|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* Instantiate a public key crypto key from an X.509 Certificate | 
|  | * | 
|  | * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved. | 
|  | * Written by David Howells (dhowells@redhat.com) | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "ASYM: "fmt | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/err.h> | 
|  | #include <crypto/public_key.h> | 
|  | #include "asymmetric_keys.h" | 
|  |  | 
|  | static bool use_builtin_keys; | 
|  | static struct asymmetric_key_id *ca_keyid; | 
|  |  | 
|  | #ifndef MODULE | 
|  | static struct { | 
|  | struct asymmetric_key_id id; | 
|  | unsigned char data[10]; | 
|  | } cakey; | 
|  |  | 
|  | static int __init ca_keys_setup(char *str) | 
|  | { | 
|  | if (!str)		/* default system keyring */ | 
|  | return 1; | 
|  |  | 
|  | if (strncmp(str, "id:", 3) == 0) { | 
|  | struct asymmetric_key_id *p = &cakey.id; | 
|  | size_t hexlen = (strlen(str) - 3) / 2; | 
|  | int ret; | 
|  |  | 
|  | if (hexlen == 0 || hexlen > sizeof(cakey.data)) { | 
|  | pr_err("Missing or invalid ca_keys id\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen); | 
|  | if (ret < 0) | 
|  | pr_err("Unparsable ca_keys id hex string\n"); | 
|  | else | 
|  | ca_keyid = p;	/* owner key 'id:xxxxxx' */ | 
|  | } else if (strcmp(str, "builtin") == 0) { | 
|  | use_builtin_keys = true; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("ca_keys=", ca_keys_setup); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * restrict_link_by_signature - Restrict additions to a ring of public keys | 
|  | * @dest_keyring: Keyring being linked to. | 
|  | * @type: The type of key being added. | 
|  | * @payload: The payload of the new key. | 
|  | * @trust_keyring: A ring of keys that can be used to vouch for the new cert. | 
|  | * | 
|  | * Check the new certificate against the ones in the trust keyring.  If one of | 
|  | * those is the signing key and validates the new certificate, then mark the | 
|  | * new certificate as being trusted. | 
|  | * | 
|  | * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a | 
|  | * matching parent certificate in the trusted list, -EKEYREJECTED if the | 
|  | * signature check fails or the key is blacklisted, -ENOPKG if the signature | 
|  | * uses unsupported crypto, or some other error if there is a matching | 
|  | * certificate but the signature check cannot be performed. | 
|  | */ | 
|  | int restrict_link_by_signature(struct key *dest_keyring, | 
|  | const struct key_type *type, | 
|  | const union key_payload *payload, | 
|  | struct key *trust_keyring) | 
|  | { | 
|  | const struct public_key_signature *sig; | 
|  | struct key *key; | 
|  | int ret; | 
|  |  | 
|  | pr_devel("==>%s()\n", __func__); | 
|  |  | 
|  | if (!trust_keyring) | 
|  | return -ENOKEY; | 
|  |  | 
|  | if (type != &key_type_asymmetric) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | sig = payload->data[asym_auth]; | 
|  | if (!sig) | 
|  | return -ENOPKG; | 
|  | if (!sig->auth_ids[0] && !sig->auth_ids[1]) | 
|  | return -ENOKEY; | 
|  |  | 
|  | if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* See if we have a key that signed this one. */ | 
|  | key = find_asymmetric_key(trust_keyring, | 
|  | sig->auth_ids[0], sig->auth_ids[1], | 
|  | false); | 
|  | if (IS_ERR(key)) | 
|  | return -ENOKEY; | 
|  |  | 
|  | if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags)) | 
|  | ret = -ENOKEY; | 
|  | else | 
|  | ret = verify_signature(key, sig); | 
|  | key_put(key); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool match_either_id(const struct asymmetric_key_ids *pair, | 
|  | const struct asymmetric_key_id *single) | 
|  | { | 
|  | return (asymmetric_key_id_same(pair->id[0], single) || | 
|  | asymmetric_key_id_same(pair->id[1], single)); | 
|  | } | 
|  |  | 
|  | static int key_or_keyring_common(struct key *dest_keyring, | 
|  | const struct key_type *type, | 
|  | const union key_payload *payload, | 
|  | struct key *trusted, bool check_dest) | 
|  | { | 
|  | const struct public_key_signature *sig; | 
|  | struct key *key = NULL; | 
|  | int ret; | 
|  |  | 
|  | pr_devel("==>%s()\n", __func__); | 
|  |  | 
|  | if (!dest_keyring) | 
|  | return -ENOKEY; | 
|  | else if (dest_keyring->type != &key_type_keyring) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (!trusted && !check_dest) | 
|  | return -ENOKEY; | 
|  |  | 
|  | if (type != &key_type_asymmetric) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | sig = payload->data[asym_auth]; | 
|  | if (!sig) | 
|  | return -ENOPKG; | 
|  | if (!sig->auth_ids[0] && !sig->auth_ids[1]) | 
|  | return -ENOKEY; | 
|  |  | 
|  | if (trusted) { | 
|  | if (trusted->type == &key_type_keyring) { | 
|  | /* See if we have a key that signed this one. */ | 
|  | key = find_asymmetric_key(trusted, sig->auth_ids[0], | 
|  | sig->auth_ids[1], false); | 
|  | if (IS_ERR(key)) | 
|  | key = NULL; | 
|  | } else if (trusted->type == &key_type_asymmetric) { | 
|  | const struct asymmetric_key_ids *signer_ids; | 
|  |  | 
|  | signer_ids = asymmetric_key_ids(trusted); | 
|  |  | 
|  | /* | 
|  | * The auth_ids come from the candidate key (the | 
|  | * one that is being considered for addition to | 
|  | * dest_keyring) and identify the key that was | 
|  | * used to sign. | 
|  | * | 
|  | * The signer_ids are identifiers for the | 
|  | * signing key specified for dest_keyring. | 
|  | * | 
|  | * The first auth_id is the preferred id, and | 
|  | * the second is the fallback. If only one | 
|  | * auth_id is present, it may match against | 
|  | * either signer_id. If two auth_ids are | 
|  | * present, the first auth_id must match one | 
|  | * signer_id and the second auth_id must match | 
|  | * the second signer_id. | 
|  | */ | 
|  | if (!sig->auth_ids[0] || !sig->auth_ids[1]) { | 
|  | const struct asymmetric_key_id *auth_id; | 
|  |  | 
|  | auth_id = sig->auth_ids[0] ?: sig->auth_ids[1]; | 
|  | if (match_either_id(signer_ids, auth_id)) | 
|  | key = __key_get(trusted); | 
|  |  | 
|  | } else if (asymmetric_key_id_same(signer_ids->id[1], | 
|  | sig->auth_ids[1]) && | 
|  | match_either_id(signer_ids, | 
|  | sig->auth_ids[0])) { | 
|  | key = __key_get(trusted); | 
|  | } | 
|  | } else { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (check_dest && !key) { | 
|  | /* See if the destination has a key that signed this one. */ | 
|  | key = find_asymmetric_key(dest_keyring, sig->auth_ids[0], | 
|  | sig->auth_ids[1], false); | 
|  | if (IS_ERR(key)) | 
|  | key = NULL; | 
|  | } | 
|  |  | 
|  | if (!key) | 
|  | return -ENOKEY; | 
|  |  | 
|  | ret = key_validate(key); | 
|  | if (ret == 0) | 
|  | ret = verify_signature(key, sig); | 
|  |  | 
|  | key_put(key); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * restrict_link_by_key_or_keyring - Restrict additions to a ring of public | 
|  | * keys using the restrict_key information stored in the ring. | 
|  | * @dest_keyring: Keyring being linked to. | 
|  | * @type: The type of key being added. | 
|  | * @payload: The payload of the new key. | 
|  | * @trusted: A key or ring of keys that can be used to vouch for the new cert. | 
|  | * | 
|  | * Check the new certificate only against the key or keys passed in the data | 
|  | * parameter. If one of those is the signing key and validates the new | 
|  | * certificate, then mark the new certificate as being ok to link. | 
|  | * | 
|  | * Returns 0 if the new certificate was accepted, -ENOKEY if we | 
|  | * couldn't find a matching parent certificate in the trusted list, | 
|  | * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses | 
|  | * unsupported crypto, or some other error if there is a matching certificate | 
|  | * but the signature check cannot be performed. | 
|  | */ | 
|  | int restrict_link_by_key_or_keyring(struct key *dest_keyring, | 
|  | const struct key_type *type, | 
|  | const union key_payload *payload, | 
|  | struct key *trusted) | 
|  | { | 
|  | return key_or_keyring_common(dest_keyring, type, payload, trusted, | 
|  | false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of | 
|  | * public keys using the restrict_key information stored in the ring. | 
|  | * @dest_keyring: Keyring being linked to. | 
|  | * @type: The type of key being added. | 
|  | * @payload: The payload of the new key. | 
|  | * @trusted: A key or ring of keys that can be used to vouch for the new cert. | 
|  | * | 
|  | * Check the new certificate only against the key or keys passed in the data | 
|  | * parameter. If one of those is the signing key and validates the new | 
|  | * certificate, then mark the new certificate as being ok to link. | 
|  | * | 
|  | * Returns 0 if the new certificate was accepted, -ENOKEY if we | 
|  | * couldn't find a matching parent certificate in the trusted list, | 
|  | * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses | 
|  | * unsupported crypto, or some other error if there is a matching certificate | 
|  | * but the signature check cannot be performed. | 
|  | */ | 
|  | int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring, | 
|  | const struct key_type *type, | 
|  | const union key_payload *payload, | 
|  | struct key *trusted) | 
|  | { | 
|  | return key_or_keyring_common(dest_keyring, type, payload, trusted, | 
|  | true); | 
|  | } |