|  | /* | 
|  | * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | * | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <rdma/rdma_cm.h> | 
|  |  | 
|  | #include "rds_single_path.h" | 
|  | #include "rds.h" | 
|  | #include "ib.h" | 
|  |  | 
|  | static struct kmem_cache *rds_ib_incoming_slab; | 
|  | static struct kmem_cache *rds_ib_frag_slab; | 
|  | static atomic_t	rds_ib_allocation = ATOMIC_INIT(0); | 
|  |  | 
|  | void rds_ib_recv_init_ring(struct rds_ib_connection *ic) | 
|  | { | 
|  | struct rds_ib_recv_work *recv; | 
|  | u32 i; | 
|  |  | 
|  | for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { | 
|  | struct ib_sge *sge; | 
|  |  | 
|  | recv->r_ibinc = NULL; | 
|  | recv->r_frag = NULL; | 
|  |  | 
|  | recv->r_wr.next = NULL; | 
|  | recv->r_wr.wr_id = i; | 
|  | recv->r_wr.sg_list = recv->r_sge; | 
|  | recv->r_wr.num_sge = RDS_IB_RECV_SGE; | 
|  |  | 
|  | sge = &recv->r_sge[0]; | 
|  | sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); | 
|  | sge->length = sizeof(struct rds_header); | 
|  | sge->lkey = ic->i_pd->local_dma_lkey; | 
|  |  | 
|  | sge = &recv->r_sge[1]; | 
|  | sge->addr = 0; | 
|  | sge->length = RDS_FRAG_SIZE; | 
|  | sge->lkey = ic->i_pd->local_dma_lkey; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The entire 'from' list, including the from element itself, is put on | 
|  | * to the tail of the 'to' list. | 
|  | */ | 
|  | static void list_splice_entire_tail(struct list_head *from, | 
|  | struct list_head *to) | 
|  | { | 
|  | struct list_head *from_last = from->prev; | 
|  |  | 
|  | list_splice_tail(from_last, to); | 
|  | list_add_tail(from_last, to); | 
|  | } | 
|  |  | 
|  | static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache) | 
|  | { | 
|  | struct list_head *tmp; | 
|  |  | 
|  | tmp = xchg(&cache->xfer, NULL); | 
|  | if (tmp) { | 
|  | if (cache->ready) | 
|  | list_splice_entire_tail(tmp, cache->ready); | 
|  | else | 
|  | cache->ready = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp) | 
|  | { | 
|  | struct rds_ib_cache_head *head; | 
|  | int cpu; | 
|  |  | 
|  | cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp); | 
|  | if (!cache->percpu) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | head = per_cpu_ptr(cache->percpu, cpu); | 
|  | head->first = NULL; | 
|  | head->count = 0; | 
|  | } | 
|  | cache->xfer = NULL; | 
|  | cache->ready = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp); | 
|  | if (!ret) { | 
|  | ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp); | 
|  | if (ret) | 
|  | free_percpu(ic->i_cache_incs.percpu); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache, | 
|  | struct list_head *caller_list) | 
|  | { | 
|  | struct rds_ib_cache_head *head; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | head = per_cpu_ptr(cache->percpu, cpu); | 
|  | if (head->first) { | 
|  | list_splice_entire_tail(head->first, caller_list); | 
|  | head->first = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cache->ready) { | 
|  | list_splice_entire_tail(cache->ready, caller_list); | 
|  | cache->ready = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void rds_ib_recv_free_caches(struct rds_ib_connection *ic) | 
|  | { | 
|  | struct rds_ib_incoming *inc; | 
|  | struct rds_ib_incoming *inc_tmp; | 
|  | struct rds_page_frag *frag; | 
|  | struct rds_page_frag *frag_tmp; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); | 
|  | rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list); | 
|  | free_percpu(ic->i_cache_incs.percpu); | 
|  |  | 
|  | list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) { | 
|  | list_del(&inc->ii_cache_entry); | 
|  | WARN_ON(!list_empty(&inc->ii_frags)); | 
|  | kmem_cache_free(rds_ib_incoming_slab, inc); | 
|  | atomic_dec(&rds_ib_allocation); | 
|  | } | 
|  |  | 
|  | rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); | 
|  | rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list); | 
|  | free_percpu(ic->i_cache_frags.percpu); | 
|  |  | 
|  | list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) { | 
|  | list_del(&frag->f_cache_entry); | 
|  | WARN_ON(!list_empty(&frag->f_item)); | 
|  | kmem_cache_free(rds_ib_frag_slab, frag); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* fwd decl */ | 
|  | static void rds_ib_recv_cache_put(struct list_head *new_item, | 
|  | struct rds_ib_refill_cache *cache); | 
|  | static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache); | 
|  |  | 
|  |  | 
|  | /* Recycle frag and attached recv buffer f_sg */ | 
|  | static void rds_ib_frag_free(struct rds_ib_connection *ic, | 
|  | struct rds_page_frag *frag) | 
|  | { | 
|  | rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg)); | 
|  |  | 
|  | rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags); | 
|  | atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs); | 
|  | rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE); | 
|  | } | 
|  |  | 
|  | /* Recycle inc after freeing attached frags */ | 
|  | void rds_ib_inc_free(struct rds_incoming *inc) | 
|  | { | 
|  | struct rds_ib_incoming *ibinc; | 
|  | struct rds_page_frag *frag; | 
|  | struct rds_page_frag *pos; | 
|  | struct rds_ib_connection *ic = inc->i_conn->c_transport_data; | 
|  |  | 
|  | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); | 
|  |  | 
|  | /* Free attached frags */ | 
|  | list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { | 
|  | list_del_init(&frag->f_item); | 
|  | rds_ib_frag_free(ic, frag); | 
|  | } | 
|  | BUG_ON(!list_empty(&ibinc->ii_frags)); | 
|  |  | 
|  | rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); | 
|  | rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs); | 
|  | } | 
|  |  | 
|  | static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, | 
|  | struct rds_ib_recv_work *recv) | 
|  | { | 
|  | if (recv->r_ibinc) { | 
|  | rds_inc_put(&recv->r_ibinc->ii_inc); | 
|  | recv->r_ibinc = NULL; | 
|  | } | 
|  | if (recv->r_frag) { | 
|  | ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); | 
|  | rds_ib_frag_free(ic, recv->r_frag); | 
|  | recv->r_frag = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) | 
|  | { | 
|  | u32 i; | 
|  |  | 
|  | for (i = 0; i < ic->i_recv_ring.w_nr; i++) | 
|  | rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); | 
|  | } | 
|  |  | 
|  | static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic, | 
|  | gfp_t slab_mask) | 
|  | { | 
|  | struct rds_ib_incoming *ibinc; | 
|  | struct list_head *cache_item; | 
|  | int avail_allocs; | 
|  |  | 
|  | cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs); | 
|  | if (cache_item) { | 
|  | ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry); | 
|  | } else { | 
|  | avail_allocs = atomic_add_unless(&rds_ib_allocation, | 
|  | 1, rds_ib_sysctl_max_recv_allocation); | 
|  | if (!avail_allocs) { | 
|  | rds_ib_stats_inc(s_ib_rx_alloc_limit); | 
|  | return NULL; | 
|  | } | 
|  | ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask); | 
|  | if (!ibinc) { | 
|  | atomic_dec(&rds_ib_allocation); | 
|  | return NULL; | 
|  | } | 
|  | rds_ib_stats_inc(s_ib_rx_total_incs); | 
|  | } | 
|  | INIT_LIST_HEAD(&ibinc->ii_frags); | 
|  | rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr); | 
|  |  | 
|  | return ibinc; | 
|  | } | 
|  |  | 
|  | static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic, | 
|  | gfp_t slab_mask, gfp_t page_mask) | 
|  | { | 
|  | struct rds_page_frag *frag; | 
|  | struct list_head *cache_item; | 
|  | int ret; | 
|  |  | 
|  | cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags); | 
|  | if (cache_item) { | 
|  | frag = container_of(cache_item, struct rds_page_frag, f_cache_entry); | 
|  | atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs); | 
|  | rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE); | 
|  | } else { | 
|  | frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask); | 
|  | if (!frag) | 
|  | return NULL; | 
|  |  | 
|  | sg_init_table(&frag->f_sg, 1); | 
|  | ret = rds_page_remainder_alloc(&frag->f_sg, | 
|  | RDS_FRAG_SIZE, page_mask); | 
|  | if (ret) { | 
|  | kmem_cache_free(rds_ib_frag_slab, frag); | 
|  | return NULL; | 
|  | } | 
|  | rds_ib_stats_inc(s_ib_rx_total_frags); | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&frag->f_item); | 
|  |  | 
|  | return frag; | 
|  | } | 
|  |  | 
|  | static int rds_ib_recv_refill_one(struct rds_connection *conn, | 
|  | struct rds_ib_recv_work *recv, gfp_t gfp) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | struct ib_sge *sge; | 
|  | int ret = -ENOMEM; | 
|  | gfp_t slab_mask = GFP_NOWAIT; | 
|  | gfp_t page_mask = GFP_NOWAIT; | 
|  |  | 
|  | if (gfp & __GFP_DIRECT_RECLAIM) { | 
|  | slab_mask = GFP_KERNEL; | 
|  | page_mask = GFP_HIGHUSER; | 
|  | } | 
|  |  | 
|  | if (!ic->i_cache_incs.ready) | 
|  | rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); | 
|  | if (!ic->i_cache_frags.ready) | 
|  | rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); | 
|  |  | 
|  | /* | 
|  | * ibinc was taken from recv if recv contained the start of a message. | 
|  | * recvs that were continuations will still have this allocated. | 
|  | */ | 
|  | if (!recv->r_ibinc) { | 
|  | recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask); | 
|  | if (!recv->r_ibinc) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | WARN_ON(recv->r_frag); /* leak! */ | 
|  | recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask); | 
|  | if (!recv->r_frag) | 
|  | goto out; | 
|  |  | 
|  | ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, | 
|  | 1, DMA_FROM_DEVICE); | 
|  | WARN_ON(ret != 1); | 
|  |  | 
|  | sge = &recv->r_sge[0]; | 
|  | sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); | 
|  | sge->length = sizeof(struct rds_header); | 
|  |  | 
|  | sge = &recv->r_sge[1]; | 
|  | sge->addr = sg_dma_address(&recv->r_frag->f_sg); | 
|  | sge->length = sg_dma_len(&recv->r_frag->f_sg); | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int acquire_refill(struct rds_connection *conn) | 
|  | { | 
|  | return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0; | 
|  | } | 
|  |  | 
|  | static void release_refill(struct rds_connection *conn) | 
|  | { | 
|  | clear_bit(RDS_RECV_REFILL, &conn->c_flags); | 
|  |  | 
|  | /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a | 
|  | * hot path and finding waiters is very rare.  We don't want to walk | 
|  | * the system-wide hashed waitqueue buckets in the fast path only to | 
|  | * almost never find waiters. | 
|  | */ | 
|  | if (waitqueue_active(&conn->c_waitq)) | 
|  | wake_up_all(&conn->c_waitq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This tries to allocate and post unused work requests after making sure that | 
|  | * they have all the allocations they need to queue received fragments into | 
|  | * sockets. | 
|  | */ | 
|  | void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | struct rds_ib_recv_work *recv; | 
|  | unsigned int posted = 0; | 
|  | int ret = 0; | 
|  | bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM); | 
|  | u32 pos; | 
|  |  | 
|  | /* the goal here is to just make sure that someone, somewhere | 
|  | * is posting buffers.  If we can't get the refill lock, | 
|  | * let them do their thing | 
|  | */ | 
|  | if (!acquire_refill(conn)) | 
|  | return; | 
|  |  | 
|  | while ((prefill || rds_conn_up(conn)) && | 
|  | rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { | 
|  | if (pos >= ic->i_recv_ring.w_nr) { | 
|  | printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", | 
|  | pos); | 
|  | break; | 
|  | } | 
|  |  | 
|  | recv = &ic->i_recvs[pos]; | 
|  | ret = rds_ib_recv_refill_one(conn, recv, gfp); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv, | 
|  | recv->r_ibinc, sg_page(&recv->r_frag->f_sg), | 
|  | (long)sg_dma_address(&recv->r_frag->f_sg)); | 
|  |  | 
|  | /* XXX when can this fail? */ | 
|  | ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL); | 
|  | if (ret) { | 
|  | rds_ib_conn_error(conn, "recv post on " | 
|  | "%pI6c returned %d, disconnecting and " | 
|  | "reconnecting\n", &conn->c_faddr, | 
|  | ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | posted++; | 
|  | } | 
|  |  | 
|  | /* We're doing flow control - update the window. */ | 
|  | if (ic->i_flowctl && posted) | 
|  | rds_ib_advertise_credits(conn, posted); | 
|  |  | 
|  | if (ret) | 
|  | rds_ib_ring_unalloc(&ic->i_recv_ring, 1); | 
|  |  | 
|  | release_refill(conn); | 
|  |  | 
|  | /* if we're called from the softirq handler, we'll be GFP_NOWAIT. | 
|  | * in this case the ring being low is going to lead to more interrupts | 
|  | * and we can safely let the softirq code take care of it unless the | 
|  | * ring is completely empty. | 
|  | * | 
|  | * if we're called from krdsd, we'll be GFP_KERNEL.  In this case | 
|  | * we might have raced with the softirq code while we had the refill | 
|  | * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide | 
|  | * if we should requeue. | 
|  | */ | 
|  | if (rds_conn_up(conn) && | 
|  | ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) || | 
|  | rds_ib_ring_empty(&ic->i_recv_ring))) { | 
|  | queue_delayed_work(rds_wq, &conn->c_recv_w, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to recycle several types of recv allocations, like incs and frags. | 
|  | * To use this, the *_free() function passes in the ptr to a list_head within | 
|  | * the recyclee, as well as the cache to put it on. | 
|  | * | 
|  | * First, we put the memory on a percpu list. When this reaches a certain size, | 
|  | * We move it to an intermediate non-percpu list in a lockless manner, with some | 
|  | * xchg/compxchg wizardry. | 
|  | * | 
|  | * N.B. Instead of a list_head as the anchor, we use a single pointer, which can | 
|  | * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and | 
|  | * list_empty() will return true with one element is actually present. | 
|  | */ | 
|  | static void rds_ib_recv_cache_put(struct list_head *new_item, | 
|  | struct rds_ib_refill_cache *cache) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct list_head *old, *chpfirst; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | chpfirst = __this_cpu_read(cache->percpu->first); | 
|  | if (!chpfirst) | 
|  | INIT_LIST_HEAD(new_item); | 
|  | else /* put on front */ | 
|  | list_add_tail(new_item, chpfirst); | 
|  |  | 
|  | __this_cpu_write(cache->percpu->first, new_item); | 
|  | __this_cpu_inc(cache->percpu->count); | 
|  |  | 
|  | if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT) | 
|  | goto end; | 
|  |  | 
|  | /* | 
|  | * Return our per-cpu first list to the cache's xfer by atomically | 
|  | * grabbing the current xfer list, appending it to our per-cpu list, | 
|  | * and then atomically returning that entire list back to the | 
|  | * cache's xfer list as long as it's still empty. | 
|  | */ | 
|  | do { | 
|  | old = xchg(&cache->xfer, NULL); | 
|  | if (old) | 
|  | list_splice_entire_tail(old, chpfirst); | 
|  | old = cmpxchg(&cache->xfer, NULL, chpfirst); | 
|  | } while (old); | 
|  |  | 
|  |  | 
|  | __this_cpu_write(cache->percpu->first, NULL); | 
|  | __this_cpu_write(cache->percpu->count, 0); | 
|  | end: | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache) | 
|  | { | 
|  | struct list_head *head = cache->ready; | 
|  |  | 
|  | if (head) { | 
|  | if (!list_empty(head)) { | 
|  | cache->ready = head->next; | 
|  | list_del_init(head); | 
|  | } else | 
|  | cache->ready = NULL; | 
|  | } | 
|  |  | 
|  | return head; | 
|  | } | 
|  |  | 
|  | int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) | 
|  | { | 
|  | struct rds_ib_incoming *ibinc; | 
|  | struct rds_page_frag *frag; | 
|  | unsigned long to_copy; | 
|  | unsigned long frag_off = 0; | 
|  | int copied = 0; | 
|  | int ret; | 
|  | u32 len; | 
|  |  | 
|  | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); | 
|  | frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); | 
|  | len = be32_to_cpu(inc->i_hdr.h_len); | 
|  |  | 
|  | while (iov_iter_count(to) && copied < len) { | 
|  | if (frag_off == RDS_FRAG_SIZE) { | 
|  | frag = list_entry(frag->f_item.next, | 
|  | struct rds_page_frag, f_item); | 
|  | frag_off = 0; | 
|  | } | 
|  | to_copy = min_t(unsigned long, iov_iter_count(to), | 
|  | RDS_FRAG_SIZE - frag_off); | 
|  | to_copy = min_t(unsigned long, to_copy, len - copied); | 
|  |  | 
|  | /* XXX needs + offset for multiple recvs per page */ | 
|  | rds_stats_add(s_copy_to_user, to_copy); | 
|  | ret = copy_page_to_iter(sg_page(&frag->f_sg), | 
|  | frag->f_sg.offset + frag_off, | 
|  | to_copy, | 
|  | to); | 
|  | if (ret != to_copy) | 
|  | return -EFAULT; | 
|  |  | 
|  | frag_off += to_copy; | 
|  | copied += to_copy; | 
|  | } | 
|  |  | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | /* ic starts out kzalloc()ed */ | 
|  | void rds_ib_recv_init_ack(struct rds_ib_connection *ic) | 
|  | { | 
|  | struct ib_send_wr *wr = &ic->i_ack_wr; | 
|  | struct ib_sge *sge = &ic->i_ack_sge; | 
|  |  | 
|  | sge->addr = ic->i_ack_dma; | 
|  | sge->length = sizeof(struct rds_header); | 
|  | sge->lkey = ic->i_pd->local_dma_lkey; | 
|  |  | 
|  | wr->sg_list = sge; | 
|  | wr->num_sge = 1; | 
|  | wr->opcode = IB_WR_SEND; | 
|  | wr->wr_id = RDS_IB_ACK_WR_ID; | 
|  | wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * You'd think that with reliable IB connections you wouldn't need to ack | 
|  | * messages that have been received.  The problem is that IB hardware generates | 
|  | * an ack message before it has DMAed the message into memory.  This creates a | 
|  | * potential message loss if the HCA is disabled for any reason between when it | 
|  | * sends the ack and before the message is DMAed and processed.  This is only a | 
|  | * potential issue if another HCA is available for fail-over. | 
|  | * | 
|  | * When the remote host receives our ack they'll free the sent message from | 
|  | * their send queue.  To decrease the latency of this we always send an ack | 
|  | * immediately after we've received messages. | 
|  | * | 
|  | * For simplicity, we only have one ack in flight at a time.  This puts | 
|  | * pressure on senders to have deep enough send queues to absorb the latency of | 
|  | * a single ack frame being in flight.  This might not be good enough. | 
|  | * | 
|  | * This is implemented by have a long-lived send_wr and sge which point to a | 
|  | * statically allocated ack frame.  This ack wr does not fall under the ring | 
|  | * accounting that the tx and rx wrs do.  The QP attribute specifically makes | 
|  | * room for it beyond the ring size.  Send completion notices its special | 
|  | * wr_id and avoids working with the ring in that case. | 
|  | */ | 
|  | #ifndef KERNEL_HAS_ATOMIC64 | 
|  | void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ic->i_ack_lock, flags); | 
|  | ic->i_ack_next = seq; | 
|  | if (ack_required) | 
|  | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | spin_unlock_irqrestore(&ic->i_ack_lock, flags); | 
|  | } | 
|  |  | 
|  | static u64 rds_ib_get_ack(struct rds_ib_connection *ic) | 
|  | { | 
|  | unsigned long flags; | 
|  | u64 seq; | 
|  |  | 
|  | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  |  | 
|  | spin_lock_irqsave(&ic->i_ack_lock, flags); | 
|  | seq = ic->i_ack_next; | 
|  | spin_unlock_irqrestore(&ic->i_ack_lock, flags); | 
|  |  | 
|  | return seq; | 
|  | } | 
|  | #else | 
|  | void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) | 
|  | { | 
|  | atomic64_set(&ic->i_ack_next, seq); | 
|  | if (ack_required) { | 
|  | smp_mb__before_atomic(); | 
|  | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u64 rds_ib_get_ack(struct rds_ib_connection *ic) | 
|  | { | 
|  | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | return atomic64_read(&ic->i_ack_next); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) | 
|  | { | 
|  | struct rds_header *hdr = ic->i_ack; | 
|  | u64 seq; | 
|  | int ret; | 
|  |  | 
|  | seq = rds_ib_get_ack(ic); | 
|  |  | 
|  | rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); | 
|  | rds_message_populate_header(hdr, 0, 0, 0); | 
|  | hdr->h_ack = cpu_to_be64(seq); | 
|  | hdr->h_credit = adv_credits; | 
|  | rds_message_make_checksum(hdr); | 
|  | ic->i_ack_queued = jiffies; | 
|  |  | 
|  | ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL); | 
|  | if (unlikely(ret)) { | 
|  | /* Failed to send. Release the WR, and | 
|  | * force another ACK. | 
|  | */ | 
|  | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | 
|  | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  |  | 
|  | rds_ib_stats_inc(s_ib_ack_send_failure); | 
|  |  | 
|  | rds_ib_conn_error(ic->conn, "sending ack failed\n"); | 
|  | } else | 
|  | rds_ib_stats_inc(s_ib_ack_sent); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are 3 ways of getting acknowledgements to the peer: | 
|  | *  1.	We call rds_ib_attempt_ack from the recv completion handler | 
|  | *	to send an ACK-only frame. | 
|  | *	However, there can be only one such frame in the send queue | 
|  | *	at any time, so we may have to postpone it. | 
|  | *  2.	When another (data) packet is transmitted while there's | 
|  | *	an ACK in the queue, we piggyback the ACK sequence number | 
|  | *	on the data packet. | 
|  | *  3.	If the ACK WR is done sending, we get called from the | 
|  | *	send queue completion handler, and check whether there's | 
|  | *	another ACK pending (postponed because the WR was on the | 
|  | *	queue). If so, we transmit it. | 
|  | * | 
|  | * We maintain 2 variables: | 
|  | *  -	i_ack_flags, which keeps track of whether the ACK WR | 
|  | *	is currently in the send queue or not (IB_ACK_IN_FLIGHT) | 
|  | *  -	i_ack_next, which is the last sequence number we received | 
|  | * | 
|  | * Potentially, send queue and receive queue handlers can run concurrently. | 
|  | * It would be nice to not have to use a spinlock to synchronize things, | 
|  | * but the one problem that rules this out is that 64bit updates are | 
|  | * not atomic on all platforms. Things would be a lot simpler if | 
|  | * we had atomic64 or maybe cmpxchg64 everywhere. | 
|  | * | 
|  | * Reconnecting complicates this picture just slightly. When we | 
|  | * reconnect, we may be seeing duplicate packets. The peer | 
|  | * is retransmitting them, because it hasn't seen an ACK for | 
|  | * them. It is important that we ACK these. | 
|  | * | 
|  | * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with | 
|  | * this flag set *MUST* be acknowledged immediately. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * When we get here, we're called from the recv queue handler. | 
|  | * Check whether we ought to transmit an ACK. | 
|  | */ | 
|  | void rds_ib_attempt_ack(struct rds_ib_connection *ic) | 
|  | { | 
|  | unsigned int adv_credits; | 
|  |  | 
|  | if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | 
|  | return; | 
|  |  | 
|  | if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { | 
|  | rds_ib_stats_inc(s_ib_ack_send_delayed); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Can we get a send credit? */ | 
|  | if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { | 
|  | rds_ib_stats_inc(s_ib_tx_throttle); | 
|  | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | rds_ib_send_ack(ic, adv_credits); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We get here from the send completion handler, when the | 
|  | * adapter tells us the ACK frame was sent. | 
|  | */ | 
|  | void rds_ib_ack_send_complete(struct rds_ib_connection *ic) | 
|  | { | 
|  | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | 
|  | rds_ib_attempt_ack(ic); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called by the regular xmit code when it wants to piggyback | 
|  | * an ACK on an outgoing frame. | 
|  | */ | 
|  | u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) | 
|  | { | 
|  | if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | 
|  | rds_ib_stats_inc(s_ib_ack_send_piggybacked); | 
|  | return rds_ib_get_ack(ic); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's kind of lame that we're copying from the posted receive pages into | 
|  | * long-lived bitmaps.  We could have posted the bitmaps and rdma written into | 
|  | * them.  But receiving new congestion bitmaps should be a *rare* event, so | 
|  | * hopefully we won't need to invest that complexity in making it more | 
|  | * efficient.  By copying we can share a simpler core with TCP which has to | 
|  | * copy. | 
|  | */ | 
|  | static void rds_ib_cong_recv(struct rds_connection *conn, | 
|  | struct rds_ib_incoming *ibinc) | 
|  | { | 
|  | struct rds_cong_map *map; | 
|  | unsigned int map_off; | 
|  | unsigned int map_page; | 
|  | struct rds_page_frag *frag; | 
|  | unsigned long frag_off; | 
|  | unsigned long to_copy; | 
|  | unsigned long copied; | 
|  | __le64 uncongested = 0; | 
|  | void *addr; | 
|  |  | 
|  | /* catch completely corrupt packets */ | 
|  | if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) | 
|  | return; | 
|  |  | 
|  | map = conn->c_fcong; | 
|  | map_page = 0; | 
|  | map_off = 0; | 
|  |  | 
|  | frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); | 
|  | frag_off = 0; | 
|  |  | 
|  | copied = 0; | 
|  |  | 
|  | while (copied < RDS_CONG_MAP_BYTES) { | 
|  | __le64 *src, *dst; | 
|  | unsigned int k; | 
|  |  | 
|  | to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); | 
|  | BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ | 
|  |  | 
|  | addr = kmap_atomic(sg_page(&frag->f_sg)); | 
|  |  | 
|  | src = addr + frag->f_sg.offset + frag_off; | 
|  | dst = (void *)map->m_page_addrs[map_page] + map_off; | 
|  | for (k = 0; k < to_copy; k += 8) { | 
|  | /* Record ports that became uncongested, ie | 
|  | * bits that changed from 0 to 1. */ | 
|  | uncongested |= ~(*src) & *dst; | 
|  | *dst++ = *src++; | 
|  | } | 
|  | kunmap_atomic(addr); | 
|  |  | 
|  | copied += to_copy; | 
|  |  | 
|  | map_off += to_copy; | 
|  | if (map_off == PAGE_SIZE) { | 
|  | map_off = 0; | 
|  | map_page++; | 
|  | } | 
|  |  | 
|  | frag_off += to_copy; | 
|  | if (frag_off == RDS_FRAG_SIZE) { | 
|  | frag = list_entry(frag->f_item.next, | 
|  | struct rds_page_frag, f_item); | 
|  | frag_off = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* the congestion map is in little endian order */ | 
|  | rds_cong_map_updated(map, le64_to_cpu(uncongested)); | 
|  | } | 
|  |  | 
|  | static void rds_ib_process_recv(struct rds_connection *conn, | 
|  | struct rds_ib_recv_work *recv, u32 data_len, | 
|  | struct rds_ib_ack_state *state) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | struct rds_ib_incoming *ibinc = ic->i_ibinc; | 
|  | struct rds_header *ihdr, *hdr; | 
|  |  | 
|  | /* XXX shut down the connection if port 0,0 are seen? */ | 
|  |  | 
|  | rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, | 
|  | data_len); | 
|  |  | 
|  | if (data_len < sizeof(struct rds_header)) { | 
|  | rds_ib_conn_error(conn, "incoming message " | 
|  | "from %pI6c didn't include a " | 
|  | "header, disconnecting and " | 
|  | "reconnecting\n", | 
|  | &conn->c_faddr); | 
|  | return; | 
|  | } | 
|  | data_len -= sizeof(struct rds_header); | 
|  |  | 
|  | ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; | 
|  |  | 
|  | /* Validate the checksum. */ | 
|  | if (!rds_message_verify_checksum(ihdr)) { | 
|  | rds_ib_conn_error(conn, "incoming message " | 
|  | "from %pI6c has corrupted header - " | 
|  | "forcing a reconnect\n", | 
|  | &conn->c_faddr); | 
|  | rds_stats_inc(s_recv_drop_bad_checksum); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Process the ACK sequence which comes with every packet */ | 
|  | state->ack_recv = be64_to_cpu(ihdr->h_ack); | 
|  | state->ack_recv_valid = 1; | 
|  |  | 
|  | /* Process the credits update if there was one */ | 
|  | if (ihdr->h_credit) | 
|  | rds_ib_send_add_credits(conn, ihdr->h_credit); | 
|  |  | 
|  | if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { | 
|  | /* This is an ACK-only packet. The fact that it gets | 
|  | * special treatment here is that historically, ACKs | 
|  | * were rather special beasts. | 
|  | */ | 
|  | rds_ib_stats_inc(s_ib_ack_received); | 
|  |  | 
|  | /* | 
|  | * Usually the frags make their way on to incs and are then freed as | 
|  | * the inc is freed.  We don't go that route, so we have to drop the | 
|  | * page ref ourselves.  We can't just leave the page on the recv | 
|  | * because that confuses the dma mapping of pages and each recv's use | 
|  | * of a partial page. | 
|  | * | 
|  | * FIXME: Fold this into the code path below. | 
|  | */ | 
|  | rds_ib_frag_free(ic, recv->r_frag); | 
|  | recv->r_frag = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we don't already have an inc on the connection then this | 
|  | * fragment has a header and starts a message.. copy its header | 
|  | * into the inc and save the inc so we can hang upcoming fragments | 
|  | * off its list. | 
|  | */ | 
|  | if (!ibinc) { | 
|  | ibinc = recv->r_ibinc; | 
|  | recv->r_ibinc = NULL; | 
|  | ic->i_ibinc = ibinc; | 
|  |  | 
|  | hdr = &ibinc->ii_inc.i_hdr; | 
|  | ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] = | 
|  | local_clock(); | 
|  | memcpy(hdr, ihdr, sizeof(*hdr)); | 
|  | ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); | 
|  | ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] = | 
|  | local_clock(); | 
|  |  | 
|  | rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, | 
|  | ic->i_recv_data_rem, hdr->h_flags); | 
|  | } else { | 
|  | hdr = &ibinc->ii_inc.i_hdr; | 
|  | /* We can't just use memcmp here; fragments of a | 
|  | * single message may carry different ACKs */ | 
|  | if (hdr->h_sequence != ihdr->h_sequence || | 
|  | hdr->h_len != ihdr->h_len || | 
|  | hdr->h_sport != ihdr->h_sport || | 
|  | hdr->h_dport != ihdr->h_dport) { | 
|  | rds_ib_conn_error(conn, | 
|  | "fragment header mismatch; forcing reconnect\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); | 
|  | recv->r_frag = NULL; | 
|  |  | 
|  | if (ic->i_recv_data_rem > RDS_FRAG_SIZE) | 
|  | ic->i_recv_data_rem -= RDS_FRAG_SIZE; | 
|  | else { | 
|  | ic->i_recv_data_rem = 0; | 
|  | ic->i_ibinc = NULL; | 
|  |  | 
|  | if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) { | 
|  | rds_ib_cong_recv(conn, ibinc); | 
|  | } else { | 
|  | rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr, | 
|  | &ibinc->ii_inc, GFP_ATOMIC); | 
|  | state->ack_next = be64_to_cpu(hdr->h_sequence); | 
|  | state->ack_next_valid = 1; | 
|  | } | 
|  |  | 
|  | /* Evaluate the ACK_REQUIRED flag *after* we received | 
|  | * the complete frame, and after bumping the next_rx | 
|  | * sequence. */ | 
|  | if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { | 
|  | rds_stats_inc(s_recv_ack_required); | 
|  | state->ack_required = 1; | 
|  | } | 
|  |  | 
|  | rds_inc_put(&ibinc->ii_inc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic, | 
|  | struct ib_wc *wc, | 
|  | struct rds_ib_ack_state *state) | 
|  | { | 
|  | struct rds_connection *conn = ic->conn; | 
|  | struct rds_ib_recv_work *recv; | 
|  |  | 
|  | rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", | 
|  | (unsigned long long)wc->wr_id, wc->status, | 
|  | ib_wc_status_msg(wc->status), wc->byte_len, | 
|  | be32_to_cpu(wc->ex.imm_data)); | 
|  |  | 
|  | rds_ib_stats_inc(s_ib_rx_cq_event); | 
|  | recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; | 
|  | ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, | 
|  | DMA_FROM_DEVICE); | 
|  |  | 
|  | /* Also process recvs in connecting state because it is possible | 
|  | * to get a recv completion _before_ the rdmacm ESTABLISHED | 
|  | * event is processed. | 
|  | */ | 
|  | if (wc->status == IB_WC_SUCCESS) { | 
|  | rds_ib_process_recv(conn, recv, wc->byte_len, state); | 
|  | } else { | 
|  | /* We expect errors as the qp is drained during shutdown */ | 
|  | if (rds_conn_up(conn) || rds_conn_connecting(conn)) | 
|  | rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), disconnecting and reconnecting\n", | 
|  | &conn->c_laddr, &conn->c_faddr, | 
|  | conn->c_tos, wc->status, | 
|  | ib_wc_status_msg(wc->status)); | 
|  | } | 
|  |  | 
|  | /* rds_ib_process_recv() doesn't always consume the frag, and | 
|  | * we might not have called it at all if the wc didn't indicate | 
|  | * success. We already unmapped the frag's pages, though, and | 
|  | * the following rds_ib_ring_free() call tells the refill path | 
|  | * that it will not find an allocated frag here. Make sure we | 
|  | * keep that promise by freeing a frag that's still on the ring. | 
|  | */ | 
|  | if (recv->r_frag) { | 
|  | rds_ib_frag_free(ic, recv->r_frag); | 
|  | recv->r_frag = NULL; | 
|  | } | 
|  | rds_ib_ring_free(&ic->i_recv_ring, 1); | 
|  |  | 
|  | /* If we ever end up with a really empty receive ring, we're | 
|  | * in deep trouble, as the sender will definitely see RNR | 
|  | * timeouts. */ | 
|  | if (rds_ib_ring_empty(&ic->i_recv_ring)) | 
|  | rds_ib_stats_inc(s_ib_rx_ring_empty); | 
|  |  | 
|  | if (rds_ib_ring_low(&ic->i_recv_ring)) { | 
|  | rds_ib_recv_refill(conn, 0, GFP_NOWAIT); | 
|  | rds_ib_stats_inc(s_ib_rx_refill_from_cq); | 
|  | } | 
|  | } | 
|  |  | 
|  | int rds_ib_recv_path(struct rds_conn_path *cp) | 
|  | { | 
|  | struct rds_connection *conn = cp->cp_conn; | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  |  | 
|  | rdsdebug("conn %p\n", conn); | 
|  | if (rds_conn_up(conn)) { | 
|  | rds_ib_attempt_ack(ic); | 
|  | rds_ib_recv_refill(conn, 0, GFP_KERNEL); | 
|  | rds_ib_stats_inc(s_ib_rx_refill_from_thread); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int rds_ib_recv_init(void) | 
|  | { | 
|  | struct sysinfo si; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | /* Default to 30% of all available RAM for recv memory */ | 
|  | si_meminfo(&si); | 
|  | rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; | 
|  |  | 
|  | rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", | 
|  | sizeof(struct rds_ib_incoming), | 
|  | 0, SLAB_HWCACHE_ALIGN, NULL); | 
|  | if (!rds_ib_incoming_slab) | 
|  | goto out; | 
|  |  | 
|  | rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", | 
|  | sizeof(struct rds_page_frag), | 
|  | 0, SLAB_HWCACHE_ALIGN, NULL); | 
|  | if (!rds_ib_frag_slab) { | 
|  | kmem_cache_destroy(rds_ib_incoming_slab); | 
|  | rds_ib_incoming_slab = NULL; | 
|  | } else | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void rds_ib_recv_exit(void) | 
|  | { | 
|  | WARN_ON(atomic_read(&rds_ib_allocation)); | 
|  |  | 
|  | kmem_cache_destroy(rds_ib_incoming_slab); | 
|  | kmem_cache_destroy(rds_ib_frag_slab); | 
|  | } |