|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | *  PowerPC version | 
|  | *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
|  | * | 
|  | *  Derived from "arch/i386/mm/fault.c" | 
|  | *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | * | 
|  | *  Modified by Cort Dougan and Paul Mackerras. | 
|  | * | 
|  | *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) | 
|  | */ | 
|  |  | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/extable.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/context_tracking.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/siginfo.h> | 
|  | #include <asm/debug.h> | 
|  | #include <asm/kup.h> | 
|  |  | 
|  | /* | 
|  | * Check whether the instruction inst is a store using | 
|  | * an update addressing form which will update r1. | 
|  | */ | 
|  | static bool store_updates_sp(unsigned int inst) | 
|  | { | 
|  | /* check for 1 in the rA field */ | 
|  | if (((inst >> 16) & 0x1f) != 1) | 
|  | return false; | 
|  | /* check major opcode */ | 
|  | switch (inst >> 26) { | 
|  | case OP_STWU: | 
|  | case OP_STBU: | 
|  | case OP_STHU: | 
|  | case OP_STFSU: | 
|  | case OP_STFDU: | 
|  | return true; | 
|  | case OP_STD:	/* std or stdu */ | 
|  | return (inst & 3) == 1; | 
|  | case OP_31: | 
|  | /* check minor opcode */ | 
|  | switch ((inst >> 1) & 0x3ff) { | 
|  | case OP_31_XOP_STDUX: | 
|  | case OP_31_XOP_STWUX: | 
|  | case OP_31_XOP_STBUX: | 
|  | case OP_31_XOP_STHUX: | 
|  | case OP_31_XOP_STFSUX: | 
|  | case OP_31_XOP_STFDUX: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  | /* | 
|  | * do_page_fault error handling helpers | 
|  | */ | 
|  |  | 
|  | static int | 
|  | __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) | 
|  | { | 
|  | /* | 
|  | * If we are in kernel mode, bail out with a SEGV, this will | 
|  | * be caught by the assembly which will restore the non-volatile | 
|  | * registers before calling bad_page_fault() | 
|  | */ | 
|  | if (!user_mode(regs)) | 
|  | return SIGSEGV; | 
|  |  | 
|  | _exception(SIGSEGV, regs, si_code, address); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) | 
|  | { | 
|  | return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); | 
|  | } | 
|  |  | 
|  | static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  |  | 
|  | /* | 
|  | * Something tried to access memory that isn't in our memory map.. | 
|  | * Fix it, but check if it's kernel or user first.. | 
|  | */ | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | return __bad_area_nosemaphore(regs, address, si_code); | 
|  | } | 
|  |  | 
|  | static noinline int bad_area(struct pt_regs *regs, unsigned long address) | 
|  | { | 
|  | return __bad_area(regs, address, SEGV_MAPERR); | 
|  | } | 
|  |  | 
|  | static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address, | 
|  | int pkey) | 
|  | { | 
|  | /* | 
|  | * If we are in kernel mode, bail out with a SEGV, this will | 
|  | * be caught by the assembly which will restore the non-volatile | 
|  | * registers before calling bad_page_fault() | 
|  | */ | 
|  | if (!user_mode(regs)) | 
|  | return SIGSEGV; | 
|  |  | 
|  | _exception_pkey(regs, address, pkey); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int bad_access(struct pt_regs *regs, unsigned long address) | 
|  | { | 
|  | return __bad_area(regs, address, SEGV_ACCERR); | 
|  | } | 
|  |  | 
|  | static int do_sigbus(struct pt_regs *regs, unsigned long address, | 
|  | vm_fault_t fault) | 
|  | { | 
|  | if (!user_mode(regs)) | 
|  | return SIGBUS; | 
|  |  | 
|  | current->thread.trap_nr = BUS_ADRERR; | 
|  | #ifdef CONFIG_MEMORY_FAILURE | 
|  | if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { | 
|  | unsigned int lsb = 0; /* shutup gcc */ | 
|  |  | 
|  | pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", | 
|  | current->comm, current->pid, address); | 
|  |  | 
|  | if (fault & VM_FAULT_HWPOISON_LARGE) | 
|  | lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); | 
|  | if (fault & VM_FAULT_HWPOISON) | 
|  | lsb = PAGE_SHIFT; | 
|  |  | 
|  | force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  | force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mm_fault_error(struct pt_regs *regs, unsigned long addr, | 
|  | vm_fault_t fault) | 
|  | { | 
|  | /* | 
|  | * Kernel page fault interrupted by SIGKILL. We have no reason to | 
|  | * continue processing. | 
|  | */ | 
|  | if (fatal_signal_pending(current) && !user_mode(regs)) | 
|  | return SIGKILL; | 
|  |  | 
|  | /* Out of memory */ | 
|  | if (fault & VM_FAULT_OOM) { | 
|  | /* | 
|  | * We ran out of memory, or some other thing happened to us that | 
|  | * made us unable to handle the page fault gracefully. | 
|  | */ | 
|  | if (!user_mode(regs)) | 
|  | return SIGSEGV; | 
|  | pagefault_out_of_memory(); | 
|  | } else { | 
|  | if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| | 
|  | VM_FAULT_HWPOISON_LARGE)) | 
|  | return do_sigbus(regs, addr, fault); | 
|  | else if (fault & VM_FAULT_SIGSEGV) | 
|  | return bad_area_nosemaphore(regs, addr); | 
|  | else | 
|  | BUG(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Is this a bad kernel fault ? */ | 
|  | static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code, | 
|  | unsigned long address, bool is_write) | 
|  | { | 
|  | int is_exec = TRAP(regs) == 0x400; | 
|  |  | 
|  | /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */ | 
|  | if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT | | 
|  | DSISR_PROTFAULT))) { | 
|  | pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n", | 
|  | address >= TASK_SIZE ? "exec-protected" : "user", | 
|  | address, | 
|  | from_kuid(&init_user_ns, current_uid())); | 
|  |  | 
|  | // Kernel exec fault is always bad | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) && | 
|  | !search_exception_tables(regs->nip)) { | 
|  | pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n", | 
|  | address, | 
|  | from_kuid(&init_user_ns, current_uid())); | 
|  | } | 
|  |  | 
|  | // Kernel fault on kernel address is bad | 
|  | if (address >= TASK_SIZE) | 
|  | return true; | 
|  |  | 
|  | // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad | 
|  | if (!search_exception_tables(regs->nip)) | 
|  | return true; | 
|  |  | 
|  | // Read/write fault in a valid region (the exception table search passed | 
|  | // above), but blocked by KUAP is bad, it can never succeed. | 
|  | if (bad_kuap_fault(regs, is_write)) | 
|  | return true; | 
|  |  | 
|  | // What's left? Kernel fault on user in well defined regions (extable | 
|  | // matched), and allowed by KUAP in the faulting context. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address, | 
|  | struct vm_area_struct *vma, unsigned int flags, | 
|  | bool *must_retry) | 
|  | { | 
|  | /* | 
|  | * N.B. The POWER/Open ABI allows programs to access up to | 
|  | * 288 bytes below the stack pointer. | 
|  | * The kernel signal delivery code writes up to about 1.5kB | 
|  | * below the stack pointer (r1) before decrementing it. | 
|  | * The exec code can write slightly over 640kB to the stack | 
|  | * before setting the user r1.  Thus we allow the stack to | 
|  | * expand to 1MB without further checks. | 
|  | */ | 
|  | if (address + 0x100000 < vma->vm_end) { | 
|  | unsigned int __user *nip = (unsigned int __user *)regs->nip; | 
|  | /* get user regs even if this fault is in kernel mode */ | 
|  | struct pt_regs *uregs = current->thread.regs; | 
|  | if (uregs == NULL) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * A user-mode access to an address a long way below | 
|  | * the stack pointer is only valid if the instruction | 
|  | * is one which would update the stack pointer to the | 
|  | * address accessed if the instruction completed, | 
|  | * i.e. either stwu rs,n(r1) or stwux rs,r1,rb | 
|  | * (or the byte, halfword, float or double forms). | 
|  | * | 
|  | * If we don't check this then any write to the area | 
|  | * between the last mapped region and the stack will | 
|  | * expand the stack rather than segfaulting. | 
|  | */ | 
|  | if (address + 2048 >= uregs->gpr[1]) | 
|  | return false; | 
|  |  | 
|  | if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) && | 
|  | access_ok(nip, sizeof(*nip))) { | 
|  | unsigned int inst; | 
|  | int res; | 
|  |  | 
|  | pagefault_disable(); | 
|  | res = __get_user_inatomic(inst, nip); | 
|  | pagefault_enable(); | 
|  | if (!res) | 
|  | return !store_updates_sp(inst); | 
|  | *must_retry = true; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool access_error(bool is_write, bool is_exec, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * Allow execution from readable areas if the MMU does not | 
|  | * provide separate controls over reading and executing. | 
|  | * | 
|  | * Note: That code used to not be enabled for 4xx/BookE. | 
|  | * It is now as I/D cache coherency for these is done at | 
|  | * set_pte_at() time and I see no reason why the test | 
|  | * below wouldn't be valid on those processors. This -may- | 
|  | * break programs compiled with a really old ABI though. | 
|  | */ | 
|  | if (is_exec) { | 
|  | return !(vma->vm_flags & VM_EXEC) && | 
|  | (cpu_has_feature(CPU_FTR_NOEXECUTE) || | 
|  | !(vma->vm_flags & (VM_READ | VM_WRITE))); | 
|  | } | 
|  |  | 
|  | if (is_write) { | 
|  | if (unlikely(!(vma->vm_flags & VM_WRITE))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) | 
|  | return true; | 
|  | /* | 
|  | * We should ideally do the vma pkey access check here. But in the | 
|  | * fault path, handle_mm_fault() also does the same check. To avoid | 
|  | * these multiple checks, we skip it here and handle access error due | 
|  | * to pkeys later. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_SMLPAR | 
|  | static inline void cmo_account_page_fault(void) | 
|  | { | 
|  | if (firmware_has_feature(FW_FEATURE_CMO)) { | 
|  | u32 page_ins; | 
|  |  | 
|  | preempt_disable(); | 
|  | page_ins = be32_to_cpu(get_lppaca()->page_ins); | 
|  | page_ins += 1 << PAGE_FACTOR; | 
|  | get_lppaca()->page_ins = cpu_to_be32(page_ins); | 
|  | preempt_enable(); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void cmo_account_page_fault(void) { } | 
|  | #endif /* CONFIG_PPC_SMLPAR */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S | 
|  | static void sanity_check_fault(bool is_write, bool is_user, | 
|  | unsigned long error_code, unsigned long address) | 
|  | { | 
|  | /* | 
|  | * Userspace trying to access kernel address, we get PROTFAULT for that. | 
|  | */ | 
|  | if (is_user && address >= TASK_SIZE) { | 
|  | pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n", | 
|  | current->comm, current->pid, address, | 
|  | from_kuid(&init_user_ns, current_uid())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For hash translation mode, we should never get a | 
|  | * PROTFAULT. Any update to pte to reduce access will result in us | 
|  | * removing the hash page table entry, thus resulting in a DSISR_NOHPTE | 
|  | * fault instead of DSISR_PROTFAULT. | 
|  | * | 
|  | * A pte update to relax the access will not result in a hash page table | 
|  | * entry invalidate and hence can result in DSISR_PROTFAULT. | 
|  | * ptep_set_access_flags() doesn't do a hpte flush. This is why we have | 
|  | * the special !is_write in the below conditional. | 
|  | * | 
|  | * For platforms that doesn't supports coherent icache and do support | 
|  | * per page noexec bit, we do setup things such that we do the | 
|  | * sync between D/I cache via fault. But that is handled via low level | 
|  | * hash fault code (hash_page_do_lazy_icache()) and we should not reach | 
|  | * here in such case. | 
|  | * | 
|  | * For wrong access that can result in PROTFAULT, the above vma->vm_flags | 
|  | * check should handle those and hence we should fall to the bad_area | 
|  | * handling correctly. | 
|  | * | 
|  | * For embedded with per page exec support that doesn't support coherent | 
|  | * icache we do get PROTFAULT and we handle that D/I cache sync in | 
|  | * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON | 
|  | * is conditional for server MMU. | 
|  | * | 
|  | * For radix, we can get prot fault for autonuma case, because radix | 
|  | * page table will have them marked noaccess for user. | 
|  | */ | 
|  | if (radix_enabled() || is_write) | 
|  | return; | 
|  |  | 
|  | WARN_ON_ONCE(error_code & DSISR_PROTFAULT); | 
|  | } | 
|  | #else | 
|  | static void sanity_check_fault(bool is_write, bool is_user, | 
|  | unsigned long error_code, unsigned long address) { } | 
|  | #endif /* CONFIG_PPC_BOOK3S */ | 
|  |  | 
|  | /* | 
|  | * Define the correct "is_write" bit in error_code based | 
|  | * on the processor family | 
|  | */ | 
|  | #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) | 
|  | #define page_fault_is_write(__err)	((__err) & ESR_DST) | 
|  | #define page_fault_is_bad(__err)	(0) | 
|  | #else | 
|  | #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE) | 
|  | #if defined(CONFIG_PPC_8xx) | 
|  | #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G) | 
|  | #elif defined(CONFIG_PPC64) | 
|  | #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S) | 
|  | #else | 
|  | #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S) | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * For 600- and 800-family processors, the error_code parameter is DSISR | 
|  | * for a data fault, SRR1 for an instruction fault. For 400-family processors | 
|  | * the error_code parameter is ESR for a data fault, 0 for an instruction | 
|  | * fault. | 
|  | * For 64-bit processors, the error_code parameter is | 
|  | *  - DSISR for a non-SLB data access fault, | 
|  | *  - SRR1 & 0x08000000 for a non-SLB instruction access fault | 
|  | *  - 0 any SLB fault. | 
|  | * | 
|  | * The return value is 0 if the fault was handled, or the signal | 
|  | * number if this is a kernel fault that can't be handled here. | 
|  | */ | 
|  | static int __do_page_fault(struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | struct vm_area_struct * vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
|  | int is_exec = TRAP(regs) == 0x400; | 
|  | int is_user = user_mode(regs); | 
|  | int is_write = page_fault_is_write(error_code); | 
|  | vm_fault_t fault, major = 0; | 
|  | bool must_retry = false; | 
|  | bool kprobe_fault = kprobe_page_fault(regs, 11); | 
|  |  | 
|  | if (unlikely(debugger_fault_handler(regs) || kprobe_fault)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(page_fault_is_bad(error_code))) { | 
|  | if (is_user) { | 
|  | _exception(SIGBUS, regs, BUS_OBJERR, address); | 
|  | return 0; | 
|  | } | 
|  | return SIGBUS; | 
|  | } | 
|  |  | 
|  | /* Additional sanity check(s) */ | 
|  | sanity_check_fault(is_write, is_user, error_code, address); | 
|  |  | 
|  | /* | 
|  | * The kernel should never take an execute fault nor should it | 
|  | * take a page fault to a kernel address or a page fault to a user | 
|  | * address outside of dedicated places | 
|  | */ | 
|  | if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) | 
|  | return SIGSEGV; | 
|  |  | 
|  | /* | 
|  | * If we're in an interrupt, have no user context or are running | 
|  | * in a region with pagefaults disabled then we must not take the fault | 
|  | */ | 
|  | if (unlikely(faulthandler_disabled() || !mm)) { | 
|  | if (is_user) | 
|  | printk_ratelimited(KERN_ERR "Page fault in user mode" | 
|  | " with faulthandler_disabled()=%d" | 
|  | " mm=%p\n", | 
|  | faulthandler_disabled(), mm); | 
|  | return bad_area_nosemaphore(regs, address); | 
|  | } | 
|  |  | 
|  | /* We restore the interrupt state now */ | 
|  | if (!arch_irq_disabled_regs(regs)) | 
|  | local_irq_enable(); | 
|  |  | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); | 
|  |  | 
|  | if (error_code & DSISR_KEYFAULT) | 
|  | return bad_key_fault_exception(regs, address, | 
|  | get_mm_addr_key(mm, address)); | 
|  |  | 
|  | /* | 
|  | * We want to do this outside mmap_sem, because reading code around nip | 
|  | * can result in fault, which will cause a deadlock when called with | 
|  | * mmap_sem held | 
|  | */ | 
|  | if (is_user) | 
|  | flags |= FAULT_FLAG_USER; | 
|  | if (is_write) | 
|  | flags |= FAULT_FLAG_WRITE; | 
|  | if (is_exec) | 
|  | flags |= FAULT_FLAG_INSTRUCTION; | 
|  |  | 
|  | /* When running in the kernel we expect faults to occur only to | 
|  | * addresses in user space.  All other faults represent errors in the | 
|  | * kernel and should generate an OOPS.  Unfortunately, in the case of an | 
|  | * erroneous fault occurring in a code path which already holds mmap_sem | 
|  | * we will deadlock attempting to validate the fault against the | 
|  | * address space.  Luckily the kernel only validly references user | 
|  | * space from well defined areas of code, which are listed in the | 
|  | * exceptions table. | 
|  | * | 
|  | * As the vast majority of faults will be valid we will only perform | 
|  | * the source reference check when there is a possibility of a deadlock. | 
|  | * Attempt to lock the address space, if we cannot we then validate the | 
|  | * source.  If this is invalid we can skip the address space check, | 
|  | * thus avoiding the deadlock. | 
|  | */ | 
|  | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | 
|  | if (!is_user && !search_exception_tables(regs->nip)) | 
|  | return bad_area_nosemaphore(regs, address); | 
|  |  | 
|  | retry: | 
|  | down_read(&mm->mmap_sem); | 
|  | } else { | 
|  | /* | 
|  | * The above down_read_trylock() might have succeeded in | 
|  | * which case we'll have missed the might_sleep() from | 
|  | * down_read(): | 
|  | */ | 
|  | might_sleep(); | 
|  | } | 
|  |  | 
|  | vma = find_vma(mm, address); | 
|  | if (unlikely(!vma)) | 
|  | return bad_area(regs, address); | 
|  | if (likely(vma->vm_start <= address)) | 
|  | goto good_area; | 
|  | if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) | 
|  | return bad_area(regs, address); | 
|  |  | 
|  | /* The stack is being expanded, check if it's valid */ | 
|  | if (unlikely(bad_stack_expansion(regs, address, vma, flags, | 
|  | &must_retry))) { | 
|  | if (!must_retry) | 
|  | return bad_area(regs, address); | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | if (fault_in_pages_readable((const char __user *)regs->nip, | 
|  | sizeof(unsigned int))) | 
|  | return bad_area_nosemaphore(regs, address); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* Try to expand it */ | 
|  | if (unlikely(expand_stack(vma, address))) | 
|  | return bad_area(regs, address); | 
|  |  | 
|  | good_area: | 
|  | if (unlikely(access_error(is_write, is_exec, vma))) | 
|  | return bad_access(regs, address); | 
|  |  | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, | 
|  | * make sure we exit gracefully rather than endlessly redo | 
|  | * the fault. | 
|  | */ | 
|  | fault = handle_mm_fault(vma, address, flags); | 
|  |  | 
|  | #ifdef CONFIG_PPC_MEM_KEYS | 
|  | /* | 
|  | * we skipped checking for access error due to key earlier. | 
|  | * Check that using handle_mm_fault error return. | 
|  | */ | 
|  | if (unlikely(fault & VM_FAULT_SIGSEGV) && | 
|  | !arch_vma_access_permitted(vma, is_write, is_exec, 0)) { | 
|  |  | 
|  | int pkey = vma_pkey(vma); | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | return bad_key_fault_exception(regs, address, pkey); | 
|  | } | 
|  | #endif /* CONFIG_PPC_MEM_KEYS */ | 
|  |  | 
|  | major |= fault & VM_FAULT_MAJOR; | 
|  |  | 
|  | /* | 
|  | * Handle the retry right now, the mmap_sem has been released in that | 
|  | * case. | 
|  | */ | 
|  | if (unlikely(fault & VM_FAULT_RETRY)) { | 
|  | /* We retry only once */ | 
|  | if (flags & FAULT_FLAG_ALLOW_RETRY) { | 
|  | /* | 
|  | * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk | 
|  | * of starvation. | 
|  | */ | 
|  | flags &= ~FAULT_FLAG_ALLOW_RETRY; | 
|  | flags |= FAULT_FLAG_TRIED; | 
|  | if (!fatal_signal_pending(current)) | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * User mode? Just return to handle the fatal exception otherwise | 
|  | * return to bad_page_fault | 
|  | */ | 
|  | return is_user ? 0 : SIGBUS; | 
|  | } | 
|  |  | 
|  | up_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | if (unlikely(fault & VM_FAULT_ERROR)) | 
|  | return mm_fault_error(regs, address, fault); | 
|  |  | 
|  | /* | 
|  | * Major/minor page fault accounting. | 
|  | */ | 
|  | if (major) { | 
|  | current->maj_flt++; | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); | 
|  | cmo_account_page_fault(); | 
|  | } else { | 
|  | current->min_flt++; | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | NOKPROBE_SYMBOL(__do_page_fault); | 
|  |  | 
|  | int do_page_fault(struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | enum ctx_state prev_state = exception_enter(); | 
|  | int rc = __do_page_fault(regs, address, error_code); | 
|  | exception_exit(prev_state); | 
|  | return rc; | 
|  | } | 
|  | NOKPROBE_SYMBOL(do_page_fault); | 
|  |  | 
|  | /* | 
|  | * bad_page_fault is called when we have a bad access from the kernel. | 
|  | * It is called from the DSI and ISI handlers in head.S and from some | 
|  | * of the procedures in traps.c. | 
|  | */ | 
|  | void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) | 
|  | { | 
|  | const struct exception_table_entry *entry; | 
|  |  | 
|  | /* Are we prepared to handle this fault?  */ | 
|  | if ((entry = search_exception_tables(regs->nip)) != NULL) { | 
|  | regs->nip = extable_fixup(entry); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* kernel has accessed a bad area */ | 
|  |  | 
|  | switch (TRAP(regs)) { | 
|  | case 0x300: | 
|  | case 0x380: | 
|  | case 0xe00: | 
|  | pr_alert("BUG: %s at 0x%08lx\n", | 
|  | regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" : | 
|  | "Unable to handle kernel data access", regs->dar); | 
|  | break; | 
|  | case 0x400: | 
|  | case 0x480: | 
|  | pr_alert("BUG: Unable to handle kernel instruction fetch%s", | 
|  | regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n"); | 
|  | break; | 
|  | case 0x600: | 
|  | pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n", | 
|  | regs->dar); | 
|  | break; | 
|  | default: | 
|  | pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n", | 
|  | regs->dar); | 
|  | break; | 
|  | } | 
|  | printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", | 
|  | regs->nip); | 
|  |  | 
|  | if (task_stack_end_corrupted(current)) | 
|  | printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); | 
|  |  | 
|  | die("Kernel access of bad area", regs, sig); | 
|  | } |