If we received a frame we must now process it. | 
 | 	 */ | 
 | 	if (skb) { | 
 | 		skb_trim(skb, ct); | 
 | 		c->rx_function(c, skb); | 
 | 	} else { | 
 | 		c->netdevice->stats.rx_dropped++; | 
 | 		netdev_err(c->netdevice, "Lost a frame\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	spans_boundary - Check a packet can be ISA DMA'd | 
 |  *	@skb: The buffer to check | 
 |  * | 
 |  *	Returns true if the buffer cross a DMA boundary on a PC. The poor | 
 |  *	thing can only DMA within a 64K block not across the edges of it. | 
 |  */ | 
 |  | 
 | static inline int spans_boundary(struct sk_buff *skb) | 
 | { | 
 | 	unsigned long a=(unsigned long)skb->data; | 
 | 	a^=(a+skb->len); | 
 | 	if(a&0x00010000)	/* If the 64K bit is different.. */ | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	z8530_queue_xmit - Queue a packet | 
 |  *	@c: The channel to use | 
 |  *	@skb: The packet to kick down the channel | 
 |  * | 
 |  *	Queue a packet for transmission. Because we have rather | 
 |  *	hard to hit interrupt latencies for the Z85230 per packet  | 
 |  *	even in DMA mode we do the flip to DMA buffer if needed here | 
 |  *	not in the IRQ. | 
 |  * | 
 |  *	Called from the network code. The lock is not held at this  | 
 |  *	point. | 
 |  */ | 
 |  | 
 | netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) | 
 | { | 
 | 	unsigned long flags; | 
 | 	 | 
 | 	netif_stop_queue(c->netdevice); | 
 | 	if(c->tx_next_skb) | 
 | 		return NETDEV_TX_BUSY; | 
 |  | 
 | 	 | 
 | 	/* PC SPECIFIC - DMA limits */ | 
 | 	 | 
 | 	/* | 
 | 	 *	If we will DMA the transmit and its gone over the ISA bus | 
 | 	 *	limit, then copy to the flip buffer | 
 | 	 */ | 
 | 	  | 
 | 	if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb))) | 
 | 	{ | 
 | 		/*  | 
 | 		 *	Send the flip buffer, and flip the flippy bit. | 
 | 		 *	We don't care which is used when just so long as | 
 | 		 *	we never use the same buffer twice in a row. Since | 
 | 		 *	only one buffer can be going out at a time the other | 
 | 		 *	has to be safe. | 
 | 		 */ | 
 | 		c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used]; | 
 | 		c->tx_dma_used^=1;	/* Flip temp buffer */ | 
 | 		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len); | 
 | 	} | 
 | 	else | 
 | 		c->tx_next_ptr=skb->data;	 | 
 | 	RT_LOCK; | 
 | 	c->tx_next_skb=skb; | 
 | 	RT_UNLOCK; | 
 | 	 | 
 | 	spin_lock_irqsave(c->lock, flags); | 
 | 	z8530_tx_begin(c); | 
 | 	spin_unlock_irqrestore(c->lock, flags); | 
 | 	 | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(z8530_queue_xmit); | 
 |  | 
 | /* | 
 |  *	Module support | 
 |  */ | 
 | static const char banner[] __initdata = | 
 | 	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n"; | 
 |  | 
 | static int __init z85230_init_driver(void) | 
 | { | 
 | 	printk(banner); | 
 | 	return 0; | 
 | } | 
 | module_init(z85230_init_driver); | 
 |  | 
 | static void __exit z85230_cleanup_driver(void) | 
 | { | 
 | } | 
 | module_exit(z85230_cleanup_driver); | 
 |  | 
 | MODULE_AUTHOR("Red Hat Inc."); | 
 | MODULE_DESCRIPTION("Z85x30 synchronous driver core"); | 
 | MODULE_LICENSE("GPL"); |