|  | /* memcontrol.c - Memory Controller | 
|  | * | 
|  | * Copyright IBM Corporation, 2007 | 
|  | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
|  | * | 
|  | * Copyright 2007 OpenVZ SWsoft Inc | 
|  | * Author: Pavel Emelianov <xemul@openvz.org> | 
|  | * | 
|  | * Memory thresholds | 
|  | * Copyright (C) 2009 Nokia Corporation | 
|  | * Author: Kirill A. Shutemov | 
|  | * | 
|  | * Kernel Memory Controller | 
|  | * Copyright (C) 2012 Parallels Inc. and Google Inc. | 
|  | * Authors: Glauber Costa and Suleiman Souhlal | 
|  | * | 
|  | * Native page reclaim | 
|  | * Charge lifetime sanitation | 
|  | * Lockless page tracking & accounting | 
|  | * Unified hierarchy configuration model | 
|  | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/page_counter.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/vm_event_item.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/limits.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/eventfd.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/vmpressure.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/swap_cgroup.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/tracehook.h> | 
|  | #include "internal.h" | 
|  | #include <net/sock.h> | 
|  | #include <net/ip.h> | 
|  | #include "slab.h" | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <trace/events/vmscan.h> | 
|  |  | 
|  | struct cgroup_subsys memory_cgrp_subsys __read_mostly; | 
|  | EXPORT_SYMBOL(memory_cgrp_subsys); | 
|  |  | 
|  | struct mem_cgroup *root_mem_cgroup __read_mostly; | 
|  |  | 
|  | #define MEM_CGROUP_RECLAIM_RETRIES	5 | 
|  |  | 
|  | /* Socket memory accounting disabled? */ | 
|  | static bool cgroup_memory_nosocket; | 
|  |  | 
|  | /* Kernel memory accounting disabled? */ | 
|  | static bool cgroup_memory_nokmem; | 
|  |  | 
|  | /* Whether the swap controller is active */ | 
|  | #ifdef CONFIG_MEMCG_SWAP | 
|  | int do_swap_account __read_mostly; | 
|  | #else | 
|  | #define do_swap_account		0 | 
|  | #endif | 
|  |  | 
|  | /* Whether legacy memory+swap accounting is active */ | 
|  | static bool do_memsw_account(void) | 
|  | { | 
|  | return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; | 
|  | } | 
|  |  | 
|  | static const char *const mem_cgroup_lru_names[] = { | 
|  | "inactive_anon", | 
|  | "active_anon", | 
|  | "inactive_file", | 
|  | "active_file", | 
|  | "unevictable", | 
|  | }; | 
|  |  | 
|  | #define THRESHOLDS_EVENTS_TARGET 128 | 
|  | #define SOFTLIMIT_EVENTS_TARGET 1024 | 
|  | #define NUMAINFO_EVENTS_TARGET	1024 | 
|  |  | 
|  | /* | 
|  | * Cgroups above their limits are maintained in a RB-Tree, independent of | 
|  | * their hierarchy representation | 
|  | */ | 
|  |  | 
|  | struct mem_cgroup_tree_per_node { | 
|  | struct rb_root rb_root; | 
|  | struct rb_node *rb_rightmost; | 
|  | spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_tree { | 
|  | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | 
|  | }; | 
|  |  | 
|  | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | 
|  |  | 
|  | /* for OOM */ | 
|  | struct mem_cgroup_eventfd_list { | 
|  | struct list_head list; | 
|  | struct eventfd_ctx *eventfd; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * cgroup_event represents events which userspace want to receive. | 
|  | */ | 
|  | struct mem_cgroup_event { | 
|  | /* | 
|  | * memcg which the event belongs to. | 
|  | */ | 
|  | struct mem_cgroup *memcg; | 
|  | /* | 
|  | * eventfd to signal userspace about the event. | 
|  | */ | 
|  | struct eventfd_ctx *eventfd; | 
|  | /* | 
|  | * Each of these stored in a list by the cgroup. | 
|  | */ | 
|  | struct list_head list; | 
|  | /* | 
|  | * register_event() callback will be used to add new userspace | 
|  | * waiter for changes related to this event.  Use eventfd_signal() | 
|  | * on eventfd to send notification to userspace. | 
|  | */ | 
|  | int (*register_event)(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args); | 
|  | /* | 
|  | * unregister_event() callback will be called when userspace closes | 
|  | * the eventfd or on cgroup removing.  This callback must be set, | 
|  | * if you want provide notification functionality. | 
|  | */ | 
|  | void (*unregister_event)(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd); | 
|  | /* | 
|  | * All fields below needed to unregister event when | 
|  | * userspace closes eventfd. | 
|  | */ | 
|  | poll_table pt; | 
|  | wait_queue_head_t *wqh; | 
|  | wait_queue_entry_t wait; | 
|  | struct work_struct remove; | 
|  | }; | 
|  |  | 
|  | static void mem_cgroup_threshold(struct mem_cgroup *memcg); | 
|  | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | 
|  |  | 
|  | /* Stuffs for move charges at task migration. */ | 
|  | /* | 
|  | * Types of charges to be moved. | 
|  | */ | 
|  | #define MOVE_ANON	0x1U | 
|  | #define MOVE_FILE	0x2U | 
|  | #define MOVE_MASK	(MOVE_ANON | MOVE_FILE) | 
|  |  | 
|  | /* "mc" and its members are protected by cgroup_mutex */ | 
|  | static struct move_charge_struct { | 
|  | spinlock_t	  lock; /* for from, to */ | 
|  | struct mm_struct  *mm; | 
|  | struct mem_cgroup *from; | 
|  | struct mem_cgroup *to; | 
|  | unsigned long flags; | 
|  | unsigned long precharge; | 
|  | unsigned long moved_charge; | 
|  | unsigned long moved_swap; | 
|  | struct task_struct *moving_task;	/* a task moving charges */ | 
|  | wait_queue_head_t waitq;		/* a waitq for other context */ | 
|  | } mc = { | 
|  | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | 
|  | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | 
|  | * limit reclaim to prevent infinite loops, if they ever occur. | 
|  | */ | 
|  | #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100 | 
|  | #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2 | 
|  |  | 
|  | enum charge_type { | 
|  | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 
|  | MEM_CGROUP_CHARGE_TYPE_ANON, | 
|  | MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */ | 
|  | MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */ | 
|  | NR_CHARGE_TYPE, | 
|  | }; | 
|  |  | 
|  | /* for encoding cft->private value on file */ | 
|  | enum res_type { | 
|  | _MEM, | 
|  | _MEMSWAP, | 
|  | _OOM_TYPE, | 
|  | _KMEM, | 
|  | _TCP, | 
|  | }; | 
|  |  | 
|  | #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val)) | 
|  | #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff) | 
|  | #define MEMFILE_ATTR(val)	((val) & 0xffff) | 
|  | /* Used for OOM nofiier */ | 
|  | #define OOM_CONTROL		(0) | 
|  |  | 
|  | /* | 
|  | * Iteration constructs for visiting all cgroups (under a tree).  If | 
|  | * loops are exited prematurely (break), mem_cgroup_iter_break() must | 
|  | * be used for reference counting. | 
|  | */ | 
|  | #define for_each_mem_cgroup_tree(iter, root)		\ | 
|  | for (iter = mem_cgroup_iter(root, NULL, NULL);	\ | 
|  | iter != NULL;				\ | 
|  | iter = mem_cgroup_iter(root, iter, NULL)) | 
|  |  | 
|  | #define for_each_mem_cgroup(iter)			\ | 
|  | for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\ | 
|  | iter != NULL;				\ | 
|  | iter = mem_cgroup_iter(NULL, iter, NULL)) | 
|  |  | 
|  | static inline bool should_force_charge(void) | 
|  | { | 
|  | return tsk_is_oom_victim(current) || fatal_signal_pending(current) || | 
|  | (current->flags & PF_EXITING); | 
|  | } | 
|  |  | 
|  | /* Some nice accessors for the vmpressure. */ | 
|  | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | 
|  | { | 
|  | if (!memcg) | 
|  | memcg = root_mem_cgroup; | 
|  | return &memcg->vmpressure; | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | 
|  | { | 
|  | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | /* | 
|  | * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. | 
|  | * The main reason for not using cgroup id for this: | 
|  | *  this works better in sparse environments, where we have a lot of memcgs, | 
|  | *  but only a few kmem-limited. Or also, if we have, for instance, 200 | 
|  | *  memcgs, and none but the 200th is kmem-limited, we'd have to have a | 
|  | *  200 entry array for that. | 
|  | * | 
|  | * The current size of the caches array is stored in memcg_nr_cache_ids. It | 
|  | * will double each time we have to increase it. | 
|  | */ | 
|  | static DEFINE_IDA(memcg_cache_ida); | 
|  | int memcg_nr_cache_ids; | 
|  |  | 
|  | /* Protects memcg_nr_cache_ids */ | 
|  | static DECLARE_RWSEM(memcg_cache_ids_sem); | 
|  |  | 
|  | void memcg_get_cache_ids(void) | 
|  | { | 
|  | down_read(&memcg_cache_ids_sem); | 
|  | } | 
|  |  | 
|  | void memcg_put_cache_ids(void) | 
|  | { | 
|  | up_read(&memcg_cache_ids_sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MIN_SIZE is different than 1, because we would like to avoid going through | 
|  | * the alloc/free process all the time. In a small machine, 4 kmem-limited | 
|  | * cgroups is a reasonable guess. In the future, it could be a parameter or | 
|  | * tunable, but that is strictly not necessary. | 
|  | * | 
|  | * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get | 
|  | * this constant directly from cgroup, but it is understandable that this is | 
|  | * better kept as an internal representation in cgroup.c. In any case, the | 
|  | * cgrp_id space is not getting any smaller, and we don't have to necessarily | 
|  | * increase ours as well if it increases. | 
|  | */ | 
|  | #define MEMCG_CACHES_MIN_SIZE 4 | 
|  | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX | 
|  |  | 
|  | /* | 
|  | * A lot of the calls to the cache allocation functions are expected to be | 
|  | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | 
|  | * conditional to this static branch, we'll have to allow modules that does | 
|  | * kmem_cache_alloc and the such to see this symbol as well | 
|  | */ | 
|  | DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); | 
|  | EXPORT_SYMBOL(memcg_kmem_enabled_key); | 
|  |  | 
|  | struct workqueue_struct *memcg_kmem_cache_wq; | 
|  |  | 
|  | static int memcg_shrinker_map_size; | 
|  | static DEFINE_MUTEX(memcg_shrinker_map_mutex); | 
|  |  | 
|  | static void memcg_free_shrinker_map_rcu(struct rcu_head *head) | 
|  | { | 
|  | kvfree(container_of(head, struct memcg_shrinker_map, rcu)); | 
|  | } | 
|  |  | 
|  | static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, | 
|  | int size, int old_size) | 
|  | { | 
|  | struct memcg_shrinker_map *new, *old; | 
|  | int nid; | 
|  |  | 
|  | lockdep_assert_held(&memcg_shrinker_map_mutex); | 
|  |  | 
|  | for_each_node(nid) { | 
|  | old = rcu_dereference_protected( | 
|  | mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); | 
|  | /* Not yet online memcg */ | 
|  | if (!old) | 
|  | return 0; | 
|  |  | 
|  | new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Set all old bits, clear all new bits */ | 
|  | memset(new->map, (int)0xff, old_size); | 
|  | memset((void *)new->map + old_size, 0, size - old_size); | 
|  |  | 
|  | rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); | 
|  | call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn; | 
|  | struct memcg_shrinker_map *map; | 
|  | int nid; | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | return; | 
|  |  | 
|  | for_each_node(nid) { | 
|  | pn = mem_cgroup_nodeinfo(memcg, nid); | 
|  | map = rcu_dereference_protected(pn->shrinker_map, true); | 
|  | if (map) | 
|  | kvfree(map); | 
|  | rcu_assign_pointer(pn->shrinker_map, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct memcg_shrinker_map *map; | 
|  | int nid, size, ret = 0; | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&memcg_shrinker_map_mutex); | 
|  | size = memcg_shrinker_map_size; | 
|  | for_each_node(nid) { | 
|  | map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); | 
|  | if (!map) { | 
|  | memcg_free_shrinker_maps(memcg); | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); | 
|  | } | 
|  | mutex_unlock(&memcg_shrinker_map_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int memcg_expand_shrinker_maps(int new_id) | 
|  | { | 
|  | int size, old_size, ret = 0; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); | 
|  | old_size = memcg_shrinker_map_size; | 
|  | if (size <= old_size) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&memcg_shrinker_map_mutex); | 
|  | if (!root_mem_cgroup) | 
|  | goto unlock; | 
|  |  | 
|  | for_each_mem_cgroup(memcg) { | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | continue; | 
|  | ret = memcg_expand_one_shrinker_map(memcg, size, old_size); | 
|  | if (ret) | 
|  | goto unlock; | 
|  | } | 
|  | unlock: | 
|  | if (!ret) | 
|  | memcg_shrinker_map_size = size; | 
|  | mutex_unlock(&memcg_shrinker_map_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) | 
|  | { | 
|  | if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { | 
|  | struct memcg_shrinker_map *map; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); | 
|  | /* Pairs with smp mb in shrink_slab() */ | 
|  | smp_mb__before_atomic(); | 
|  | set_bit(shrinker_id, map->map); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_MEMCG_KMEM */ | 
|  | static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } | 
|  | #endif /* CONFIG_MEMCG_KMEM */ | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_css_from_page - css of the memcg associated with a page | 
|  | * @page: page of interest | 
|  | * | 
|  | * If memcg is bound to the default hierarchy, css of the memcg associated | 
|  | * with @page is returned.  The returned css remains associated with @page | 
|  | * until it is released. | 
|  | * | 
|  | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup | 
|  | * is returned. | 
|  | */ | 
|  | struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  |  | 
|  | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | memcg = root_mem_cgroup; | 
|  |  | 
|  | return &memcg->css; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_cgroup_ino - return inode number of the memcg a page is charged to | 
|  | * @page: the page | 
|  | * | 
|  | * Look up the closest online ancestor of the memory cgroup @page is charged to | 
|  | * and return its inode number or 0 if @page is not charged to any cgroup. It | 
|  | * is safe to call this function without holding a reference to @page. | 
|  | * | 
|  | * Note, this function is inherently racy, because there is nothing to prevent | 
|  | * the cgroup inode from getting torn down and potentially reallocated a moment | 
|  | * after page_cgroup_ino() returns, so it only should be used by callers that | 
|  | * do not care (such as procfs interfaces). | 
|  | */ | 
|  | ino_t page_cgroup_ino(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned long ino = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = READ_ONCE(page->mem_cgroup); | 
|  | while (memcg && !(memcg->css.flags & CSS_ONLINE)) | 
|  | memcg = parent_mem_cgroup(memcg); | 
|  | if (memcg) | 
|  | ino = cgroup_ino(memcg->css.cgroup); | 
|  | rcu_read_unlock(); | 
|  | return ino; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_node * | 
|  | mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) | 
|  | { | 
|  | int nid = page_to_nid(page); | 
|  |  | 
|  | return memcg->nodeinfo[nid]; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_tree_per_node * | 
|  | soft_limit_tree_node(int nid) | 
|  | { | 
|  | return soft_limit_tree.rb_tree_per_node[nid]; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_tree_per_node * | 
|  | soft_limit_tree_from_page(struct page *page) | 
|  | { | 
|  | int nid = page_to_nid(page); | 
|  |  | 
|  | return soft_limit_tree.rb_tree_per_node[nid]; | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, | 
|  | struct mem_cgroup_tree_per_node *mctz, | 
|  | unsigned long new_usage_in_excess) | 
|  | { | 
|  | struct rb_node **p = &mctz->rb_root.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct mem_cgroup_per_node *mz_node; | 
|  | bool rightmost = true; | 
|  |  | 
|  | if (mz->on_tree) | 
|  | return; | 
|  |  | 
|  | mz->usage_in_excess = new_usage_in_excess; | 
|  | if (!mz->usage_in_excess) | 
|  | return; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | mz_node = rb_entry(parent, struct mem_cgroup_per_node, | 
|  | tree_node); | 
|  | if (mz->usage_in_excess < mz_node->usage_in_excess) { | 
|  | p = &(*p)->rb_left; | 
|  | rightmost = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't avoid mem cgroups that are over their soft | 
|  | * limit by the same amount | 
|  | */ | 
|  | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  |  | 
|  | if (rightmost) | 
|  | mctz->rb_rightmost = &mz->tree_node; | 
|  |  | 
|  | rb_link_node(&mz->tree_node, parent, p); | 
|  | rb_insert_color(&mz->tree_node, &mctz->rb_root); | 
|  | mz->on_tree = true; | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | 
|  | struct mem_cgroup_tree_per_node *mctz) | 
|  | { | 
|  | if (!mz->on_tree) | 
|  | return; | 
|  |  | 
|  | if (&mz->tree_node == mctz->rb_rightmost) | 
|  | mctz->rb_rightmost = rb_prev(&mz->tree_node); | 
|  |  | 
|  | rb_erase(&mz->tree_node, &mctz->rb_root); | 
|  | mz->on_tree = false; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | 
|  | struct mem_cgroup_tree_per_node *mctz) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&mctz->lock, flags); | 
|  | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | spin_unlock_irqrestore(&mctz->lock, flags); | 
|  | } | 
|  |  | 
|  | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long nr_pages = page_counter_read(&memcg->memory); | 
|  | unsigned long soft_limit = READ_ONCE(memcg->soft_limit); | 
|  | unsigned long excess = 0; | 
|  |  | 
|  | if (nr_pages > soft_limit) | 
|  | excess = nr_pages - soft_limit; | 
|  |  | 
|  | return excess; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | 
|  | { | 
|  | unsigned long excess; | 
|  | struct mem_cgroup_per_node *mz; | 
|  | struct mem_cgroup_tree_per_node *mctz; | 
|  |  | 
|  | mctz = soft_limit_tree_from_page(page); | 
|  | if (!mctz) | 
|  | return; | 
|  | /* | 
|  | * Necessary to update all ancestors when hierarchy is used. | 
|  | * because their event counter is not touched. | 
|  | */ | 
|  | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
|  | mz = mem_cgroup_page_nodeinfo(memcg, page); | 
|  | excess = soft_limit_excess(memcg); | 
|  | /* | 
|  | * We have to update the tree if mz is on RB-tree or | 
|  | * mem is over its softlimit. | 
|  | */ | 
|  | if (excess || mz->on_tree) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&mctz->lock, flags); | 
|  | /* if on-tree, remove it */ | 
|  | if (mz->on_tree) | 
|  | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | /* | 
|  | * Insert again. mz->usage_in_excess will be updated. | 
|  | * If excess is 0, no tree ops. | 
|  | */ | 
|  | __mem_cgroup_insert_exceeded(mz, mctz, excess); | 
|  | spin_unlock_irqrestore(&mctz->lock, flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup_tree_per_node *mctz; | 
|  | struct mem_cgroup_per_node *mz; | 
|  | int nid; | 
|  |  | 
|  | for_each_node(nid) { | 
|  | mz = mem_cgroup_nodeinfo(memcg, nid); | 
|  | mctz = soft_limit_tree_node(nid); | 
|  | if (mctz) | 
|  | mem_cgroup_remove_exceeded(mz, mctz); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_node * | 
|  | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | 
|  | { | 
|  | struct mem_cgroup_per_node *mz; | 
|  |  | 
|  | retry: | 
|  | mz = NULL; | 
|  | if (!mctz->rb_rightmost) | 
|  | goto done;		/* Nothing to reclaim from */ | 
|  |  | 
|  | mz = rb_entry(mctz->rb_rightmost, | 
|  | struct mem_cgroup_per_node, tree_node); | 
|  | /* | 
|  | * Remove the node now but someone else can add it back, | 
|  | * we will to add it back at the end of reclaim to its correct | 
|  | * position in the tree. | 
|  | */ | 
|  | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | if (!soft_limit_excess(mz->memcg) || | 
|  | !css_tryget_online(&mz->memcg->css)) | 
|  | goto retry; | 
|  | done: | 
|  | return mz; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_node * | 
|  | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | 
|  | { | 
|  | struct mem_cgroup_per_node *mz; | 
|  |  | 
|  | spin_lock_irq(&mctz->lock); | 
|  | mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
|  | spin_unlock_irq(&mctz->lock); | 
|  | return mz; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __mod_memcg_state - update cgroup memory statistics | 
|  | * @memcg: the memory cgroup | 
|  | * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item | 
|  | * @val: delta to add to the counter, can be negative | 
|  | */ | 
|  | void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) | 
|  | { | 
|  | long x; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); | 
|  | if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { | 
|  | struct mem_cgroup *mi; | 
|  |  | 
|  | atomic_long_add(x, &memcg->vmstats_local[idx]); | 
|  | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
|  | atomic_long_add(x, &mi->vmstats[idx]); | 
|  | x = 0; | 
|  | } | 
|  | __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_node * | 
|  | parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) | 
|  | { | 
|  | struct mem_cgroup *parent; | 
|  |  | 
|  | parent = parent_mem_cgroup(pn->memcg); | 
|  | if (!parent) | 
|  | return NULL; | 
|  | return mem_cgroup_nodeinfo(parent, nid); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __mod_lruvec_state - update lruvec memory statistics | 
|  | * @lruvec: the lruvec | 
|  | * @idx: the stat item | 
|  | * @val: delta to add to the counter, can be negative | 
|  | * | 
|  | * The lruvec is the intersection of the NUMA node and a cgroup. This | 
|  | * function updates the all three counters that are affected by a | 
|  | * change of state at this level: per-node, per-cgroup, per-lruvec. | 
|  | */ | 
|  | void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, | 
|  | int val) | 
|  | { | 
|  | pg_data_t *pgdat = lruvec_pgdat(lruvec); | 
|  | struct mem_cgroup_per_node *pn; | 
|  | struct mem_cgroup *memcg; | 
|  | long x; | 
|  |  | 
|  | /* Update node */ | 
|  | __mod_node_page_state(pgdat, idx, val); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | 
|  | memcg = pn->memcg; | 
|  |  | 
|  | /* Update memcg */ | 
|  | __mod_memcg_state(memcg, idx, val); | 
|  |  | 
|  | /* Update lruvec */ | 
|  | x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); | 
|  | if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { | 
|  | struct mem_cgroup_per_node *pi; | 
|  |  | 
|  | atomic_long_add(x, &pn->lruvec_stat_local[idx]); | 
|  | for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) | 
|  | atomic_long_add(x, &pi->lruvec_stat[idx]); | 
|  | x = 0; | 
|  | } | 
|  | __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __count_memcg_events - account VM events in a cgroup | 
|  | * @memcg: the memory cgroup | 
|  | * @idx: the event item | 
|  | * @count: the number of events that occured | 
|  | */ | 
|  | void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, | 
|  | unsigned long count) | 
|  | { | 
|  | unsigned long x; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); | 
|  | if (unlikely(x > MEMCG_CHARGE_BATCH)) { | 
|  | struct mem_cgroup *mi; | 
|  |  | 
|  | atomic_long_add(x, &memcg->vmevents_local[idx]); | 
|  | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
|  | atomic_long_add(x, &mi->vmevents[idx]); | 
|  | x = 0; | 
|  | } | 
|  | __this_cpu_write(memcg->vmstats_percpu->events[idx], x); | 
|  | } | 
|  |  | 
|  | static unsigned long memcg_events(struct mem_cgroup *memcg, int event) | 
|  | { | 
|  | return atomic_long_read(&memcg->vmevents[event]); | 
|  | } | 
|  |  | 
|  | static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) | 
|  | { | 
|  | return atomic_long_read(&memcg->vmevents_local[event]); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, | 
|  | struct page *page, | 
|  | bool compound, int nr_pages) | 
|  | { | 
|  | /* | 
|  | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | 
|  | * counted as CACHE even if it's on ANON LRU. | 
|  | */ | 
|  | if (PageAnon(page)) | 
|  | __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); | 
|  | else { | 
|  | __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); | 
|  | if (PageSwapBacked(page)) | 
|  | __mod_memcg_state(memcg, NR_SHMEM, nr_pages); | 
|  | } | 
|  |  | 
|  | if (compound) { | 
|  | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
|  | __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); | 
|  | } | 
|  |  | 
|  | /* pagein of a big page is an event. So, ignore page size */ | 
|  | if (nr_pages > 0) | 
|  | __count_memcg_events(memcg, PGPGIN, 1); | 
|  | else { | 
|  | __count_memcg_events(memcg, PGPGOUT, 1); | 
|  | nr_pages = -nr_pages; /* for event */ | 
|  | } | 
|  |  | 
|  | __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); | 
|  | } | 
|  |  | 
|  | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, | 
|  | enum mem_cgroup_events_target target) | 
|  | { | 
|  | unsigned long val, next; | 
|  |  | 
|  | val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); | 
|  | next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); | 
|  | /* from time_after() in jiffies.h */ | 
|  | if ((long)(next - val) < 0) { | 
|  | switch (target) { | 
|  | case MEM_CGROUP_TARGET_THRESH: | 
|  | next = val + THRESHOLDS_EVENTS_TARGET; | 
|  | break; | 
|  | case MEM_CGROUP_TARGET_SOFTLIMIT: | 
|  | next = val + SOFTLIMIT_EVENTS_TARGET; | 
|  | break; | 
|  | case MEM_CGROUP_TARGET_NUMAINFO: | 
|  | next = val + NUMAINFO_EVENTS_TARGET; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | __this_cpu_write(memcg->vmstats_percpu->targets[target], next); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check events in order. | 
|  | * | 
|  | */ | 
|  | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) | 
|  | { | 
|  | /* threshold event is triggered in finer grain than soft limit */ | 
|  | if (unlikely(mem_cgroup_event_ratelimit(memcg, | 
|  | MEM_CGROUP_TARGET_THRESH))) { | 
|  | bool do_softlimit; | 
|  | bool do_numainfo __maybe_unused; | 
|  |  | 
|  | do_softlimit = mem_cgroup_event_ratelimit(memcg, | 
|  | MEM_CGROUP_TARGET_SOFTLIMIT); | 
|  | #if MAX_NUMNODES > 1 | 
|  | do_numainfo = mem_cgroup_event_ratelimit(memcg, | 
|  | MEM_CGROUP_TARGET_NUMAINFO); | 
|  | #endif | 
|  | mem_cgroup_threshold(memcg); | 
|  | if (unlikely(do_softlimit)) | 
|  | mem_cgroup_update_tree(memcg, page); | 
|  | #if MAX_NUMNODES > 1 | 
|  | if (unlikely(do_numainfo)) | 
|  | atomic_inc(&memcg->numainfo_events); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * mm_update_next_owner() may clear mm->owner to NULL | 
|  | * if it races with swapoff, page migration, etc. | 
|  | * So this can be called with p == NULL. | 
|  | */ | 
|  | if (unlikely(!p)) | 
|  | return NULL; | 
|  |  | 
|  | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); | 
|  | } | 
|  | EXPORT_SYMBOL(mem_cgroup_from_task); | 
|  |  | 
|  | /** | 
|  | * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. | 
|  | * @mm: mm from which memcg should be extracted. It can be NULL. | 
|  | * | 
|  | * Obtain a reference on mm->memcg and returns it if successful. Otherwise | 
|  | * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is | 
|  | * returned. | 
|  | */ | 
|  | struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | /* | 
|  | * Page cache insertions can happen withou an | 
|  | * actual mm context, e.g. during disk probing | 
|  | * on boot, loopback IO, acct() writes etc. | 
|  | */ | 
|  | if (unlikely(!mm)) | 
|  | memcg = root_mem_cgroup; | 
|  | else { | 
|  | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
|  | if (unlikely(!memcg)) | 
|  | memcg = root_mem_cgroup; | 
|  | } | 
|  | } while (!css_tryget_online(&memcg->css)); | 
|  | rcu_read_unlock(); | 
|  | return memcg; | 
|  | } | 
|  | EXPORT_SYMBOL(get_mem_cgroup_from_mm); | 
|  |  | 
|  | /** | 
|  | * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. | 
|  | * @page: page from which memcg should be extracted. | 
|  | * | 
|  | * Obtain a reference on page->memcg and returns it if successful. Otherwise | 
|  | * root_mem_cgroup is returned. | 
|  | */ | 
|  | struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg = page->mem_cgroup; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!memcg || !css_tryget_online(&memcg->css)) | 
|  | memcg = root_mem_cgroup; | 
|  | rcu_read_unlock(); | 
|  | return memcg; | 
|  | } | 
|  | EXPORT_SYMBOL(get_mem_cgroup_from_page); | 
|  |  | 
|  | /** | 
|  | * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. | 
|  | */ | 
|  | static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) | 
|  | { | 
|  | if (unlikely(current->active_memcg)) { | 
|  | struct mem_cgroup *memcg = root_mem_cgroup; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (css_tryget_online(¤t->active_memcg->css)) | 
|  | memcg = current->active_memcg; | 
|  | rcu_read_unlock(); | 
|  | return memcg; | 
|  | } | 
|  | return get_mem_cgroup_from_mm(current->mm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_iter - iterate over memory cgroup hierarchy | 
|  | * @root: hierarchy root | 
|  | * @prev: previously returned memcg, NULL on first invocation | 
|  | * @reclaim: cookie for shared reclaim walks, NULL for full walks | 
|  | * | 
|  | * Returns references to children of the hierarchy below @root, or | 
|  | * @root itself, or %NULL after a full round-trip. | 
|  | * | 
|  | * Caller must pass the return value in @prev on subsequent | 
|  | * invocations for reference counting, or use mem_cgroup_iter_break() | 
|  | * to cancel a hierarchy walk before the round-trip is complete. | 
|  | * | 
|  | * Reclaimers can specify a node and a priority level in @reclaim to | 
|  | * divide up the memcgs in the hierarchy among all concurrent | 
|  | * reclaimers operating on the same node and priority. | 
|  | */ | 
|  | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | 
|  | struct mem_cgroup *prev, | 
|  | struct mem_cgroup_reclaim_cookie *reclaim) | 
|  | { | 
|  | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); | 
|  | struct cgroup_subsys_state *css = NULL; | 
|  | struct mem_cgroup *memcg = NULL; | 
|  | struct mem_cgroup *pos = NULL; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | if (!root) | 
|  | root = root_mem_cgroup; | 
|  |  | 
|  | if (prev && !reclaim) | 
|  | pos = prev; | 
|  |  | 
|  | if (!root->use_hierarchy && root != root_mem_cgroup) { | 
|  | if (prev) | 
|  | goto out; | 
|  | return root; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | if (reclaim) { | 
|  | struct mem_cgroup_per_node *mz; | 
|  |  | 
|  | mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); | 
|  | iter = &mz->iter[reclaim->priority]; | 
|  |  | 
|  | if (prev && reclaim->generation != iter->generation) | 
|  | goto out_unlock; | 
|  |  | 
|  | while (1) { | 
|  | pos = READ_ONCE(iter->position); | 
|  | if (!pos || css_tryget(&pos->css)) | 
|  | break; | 
|  | /* | 
|  | * css reference reached zero, so iter->position will | 
|  | * be cleared by ->css_released. However, we should not | 
|  | * rely on this happening soon, because ->css_released | 
|  | * is called from a work queue, and by busy-waiting we | 
|  | * might block it. So we clear iter->position right | 
|  | * away. | 
|  | */ | 
|  | (void)cmpxchg(&iter->position, pos, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pos) | 
|  | css = &pos->css; | 
|  |  | 
|  | for (;;) { | 
|  | css = css_next_descendant_pre(css, &root->css); | 
|  | if (!css) { | 
|  | /* | 
|  | * Reclaimers share the hierarchy walk, and a | 
|  | * new one might jump in right at the end of | 
|  | * the hierarchy - make sure they see at least | 
|  | * one group and restart from the beginning. | 
|  | */ | 
|  | if (!prev) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify the css and acquire a reference.  The root | 
|  | * is provided by the caller, so we know it's alive | 
|  | * and kicking, and don't take an extra reference. | 
|  | */ | 
|  | memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (css == &root->css) | 
|  | break; | 
|  |  | 
|  | if (css_tryget(css)) | 
|  | break; | 
|  |  | 
|  | memcg = NULL; | 
|  | } | 
|  |  | 
|  | if (reclaim) { | 
|  | /* | 
|  | * The position could have already been updated by a competing | 
|  | * thread, so check that the value hasn't changed since we read | 
|  | * it to avoid reclaiming from the same cgroup twice. | 
|  | */ | 
|  | (void)cmpxchg(&iter->position, pos, memcg); | 
|  |  | 
|  | if (pos) | 
|  | css_put(&pos->css); | 
|  |  | 
|  | if (!memcg) | 
|  | iter->generation++; | 
|  | else if (!prev) | 
|  | reclaim->generation = iter->generation; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | out: | 
|  | if (prev && prev != root) | 
|  | css_put(&prev->css); | 
|  |  | 
|  | return memcg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | 
|  | * @root: hierarchy root | 
|  | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | 
|  | */ | 
|  | void mem_cgroup_iter_break(struct mem_cgroup *root, | 
|  | struct mem_cgroup *prev) | 
|  | { | 
|  | if (!root) | 
|  | root = root_mem_cgroup; | 
|  | if (prev && prev != root) | 
|  | css_put(&prev->css); | 
|  | } | 
|  |  | 
|  | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) | 
|  | { | 
|  | struct mem_cgroup *memcg = dead_memcg; | 
|  | struct mem_cgroup_reclaim_iter *iter; | 
|  | struct mem_cgroup_per_node *mz; | 
|  | int nid; | 
|  | int i; | 
|  |  | 
|  | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
|  | for_each_node(nid) { | 
|  | mz = mem_cgroup_nodeinfo(memcg, nid); | 
|  | for (i = 0; i <= DEF_PRIORITY; i++) { | 
|  | iter = &mz->iter[i]; | 
|  | cmpxchg(&iter->position, | 
|  | dead_memcg, NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy | 
|  | * @memcg: hierarchy root | 
|  | * @fn: function to call for each task | 
|  | * @arg: argument passed to @fn | 
|  | * | 
|  | * This function iterates over tasks attached to @memcg or to any of its | 
|  | * descendants and calls @fn for each task. If @fn returns a non-zero | 
|  | * value, the function breaks the iteration loop and returns the value. | 
|  | * Otherwise, it will iterate over all tasks and return 0. | 
|  | * | 
|  | * This function must not be called for the root memory cgroup. | 
|  | */ | 
|  | int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, | 
|  | int (*fn)(struct task_struct *, void *), void *arg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(memcg == root_mem_cgroup); | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | struct css_task_iter it; | 
|  | struct task_struct *task; | 
|  |  | 
|  | css_task_iter_start(&iter->css, 0, &it); | 
|  | while (!ret && (task = css_task_iter_next(&it))) | 
|  | ret = fn(task, arg); | 
|  | css_task_iter_end(&it); | 
|  | if (ret) { | 
|  | mem_cgroup_iter_break(memcg, iter); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page | 
|  | * @page: the page | 
|  | * @pgdat: pgdat of the page | 
|  | * | 
|  | * This function is only safe when following the LRU page isolation | 
|  | * and putback protocol: the LRU lock must be held, and the page must | 
|  | * either be PageLRU() or the caller must have isolated/allocated it. | 
|  | */ | 
|  | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) | 
|  | { | 
|  | struct mem_cgroup_per_node *mz; | 
|  | struct mem_cgroup *memcg; | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | if (mem_cgroup_disabled()) { | 
|  | lruvec = &pgdat->lruvec; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  | /* | 
|  | * Swapcache readahead pages are added to the LRU - and | 
|  | * possibly migrated - before they are charged. | 
|  | */ | 
|  | if (!memcg) | 
|  | memcg = root_mem_cgroup; | 
|  |  | 
|  | mz = mem_cgroup_page_nodeinfo(memcg, page); | 
|  | lruvec = &mz->lruvec; | 
|  | out: | 
|  | /* | 
|  | * Since a node can be onlined after the mem_cgroup was created, | 
|  | * we have to be prepared to initialize lruvec->zone here; | 
|  | * and if offlined then reonlined, we need to reinitialize it. | 
|  | */ | 
|  | if (unlikely(lruvec->pgdat != pgdat)) | 
|  | lruvec->pgdat = pgdat; | 
|  | return lruvec; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_update_lru_size - account for adding or removing an lru page | 
|  | * @lruvec: mem_cgroup per zone lru vector | 
|  | * @lru: index of lru list the page is sitting on | 
|  | * @zid: zone id of the accounted pages | 
|  | * @nr_pages: positive when adding or negative when removing | 
|  | * | 
|  | * This function must be called under lru_lock, just before a page is added | 
|  | * to or just after a page is removed from an lru list (that ordering being | 
|  | * so as to allow it to check that lru_size 0 is consistent with list_empty). | 
|  | */ | 
|  | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | 
|  | int zid, int nr_pages) | 
|  | { | 
|  | struct mem_cgroup_per_node *mz; | 
|  | unsigned long *lru_size; | 
|  | long size; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | 
|  | lru_size = &mz->lru_zone_size[zid][lru]; | 
|  |  | 
|  | if (nr_pages < 0) | 
|  | *lru_size += nr_pages; | 
|  |  | 
|  | size = *lru_size; | 
|  | if (WARN_ONCE(size < 0, | 
|  | "%s(%p, %d, %d): lru_size %ld\n", | 
|  | __func__, lruvec, lru, nr_pages, size)) { | 
|  | VM_BUG_ON(1); | 
|  | *lru_size = 0; | 
|  | } | 
|  |  | 
|  | if (nr_pages > 0) | 
|  | *lru_size += nr_pages; | 
|  | } | 
|  |  | 
|  | bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *task_memcg; | 
|  | struct task_struct *p; | 
|  | bool ret; | 
|  |  | 
|  | p = find_lock_task_mm(task); | 
|  | if (p) { | 
|  | task_memcg = get_mem_cgroup_from_mm(p->mm); | 
|  | task_unlock(p); | 
|  | } else { | 
|  | /* | 
|  | * All threads may have already detached their mm's, but the oom | 
|  | * killer still needs to detect if they have already been oom | 
|  | * killed to prevent needlessly killing additional tasks. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | task_memcg = mem_cgroup_from_task(task); | 
|  | css_get(&task_memcg->css); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | ret = mem_cgroup_is_descendant(task_memcg, memcg); | 
|  | css_put(&task_memcg->css); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_margin - calculate chargeable space of a memory cgroup | 
|  | * @memcg: the memory cgroup | 
|  | * | 
|  | * Returns the maximum amount of memory @mem can be charged with, in | 
|  | * pages. | 
|  | */ | 
|  | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long margin = 0; | 
|  | unsigned long count; | 
|  | unsigned long limit; | 
|  |  | 
|  | count = page_counter_read(&memcg->memory); | 
|  | limit = READ_ONCE(memcg->memory.max); | 
|  | if (count < limit) | 
|  | margin = limit - count; | 
|  |  | 
|  | if (do_memsw_account()) { | 
|  | count = page_counter_read(&memcg->memsw); | 
|  | limit = READ_ONCE(memcg->memsw.max); | 
|  | if (count <= limit) | 
|  | margin = min(margin, limit - count); | 
|  | else | 
|  | margin = 0; | 
|  | } | 
|  |  | 
|  | return margin; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A routine for checking "mem" is under move_account() or not. | 
|  | * | 
|  | * Checking a cgroup is mc.from or mc.to or under hierarchy of | 
|  | * moving cgroups. This is for waiting at high-memory pressure | 
|  | * caused by "move". | 
|  | */ | 
|  | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *from; | 
|  | struct mem_cgroup *to; | 
|  | bool ret = false; | 
|  | /* | 
|  | * Unlike task_move routines, we access mc.to, mc.from not under | 
|  | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | 
|  | */ | 
|  | spin_lock(&mc.lock); | 
|  | from = mc.from; | 
|  | to = mc.to; | 
|  | if (!from) | 
|  | goto unlock; | 
|  |  | 
|  | ret = mem_cgroup_is_descendant(from, memcg) || | 
|  | mem_cgroup_is_descendant(to, memcg); | 
|  | unlock: | 
|  | spin_unlock(&mc.lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) | 
|  | { | 
|  | if (mc.moving_task && current != mc.moving_task) { | 
|  | if (mem_cgroup_under_move(memcg)) { | 
|  | DEFINE_WAIT(wait); | 
|  | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | 
|  | /* moving charge context might have finished. */ | 
|  | if (mc.moving_task) | 
|  | schedule(); | 
|  | finish_wait(&mc.waitq, &wait); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const unsigned int memcg1_stats[] = { | 
|  | MEMCG_CACHE, | 
|  | MEMCG_RSS, | 
|  | MEMCG_RSS_HUGE, | 
|  | NR_SHMEM, | 
|  | NR_FILE_MAPPED, | 
|  | NR_FILE_DIRTY, | 
|  | NR_WRITEBACK, | 
|  | MEMCG_SWAP, | 
|  | }; | 
|  |  | 
|  | static const char *const memcg1_stat_names[] = { | 
|  | "cache", | 
|  | "rss", | 
|  | "rss_huge", | 
|  | "shmem", | 
|  | "mapped_file", | 
|  | "dirty", | 
|  | "writeback", | 
|  | "swap", | 
|  | }; | 
|  |  | 
|  | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  | /** | 
|  | * mem_cgroup_print_oom_context: Print OOM information relevant to | 
|  | * memory controller. | 
|  | * @memcg: The memory cgroup that went over limit | 
|  | * @p: Task that is going to be killed | 
|  | * | 
|  | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | 
|  | * enabled | 
|  | */ | 
|  | void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) | 
|  | { | 
|  | rcu_read_lock(); | 
|  |  | 
|  | if (memcg) { | 
|  | pr_cont(",oom_memcg="); | 
|  | pr_cont_cgroup_path(memcg->css.cgroup); | 
|  | } else | 
|  | pr_cont(",global_oom"); | 
|  | if (p) { | 
|  | pr_cont(",task_memcg="); | 
|  | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to | 
|  | * memory controller. | 
|  | * @memcg: The memory cgroup that went over limit | 
|  | */ | 
|  | void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  | unsigned int i; | 
|  |  | 
|  | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->memory)), | 
|  | K((u64)memcg->memory.max), memcg->memory.failcnt); | 
|  | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->memsw)), | 
|  | K((u64)memcg->memsw.max), memcg->memsw.failcnt); | 
|  | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->kmem)), | 
|  | K((u64)memcg->kmem.max), memcg->kmem.failcnt); | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | pr_info("Memory cgroup stats for "); | 
|  | pr_cont_cgroup_path(iter->css.cgroup); | 
|  | pr_cont(":"); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
|  | if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) | 
|  | continue; | 
|  | pr_cont(" %s:%luKB", memcg1_stat_names[i], | 
|  | K(memcg_page_state_local(iter, | 
|  | memcg1_stats[i]))); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | 
|  | K(memcg_page_state_local(iter, | 
|  | NR_LRU_BASE + i))); | 
|  |  | 
|  | pr_cont("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the memory (and swap, if configured) limit for a memcg. | 
|  | */ | 
|  | unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long max; | 
|  |  | 
|  | max = memcg->memory.max; | 
|  | if (mem_cgroup_swappiness(memcg)) { | 
|  | unsigned long memsw_max; | 
|  | unsigned long swap_max; | 
|  |  | 
|  | memsw_max = memcg->memsw.max; | 
|  | swap_max = memcg->swap.max; | 
|  | swap_max = min(swap_max, (unsigned long)total_swap_pages); | 
|  | max = min(max + swap_max, memsw_max); | 
|  | } | 
|  | return max; | 
|  | } | 
|  |  | 
|  | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
|  | int order) | 
|  | { | 
|  | struct oom_control oc = { | 
|  | .zonelist = NULL, | 
|  | .nodemask = NULL, | 
|  | .memcg = memcg, | 
|  | .gfp_mask = gfp_mask, | 
|  | .order = order, | 
|  | }; | 
|  | bool ret; | 
|  |  | 
|  | if (mutex_lock_killable(&oom_lock)) | 
|  | return true; | 
|  | /* | 
|  | * A few threads which were not waiting at mutex_lock_killable() can | 
|  | * fail to bail out. Therefore, check again after holding oom_lock. | 
|  | */ | 
|  | ret = should_force_charge() || out_of_memory(&oc); | 
|  | mutex_unlock(&oom_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if MAX_NUMNODES > 1 | 
|  |  | 
|  | /** | 
|  | * test_mem_cgroup_node_reclaimable | 
|  | * @memcg: the target memcg | 
|  | * @nid: the node ID to be checked. | 
|  | * @noswap : specify true here if the user wants flle only information. | 
|  | * | 
|  | * This function returns whether the specified memcg contains any | 
|  | * reclaimable pages on a node. Returns true if there are any reclaimable | 
|  | * pages in the node. | 
|  | */ | 
|  | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, | 
|  | int nid, bool noswap) | 
|  | { | 
|  | struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); | 
|  |  | 
|  | if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || | 
|  | lruvec_page_state(lruvec, NR_ACTIVE_FILE)) | 
|  | return true; | 
|  | if (noswap || !total_swap_pages) | 
|  | return false; | 
|  | if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || | 
|  | lruvec_page_state(lruvec, NR_ACTIVE_ANON)) | 
|  | return true; | 
|  | return false; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Always updating the nodemask is not very good - even if we have an empty | 
|  | * list or the wrong list here, we can start from some node and traverse all | 
|  | * nodes based on the zonelist. So update the list loosely once per 10 secs. | 
|  | * | 
|  | */ | 
|  | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) | 
|  | { | 
|  | int nid; | 
|  | /* | 
|  | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | 
|  | * pagein/pageout changes since the last update. | 
|  | */ | 
|  | if (!atomic_read(&memcg->numainfo_events)) | 
|  | return; | 
|  | if (atomic_inc_return(&memcg->numainfo_updating) > 1) | 
|  | return; | 
|  |  | 
|  | /* make a nodemask where this memcg uses memory from */ | 
|  | memcg->scan_nodes = node_states[N_MEMORY]; | 
|  |  | 
|  | for_each_node_mask(nid, node_states[N_MEMORY]) { | 
|  |  | 
|  | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) | 
|  | node_clear(nid, memcg->scan_nodes); | 
|  | } | 
|  |  | 
|  | atomic_set(&memcg->numainfo_events, 0); | 
|  | atomic_set(&memcg->numainfo_updating, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Selecting a node where we start reclaim from. Because what we need is just | 
|  | * reducing usage counter, start from anywhere is O,K. Considering | 
|  | * memory reclaim from current node, there are pros. and cons. | 
|  | * | 
|  | * Freeing memory from current node means freeing memory from a node which | 
|  | * we'll use or we've used. So, it may make LRU bad. And if several threads | 
|  | * hit limits, it will see a contention on a node. But freeing from remote | 
|  | * node means more costs for memory reclaim because of memory latency. | 
|  | * | 
|  | * Now, we use round-robin. Better algorithm is welcomed. | 
|  | */ | 
|  | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | mem_cgroup_may_update_nodemask(memcg); | 
|  | node = memcg->last_scanned_node; | 
|  |  | 
|  | node = next_node_in(node, memcg->scan_nodes); | 
|  | /* | 
|  | * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages | 
|  | * last time it really checked all the LRUs due to rate limiting. | 
|  | * Fallback to the current node in that case for simplicity. | 
|  | */ | 
|  | if (unlikely(node == MAX_NUMNODES)) | 
|  | node = numa_node_id(); | 
|  |  | 
|  | memcg->last_scanned_node = node; | 
|  | return node; | 
|  | } | 
|  | #else | 
|  | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | 
|  | pg_data_t *pgdat, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long *total_scanned) | 
|  | { | 
|  | struct mem_cgroup *victim = NULL; | 
|  | int total = 0; | 
|  | int loop = 0; | 
|  | unsigned long excess; | 
|  | unsigned long nr_scanned; | 
|  | struct mem_cgroup_reclaim_cookie reclaim = { | 
|  | .pgdat = pgdat, | 
|  | .priority = 0, | 
|  | }; | 
|  |  | 
|  | excess = soft_limit_excess(root_memcg); | 
|  |  | 
|  | while (1) { | 
|  | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | 
|  | if (!victim) { | 
|  | loop++; | 
|  | if (loop >= 2) { | 
|  | /* | 
|  | * If we have not been able to reclaim | 
|  | * anything, it might because there are | 
|  | * no reclaimable pages under this hierarchy | 
|  | */ | 
|  | if (!total) | 
|  | break; | 
|  | /* | 
|  | * We want to do more targeted reclaim. | 
|  | * excess >> 2 is not to excessive so as to | 
|  | * reclaim too much, nor too less that we keep | 
|  | * coming back to reclaim from this cgroup | 
|  | */ | 
|  | if (total >= (excess >> 2) || | 
|  | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | total += mem_cgroup_shrink_node(victim, gfp_mask, false, | 
|  | pgdat, &nr_scanned); | 
|  | *total_scanned += nr_scanned; | 
|  | if (!soft_limit_excess(root_memcg)) | 
|  | break; | 
|  | } | 
|  | mem_cgroup_iter_break(root_memcg, victim); | 
|  | return total; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | static struct lockdep_map memcg_oom_lock_dep_map = { | 
|  | .name = "memcg_oom_lock", | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static DEFINE_SPINLOCK(memcg_oom_lock); | 
|  |  | 
|  | /* | 
|  | * Check OOM-Killer is already running under our hierarchy. | 
|  | * If someone is running, return false. | 
|  | */ | 
|  | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter, *failed = NULL; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | if (iter->oom_lock) { | 
|  | /* | 
|  | * this subtree of our hierarchy is already locked | 
|  | * so we cannot give a lock. | 
|  | */ | 
|  | failed = iter; | 
|  | mem_cgroup_iter_break(memcg, iter); | 
|  | break; | 
|  | } else | 
|  | iter->oom_lock = true; | 
|  | } | 
|  |  | 
|  | if (failed) { | 
|  | /* | 
|  | * OK, we failed to lock the whole subtree so we have | 
|  | * to clean up what we set up to the failing subtree | 
|  | */ | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | if (iter == failed) { | 
|  | mem_cgroup_iter_break(memcg, iter); | 
|  | break; | 
|  | } | 
|  | iter->oom_lock = false; | 
|  | } | 
|  | } else | 
|  | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | 
|  |  | 
|  | spin_unlock(&memcg_oom_lock); | 
|  |  | 
|  | return !failed; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  | mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | iter->oom_lock = false; | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | iter->under_oom++; | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | /* | 
|  | * When a new child is created while the hierarchy is under oom, | 
|  | * mem_cgroup_oom_lock() may not be called. Watch for underflow. | 
|  | */ | 
|  | spin_lock(&memcg_oom_lock); | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | if (iter->under_oom > 0) | 
|  | iter->under_oom--; | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | } | 
|  |  | 
|  | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | 
|  |  | 
|  | struct oom_wait_info { | 
|  | struct mem_cgroup *memcg; | 
|  | wait_queue_entry_t	wait; | 
|  | }; | 
|  |  | 
|  | static int memcg_oom_wake_function(wait_queue_entry_t *wait, | 
|  | unsigned mode, int sync, void *arg) | 
|  | { | 
|  | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | 
|  | struct mem_cgroup *oom_wait_memcg; | 
|  | struct oom_wait_info *oom_wait_info; | 
|  |  | 
|  | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | 
|  | oom_wait_memcg = oom_wait_info->memcg; | 
|  |  | 
|  | if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && | 
|  | !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | 
|  | return 0; | 
|  | return autoremove_wake_function(wait, mode, sync, arg); | 
|  | } | 
|  |  | 
|  | static void memcg_oom_recover(struct mem_cgroup *memcg) | 
|  | { | 
|  | /* | 
|  | * For the following lockless ->under_oom test, the only required | 
|  | * guarantee is that it must see the state asserted by an OOM when | 
|  | * this function is called as a result of userland actions | 
|  | * triggered by the notification of the OOM.  This is trivially | 
|  | * achieved by invoking mem_cgroup_mark_under_oom() before | 
|  | * triggering notification. | 
|  | */ | 
|  | if (memcg && memcg->under_oom) | 
|  | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | 
|  | } | 
|  |  | 
|  | enum oom_status { | 
|  | OOM_SUCCESS, | 
|  | OOM_FAILED, | 
|  | OOM_ASYNC, | 
|  | OOM_SKIPPED | 
|  | }; | 
|  |  | 
|  | static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) | 
|  | { | 
|  | enum oom_status ret; | 
|  | bool locked; | 
|  |  | 
|  | if (order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | return OOM_SKIPPED; | 
|  |  | 
|  | memcg_memory_event(memcg, MEMCG_OOM); | 
|  |  | 
|  | /* | 
|  | * We are in the middle of the charge context here, so we | 
|  | * don't want to block when potentially sitting on a callstack | 
|  | * that holds all kinds of filesystem and mm locks. | 
|  | * | 
|  | * cgroup1 allows disabling the OOM killer and waiting for outside | 
|  | * handling until the charge can succeed; remember the context and put | 
|  | * the task to sleep at the end of the page fault when all locks are | 
|  | * released. | 
|  | * | 
|  | * On the other hand, in-kernel OOM killer allows for an async victim | 
|  | * memory reclaim (oom_reaper) and that means that we are not solely | 
|  | * relying on the oom victim to make a forward progress and we can | 
|  | * invoke the oom killer here. | 
|  | * | 
|  | * Please note that mem_cgroup_out_of_memory might fail to find a | 
|  | * victim and then we have to bail out from the charge path. | 
|  | */ | 
|  | if (memcg->oom_kill_disable) { | 
|  | if (!current->in_user_fault) | 
|  | return OOM_SKIPPED; | 
|  | css_get(&memcg->css); | 
|  | current->memcg_in_oom = memcg; | 
|  | current->memcg_oom_gfp_mask = mask; | 
|  | current->memcg_oom_order = order; | 
|  |  | 
|  | return OOM_ASYNC; | 
|  | } | 
|  |  | 
|  | mem_cgroup_mark_under_oom(memcg); | 
|  |  | 
|  | locked = mem_cgroup_oom_trylock(memcg); | 
|  |  | 
|  | if (locked) | 
|  | mem_cgroup_oom_notify(memcg); | 
|  |  | 
|  | mem_cgroup_unmark_under_oom(memcg); | 
|  | if (mem_cgroup_out_of_memory(memcg, mask, order)) | 
|  | ret = OOM_SUCCESS; | 
|  | else | 
|  | ret = OOM_FAILED; | 
|  |  | 
|  | if (locked) | 
|  | mem_cgroup_oom_unlock(memcg); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_oom_synchronize - complete memcg OOM handling | 
|  | * @handle: actually kill/wait or just clean up the OOM state | 
|  | * | 
|  | * This has to be called at the end of a page fault if the memcg OOM | 
|  | * handler was enabled. | 
|  | * | 
|  | * Memcg supports userspace OOM handling where failed allocations must | 
|  | * sleep on a waitqueue until the userspace task resolves the | 
|  | * situation.  Sleeping directly in the charge context with all kinds | 
|  | * of locks held is not a good idea, instead we remember an OOM state | 
|  | * in the task and mem_cgroup_oom_synchronize() has to be called at | 
|  | * the end of the page fault to complete the OOM handling. | 
|  | * | 
|  | * Returns %true if an ongoing memcg OOM situation was detected and | 
|  | * completed, %false otherwise. | 
|  | */ | 
|  | bool mem_cgroup_oom_synchronize(bool handle) | 
|  | { | 
|  | struct mem_cgroup *memcg = current->memcg_in_oom; | 
|  | struct oom_wait_info owait; | 
|  | bool locked; | 
|  |  | 
|  | /* OOM is global, do not handle */ | 
|  | if (!memcg) | 
|  | return false; | 
|  |  | 
|  | if (!handle) | 
|  | goto cleanup; | 
|  |  | 
|  | owait.memcg = memcg; | 
|  | owait.wait.flags = 0; | 
|  | owait.wait.func = memcg_oom_wake_function; | 
|  | owait.wait.private = current; | 
|  | INIT_LIST_HEAD(&owait.wait.entry); | 
|  |  | 
|  | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | 
|  | mem_cgroup_mark_under_oom(memcg); | 
|  |  | 
|  | locked = mem_cgroup_oom_trylock(memcg); | 
|  |  | 
|  | if (locked) | 
|  | mem_cgroup_oom_notify(memcg); | 
|  |  | 
|  | if (locked && !memcg->oom_kill_disable) { | 
|  | mem_cgroup_unmark_under_oom(memcg); | 
|  | finish_wait(&memcg_oom_waitq, &owait.wait); | 
|  | mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, | 
|  | current->memcg_oom_order); | 
|  | } else { | 
|  | schedule(); | 
|  | mem_cgroup_unmark_under_oom(memcg); | 
|  | finish_wait(&memcg_oom_waitq, &owait.wait); | 
|  | } | 
|  |  | 
|  | if (locked) { | 
|  | mem_cgroup_oom_unlock(memcg); | 
|  | /* | 
|  | * There is no guarantee that an OOM-lock contender | 
|  | * sees the wakeups triggered by the OOM kill | 
|  | * uncharges.  Wake any sleepers explicitely. | 
|  | */ | 
|  | memcg_oom_recover(memcg); | 
|  | } | 
|  | cleanup: | 
|  | current->memcg_in_oom = NULL; | 
|  | css_put(&memcg->css); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM | 
|  | * @victim: task to be killed by the OOM killer | 
|  | * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM | 
|  | * | 
|  | * Returns a pointer to a memory cgroup, which has to be cleaned up | 
|  | * by killing all belonging OOM-killable tasks. | 
|  | * | 
|  | * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. | 
|  | */ | 
|  | struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, | 
|  | struct mem_cgroup *oom_domain) | 
|  | { | 
|  | struct mem_cgroup *oom_group = NULL; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return NULL; | 
|  |  | 
|  | if (!oom_domain) | 
|  | oom_domain = root_mem_cgroup; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | memcg = mem_cgroup_from_task(victim); | 
|  | if (memcg == root_mem_cgroup) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Traverse the memory cgroup hierarchy from the victim task's | 
|  | * cgroup up to the OOMing cgroup (or root) to find the | 
|  | * highest-level memory cgroup with oom.group set. | 
|  | */ | 
|  | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
|  | if (memcg->oom_group) | 
|  | oom_group = memcg; | 
|  |  | 
|  | if (memcg == oom_domain) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (oom_group) | 
|  | css_get(&oom_group->css); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return oom_group; | 
|  | } | 
|  |  | 
|  | void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) | 
|  | { | 
|  | pr_info("Tasks in "); | 
|  | pr_cont_cgroup_path(memcg->css.cgroup); | 
|  | pr_cont(" are going to be killed due to memory.oom.group set\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * lock_page_memcg - lock a page->mem_cgroup binding | 
|  | * @page: the page | 
|  | * | 
|  | * This function protects unlocked LRU pages from being moved to | 
|  | * another cgroup. | 
|  | * | 
|  | * It ensures lifetime of the returned memcg. Caller is responsible | 
|  | * for the lifetime of the page; __unlock_page_memcg() is available | 
|  | * when @page might get freed inside the locked section. | 
|  | */ | 
|  | struct mem_cgroup *lock_page_memcg(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * The RCU lock is held throughout the transaction.  The fast | 
|  | * path can get away without acquiring the memcg->move_lock | 
|  | * because page moving starts with an RCU grace period. | 
|  | * | 
|  | * The RCU lock also protects the memcg from being freed when | 
|  | * the page state that is going to change is the only thing | 
|  | * preventing the page itself from being freed. E.g. writeback | 
|  | * doesn't hold a page reference and relies on PG_writeback to | 
|  | * keep off truncation, migration and so forth. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  | again: | 
|  | memcg = page->mem_cgroup; | 
|  | if (unlikely(!memcg)) | 
|  | return NULL; | 
|  |  | 
|  | if (atomic_read(&memcg->moving_account) <= 0) | 
|  | return memcg; | 
|  |  | 
|  | spin_lock_irqsave(&memcg->move_lock, flags); | 
|  | if (memcg != page->mem_cgroup) { | 
|  | spin_unlock_irqrestore(&memcg->move_lock, flags); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When charge migration first begins, we can have locked and | 
|  | * unlocked page stat updates happening concurrently.  Track | 
|  | * the task who has the lock for unlock_page_memcg(). | 
|  | */ | 
|  | memcg->move_lock_task = current; | 
|  | memcg->move_lock_flags = flags; | 
|  |  | 
|  | return memcg; | 
|  | } | 
|  | EXPORT_SYMBOL(lock_page_memcg); | 
|  |  | 
|  | /** | 
|  | * __unlock_page_memcg - unlock and unpin a memcg | 
|  | * @memcg: the memcg | 
|  | * | 
|  | * Unlock and unpin a memcg returned by lock_page_memcg(). | 
|  | */ | 
|  | void __unlock_page_memcg(struct mem_cgroup *memcg) | 
|  | { | 
|  | if (memcg && memcg->move_lock_task == current) { | 
|  | unsigned long flags = memcg->move_lock_flags; | 
|  |  | 
|  | memcg->move_lock_task = NULL; | 
|  | memcg->move_lock_flags = 0; | 
|  |  | 
|  | spin_unlock_irqrestore(&memcg->move_lock, flags); | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unlock_page_memcg - unlock a page->mem_cgroup binding | 
|  | * @page: the page | 
|  | */ | 
|  | void unlock_page_memcg(struct page *page) | 
|  | { | 
|  | __unlock_page_memcg(page->mem_cgroup); | 
|  | } | 
|  | EXPORT_SYMBOL(unlock_page_memcg); | 
|  |  | 
|  | struct memcg_stock_pcp { | 
|  | struct mem_cgroup *cached; /* this never be root cgroup */ | 
|  | unsigned int nr_pages; | 
|  | struct work_struct work; | 
|  | unsigned long flags; | 
|  | #define FLUSHING_CACHED_CHARGE	0 | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | 
|  | static DEFINE_MUTEX(percpu_charge_mutex); | 
|  |  | 
|  | /** | 
|  | * consume_stock: Try to consume stocked charge on this cpu. | 
|  | * @memcg: memcg to consume from. | 
|  | * @nr_pages: how many pages to charge. | 
|  | * | 
|  | * The charges will only happen if @memcg matches the current cpu's memcg | 
|  | * stock, and at least @nr_pages are available in that stock.  Failure to | 
|  | * service an allocation will refill the stock. | 
|  | * | 
|  | * returns true if successful, false otherwise. | 
|  | */ | 
|  | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | struct memcg_stock_pcp *stock; | 
|  | unsigned long flags; | 
|  | bool ret = false; | 
|  |  | 
|  | if (nr_pages > MEMCG_CHARGE_BATCH) | 
|  | return ret; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | stock = this_cpu_ptr(&memcg_stock); | 
|  | if (memcg == stock->cached && stock->nr_pages >= nr_pages) { | 
|  | stock->nr_pages -= nr_pages; | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns stocks cached in percpu and reset cached information. | 
|  | */ | 
|  | static void drain_stock(struct memcg_stock_pcp *stock) | 
|  | { | 
|  | struct mem_cgroup *old = stock->cached; | 
|  |  | 
|  | if (stock->nr_pages) { | 
|  | page_counter_uncharge(&old->memory, stock->nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&old->memsw, stock->nr_pages); | 
|  | css_put_many(&old->css, stock->nr_pages); | 
|  | stock->nr_pages = 0; | 
|  | } | 
|  | stock->cached = NULL; | 
|  | } | 
|  |  | 
|  | static void drain_local_stock(struct work_struct *dummy) | 
|  | { | 
|  | struct memcg_stock_pcp *stock; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * The only protection from memory hotplug vs. drain_stock races is | 
|  | * that we always operate on local CPU stock here with IRQ disabled | 
|  | */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | stock = this_cpu_ptr(&memcg_stock); | 
|  | drain_stock(stock); | 
|  | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cache charges(val) to local per_cpu area. | 
|  | * This will be consumed by consume_stock() function, later. | 
|  | */ | 
|  | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | struct memcg_stock_pcp *stock; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | stock = this_cpu_ptr(&memcg_stock); | 
|  | if (stock->cached != memcg) { /* reset if necessary */ | 
|  | drain_stock(stock); | 
|  | stock->cached = memcg; | 
|  | } | 
|  | stock->nr_pages += nr_pages; | 
|  |  | 
|  | if (stock->nr_pages > MEMCG_CHARGE_BATCH) | 
|  | drain_stock(stock); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drains all per-CPU charge caches for given root_memcg resp. subtree | 
|  | * of the hierarchy under it. | 
|  | */ | 
|  | static void drain_all_stock(struct mem_cgroup *root_memcg) | 
|  | { | 
|  | int cpu, curcpu; | 
|  |  | 
|  | /* If someone's already draining, avoid adding running more workers. */ | 
|  | if (!mutex_trylock(&percpu_charge_mutex)) | 
|  | return; | 
|  | /* | 
|  | * Notify other cpus that system-wide "drain" is running | 
|  | * We do not care about races with the cpu hotplug because cpu down | 
|  | * as well as workers from this path always operate on the local | 
|  | * per-cpu data. CPU up doesn't touch memcg_stock at all. | 
|  | */ | 
|  | curcpu = get_cpu(); | 
|  | for_each_online_cpu(cpu) { | 
|  | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = stock->cached; | 
|  | if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) | 
|  | continue; | 
|  | if (!mem_cgroup_is_descendant(memcg, root_memcg)) { | 
|  | css_put(&memcg->css); | 
|  | continue; | 
|  | } | 
|  | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { | 
|  | if (cpu == curcpu) | 
|  | drain_local_stock(&stock->work); | 
|  | else | 
|  | schedule_work_on(cpu, &stock->work); | 
|  | } | 
|  | css_put(&memcg->css); | 
|  | } | 
|  | put_cpu(); | 
|  | mutex_unlock(&percpu_charge_mutex); | 
|  | } | 
|  |  | 
|  | static int memcg_hotplug_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | struct memcg_stock_pcp *stock; | 
|  | struct mem_cgroup *memcg, *mi; | 
|  |  | 
|  | stock = &per_cpu(memcg_stock, cpu); | 
|  | drain_stock(stock); | 
|  |  | 
|  | for_each_mem_cgroup(memcg) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MEMCG_NR_STAT; i++) { | 
|  | int nid; | 
|  | long x; | 
|  |  | 
|  | x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); | 
|  | if (x) { | 
|  | atomic_long_add(x, &memcg->vmstats_local[i]); | 
|  | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
|  | atomic_long_add(x, &memcg->vmstats[i]); | 
|  | } | 
|  |  | 
|  | if (i >= NR_VM_NODE_STAT_ITEMS) | 
|  | continue; | 
|  |  | 
|  | for_each_node(nid) { | 
|  | struct mem_cgroup_per_node *pn; | 
|  |  | 
|  | pn = mem_cgroup_nodeinfo(memcg, nid); | 
|  | x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); | 
|  | if (x) { | 
|  | atomic_long_add(x, &pn->lruvec_stat_local[i]); | 
|  | do { | 
|  | atomic_long_add(x, &pn->lruvec_stat[i]); | 
|  | } while ((pn = parent_nodeinfo(pn, nid))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { | 
|  | long x; | 
|  |  | 
|  | x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); | 
|  | if (x) { | 
|  | atomic_long_add(x, &memcg->vmevents_local[i]); | 
|  | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
|  | atomic_long_add(x, &memcg->vmevents[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void reclaim_high(struct mem_cgroup *memcg, | 
|  | unsigned int nr_pages, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | do { | 
|  | if (page_counter_read(&memcg->memory) <= memcg->high) | 
|  | continue; | 
|  | memcg_memory_event(memcg, MEMCG_HIGH); | 
|  | try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); | 
|  | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  | } | 
|  |  | 
|  | static void high_work_func(struct work_struct *work) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = container_of(work, struct mem_cgroup, high_work); | 
|  | reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scheduled by try_charge() to be executed from the userland return path | 
|  | * and reclaims memory over the high limit. | 
|  | */ | 
|  | void mem_cgroup_handle_over_high(void) | 
|  | { | 
|  | unsigned int nr_pages = current->memcg_nr_pages_over_high; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (likely(!nr_pages)) | 
|  | return; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_mm(current->mm); | 
|  | reclaim_high(memcg, nr_pages, GFP_KERNEL); | 
|  | css_put(&memcg->css); | 
|  | current->memcg_nr_pages_over_high = 0; | 
|  | } | 
|  |  | 
|  | static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
|  | unsigned int nr_pages) | 
|  | { | 
|  | unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); | 
|  | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | struct mem_cgroup *mem_over_limit; | 
|  | struct page_counter *counter; | 
|  | unsigned long nr_reclaimed; | 
|  | bool may_swap = true; | 
|  | bool drained = false; | 
|  | bool oomed = false; | 
|  | enum oom_status oom_status; | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | return 0; | 
|  | retry: | 
|  | if (consume_stock(memcg, nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | if (!do_memsw_account() || | 
|  | page_counter_try_charge(&memcg->memsw, batch, &counter)) { | 
|  | if (page_counter_try_charge(&memcg->memory, batch, &counter)) | 
|  | goto done_restock; | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, batch); | 
|  | mem_over_limit = mem_cgroup_from_counter(counter, memory); | 
|  | } else { | 
|  | mem_over_limit = mem_cgroup_from_counter(counter, memsw); | 
|  | may_swap = false; | 
|  | } | 
|  |  | 
|  | if (batch > nr_pages) { | 
|  | batch = nr_pages; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlike in global OOM situations, memcg is not in a physical | 
|  | * memory shortage.  Allow dying and OOM-killed tasks to | 
|  | * bypass the last charges so that they can exit quickly and | 
|  | * free their memory. | 
|  | */ | 
|  | if (unlikely(should_force_charge())) | 
|  | goto force; | 
|  |  | 
|  | /* | 
|  | * Prevent unbounded recursion when reclaim operations need to | 
|  | * allocate memory. This might exceed the limits temporarily, | 
|  | * but we prefer facilitating memory reclaim and getting back | 
|  | * under the limit over triggering OOM kills in these cases. | 
|  | */ | 
|  | if (unlikely(current->flags & PF_MEMALLOC)) | 
|  | goto force; | 
|  |  | 
|  | if (unlikely(task_in_memcg_oom(current))) | 
|  | goto nomem; | 
|  |  | 
|  | if (!gfpflags_allow_blocking(gfp_mask)) | 
|  | goto nomem; | 
|  |  | 
|  | memcg_memory_event(mem_over_limit, MEMCG_MAX); | 
|  |  | 
|  | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, | 
|  | gfp_mask, may_swap); | 
|  |  | 
|  | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | 
|  | goto retry; | 
|  |  | 
|  | if (!drained) { | 
|  | drain_all_stock(mem_over_limit); | 
|  | drained = true; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (gfp_mask & __GFP_NORETRY) | 
|  | goto nomem; | 
|  | /* | 
|  | * Even though the limit is exceeded at this point, reclaim | 
|  | * may have been able to free some pages.  Retry the charge | 
|  | * before killing the task. | 
|  | * | 
|  | * Only for regular pages, though: huge pages are rather | 
|  | * unlikely to succeed so close to the limit, and we fall back | 
|  | * to regular pages anyway in case of failure. | 
|  | */ | 
|  | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) | 
|  | goto retry; | 
|  | /* | 
|  | * At task move, charge accounts can be doubly counted. So, it's | 
|  | * better to wait until the end of task_move if something is going on. | 
|  | */ | 
|  | if (mem_cgroup_wait_acct_move(mem_over_limit)) | 
|  | goto retry; | 
|  |  | 
|  | if (nr_retries--) | 
|  | goto retry; | 
|  |  | 
|  | if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed) | 
|  | goto nomem; | 
|  |  | 
|  | if (gfp_mask & __GFP_NOFAIL) | 
|  | goto force; | 
|  |  | 
|  | if (fatal_signal_pending(current)) | 
|  | goto force; | 
|  |  | 
|  | /* | 
|  | * keep retrying as long as the memcg oom killer is able to make | 
|  | * a forward progress or bypass the charge if the oom killer | 
|  | * couldn't make any progress. | 
|  | */ | 
|  | oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, | 
|  | get_order(nr_pages * PAGE_SIZE)); | 
|  | switch (oom_status) { | 
|  | case OOM_SUCCESS: | 
|  | nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | oomed = true; | 
|  | goto retry; | 
|  | case OOM_FAILED: | 
|  | goto force; | 
|  | default: | 
|  | goto nomem; | 
|  | } | 
|  | nomem: | 
|  | if (!(gfp_mask & __GFP_NOFAIL)) | 
|  | return -ENOMEM; | 
|  | force: | 
|  | /* | 
|  | * The allocation either can't fail or will lead to more memory | 
|  | * being freed very soon.  Allow memory usage go over the limit | 
|  | * temporarily by force charging it. | 
|  | */ | 
|  | page_counter_charge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_charge(&memcg->memsw, nr_pages); | 
|  | css_get_many(&memcg->css, nr_pages); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | done_restock: | 
|  | css_get_many(&memcg->css, batch); | 
|  | if (batch > nr_pages) | 
|  | refill_stock(memcg, batch - nr_pages); | 
|  |  | 
|  | /* | 
|  | * If the hierarchy is above the normal consumption range, schedule | 
|  | * reclaim on returning to userland.  We can perform reclaim here | 
|  | * if __GFP_RECLAIM but let's always punt for simplicity and so that | 
|  | * GFP_KERNEL can consistently be used during reclaim.  @memcg is | 
|  | * not recorded as it most likely matches current's and won't | 
|  | * change in the meantime.  As high limit is checked again before | 
|  | * reclaim, the cost of mismatch is negligible. | 
|  | */ | 
|  | do { | 
|  | if (page_counter_read(&memcg->memory) > memcg->high) { | 
|  | /* Don't bother a random interrupted task */ | 
|  | if (in_interrupt()) { | 
|  | schedule_work(&memcg->high_work); | 
|  | break; | 
|  | } | 
|  | current->memcg_nr_pages_over_high += batch; | 
|  | set_notify_resume(current); | 
|  | break; | 
|  | } | 
|  | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | return; | 
|  |  | 
|  | page_counter_uncharge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  |  | 
|  | css_put_many(&memcg->css, nr_pages); | 
|  | } | 
|  |  | 
|  | static void lock_page_lru(struct page *page, int *isolated) | 
|  | { | 
|  | pg_data_t *pgdat = page_pgdat(page); | 
|  |  | 
|  | spin_lock_irq(&pgdat->lru_lock); | 
|  | if (PageLRU(page)) { | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | lruvec = mem_cgroup_page_lruvec(page, pgdat); | 
|  | ClearPageLRU(page); | 
|  | del_page_from_lru_list(page, lruvec, page_lru(page)); | 
|  | *isolated = 1; | 
|  | } else | 
|  | *isolated = 0; | 
|  | } | 
|  |  | 
|  | static void unlock_page_lru(struct page *page, int isolated) | 
|  | { | 
|  | pg_data_t *pgdat = page_pgdat(page); | 
|  |  | 
|  | if (isolated) { | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | lruvec = mem_cgroup_page_lruvec(page, pgdat); | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | SetPageLRU(page); | 
|  | add_page_to_lru_list(page, lruvec, page_lru(page)); | 
|  | } | 
|  | spin_unlock_irq(&pgdat->lru_lock); | 
|  | } | 
|  |  | 
|  | static void commit_charge(struct page *page, struct mem_cgroup *memcg, | 
|  | bool lrucare) | 
|  | { | 
|  | int isolated; | 
|  |  | 
|  | VM_BUG_ON_PAGE(page->mem_cgroup, page); | 
|  |  | 
|  | /* | 
|  | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | 
|  | * may already be on some other mem_cgroup's LRU.  Take care of it. | 
|  | */ | 
|  | if (lrucare) | 
|  | lock_page_lru(page, &isolated); | 
|  |  | 
|  | /* | 
|  | * Nobody should be changing or seriously looking at | 
|  | * page->mem_cgroup at this point: | 
|  | * | 
|  | * - the page is uncharged | 
|  | * | 
|  | * - the page is off-LRU | 
|  | * | 
|  | * - an anonymous fault has exclusive page access, except for | 
|  | *   a locked page table | 
|  | * | 
|  | * - a page cache insertion, a swapin fault, or a migration | 
|  | *   have the page locked | 
|  | */ | 
|  | page->mem_cgroup = memcg; | 
|  |  | 
|  | if (lrucare) | 
|  | unlock_page_lru(page, isolated); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | static int memcg_alloc_cache_id(void) | 
|  | { | 
|  | int id, size; | 
|  | int err; | 
|  |  | 
|  | id = ida_simple_get(&memcg_cache_ida, | 
|  | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | 
|  | if (id < 0) | 
|  | return id; | 
|  |  | 
|  | if (id < memcg_nr_cache_ids) | 
|  | return id; | 
|  |  | 
|  | /* | 
|  | * There's no space for the new id in memcg_caches arrays, | 
|  | * so we have to grow them. | 
|  | */ | 
|  | down_write(&memcg_cache_ids_sem); | 
|  |  | 
|  | size = 2 * (id + 1); | 
|  | if (size < MEMCG_CACHES_MIN_SIZE) | 
|  | size = MEMCG_CACHES_MIN_SIZE; | 
|  | else if (size > MEMCG_CACHES_MAX_SIZE) | 
|  | size = MEMCG_CACHES_MAX_SIZE; | 
|  |  | 
|  | err = memcg_update_all_caches(size); | 
|  | if (!err) | 
|  | err = memcg_update_all_list_lrus(size); | 
|  | if (!err) | 
|  | memcg_nr_cache_ids = size; | 
|  |  | 
|  | up_write(&memcg_cache_ids_sem); | 
|  |  | 
|  | if (err) { | 
|  | ida_simple_remove(&memcg_cache_ida, id); | 
|  | return err; | 
|  | } | 
|  | return id; | 
|  | } | 
|  |  | 
|  | static void memcg_free_cache_id(int id) | 
|  | { | 
|  | ida_simple_remove(&memcg_cache_ida, id); | 
|  | } | 
|  |  | 
|  | struct memcg_kmem_cache_create_work { | 
|  | struct mem_cgroup *memcg; | 
|  | struct kmem_cache *cachep; | 
|  | struct work_struct work; | 
|  | }; | 
|  |  | 
|  | static void memcg_kmem_cache_create_func(struct work_struct *w) | 
|  | { | 
|  | struct memcg_kmem_cache_create_work *cw = | 
|  | container_of(w, struct memcg_kmem_cache_create_work, work); | 
|  | struct mem_cgroup *memcg = cw->memcg; | 
|  | struct kmem_cache *cachep = cw->cachep; | 
|  |  | 
|  | memcg_create_kmem_cache(memcg, cachep); | 
|  |  | 
|  | css_put(&memcg->css); | 
|  | kfree(cw); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enqueue the creation of a per-memcg kmem_cache. | 
|  | */ | 
|  | static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, | 
|  | struct kmem_cache *cachep) | 
|  | { | 
|  | struct memcg_kmem_cache_create_work *cw; | 
|  |  | 
|  | cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); | 
|  | if (!cw) | 
|  | return; | 
|  |  | 
|  | css_get(&memcg->css); | 
|  |  | 
|  | cw->memcg = memcg; | 
|  | cw->cachep = cachep; | 
|  | INIT_WORK(&cw->work, memcg_kmem_cache_create_func); | 
|  |  | 
|  | queue_work(memcg_kmem_cache_wq, &cw->work); | 
|  | } | 
|  |  | 
|  | static inline bool memcg_kmem_bypass(void) | 
|  | { | 
|  | if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memcg_kmem_get_cache: select the correct per-memcg cache for allocation | 
|  | * @cachep: the original global kmem cache | 
|  | * | 
|  | * Return the kmem_cache we're supposed to use for a slab allocation. | 
|  | * We try to use the current memcg's version of the cache. | 
|  | * | 
|  | * If the cache does not exist yet, if we are the first user of it, we | 
|  | * create it asynchronously in a workqueue and let the current allocation | 
|  | * go through with the original cache. | 
|  | * | 
|  | * This function takes a reference to the cache it returns to assure it | 
|  | * won't get destroyed while we are working with it. Once the caller is | 
|  | * done with it, memcg_kmem_put_cache() must be called to release the | 
|  | * reference. | 
|  | */ | 
|  | struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | struct kmem_cache *memcg_cachep; | 
|  | int kmemcg_id; | 
|  |  | 
|  | VM_BUG_ON(!is_root_cache(cachep)); | 
|  |  | 
|  | if (memcg_kmem_bypass()) | 
|  | return cachep; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_current(); | 
|  | kmemcg_id = READ_ONCE(memcg->kmemcg_id); | 
|  | if (kmemcg_id < 0) | 
|  | goto out; | 
|  |  | 
|  | memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); | 
|  | if (likely(memcg_cachep)) | 
|  | return memcg_cachep; | 
|  |  | 
|  | /* | 
|  | * If we are in a safe context (can wait, and not in interrupt | 
|  | * context), we could be be predictable and return right away. | 
|  | * This would guarantee that the allocation being performed | 
|  | * already belongs in the new cache. | 
|  | * | 
|  | * However, there are some clashes that can arrive from locking. | 
|  | * For instance, because we acquire the slab_mutex while doing | 
|  | * memcg_create_kmem_cache, this means no further allocation | 
|  | * could happen with the slab_mutex held. So it's better to | 
|  | * defer everything. | 
|  | */ | 
|  | memcg_schedule_kmem_cache_create(memcg, cachep); | 
|  | out: | 
|  | css_put(&memcg->css); | 
|  | return cachep; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache | 
|  | * @cachep: the cache returned by memcg_kmem_get_cache | 
|  | */ | 
|  | void memcg_kmem_put_cache(struct kmem_cache *cachep) | 
|  | { | 
|  | if (!is_root_cache(cachep)) | 
|  | css_put(&cachep->memcg_params.memcg->css); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __memcg_kmem_charge_memcg: charge a kmem page | 
|  | * @page: page to charge | 
|  | * @gfp: reclaim mode | 
|  | * @order: allocation order | 
|  | * @memcg: memory cgroup to charge | 
|  | * | 
|  | * Returns 0 on success, an error code on failure. | 
|  | */ | 
|  | int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, | 
|  | struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned int nr_pages = 1 << order; | 
|  | struct page_counter *counter; | 
|  | int ret; | 
|  |  | 
|  | ret = try_charge(memcg, gfp, nr_pages); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && | 
|  | !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { | 
|  | cancel_charge(memcg, nr_pages); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | page->mem_cgroup = memcg; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __memcg_kmem_charge: charge a kmem page to the current memory cgroup | 
|  | * @page: page to charge | 
|  | * @gfp: reclaim mode | 
|  | * @order: allocation order | 
|  | * | 
|  | * Returns 0 on success, an error code on failure. | 
|  | */ | 
|  | int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | int ret = 0; | 
|  |  | 
|  | if (memcg_kmem_bypass()) | 
|  | return 0; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_current(); | 
|  | if (!mem_cgroup_is_root(memcg)) { | 
|  | ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); | 
|  | if (!ret) | 
|  | __SetPageKmemcg(page); | 
|  | } | 
|  | css_put(&memcg->css); | 
|  | return ret; | 
|  | } | 
|  | /** | 
|  | * __memcg_kmem_uncharge: uncharge a kmem page | 
|  | * @page: page to uncharge | 
|  | * @order: allocation order | 
|  | */ | 
|  | void __memcg_kmem_uncharge(struct page *page, int order) | 
|  | { | 
|  | struct mem_cgroup *memcg = page->mem_cgroup; | 
|  | unsigned int nr_pages = 1 << order; | 
|  |  | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | page_counter_uncharge(&memcg->kmem, nr_pages); | 
|  |  | 
|  | page_counter_uncharge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  |  | 
|  | page->mem_cgroup = NULL; | 
|  |  | 
|  | /* slab pages do not have PageKmemcg flag set */ | 
|  | if (PageKmemcg(page)) | 
|  | __ClearPageKmemcg(page); | 
|  |  | 
|  | css_put_many(&memcg->css, nr_pages); | 
|  | } | 
|  | #endif /* CONFIG_MEMCG_KMEM */ | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  |  | 
|  | /* | 
|  | * Because tail pages are not marked as "used", set it. We're under | 
|  | * pgdat->lru_lock and migration entries setup in all page mappings. | 
|  | */ | 
|  | void mem_cgroup_split_huge_fixup(struct page *head) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | for (i = 1; i < HPAGE_PMD_NR; i++) | 
|  | head[i].mem_cgroup = head->mem_cgroup; | 
|  |  | 
|  | __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_SWAP | 
|  | /** | 
|  | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | 
|  | * @entry: swap entry to be moved | 
|  | * @from:  mem_cgroup which the entry is moved from | 
|  | * @to:  mem_cgroup which the entry is moved to | 
|  | * | 
|  | * It succeeds only when the swap_cgroup's record for this entry is the same | 
|  | * as the mem_cgroup's id of @from. | 
|  | * | 
|  | * Returns 0 on success, -EINVAL on failure. | 
|  | * | 
|  | * The caller must have charged to @to, IOW, called page_counter_charge() about | 
|  | * both res and memsw, and called css_get(). | 
|  | */ | 
|  | static int mem_cgroup_move_swap_account(swp_entry_t entry, | 
|  | struct mem_cgroup *from, struct mem_cgroup *to) | 
|  | { | 
|  | unsigned short old_id, new_id; | 
|  |  | 
|  | old_id = mem_cgroup_id(from); | 
|  | new_id = mem_cgroup_id(to); | 
|  |  | 
|  | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | 
|  | mod_memcg_state(from, MEMCG_SWAP, -1); | 
|  | mod_memcg_state(to, MEMCG_SWAP, 1); | 
|  | return 0; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  | #else | 
|  | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | 
|  | struct mem_cgroup *from, struct mem_cgroup *to) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static DEFINE_MUTEX(memcg_max_mutex); | 
|  |  | 
|  | static int mem_cgroup_resize_max(struct mem_cgroup *memcg, | 
|  | unsigned long max, bool memsw) | 
|  | { | 
|  | bool enlarge = false; | 
|  | bool drained = false; | 
|  | int ret; | 
|  | bool limits_invariant; | 
|  | struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; | 
|  |  | 
|  | do { | 
|  | if (signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mutex_lock(&memcg_max_mutex); | 
|  | /* | 
|  | * Make sure that the new limit (memsw or memory limit) doesn't | 
|  | * break our basic invariant rule memory.max <= memsw.max. | 
|  | */ | 
|  | limits_invariant = memsw ? max >= memcg->memory.max : | 
|  | max <= memcg->memsw.max; | 
|  | if (!limits_invariant) { | 
|  | mutex_unlock(&memcg_max_mutex); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | if (max > counter->max) | 
|  | enlarge = true; | 
|  | ret = page_counter_set_max(counter, max); | 
|  | mutex_unlock(&memcg_max_mutex); | 
|  |  | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | if (!drained) { | 
|  | drain_all_stock(memcg); | 
|  | drained = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!try_to_free_mem_cgroup_pages(memcg, 1, | 
|  | GFP_KERNEL, !memsw)) { | 
|  | ret = -EBUSY; | 
|  | break; | 
|  | } | 
|  | } while (true); | 
|  |  | 
|  | if (!ret && enlarge) | 
|  | memcg_oom_recover(memcg); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long *total_scanned) | 
|  | { | 
|  | unsigned long nr_reclaimed = 0; | 
|  | struct mem_cgroup_per_node *mz, *next_mz = NULL; | 
|  | unsigned long reclaimed; | 
|  | int loop = 0; | 
|  | struct mem_cgroup_tree_per_node *mctz; | 
|  | unsigned long excess; | 
|  | unsigned long nr_scanned; | 
|  |  | 
|  | if (order > 0) | 
|  | return 0; | 
|  |  | 
|  | mctz = soft_limit_tree_node(pgdat->node_id); | 
|  |  | 
|  | /* | 
|  | * Do not even bother to check the largest node if the root | 
|  | * is empty. Do it lockless to prevent lock bouncing. Races | 
|  | * are acceptable as soft limit is best effort anyway. | 
|  | */ | 
|  | if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * This loop can run a while, specially if mem_cgroup's continuously | 
|  | * keep exceeding their soft limit and putting the system under | 
|  | * pressure | 
|  | */ | 
|  | do { | 
|  | if (next_mz) | 
|  | mz = next_mz; | 
|  | else | 
|  | mz = mem_cgroup_largest_soft_limit_node(mctz); | 
|  | if (!mz) | 
|  | break; | 
|  |  | 
|  | nr_scanned = 0; | 
|  | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, | 
|  | gfp_mask, &nr_scanned); | 
|  | nr_reclaimed += reclaimed; | 
|  | *total_scanned += nr_scanned; | 
|  | spin_lock_irq(&mctz->lock); | 
|  | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  |  | 
|  | /* | 
|  | * If we failed to reclaim anything from this memory cgroup | 
|  | * it is time to move on to the next cgroup | 
|  | */ | 
|  | next_mz = NULL; | 
|  | if (!reclaimed) | 
|  | next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
|  |  | 
|  | excess = soft_limit_excess(mz->memcg); | 
|  | /* | 
|  | * One school of thought says that we should not add | 
|  | * back the node to the tree if reclaim returns 0. | 
|  | * But our reclaim could return 0, simply because due | 
|  | * to priority we are exposing a smaller subset of | 
|  | * memory to reclaim from. Consider this as a longer | 
|  | * term TODO. | 
|  | */ | 
|  | /* If excess == 0, no tree ops */ | 
|  | __mem_cgroup_insert_exceeded(mz, mctz, excess); | 
|  | spin_unlock_irq(&mctz->lock); | 
|  | css_put(&mz->memcg->css); | 
|  | loop++; | 
|  | /* | 
|  | * Could not reclaim anything and there are no more | 
|  | * mem cgroups to try or we seem to be looping without | 
|  | * reclaiming anything. | 
|  | */ | 
|  | if (!nr_reclaimed && | 
|  | (next_mz == NULL || | 
|  | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | 
|  | break; | 
|  | } while (!nr_reclaimed); | 
|  | if (next_mz) | 
|  | css_put(&next_mz->memcg->css); | 
|  | return nr_reclaimed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test whether @memcg has children, dead or alive.  Note that this | 
|  | * function doesn't care whether @memcg has use_hierarchy enabled and | 
|  | * returns %true if there are child csses according to the cgroup | 
|  | * hierarchy.  Testing use_hierarchy is the caller's responsiblity. | 
|  | */ | 
|  | static inline bool memcg_has_children(struct mem_cgroup *memcg) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = css_next_child(NULL, &memcg->css); | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reclaims as many pages from the given memcg as possible. | 
|  | * | 
|  | * Caller is responsible for holding css reference for memcg. | 
|  | */ | 
|  | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | 
|  | { | 
|  | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  |  | 
|  | /* we call try-to-free pages for make this cgroup empty */ | 
|  | lru_add_drain_all(); | 
|  |  | 
|  | drain_all_stock(memcg); | 
|  |  | 
|  | /* try to free all pages in this cgroup */ | 
|  | while (nr_retries && page_counter_read(&memcg->memory)) { | 
|  | int progress; | 
|  |  | 
|  | if (signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | progress = try_to_free_mem_cgroup_pages(memcg, 1, | 
|  | GFP_KERNEL, true); | 
|  | if (!progress) { | 
|  | nr_retries--; | 
|  | /* maybe some writeback is necessary */ | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, | 
|  | loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | return -EINVAL; | 
|  | return mem_cgroup_force_empty(memcg) ?: nbytes; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return mem_cgroup_from_css(css)->use_hierarchy; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | int retval = 0; | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); | 
|  |  | 
|  | if (memcg->use_hierarchy == val) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If parent's use_hierarchy is set, we can't make any modifications | 
|  | * in the child subtrees. If it is unset, then the change can | 
|  | * occur, provided the current cgroup has no children. | 
|  | * | 
|  | * For the root cgroup, parent_mem is NULL, we allow value to be | 
|  | * set if there are no children. | 
|  | */ | 
|  | if ((!parent_memcg || !parent_memcg->use_hierarchy) && | 
|  | (val == 1 || val == 0)) { | 
|  | if (!memcg_has_children(memcg)) | 
|  | memcg->use_hierarchy = val; | 
|  | else | 
|  | retval = -EBUSY; | 
|  | } else | 
|  | retval = -EINVAL; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | 
|  | { | 
|  | unsigned long val; | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) { | 
|  | val = memcg_page_state(memcg, MEMCG_CACHE) + | 
|  | memcg_page_state(memcg, MEMCG_RSS); | 
|  | if (swap) | 
|  | val += memcg_page_state(memcg, MEMCG_SWAP); | 
|  | } else { | 
|  | if (!swap) | 
|  | val = page_counter_read(&memcg->memory); | 
|  | else | 
|  | val = page_counter_read(&memcg->memsw); | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | RES_USAGE, | 
|  | RES_LIMIT, | 
|  | RES_MAX_USAGE, | 
|  | RES_FAILCNT, | 
|  | RES_SOFT_LIMIT, | 
|  | }; | 
|  |  | 
|  | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | struct page_counter *counter; | 
|  |  | 
|  | switch (MEMFILE_TYPE(cft->private)) { | 
|  | case _MEM: | 
|  | counter = &memcg->memory; | 
|  | break; | 
|  | case _MEMSWAP: | 
|  | counter = &memcg->memsw; | 
|  | break; | 
|  | case _KMEM: | 
|  | counter = &memcg->kmem; | 
|  | break; | 
|  | case _TCP: | 
|  | counter = &memcg->tcpmem; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | switch (MEMFILE_ATTR(cft->private)) { | 
|  | case RES_USAGE: | 
|  | if (counter == &memcg->memory) | 
|  | return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; | 
|  | if (counter == &memcg->memsw) | 
|  | return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; | 
|  | return (u64)page_counter_read(counter) * PAGE_SIZE; | 
|  | case RES_LIMIT: | 
|  | return (u64)counter->max * PAGE_SIZE; | 
|  | case RES_MAX_USAGE: | 
|  | return (u64)counter->watermark * PAGE_SIZE; | 
|  | case RES_FAILCNT: | 
|  | return counter->failcnt; | 
|  | case RES_SOFT_LIMIT: | 
|  | return (u64)memcg->soft_limit * PAGE_SIZE; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | static int memcg_online_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | int memcg_id; | 
|  |  | 
|  | if (cgroup_memory_nokmem) | 
|  | return 0; | 
|  |  | 
|  | BUG_ON(memcg->kmemcg_id >= 0); | 
|  | BUG_ON(memcg->kmem_state); | 
|  |  | 
|  | memcg_id = memcg_alloc_cache_id(); | 
|  | if (memcg_id < 0) | 
|  | return memcg_id; | 
|  |  | 
|  | static_branch_inc(&memcg_kmem_enabled_key); | 
|  | /* | 
|  | * A memory cgroup is considered kmem-online as soon as it gets | 
|  | * kmemcg_id. Setting the id after enabling static branching will | 
|  | * guarantee no one starts accounting before all call sites are | 
|  | * patched. | 
|  | */ | 
|  | memcg->kmemcg_id = memcg_id; | 
|  | memcg->kmem_state = KMEM_ONLINE; | 
|  | INIT_LIST_HEAD(&memcg->kmem_caches); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcg_offline_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  | struct mem_cgroup *parent, *child; | 
|  | int kmemcg_id; | 
|  |  | 
|  | if (memcg->kmem_state != KMEM_ONLINE) | 
|  | return; | 
|  | /* | 
|  | * Clear the online state before clearing memcg_caches array | 
|  | * entries. The slab_mutex in memcg_deactivate_kmem_caches() | 
|  | * guarantees that no cache will be created for this cgroup | 
|  | * after we are done (see memcg_create_kmem_cache()). | 
|  | */ | 
|  | memcg->kmem_state = KMEM_ALLOCATED; | 
|  |  | 
|  | memcg_deactivate_kmem_caches(memcg); | 
|  |  | 
|  | kmemcg_id = memcg->kmemcg_id; | 
|  | BUG_ON(kmemcg_id < 0); | 
|  |  | 
|  | parent = parent_mem_cgroup(memcg); | 
|  | if (!parent) | 
|  | parent = root_mem_cgroup; | 
|  |  | 
|  | /* | 
|  | * Change kmemcg_id of this cgroup and all its descendants to the | 
|  | * parent's id, and then move all entries from this cgroup's list_lrus | 
|  | * to ones of the parent. After we have finished, all list_lrus | 
|  | * corresponding to this cgroup are guaranteed to remain empty. The | 
|  | * ordering is imposed by list_lru_node->lock taken by | 
|  | * memcg_drain_all_list_lrus(). | 
|  | */ | 
|  | rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ | 
|  | css_for_each_descendant_pre(css, &memcg->css) { | 
|  | child = mem_cgroup_from_css(css); | 
|  | BUG_ON(child->kmemcg_id != kmemcg_id); | 
|  | child->kmemcg_id = parent->kmemcg_id; | 
|  | if (!memcg->use_hierarchy) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | memcg_drain_all_list_lrus(kmemcg_id, parent); | 
|  |  | 
|  | memcg_free_cache_id(kmemcg_id); | 
|  | } | 
|  |  | 
|  | static void memcg_free_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | /* css_alloc() failed, offlining didn't happen */ | 
|  | if (unlikely(memcg->kmem_state == KMEM_ONLINE)) | 
|  | memcg_offline_kmem(memcg); | 
|  |  | 
|  | if (memcg->kmem_state == KMEM_ALLOCATED) { | 
|  | memcg_destroy_kmem_caches(memcg); | 
|  | static_branch_dec(&memcg_kmem_enabled_key); | 
|  | WARN_ON(page_counter_read(&memcg->kmem)); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static int memcg_online_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static void memcg_offline_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  | static void memcg_free_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_MEMCG_KMEM */ | 
|  |  | 
|  | static int memcg_update_kmem_max(struct mem_cgroup *memcg, | 
|  | unsigned long max) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&memcg_max_mutex); | 
|  | ret = page_counter_set_max(&memcg->kmem, max); | 
|  | mutex_unlock(&memcg_max_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&memcg_max_mutex); | 
|  |  | 
|  | ret = page_counter_set_max(&memcg->tcpmem, max); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (!memcg->tcpmem_active) { | 
|  | /* | 
|  | * The active flag needs to be written after the static_key | 
|  | * update. This is what guarantees that the socket activation | 
|  | * function is the last one to run. See mem_cgroup_sk_alloc() | 
|  | * for details, and note that we don't mark any socket as | 
|  | * belonging to this memcg until that flag is up. | 
|  | * | 
|  | * We need to do this, because static_keys will span multiple | 
|  | * sites, but we can't control their order. If we mark a socket | 
|  | * as accounted, but the accounting functions are not patched in | 
|  | * yet, we'll lose accounting. | 
|  | * | 
|  | * We never race with the readers in mem_cgroup_sk_alloc(), | 
|  | * because when this value change, the code to process it is not | 
|  | * patched in yet. | 
|  | */ | 
|  | static_branch_inc(&memcg_sockets_enabled_key); | 
|  | memcg->tcpmem_active = true; | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&memcg_max_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The user of this function is... | 
|  | * RES_LIMIT. | 
|  | */ | 
|  | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long nr_pages; | 
|  | int ret; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | ret = page_counter_memparse(buf, "-1", &nr_pages); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
|  | case RES_LIMIT: | 
|  | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
|  | case _MEM: | 
|  | ret = mem_cgroup_resize_max(memcg, nr_pages, false); | 
|  | break; | 
|  | case _MEMSWAP: | 
|  | ret = mem_cgroup_resize_max(memcg, nr_pages, true); | 
|  | break; | 
|  | case _KMEM: | 
|  | ret = memcg_update_kmem_max(memcg, nr_pages); | 
|  | break; | 
|  | case _TCP: | 
|  | ret = memcg_update_tcp_max(memcg, nr_pages); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case RES_SOFT_LIMIT: | 
|  | memcg->soft_limit = nr_pages; | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | return ret ?: nbytes; | 
|  | } | 
|  |  | 
|  | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, | 
|  | size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | struct page_counter *counter; | 
|  |  | 
|  | switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
|  | case _MEM: | 
|  | counter = &memcg->memory; | 
|  | break; | 
|  | case _MEMSWAP: | 
|  | counter = &memcg->memsw; | 
|  | break; | 
|  | case _KMEM: | 
|  | counter = &memcg->kmem; | 
|  | break; | 
|  | case _TCP: | 
|  | counter = &memcg->tcpmem; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
|  | case RES_MAX_USAGE: | 
|  | page_counter_reset_watermark(counter); | 
|  | break; | 
|  | case RES_FAILCNT: | 
|  | counter->failcnt = 0; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return mem_cgroup_from_css(css)->move_charge_at_immigrate; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (val & ~MOVE_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * No kind of locking is needed in here, because ->can_attach() will | 
|  | * check this value once in the beginning of the process, and then carry | 
|  | * on with stale data. This means that changes to this value will only | 
|  | * affect task migrations starting after the change. | 
|  | */ | 
|  | memcg->move_charge_at_immigrate = val; | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) | 
|  | #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) | 
|  | #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1) | 
|  |  | 
|  | static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | 
|  | int nid, unsigned int lru_mask) | 
|  | { | 
|  | struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); | 
|  | unsigned long nr = 0; | 
|  | enum lru_list lru; | 
|  |  | 
|  | VM_BUG_ON((unsigned)nid >= nr_node_ids); | 
|  |  | 
|  | for_each_lru(lru) { | 
|  | if (!(BIT(lru) & lru_mask)) | 
|  | continue; | 
|  | nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); | 
|  | } | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | 
|  | unsigned int lru_mask) | 
|  | { | 
|  | unsigned long nr = 0; | 
|  | enum lru_list lru; | 
|  |  | 
|  | for_each_lru(lru) { | 
|  | if (!(BIT(lru) & lru_mask)) | 
|  | continue; | 
|  | nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); | 
|  | } | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static int memcg_numa_stat_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct numa_stat { | 
|  | const char *name; | 
|  | unsigned int lru_mask; | 
|  | }; | 
|  |  | 
|  | static const struct numa_stat stats[] = { | 
|  | { "total", LRU_ALL }, | 
|  | { "file", LRU_ALL_FILE }, | 
|  | { "anon", LRU_ALL_ANON }, | 
|  | { "unevictable", BIT(LRU_UNEVICTABLE) }, | 
|  | }; | 
|  | const struct numa_stat *stat; | 
|  | int nid; | 
|  | unsigned long nr; | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
|  | nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); | 
|  | seq_printf(m, "%s=%lu", stat->name, nr); | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 
|  | stat->lru_mask); | 
|  | seq_printf(m, " N%d=%lu", nid, nr); | 
|  | } | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | nr = 0; | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); | 
|  | seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | nr = 0; | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | nr += mem_cgroup_node_nr_lru_pages( | 
|  | iter, nid, stat->lru_mask); | 
|  | seq_printf(m, " N%d=%lu", nid, nr); | 
|  | } | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | /* Universal VM events cgroup1 shows, original sort order */ | 
|  | static const unsigned int memcg1_events[] = { | 
|  | PGPGIN, | 
|  | PGPGOUT, | 
|  | PGFAULT, | 
|  | PGMAJFAULT, | 
|  | }; | 
|  |  | 
|  | static const char *const memcg1_event_names[] = { | 
|  | "pgpgin", | 
|  | "pgpgout", | 
|  | "pgfault", | 
|  | "pgmajfault", | 
|  | }; | 
|  |  | 
|  | static int memcg_stat_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  | unsigned long memory, memsw; | 
|  | struct mem_cgroup *mi; | 
|  | unsigned int i; | 
|  |  | 
|  | BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); | 
|  | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
|  | if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) | 
|  | continue; | 
|  | seq_printf(m, "%s %lu\n", memcg1_stat_names[i], | 
|  | memcg_page_state_local(memcg, memcg1_stats[i]) * | 
|  | PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | 
|  | seq_printf(m, "%s %lu\n", memcg1_event_names[i], | 
|  | memcg_events_local(memcg, memcg1_events[i])); | 
|  |  | 
|  | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | 
|  | memcg_page_state_local(memcg, NR_LRU_BASE + i) * | 
|  | PAGE_SIZE); | 
|  |  | 
|  | /* Hierarchical information */ | 
|  | memory = memsw = PAGE_COUNTER_MAX; | 
|  | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | 
|  | memory = min(memory, mi->memory.max); | 
|  | memsw = min(memsw, mi->memsw.max); | 
|  | } | 
|  | seq_printf(m, "hierarchical_memory_limit %llu\n", | 
|  | (u64)memory * PAGE_SIZE); | 
|  | if (do_memsw_account()) | 
|  | seq_printf(m, "hierarchical_memsw_limit %llu\n", | 
|  | (u64)memsw * PAGE_SIZE); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
|  | if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) | 
|  | continue; | 
|  | seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], | 
|  | (u64)memcg_page_state(memcg, i) * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | 
|  | seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], | 
|  | (u64)memcg_events(memcg, i)); | 
|  |  | 
|  | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], | 
|  | (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * | 
|  | PAGE_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  | struct mem_cgroup_per_node *mz; | 
|  | struct zone_reclaim_stat *rstat; | 
|  | unsigned long recent_rotated[2] = {0, 0}; | 
|  | unsigned long recent_scanned[2] = {0, 0}; | 
|  |  | 
|  | for_each_online_pgdat(pgdat) { | 
|  | mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | 
|  | rstat = &mz->lruvec.reclaim_stat; | 
|  |  | 
|  | recent_rotated[0] += rstat->recent_rotated[0]; | 
|  | recent_rotated[1] += rstat->recent_rotated[1]; | 
|  | recent_scanned[0] += rstat->recent_scanned[0]; | 
|  | recent_scanned[1] += rstat->recent_scanned[1]; | 
|  | } | 
|  | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); | 
|  | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | 
|  | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | 
|  | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | return mem_cgroup_swappiness(memcg); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (val > 100) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (css->parent) | 
|  | memcg->swappiness = val; | 
|  | else | 
|  | vm_swappiness = val; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | 
|  | { | 
|  | struct mem_cgroup_threshold_ary *t; | 
|  | unsigned long usage; | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!swap) | 
|  | t = rcu_dereference(memcg->thresholds.primary); | 
|  | else | 
|  | t = rcu_dereference(memcg->memsw_thresholds.primary); | 
|  |  | 
|  | if (!t) | 
|  | goto unlock; | 
|  |  | 
|  | usage = mem_cgroup_usage(memcg, swap); | 
|  |  | 
|  | /* | 
|  | * current_threshold points to threshold just below or equal to usage. | 
|  | * If it's not true, a threshold was crossed after last | 
|  | * call of __mem_cgroup_threshold(). | 
|  | */ | 
|  | i = t->current_threshold; | 
|  |  | 
|  | /* | 
|  | * Iterate backward over array of thresholds starting from | 
|  | * current_threshold and check if a threshold is crossed. | 
|  | * If none of thresholds below usage is crossed, we read | 
|  | * only one element of the array here. | 
|  | */ | 
|  | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | 
|  | eventfd_signal(t->entries[i].eventfd, 1); | 
|  |  | 
|  | /* i = current_threshold + 1 */ | 
|  | i++; | 
|  |  | 
|  | /* | 
|  | * Iterate forward over array of thresholds starting from | 
|  | * current_threshold+1 and check if a threshold is crossed. | 
|  | * If none of thresholds above usage is crossed, we read | 
|  | * only one element of the array here. | 
|  | */ | 
|  | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | 
|  | eventfd_signal(t->entries[i].eventfd, 1); | 
|  |  | 
|  | /* Update current_threshold */ | 
|  | t->current_threshold = i - 1; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | 
|  | { | 
|  | while (memcg) { | 
|  | __mem_cgroup_threshold(memcg, false); | 
|  | if (do_memsw_account()) | 
|  | __mem_cgroup_threshold(memcg, true); | 
|  |  | 
|  | memcg = parent_mem_cgroup(memcg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int compare_thresholds(const void *a, const void *b) | 
|  | { | 
|  | const struct mem_cgroup_threshold *_a = a; | 
|  | const struct mem_cgroup_threshold *_b = b; | 
|  |  | 
|  | if (_a->threshold > _b->threshold) | 
|  | return 1; | 
|  |  | 
|  | if (_a->threshold < _b->threshold) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup_eventfd_list *ev; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  |  | 
|  | list_for_each_entry(ev, &memcg->oom_notify, list) | 
|  | eventfd_signal(ev->eventfd, 1); | 
|  |  | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | mem_cgroup_oom_notify_cb(iter); | 
|  | } | 
|  |  | 
|  | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args, enum res_type type) | 
|  | { | 
|  | struct mem_cgroup_thresholds *thresholds; | 
|  | struct mem_cgroup_threshold_ary *new; | 
|  | unsigned long threshold; | 
|  | unsigned long usage; | 
|  | int i, size, ret; | 
|  |  | 
|  | ret = page_counter_memparse(args, "-1", &threshold); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&memcg->thresholds_lock); | 
|  |  | 
|  | if (type == _MEM) { | 
|  | thresholds = &memcg->thresholds; | 
|  | usage = mem_cgroup_usage(memcg, false); | 
|  | } else if (type == _MEMSWAP) { | 
|  | thresholds = &memcg->memsw_thresholds; | 
|  | usage = mem_cgroup_usage(memcg, true); | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | /* Check if a threshold crossed before adding a new one */ | 
|  | if (thresholds->primary) | 
|  | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
|  |  | 
|  | size = thresholds->primary ? thresholds->primary->size + 1 : 1; | 
|  |  | 
|  | /* Allocate memory for new array of thresholds */ | 
|  | new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); | 
|  | if (!new) { | 
|  | ret = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  | new->size = size; | 
|  |  | 
|  | /* Copy thresholds (if any) to new array */ | 
|  | if (thresholds->primary) { | 
|  | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | 
|  | sizeof(struct mem_cgroup_threshold)); | 
|  | } | 
|  |  | 
|  | /* Add new threshold */ | 
|  | new->entries[size - 1].eventfd = eventfd; | 
|  | new->entries[size - 1].threshold = threshold; | 
|  |  | 
|  | /* Sort thresholds. Registering of new threshold isn't time-critical */ | 
|  | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), | 
|  | compare_thresholds, NULL); | 
|  |  | 
|  | /* Find current threshold */ | 
|  | new->current_threshold = -1; | 
|  | for (i = 0; i < size; i++) { | 
|  | if (new->entries[i].threshold <= usage) { | 
|  | /* | 
|  | * new->current_threshold will not be used until | 
|  | * rcu_assign_pointer(), so it's safe to increment | 
|  | * it here. | 
|  | */ | 
|  | ++new->current_threshold; | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Free old spare buffer and save old primary buffer as spare */ | 
|  | kfree(thresholds->spare); | 
|  | thresholds->spare = thresholds->primary; | 
|  |  | 
|  | rcu_assign_pointer(thresholds->primary, new); | 
|  |  | 
|  | /* To be sure that nobody uses thresholds */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&memcg->thresholds_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args) | 
|  | { | 
|  | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); | 
|  | } | 
|  |  | 
|  | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args) | 
|  | { | 
|  | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, enum res_type type) | 
|  | { | 
|  | struct mem_cgroup_thresholds *thresholds; | 
|  | struct mem_cgroup_threshold_ary *new; | 
|  | unsigned long usage; | 
|  | int i, j, size; | 
|  |  | 
|  | mutex_lock(&memcg->thresholds_lock); | 
|  |  | 
|  | if (type == _MEM) { | 
|  | thresholds = &memcg->thresholds; | 
|  | usage = mem_cgroup_usage(memcg, false); | 
|  | } else if (type == _MEMSWAP) { | 
|  | thresholds = &memcg->memsw_thresholds; | 
|  | usage = mem_cgroup_usage(memcg, true); | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | if (!thresholds->primary) | 
|  | goto unlock; | 
|  |  | 
|  | /* Check if a threshold crossed before removing */ | 
|  | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
|  |  | 
|  | /* Calculate new number of threshold */ | 
|  | size = 0; | 
|  | for (i = 0; i < thresholds->primary->size; i++) { | 
|  | if (thresholds->primary->entries[i].eventfd != eventfd) | 
|  | size++; | 
|  | } | 
|  |  | 
|  | new = thresholds->spare; | 
|  |  | 
|  | /* Set thresholds array to NULL if we don't have thresholds */ | 
|  | if (!size) { | 
|  | kfree(new); | 
|  | new = NULL; | 
|  | goto swap_buffers; | 
|  | } | 
|  |  | 
|  | new->size = size; | 
|  |  | 
|  | /* Copy thresholds and find current threshold */ | 
|  | new->current_threshold = -1; | 
|  | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | 
|  | if (thresholds->primary->entries[i].eventfd == eventfd) | 
|  | continue; | 
|  |  | 
|  | new->entries[j] = thresholds->primary->entries[i]; | 
|  | if (new->entries[j].threshold <= usage) { | 
|  | /* | 
|  | * new->current_threshold will not be used | 
|  | * until rcu_assign_pointer(), so it's safe to increment | 
|  | * it here. | 
|  | */ | 
|  | ++new->current_threshold; | 
|  | } | 
|  | j++; | 
|  | } | 
|  |  | 
|  | swap_buffers: | 
|  | /* Swap primary and spare array */ | 
|  | thresholds->spare = thresholds->primary; | 
|  |  | 
|  | rcu_assign_pointer(thresholds->primary, new); | 
|  |  | 
|  | /* To be sure that nobody uses thresholds */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | /* If all events are unregistered, free the spare array */ | 
|  | if (!new) { | 
|  | kfree(thresholds->spare); | 
|  | thresholds->spare = NULL; | 
|  | } | 
|  | unlock: | 
|  | mutex_unlock(&memcg->thresholds_lock); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd) | 
|  | { | 
|  | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); | 
|  | } | 
|  |  | 
|  | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd) | 
|  | { | 
|  | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args) | 
|  | { | 
|  | struct mem_cgroup_eventfd_list *event; | 
|  |  | 
|  | event = kmalloc(sizeof(*event),	GFP_KERNEL); | 
|  | if (!event) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  |  | 
|  | event->eventfd = eventfd; | 
|  | list_add(&event->list, &memcg->oom_notify); | 
|  |  | 
|  | /* already in OOM ? */ | 
|  | if (memcg->under_oom) | 
|  | eventfd_signal(eventfd, 1); | 
|  | spin_unlock(&memcg_oom_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd) | 
|  | { | 
|  | struct mem_cgroup_eventfd_list *ev, *tmp; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  |  | 
|  | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | 
|  | if (ev->eventfd == eventfd) { | 
|  | list_del(&ev->list); | 
|  | kfree(ev); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); | 
|  |  | 
|  | seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); | 
|  | seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); | 
|  | seq_printf(sf, "oom_kill %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | /* cannot set to root cgroup and only 0 and 1 are allowed */ | 
|  | if (!css->parent || !((val == 0) || (val == 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcg->oom_kill_disable = val; | 
|  | if (!val) | 
|  | memcg_oom_recover(memcg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  |  | 
|  | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
|  | { | 
|  | return wb_domain_init(&memcg->cgwb_domain, gfp); | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
|  | { | 
|  | wb_domain_exit(&memcg->cgwb_domain); | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
|  | { | 
|  | wb_domain_size_changed(&memcg->cgwb_domain); | 
|  | } | 
|  |  | 
|  | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
|  |  | 
|  | if (!memcg->css.parent) | 
|  | return NULL; | 
|  |  | 
|  | return &memcg->cgwb_domain; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * idx can be of type enum memcg_stat_item or node_stat_item. | 
|  | * Keep in sync with memcg_exact_page(). | 
|  | */ | 
|  | static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) | 
|  | { | 
|  | long x = atomic_long_read(&memcg->vmstats[idx]); | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; | 
|  | if (x < 0) | 
|  | x = 0; | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg | 
|  | * @wb: bdi_writeback in question | 
|  | * @pfilepages: out parameter for number of file pages | 
|  | * @pheadroom: out parameter for number of allocatable pages according to memcg | 
|  | * @pdirty: out parameter for number of dirty pages | 
|  | * @pwriteback: out parameter for number of pages under writeback | 
|  | * | 
|  | * Determine the numbers of file, headroom, dirty, and writeback pages in | 
|  | * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom | 
|  | * is a bit more involved. | 
|  | * | 
|  | * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the | 
|  | * headroom is calculated as the lowest headroom of itself and the | 
|  | * ancestors.  Note that this doesn't consider the actual amount of | 
|  | * available memory in the system.  The caller should further cap | 
|  | * *@pheadroom accordingly. | 
|  | */ | 
|  | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, | 
|  | unsigned long *pheadroom, unsigned long *pdirty, | 
|  | unsigned long *pwriteback) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
|  | struct mem_cgroup *parent; | 
|  |  | 
|  | *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); | 
|  |  | 
|  | /* this should eventually include NR_UNSTABLE_NFS */ | 
|  | *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); | 
|  | *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + | 
|  | memcg_exact_page_state(memcg, NR_ACTIVE_FILE); | 
|  | *pheadroom = PAGE_COUNTER_MAX; | 
|  |  | 
|  | while ((parent = parent_mem_cgroup(memcg))) { | 
|  | unsigned long ceiling = min(memcg->memory.max, memcg->high); | 
|  | unsigned long used = page_counter_read(&memcg->memory); | 
|  |  | 
|  | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); | 
|  | memcg = parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_CGROUP_WRITEBACK */ | 
|  |  | 
|  | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_CGROUP_WRITEBACK */ | 
|  |  | 
|  | /* | 
|  | * DO NOT USE IN NEW FILES. | 
|  | * | 
|  | * "cgroup.event_control" implementation. | 
|  | * | 
|  | * This is way over-engineered.  It tries to support fully configurable | 
|  | * events for each user.  Such level of flexibility is completely | 
|  | * unnecessary especially in the light of the planned unified hierarchy. | 
|  | * | 
|  | * Please deprecate this and replace with something simpler if at all | 
|  | * possible. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Unregister event and free resources. | 
|  | * | 
|  | * Gets called from workqueue. | 
|  | */ | 
|  | static void memcg_event_remove(struct work_struct *work) | 
|  | { | 
|  | struct mem_cgroup_event *event = | 
|  | container_of(work, struct mem_cgroup_event, remove); | 
|  | struct mem_cgroup *memcg = event->memcg; | 
|  |  | 
|  | remove_wait_queue(event->wqh, &event->wait); | 
|  |  | 
|  | event->unregister_event(memcg, event->eventfd); | 
|  |  | 
|  | /* Notify userspace the event is going away. */ | 
|  | eventfd_signal(event->eventfd, 1); | 
|  |  | 
|  | eventfd_ctx_put(event->eventfd); | 
|  | kfree(event); | 
|  | css_put(&memcg->css); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gets called on EPOLLHUP on eventfd when user closes it. | 
|  | * | 
|  | * Called with wqh->lock held and interrupts disabled. | 
|  | */ | 
|  | static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, | 
|  | int sync, void *key) | 
|  | { | 
|  | struct mem_cgroup_event *event = | 
|  | container_of(wait, struct mem_cgroup_event, wait); | 
|  | struct mem_cgroup *memcg = event->memcg; | 
|  | __poll_t flags = key_to_poll(key); | 
|  |  | 
|  | if (flags & EPOLLHUP) { | 
|  | /* | 
|  | * If the event has been detached at cgroup removal, we | 
|  | * can simply return knowing the other side will cleanup | 
|  | * for us. | 
|  | * | 
|  | * We can't race against event freeing since the other | 
|  | * side will require wqh->lock via remove_wait_queue(), | 
|  | * which we hold. | 
|  | */ | 
|  | spin_lock(&memcg->event_list_lock); | 
|  | if (!list_empty(&event->list)) { | 
|  | list_del_init(&event->list); | 
|  | /* | 
|  | * We are in atomic context, but cgroup_event_remove() | 
|  | * may sleep, so we have to call it in workqueue. | 
|  | */ | 
|  | schedule_work(&event->remove); | 
|  | } | 
|  | spin_unlock(&memcg->event_list_lock); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcg_event_ptable_queue_proc(struct file *file, | 
|  | wait_queue_head_t *wqh, poll_table *pt) | 
|  | { | 
|  | struct mem_cgroup_event *event = | 
|  | container_of(pt, struct mem_cgroup_event, pt); | 
|  |  | 
|  | event->wqh = wqh; | 
|  | add_wait_queue(wqh, &event->wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DO NOT USE IN NEW FILES. | 
|  | * | 
|  | * Parse input and register new cgroup event handler. | 
|  | * | 
|  | * Input must be in format '<event_fd> <control_fd> <args>'. | 
|  | * Interpretation of args is defined by control file implementation. | 
|  | */ | 
|  | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct cgroup_subsys_state *css = of_css(of); | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | struct mem_cgroup_event *event; | 
|  | struct cgroup_subsys_state *cfile_css; | 
|  | unsigned int efd, cfd; | 
|  | struct fd efile; | 
|  | struct fd cfile; | 
|  | const char *name; | 
|  | char *endp; | 
|  | int ret; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  |  | 
|  | efd = simple_strtoul(buf, &endp, 10); | 
|  | if (*endp != ' ') | 
|  | return -EINVAL; | 
|  | buf = endp + 1; | 
|  |  | 
|  | cfd = simple_strtoul(buf, &endp, 10); | 
|  | if ((*endp != ' ') && (*endp != '\0')) | 
|  | return -EINVAL; | 
|  | buf = endp + 1; | 
|  |  | 
|  | event = kzalloc(sizeof(*event), GFP_KERNEL); | 
|  | if (!event) | 
|  | return -ENOMEM; | 
|  |  | 
|  | event->memcg = memcg; | 
|  | INIT_LIST_HEAD(&event->list); | 
|  | init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); | 
|  | init_waitqueue_func_entry(&event->wait, memcg_event_wake); | 
|  | INIT_WORK(&event->remove, memcg_event_remove); | 
|  |  | 
|  | efile = fdget(efd); | 
|  | if (!efile.file) { | 
|  | ret = -EBADF; | 
|  | goto out_kfree; | 
|  | } | 
|  |  | 
|  | event->eventfd = eventfd_ctx_fileget(efile.file); | 
|  | if (IS_ERR(event->eventfd)) { | 
|  | ret = PTR_ERR(event->eventfd); | 
|  | goto out_put_efile; | 
|  | } | 
|  |  | 
|  | cfile = fdget(cfd); | 
|  | if (!cfile.file) { | 
|  | ret = -EBADF; | 
|  | goto out_put_eventfd; | 
|  | } | 
|  |  | 
|  | /* the process need read permission on control file */ | 
|  | /* AV: shouldn't we check that it's been opened for read instead? */ | 
|  | ret = inode_permission(file_inode(cfile.file), MAY_READ); | 
|  | if (ret < 0) | 
|  | goto out_put_cfile; | 
|  |  | 
|  | /* | 
|  | * Determine the event callbacks and set them in @event.  This used | 
|  | * to be done via struct cftype but cgroup core no longer knows | 
|  | * about these events.  The following is crude but the whole thing | 
|  | * is for compatibility anyway. | 
|  | * | 
|  | * DO NOT ADD NEW FILES. | 
|  | */ | 
|  | name = cfile.file->f_path.dentry->d_name.name; | 
|  |  | 
|  | if (!strcmp(name, "memory.usage_in_bytes")) { | 
|  | event->register_event = mem_cgroup_usage_register_event; | 
|  | event->unregister_event = mem_cgroup_usage_unregister_event; | 
|  | } else if (!strcmp(name, "memory.oom_control")) { | 
|  | event->register_event = mem_cgroup_oom_register_event; | 
|  | event->unregister_event = mem_cgroup_oom_unregister_event; | 
|  | } else if (!strcmp(name, "memory.pressure_level")) { | 
|  | event->register_event = vmpressure_register_event; | 
|  | event->unregister_event = vmpressure_unregister_event; | 
|  | } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | 
|  | event->register_event = memsw_cgroup_usage_register_event; | 
|  | event->unregister_event = memsw_cgroup_usage_unregister_event; | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | goto out_put_cfile; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify @cfile should belong to @css.  Also, remaining events are | 
|  | * automatically removed on cgroup destruction but the removal is | 
|  | * asynchronous, so take an extra ref on @css. | 
|  | */ | 
|  | cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, | 
|  | &memory_cgrp_subsys); | 
|  | ret = -EINVAL; | 
|  | if (IS_ERR(cfile_css)) | 
|  | goto out_put_cfile; | 
|  | if (cfile_css != css) { | 
|  | css_put(cfile_css); | 
|  | goto out_put_cfile; | 
|  | } | 
|  |  | 
|  | ret = event->register_event(memcg, event->eventfd, buf); | 
|  | if (ret) | 
|  | goto out_put_css; | 
|  |  | 
|  | vfs_poll(efile.file, &event->pt); | 
|  |  | 
|  | spin_lock(&memcg->event_list_lock); | 
|  | list_add(&event->list, &memcg->event_list); | 
|  | spin_unlock(&memcg->event_list_lock); | 
|  |  | 
|  | fdput(cfile); | 
|  | fdput(efile); | 
|  |  | 
|  | return nbytes; | 
|  |  | 
|  | out_put_css: | 
|  | css_put(css); | 
|  | out_put_cfile: | 
|  | fdput(cfile); | 
|  | out_put_eventfd: | 
|  | eventfd_ctx_put(event->eventfd); | 
|  | out_put_efile: | 
|  | fdput(efile); | 
|  | out_kfree: | 
|  | kfree(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct cftype mem_cgroup_legacy_files[] = { | 
|  | { | 
|  | .name = "usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "soft_limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "failcnt", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "stat", | 
|  | .seq_show = memcg_stat_show, | 
|  | }, | 
|  | { | 
|  | .name = "force_empty", | 
|  | .write = mem_cgroup_force_empty_write, | 
|  | }, | 
|  | { | 
|  | .name = "use_hierarchy", | 
|  | .write_u64 = mem_cgroup_hierarchy_write, | 
|  | .read_u64 = mem_cgroup_hierarchy_read, | 
|  | }, | 
|  | { | 
|  | .name = "cgroup.event_control",		/* XXX: for compat */ | 
|  | .write = memcg_write_event_control, | 
|  | .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, | 
|  | }, | 
|  | { | 
|  | .name = "swappiness", | 
|  | .read_u64 = mem_cgroup_swappiness_read, | 
|  | .write_u64 = mem_cgroup_swappiness_write, | 
|  | }, | 
|  | { | 
|  | .name = "move_charge_at_immigrate", | 
|  | .read_u64 = mem_cgroup_move_charge_read, | 
|  | .write_u64 = mem_cgroup_move_charge_write, | 
|  | }, | 
|  | { | 
|  | .name = "oom_control", | 
|  | .seq_show = mem_cgroup_oom_control_read, | 
|  | .write_u64 = mem_cgroup_oom_control_write, | 
|  | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | 
|  | }, | 
|  | { | 
|  | .name = "pressure_level", | 
|  | }, | 
|  | #ifdef CONFIG_NUMA | 
|  | { | 
|  | .name = "numa_stat", | 
|  | .seq_show = memcg_numa_stat_show, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .name = "kmem.limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.failcnt", | 
|  | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) | 
|  | { | 
|  | .name = "kmem.slabinfo", | 
|  | .seq_start = memcg_slab_start, | 
|  | .seq_next = memcg_slab_next, | 
|  | .seq_stop = memcg_slab_stop, | 
|  | .seq_show = memcg_slab_show, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .name = "kmem.tcp.limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.tcp.usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.tcp.failcnt", | 
|  | .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.tcp.max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { },	/* terminate */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Private memory cgroup IDR | 
|  | * | 
|  | * Swap-out records and page cache shadow entries need to store memcg | 
|  | * references in constrained space, so we maintain an ID space that is | 
|  | * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of | 
|  | * memory-controlled cgroups to 64k. | 
|  | * | 
|  | * However, there usually are many references to the oflline CSS after | 
|  | * the cgroup has been destroyed, such as page cache or reclaimable | 
|  | * slab objects, that don't need to hang on to the ID. We want to keep | 
|  | * those dead CSS from occupying IDs, or we might quickly exhaust the | 
|  | * relatively small ID space and prevent the creation of new cgroups | 
|  | * even when there are much fewer than 64k cgroups - possibly none. | 
|  | * | 
|  | * Maintain a private 16-bit ID space for memcg, and allow the ID to | 
|  | * be freed and recycled when it's no longer needed, which is usually | 
|  | * when the CSS is offlined. | 
|  | * | 
|  | * The only exception to that are records of swapped out tmpfs/shmem | 
|  | * pages that need to be attributed to live ancestors on swapin. But | 
|  | * those references are manageable from userspace. | 
|  | */ | 
|  |  | 
|  | static DEFINE_IDR(mem_cgroup_idr); | 
|  |  | 
|  | static void mem_cgroup_id_remove(struct mem_cgroup *memcg) | 
|  | { | 
|  | if (memcg->id.id > 0) { | 
|  | idr_remove(&mem_cgroup_idr, memcg->id.id); | 
|  | memcg->id.id = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) | 
|  | { | 
|  | refcount_add(n, &memcg->id.ref); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) | 
|  | { | 
|  | if (refcount_sub_and_test(n, &memcg->id.ref)) { | 
|  | mem_cgroup_id_remove(memcg); | 
|  |  | 
|  | /* Memcg ID pins CSS */ | 
|  | css_put(&memcg->css); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) | 
|  | { | 
|  | mem_cgroup_id_get_many(memcg, 1); | 
|  | } | 
|  |  | 
|  | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) | 
|  | { | 
|  | mem_cgroup_id_put_many(memcg, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_from_id - look up a memcg from a memcg id | 
|  | * @id: the memcg id to look up | 
|  | * | 
|  | * Caller must hold rcu_read_lock(). | 
|  | */ | 
|  | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | return idr_find(&mem_cgroup_idr, id); | 
|  | } | 
|  |  | 
|  | static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn; | 
|  | int tmp = node; | 
|  | /* | 
|  | * This routine is called against possible nodes. | 
|  | * But it's BUG to call kmalloc() against offline node. | 
|  | * | 
|  | * TODO: this routine can waste much memory for nodes which will | 
|  | *       never be onlined. It's better to use memory hotplug callback | 
|  | *       function. | 
|  | */ | 
|  | if (!node_state(node, N_NORMAL_MEMORY)) | 
|  | tmp = -1; | 
|  | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | 
|  | if (!pn) | 
|  | return 1; | 
|  |  | 
|  | pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); | 
|  | if (!pn->lruvec_stat_cpu) { | 
|  | kfree(pn); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | lruvec_init(&pn->lruvec); | 
|  | pn->usage_in_excess = 0; | 
|  | pn->on_tree = false; | 
|  | pn->memcg = memcg; | 
|  |  | 
|  | memcg->nodeinfo[node] = pn; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; | 
|  |  | 
|  | if (!pn) | 
|  | return; | 
|  |  | 
|  | free_percpu(pn->lruvec_stat_cpu); | 
|  | kfree(pn); | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_free(struct mem_cgroup *memcg) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_node(node) | 
|  | free_mem_cgroup_per_node_info(memcg, node); | 
|  | free_percpu(memcg->vmstats_percpu); | 
|  | kfree(memcg); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_free(struct mem_cgroup *memcg) | 
|  | { | 
|  | memcg_wb_domain_exit(memcg); | 
|  | __mem_cgroup_free(memcg); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup *mem_cgroup_alloc(void) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned int size; | 
|  | int node; | 
|  |  | 
|  | size = sizeof(struct mem_cgroup); | 
|  | size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | 
|  |  | 
|  | memcg = kzalloc(size, GFP_KERNEL); | 
|  | if (!memcg) | 
|  | return NULL; | 
|  |  | 
|  | memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, | 
|  | 1, MEM_CGROUP_ID_MAX, | 
|  | GFP_KERNEL); | 
|  | if (memcg->id.id < 0) | 
|  | goto fail; | 
|  |  | 
|  | memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); | 
|  | if (!memcg->vmstats_percpu) | 
|  | goto fail; | 
|  |  | 
|  | for_each_node(node) | 
|  | if (alloc_mem_cgroup_per_node_info(memcg, node)) | 
|  | goto fail; | 
|  |  | 
|  | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) | 
|  | goto fail; | 
|  |  | 
|  | INIT_WORK(&memcg->high_work, high_work_func); | 
|  | memcg->last_scanned_node = MAX_NUMNODES; | 
|  | INIT_LIST_HEAD(&memcg->oom_notify); | 
|  | mutex_init(&memcg->thresholds_lock); | 
|  | spin_lock_init(&memcg->move_lock); | 
|  | vmpressure_init(&memcg->vmpressure); | 
|  | INIT_LIST_HEAD(&memcg->event_list); | 
|  | spin_lock_init(&memcg->event_list_lock); | 
|  | memcg->socket_pressure = jiffies; | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | memcg->kmemcg_id = -1; | 
|  | #endif | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | INIT_LIST_HEAD(&memcg->cgwb_list); | 
|  | #endif | 
|  | idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); | 
|  | return memcg; | 
|  | fail: | 
|  | mem_cgroup_id_remove(memcg); | 
|  | __mem_cgroup_free(memcg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct cgroup_subsys_state * __ref | 
|  | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | 
|  | { | 
|  | struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); | 
|  | struct mem_cgroup *memcg; | 
|  | long error = -ENOMEM; | 
|  |  | 
|  | memcg = mem_cgroup_alloc(); | 
|  | if (!memcg) | 
|  | return ERR_PTR(error); | 
|  |  | 
|  | memcg->high = PAGE_COUNTER_MAX; | 
|  | memcg->soft_limit = PAGE_COUNTER_MAX; | 
|  | if (parent) { | 
|  | memcg->swappiness = mem_cgroup_swappiness(parent); | 
|  | memcg->oom_kill_disable = parent->oom_kill_disable; | 
|  | } | 
|  | if (parent && parent->use_hierarchy) { | 
|  | memcg->use_hierarchy = true; | 
|  | page_counter_init(&memcg->memory, &parent->memory); | 
|  | page_counter_init(&memcg->swap, &parent->swap); | 
|  | page_counter_init(&memcg->memsw, &parent->memsw); | 
|  | page_counter_init(&memcg->kmem, &parent->kmem); | 
|  | page_counter_init(&memcg->tcpmem, &parent->tcpmem); | 
|  | } else { | 
|  | page_counter_init(&memcg->memory, NULL); | 
|  | page_counter_init(&memcg->swap, NULL); | 
|  | page_counter_init(&memcg->memsw, NULL); | 
|  | page_counter_init(&memcg->kmem, NULL); | 
|  | page_counter_init(&memcg->tcpmem, NULL); | 
|  | /* | 
|  | * Deeper hierachy with use_hierarchy == false doesn't make | 
|  | * much sense so let cgroup subsystem know about this | 
|  | * unfortunate state in our controller. | 
|  | */ | 
|  | if (parent != root_mem_cgroup) | 
|  | memory_cgrp_subsys.broken_hierarchy = true; | 
|  | } | 
|  |  | 
|  | /* The following stuff does not apply to the root */ | 
|  | if (!parent) { | 
|  | root_mem_cgroup = memcg; | 
|  | return &memcg->css; | 
|  | } | 
|  |  | 
|  | error = memcg_online_kmem(memcg); | 
|  | if (error) | 
|  | goto fail; | 
|  |  | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | 
|  | static_branch_inc(&memcg_sockets_enabled_key); | 
|  |  | 
|  | return &memcg->css; | 
|  | fail: | 
|  | mem_cgroup_id_remove(memcg); | 
|  | mem_cgroup_free(memcg); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | /* | 
|  | * A memcg must be visible for memcg_expand_shrinker_maps() | 
|  | * by the time the maps are allocated. So, we allocate maps | 
|  | * here, when for_each_mem_cgroup() can't skip it. | 
|  | */ | 
|  | if (memcg_alloc_shrinker_maps(memcg)) { | 
|  | mem_cgroup_id_remove(memcg); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Online state pins memcg ID, memcg ID pins CSS */ | 
|  | refcount_set(&memcg->id.ref, 1); | 
|  | css_get(css); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | struct mem_cgroup_event *event, *tmp; | 
|  |  | 
|  | /* | 
|  | * Unregister events and notify userspace. | 
|  | * Notify userspace about cgroup removing only after rmdir of cgroup | 
|  | * directory to avoid race between userspace and kernelspace. | 
|  | */ | 
|  | spin_lock(&memcg->event_list_lock); | 
|  | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | 
|  | list_del_init(&event->list); | 
|  | schedule_work(&event->remove); | 
|  | } | 
|  | spin_unlock(&memcg->event_list_lock); | 
|  |  | 
|  | page_counter_set_min(&memcg->memory, 0); | 
|  | page_counter_set_low(&memcg->memory, 0); | 
|  |  | 
|  | memcg_offline_kmem(memcg); | 
|  | wb_memcg_offline(memcg); | 
|  |  | 
|  | drain_all_stock(memcg); | 
|  |  | 
|  | mem_cgroup_id_put(memcg); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | invalidate_reclaim_iterators(memcg); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | 
|  | static_branch_dec(&memcg_sockets_enabled_key); | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) | 
|  | static_branch_dec(&memcg_sockets_enabled_key); | 
|  |  | 
|  | vmpressure_cleanup(&memcg->vmpressure); | 
|  | cancel_work_sync(&memcg->high_work); | 
|  | mem_cgroup_remove_from_trees(memcg); | 
|  | memcg_free_shrinker_maps(memcg); | 
|  | memcg_free_kmem(memcg); | 
|  | mem_cgroup_free(memcg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_css_reset - reset the states of a mem_cgroup | 
|  | * @css: the target css | 
|  | * | 
|  | * Reset the states of the mem_cgroup associated with @css.  This is | 
|  | * invoked when the userland requests disabling on the default hierarchy | 
|  | * but the memcg is pinned through dependency.  The memcg should stop | 
|  | * applying policies and should revert to the vanilla state as it may be | 
|  | * made visible again. | 
|  | * | 
|  | * The current implementation only resets the essential configurations. | 
|  | * This needs to be expanded to cover all the visible parts. | 
|  | */ | 
|  | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); | 
|  | page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); | 
|  | page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); | 
|  | page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); | 
|  | page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); | 
|  | page_counter_set_min(&memcg->memory, 0); | 
|  | page_counter_set_low(&memcg->memory, 0); | 
|  | memcg->high = PAGE_COUNTER_MAX; | 
|  | memcg->soft_limit = PAGE_COUNTER_MAX; | 
|  | memcg_wb_domain_size_changed(memcg); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /* Handlers for move charge at task migration. */ | 
|  | static int mem_cgroup_do_precharge(unsigned long count) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Try a single bulk charge without reclaim first, kswapd may wake */ | 
|  | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); | 
|  | if (!ret) { | 
|  | mc.precharge += count; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Try charges one by one with reclaim, but do not retry */ | 
|  | while (count--) { | 
|  | ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | mc.precharge++; | 
|  | cond_resched(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | union mc_target { | 
|  | struct page	*page; | 
|  | swp_entry_t	ent; | 
|  | }; | 
|  |  | 
|  | enum mc_target_type { | 
|  | MC_TARGET_NONE = 0, | 
|  | MC_TARGET_PAGE, | 
|  | MC_TARGET_SWAP, | 
|  | MC_TARGET_DEVICE, | 
|  | }; | 
|  |  | 
|  | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent) | 
|  | { | 
|  | struct page *page = _vm_normal_page(vma, addr, ptent, true); | 
|  |  | 
|  | if (!page || !page_mapped(page)) | 
|  | return NULL; | 
|  | if (PageAnon(page)) { | 
|  | if (!(mc.flags & MOVE_ANON)) | 
|  | return NULL; | 
|  | } else { | 
|  | if (!(mc.flags & MOVE_FILE)) | 
|  | return NULL; | 
|  | } | 
|  | if (!get_page_unless_zero(page)) | 
|  | return NULL; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) | 
|  | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
|  | pte_t ptent, swp_entry_t *entry) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | swp_entry_t ent = pte_to_swp_entry(ptent); | 
|  |  | 
|  | if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to | 
|  | * a device and because they are not accessible by CPU they are store | 
|  | * as special swap entry in the CPU page table. | 
|  | */ | 
|  | if (is_device_private_entry(ent)) { | 
|  | page = device_private_entry_to_page(ent); | 
|  | /* | 
|  | * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have | 
|  | * a refcount of 1 when free (unlike normal page) | 
|  | */ | 
|  | if (!page_ref_add_unless(page, 1, 1)) | 
|  | return NULL; | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because lookup_swap_cache() updates some statistics counter, | 
|  | * we call find_get_page() with swapper_space directly. | 
|  | */ | 
|  | page = find_get_page(swap_address_space(ent), swp_offset(ent)); | 
|  | if (do_memsw_account()) | 
|  | entry->val = ent.val; | 
|  |  | 
|  | return page; | 
|  | } | 
|  | #else | 
|  | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
|  | pte_t ptent, swp_entry_t *entry) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | struct address_space *mapping; | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | if (!vma->vm_file) /* anonymous vma */ | 
|  | return NULL; | 
|  | if (!(mc.flags & MOVE_FILE)) | 
|  | return NULL; | 
|  |  | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | pgoff = linear_page_index(vma, addr); | 
|  |  | 
|  | /* page is moved even if it's not RSS of this task(page-faulted). */ | 
|  | #ifdef CONFIG_SWAP | 
|  | /* shmem/tmpfs may report page out on swap: account for that too. */ | 
|  | if (shmem_mapping(mapping)) { | 
|  | page = find_get_entry(mapping, pgoff); | 
|  | if (xa_is_value(page)) { | 
|  | swp_entry_t swp = radix_to_swp_entry(page); | 
|  | if (do_memsw_account()) | 
|  | *entry = swp; | 
|  | page = find_get_page(swap_address_space(swp), | 
|  | swp_offset(swp)); | 
|  | } | 
|  | } else | 
|  | page = find_get_page(mapping, pgoff); | 
|  | #else | 
|  | page = find_get_page(mapping, pgoff); | 
|  | #endif | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_move_account - move account of the page | 
|  | * @page: the page | 
|  | * @compound: charge the page as compound or small page | 
|  | * @from: mem_cgroup which the page is moved from. | 
|  | * @to:	mem_cgroup which the page is moved to. @from != @to. | 
|  | * | 
|  | * The caller must make sure the page is not on LRU (isolate_page() is useful.) | 
|  | * | 
|  | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | 
|  | * from old cgroup. | 
|  | */ | 
|  | static int mem_cgroup_move_account(struct page *page, | 
|  | bool compound, | 
|  | struct mem_cgroup *from, | 
|  | struct mem_cgroup *to) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  | int ret; | 
|  | bool anon; | 
|  |  | 
|  | VM_BUG_ON(from == to); | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | VM_BUG_ON(compound && !PageTransHuge(page)); | 
|  |  | 
|  | /* | 
|  | * Prevent mem_cgroup_migrate() from looking at | 
|  | * page->mem_cgroup of its source page while we change it. | 
|  | */ | 
|  | ret = -EBUSY; | 
|  | if (!trylock_page(page)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (page->mem_cgroup != from) | 
|  | goto out_unlock; | 
|  |  | 
|  | anon = PageAnon(page); | 
|  |  | 
|  | spin_lock_irqsave(&from->move_lock, flags); | 
|  |  | 
|  | if (!anon && page_mapped(page)) { | 
|  | __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); | 
|  | __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * move_lock grabbed above and caller set from->moving_account, so | 
|  | * mod_memcg_page_state will serialize updates to PageDirty. | 
|  | * So mapping should be stable for dirty pages. | 
|  | */ | 
|  | if (!anon && PageDirty(page)) { | 
|  | struct address_space *mapping = page_mapping(page); | 
|  |  | 
|  | if (mapping_cap_account_dirty(mapping)) { | 
|  | __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); | 
|  | __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PageWriteback(page)) { | 
|  | __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); | 
|  | __mod_memcg_state(to, NR_WRITEBACK, nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is safe to change page->mem_cgroup here because the page | 
|  | * is referenced, charged, and isolated - we can't race with | 
|  | * uncharging, charging, migration, or LRU putback. | 
|  | */ | 
|  |  | 
|  | /* caller should have done css_get */ | 
|  | page->mem_cgroup = to; | 
|  | spin_unlock_irqrestore(&from->move_lock, flags); | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | local_irq_disable(); | 
|  | mem_cgroup_charge_statistics(to, page, compound, nr_pages); | 
|  | memcg_check_events(to, page); | 
|  | mem_cgroup_charge_statistics(from, page, compound, -nr_pages); | 
|  | memcg_check_events(from, page); | 
|  | local_irq_enable(); | 
|  | out_unlock: | 
|  | unlock_page(page); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_mctgt_type - get target type of moving charge | 
|  | * @vma: the vma the pte to be checked belongs | 
|  | * @addr: the address corresponding to the pte to be checked | 
|  | * @ptent: the pte to be checked | 
|  | * @target: the pointer the target page or swap ent will be stored(can be NULL) | 
|  | * | 
|  | * Returns | 
|  | *   0(MC_TARGET_NONE): if the pte is not a target for move charge. | 
|  | *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | 
|  | *     move charge. if @target is not NULL, the page is stored in target->page | 
|  | *     with extra refcnt got(Callers should handle it). | 
|  | *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | 
|  | *     target for charge migration. if @target is not NULL, the entry is stored | 
|  | *     in target->ent. | 
|  | *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC | 
|  | *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). | 
|  | *     For now we such page is charge like a regular page would be as for all | 
|  | *     intent and purposes it is just special memory taking the place of a | 
|  | *     regular page. | 
|  | * | 
|  | *     See Documentations/vm/hmm.txt and include/linux/hmm.h | 
|  | * | 
|  | * Called with pte lock held. | 
|  | */ | 
|  |  | 
|  | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent, union mc_target *target) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | enum mc_target_type ret = MC_TARGET_NONE; | 
|  | swp_entry_t ent = { .val = 0 }; | 
|  |  | 
|  | if (pte_present(ptent)) | 
|  | page = mc_handle_present_pte(vma, addr, ptent); | 
|  | else if (is_swap_pte(ptent)) | 
|  | page = mc_handle_swap_pte(vma, ptent, &ent); | 
|  | else if (pte_none(ptent)) | 
|  | page = mc_handle_file_pte(vma, addr, ptent, &ent); | 
|  |  | 
|  | if (!page && !ent.val) | 
|  | return ret; | 
|  | if (page) { | 
|  | /* | 
|  | * Do only loose check w/o serialization. | 
|  | * mem_cgroup_move_account() checks the page is valid or | 
|  | * not under LRU exclusion. | 
|  | */ | 
|  | if (page->mem_cgroup == mc.from) { | 
|  | ret = MC_TARGET_PAGE; | 
|  | if (is_device_private_page(page) || | 
|  | is_device_public_page(page)) | 
|  | ret = MC_TARGET_DEVICE; | 
|  | if (target) | 
|  | target->page = page; | 
|  | } | 
|  | if (!ret || !target) | 
|  | put_page(page); | 
|  | } | 
|  | /* | 
|  | * There is a swap entry and a page doesn't exist or isn't charged. | 
|  | * But we cannot move a tail-page in a THP. | 
|  | */ | 
|  | if (ent.val && !ret && (!page || !PageTransCompound(page)) && | 
|  | mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { | 
|  | ret = MC_TARGET_SWAP; | 
|  | if (target) | 
|  | target->ent = ent; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | /* | 
|  | * We don't consider PMD mapped swapping or file mapped pages because THP does | 
|  | * not support them for now. | 
|  | * Caller should make sure that pmd_trans_huge(pmd) is true. | 
|  | */ | 
|  | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t pmd, union mc_target *target) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | enum mc_target_type ret = MC_TARGET_NONE; | 
|  |  | 
|  | if (unlikely(is_swap_pmd(pmd))) { | 
|  | VM_BUG_ON(thp_migration_supported() && | 
|  | !is_pmd_migration_entry(pmd)); | 
|  | return ret; | 
|  | } | 
|  | page = pmd_page(pmd); | 
|  | VM_BUG_ON_PAGE(!page || !PageHead(page), page); | 
|  | if (!(mc.flags & MOVE_ANON)) | 
|  | return ret; | 
|  | if (page->mem_cgroup == mc.from) { | 
|  | ret = MC_TARGET_PAGE; | 
|  | if (target) { | 
|  | get_page(page); | 
|  | target->page = page; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t pmd, union mc_target *target) | 
|  | { | 
|  | return MC_TARGET_NONE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | if (ptl) { | 
|  | /* | 
|  | * Note their can not be MC_TARGET_DEVICE for now as we do not | 
|  | * support transparent huge page with MEMORY_DEVICE_PUBLIC or | 
|  | * MEMORY_DEVICE_PRIVATE but this might change. | 
|  | */ | 
|  | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | 
|  | mc.precharge += HPAGE_PMD_NR; | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pmd_trans_unstable(pmd)) | 
|  | return 0; | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | for (; addr != end; pte++, addr += PAGE_SIZE) | 
|  | if (get_mctgt_type(vma, addr, *pte, NULL)) | 
|  | mc.precharge++;	/* increment precharge temporarily */ | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | cond_resched(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long precharge; | 
|  |  | 
|  | struct mm_walk mem_cgroup_count_precharge_walk = { | 
|  | .pmd_entry = mem_cgroup_count_precharge_pte_range, | 
|  | .mm = mm, | 
|  | }; | 
|  | down_read(&mm->mmap_sem); | 
|  | walk_page_range(0, mm->highest_vm_end, | 
|  | &mem_cgroup_count_precharge_walk); | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | precharge = mc.precharge; | 
|  | mc.precharge = 0; | 
|  |  | 
|  | return precharge; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long precharge = mem_cgroup_count_precharge(mm); | 
|  |  | 
|  | VM_BUG_ON(mc.moving_task); | 
|  | mc.moving_task = current; | 
|  | return mem_cgroup_do_precharge(precharge); | 
|  | } | 
|  |  | 
|  | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ | 
|  | static void __mem_cgroup_clear_mc(void) | 
|  | { | 
|  | struct mem_cgroup *from = mc.from; | 
|  | struct mem_cgroup *to = mc.to; | 
|  |  | 
|  | /* we must uncharge all the leftover precharges from mc.to */ | 
|  | if (mc.precharge) { | 
|  | cancel_charge(mc.to, mc.precharge); | 
|  | mc.precharge = 0; | 
|  | } | 
|  | /* | 
|  | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 
|  | * we must uncharge here. | 
|  | */ | 
|  | if (mc.moved_charge) { | 
|  | cancel_charge(mc.from, mc.moved_charge); | 
|  | mc.moved_charge = 0; | 
|  | } | 
|  | /* we must fixup refcnts and charges */ | 
|  | if (mc.moved_swap) { | 
|  | /* uncharge swap account from the old cgroup */ | 
|  | if (!mem_cgroup_is_root(mc.from)) | 
|  | page_counter_uncharge(&mc.from->memsw, mc.moved_swap); | 
|  |  | 
|  | mem_cgroup_id_put_many(mc.from, mc.moved_swap); | 
|  |  | 
|  | /* | 
|  | * we charged both to->memory and to->memsw, so we | 
|  | * should uncharge to->memory. | 
|  | */ | 
|  | if (!mem_cgroup_is_root(mc.to)) | 
|  | page_counter_uncharge(&mc.to->memory, mc.moved_swap); | 
|  |  | 
|  | mem_cgroup_id_get_many(mc.to, mc.moved_swap); | 
|  | css_put_many(&mc.to->css, mc.moved_swap); | 
|  |  | 
|  | mc.moved_swap = 0; | 
|  | } | 
|  | memcg_oom_recover(from); | 
|  | memcg_oom_recover(to); | 
|  | wake_up_all(&mc.waitq); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_clear_mc(void) | 
|  | { | 
|  | struct mm_struct *mm = mc.mm; | 
|  |  | 
|  | /* | 
|  | * we must clear moving_task before waking up waiters at the end of | 
|  | * task migration. | 
|  | */ | 
|  | mc.moving_task = NULL; | 
|  | __mem_cgroup_clear_mc(); | 
|  | spin_lock(&mc.lock); | 
|  | mc.from = NULL; | 
|  | mc.to = NULL; | 
|  | mc.mm = NULL; | 
|  | spin_unlock(&mc.lock); | 
|  |  | 
|  | mmput(mm); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  | struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ | 
|  | struct mem_cgroup *from; | 
|  | struct task_struct *leader, *p; | 
|  | struct mm_struct *mm; | 
|  | unsigned long move_flags; | 
|  | int ret = 0; | 
|  |  | 
|  | /* charge immigration isn't supported on the default hierarchy */ | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Multi-process migrations only happen on the default hierarchy | 
|  | * where charge immigration is not used.  Perform charge | 
|  | * immigration if @tset contains a leader and whine if there are | 
|  | * multiple. | 
|  | */ | 
|  | p = NULL; | 
|  | cgroup_taskset_for_each_leader(leader, css, tset) { | 
|  | WARN_ON_ONCE(p); | 
|  | p = leader; | 
|  | memcg = mem_cgroup_from_css(css); | 
|  | } | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We are now commited to this value whatever it is. Changes in this | 
|  | * tunable will only affect upcoming migrations, not the current one. | 
|  | * So we need to save it, and keep it going. | 
|  | */ | 
|  | move_flags = READ_ONCE(memcg->move_charge_at_immigrate); | 
|  | if (!move_flags) | 
|  | return 0; | 
|  |  | 
|  | from = mem_cgroup_from_task(p); | 
|  |  | 
|  | VM_BUG_ON(from == memcg); | 
|  |  | 
|  | mm = get_task_mm(p); | 
|  | if (!mm) | 
|  | return 0; | 
|  | /* We move charges only when we move a owner of the mm */ | 
|  | if (mm->owner == p) { | 
|  | VM_BUG_ON(mc.from); | 
|  | VM_BUG_ON(mc.to); | 
|  | VM_BUG_ON(mc.precharge); | 
|  | VM_BUG_ON(mc.moved_charge); | 
|  | VM_BUG_ON(mc.moved_swap); | 
|  |  | 
|  | spin_lock(&mc.lock); | 
|  | mc.mm = mm; | 
|  | mc.from = from; | 
|  | mc.to = memcg; | 
|  | mc.flags = move_flags; | 
|  | spin_unlock(&mc.lock); | 
|  | /* We set mc.moving_task later */ | 
|  |  | 
|  | ret = mem_cgroup_precharge_mc(mm); | 
|  | if (ret) | 
|  | mem_cgroup_clear_mc(); | 
|  | } else { | 
|  | mmput(mm); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | if (mc.to) | 
|  | mem_cgroup_clear_mc(); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | int ret = 0; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  | enum mc_target_type target_type; | 
|  | union mc_target target; | 
|  | struct page *page; | 
|  |  | 
|  | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | if (ptl) { | 
|  | if (mc.precharge < HPAGE_PMD_NR) { | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | 
|  | if (target_type == MC_TARGET_PAGE) { | 
|  | page = target.page; | 
|  | if (!isolate_lru_page(page)) { | 
|  | if (!mem_cgroup_move_account(page, true, | 
|  | mc.from, mc.to)) { | 
|  | mc.precharge -= HPAGE_PMD_NR; | 
|  | mc.moved_charge += HPAGE_PMD_NR; | 
|  | } | 
|  | putback_lru_page(page); | 
|  | } | 
|  | put_page(page); | 
|  | } else if (target_type == MC_TARGET_DEVICE) { | 
|  | page = target.page; | 
|  | if (!mem_cgroup_move_account(page, true, | 
|  | mc.from, mc.to)) { | 
|  | mc.precharge -= HPAGE_PMD_NR; | 
|  | mc.moved_charge += HPAGE_PMD_NR; | 
|  | } | 
|  | put_page(page); | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pmd_trans_unstable(pmd)) | 
|  | return 0; | 
|  | retry: | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | for (; addr != end; addr += PAGE_SIZE) { | 
|  | pte_t ptent = *(pte++); | 
|  | bool device = false; | 
|  | swp_entry_t ent; | 
|  |  | 
|  | if (!mc.precharge) | 
|  | break; | 
|  |  | 
|  | switch (get_mctgt_type(vma, addr, ptent, &target)) { | 
|  | case MC_TARGET_DEVICE: | 
|  | device = true; | 
|  | /* fall through */ | 
|  | case MC_TARGET_PAGE: | 
|  | page = target.page; | 
|  | /* | 
|  | * We can have a part of the split pmd here. Moving it | 
|  | * can be done but it would be too convoluted so simply | 
|  | * ignore such a partial THP and keep it in original | 
|  | * memcg. There should be somebody mapping the head. | 
|  | */ | 
|  | if (PageTransCompound(page)) | 
|  | goto put; | 
|  | if (!device && isolate_lru_page(page)) | 
|  | goto put; | 
|  | if (!mem_cgroup_move_account(page, false, | 
|  | mc.from, mc.to)) { | 
|  | mc.precharge--; | 
|  | /* we uncharge from mc.from later. */ | 
|  | mc.moved_charge++; | 
|  | } | 
|  | if (!device) | 
|  | putback_lru_page(page); | 
|  | put:			/* get_mctgt_type() gets the page */ | 
|  | put_page(page); | 
|  | break; | 
|  | case MC_TARGET_SWAP: | 
|  | ent = target.ent; | 
|  | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { | 
|  | mc.precharge--; | 
|  | /* we fixup refcnts and charges later. */ | 
|  | mc.moved_swap++; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | cond_resched(); | 
|  |  | 
|  | if (addr != end) { | 
|  | /* | 
|  | * We have consumed all precharges we got in can_attach(). | 
|  | * We try charge one by one, but don't do any additional | 
|  | * charges to mc.to if we have failed in charge once in attach() | 
|  | * phase. | 
|  | */ | 
|  | ret = mem_cgroup_do_precharge(1); | 
|  | if (!ret) | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_move_charge(void) | 
|  | { | 
|  | struct mm_walk mem_cgroup_move_charge_walk = { | 
|  | .pmd_entry = mem_cgroup_move_charge_pte_range, | 
|  | .mm = mc.mm, | 
|  | }; | 
|  |  | 
|  | lru_add_drain_all(); | 
|  | /* | 
|  | * Signal lock_page_memcg() to take the memcg's move_lock | 
|  | * while we're moving its pages to another memcg. Then wait | 
|  | * for already started RCU-only updates to finish. | 
|  | */ | 
|  | atomic_inc(&mc.from->moving_account); | 
|  | synchronize_rcu(); | 
|  | retry: | 
|  | if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { | 
|  | /* | 
|  | * Someone who are holding the mmap_sem might be waiting in | 
|  | * waitq. So we cancel all extra charges, wake up all waiters, | 
|  | * and retry. Because we cancel precharges, we might not be able | 
|  | * to move enough charges, but moving charge is a best-effort | 
|  | * feature anyway, so it wouldn't be a big problem. | 
|  | */ | 
|  | __mem_cgroup_clear_mc(); | 
|  | cond_resched(); | 
|  | goto retry; | 
|  | } | 
|  | /* | 
|  | * When we have consumed all precharges and failed in doing | 
|  | * additional charge, the page walk just aborts. | 
|  | */ | 
|  | walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); | 
|  |  | 
|  | up_read(&mc.mm->mmap_sem); | 
|  | atomic_dec(&mc.from->moving_account); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_move_task(void) | 
|  | { | 
|  | if (mc.to) { | 
|  | mem_cgroup_move_charge(); | 
|  | mem_cgroup_clear_mc(); | 
|  | } | 
|  | } | 
|  | #else	/* !CONFIG_MMU */ | 
|  | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | } | 
|  | static void mem_cgroup_move_task(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Cgroup retains root cgroups across [un]mount cycles making it necessary | 
|  | * to verify whether we're attached to the default hierarchy on each mount | 
|  | * attempt. | 
|  | */ | 
|  | static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) | 
|  | { | 
|  | /* | 
|  | * use_hierarchy is forced on the default hierarchy.  cgroup core | 
|  | * guarantees that @root doesn't have any children, so turning it | 
|  | * on for the root memcg is enough. | 
|  | */ | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | root_mem_cgroup->use_hierarchy = true; | 
|  | else | 
|  | root_mem_cgroup->use_hierarchy = false; | 
|  | } | 
|  |  | 
|  | static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) | 
|  | { | 
|  | if (value == PAGE_COUNTER_MAX) | 
|  | seq_puts(m, "max\n"); | 
|  | else | 
|  | seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 memory_current_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | static int memory_min_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); | 
|  | } | 
|  |  | 
|  | static ssize_t memory_min_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long min; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &min); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | page_counter_set_min(&memcg->memory, min); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_low_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); | 
|  | } | 
|  |  | 
|  | static ssize_t memory_low_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long low; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &low); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | page_counter_set_low(&memcg->memory, low); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_high_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); | 
|  | } | 
|  |  | 
|  | static ssize_t memory_high_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long nr_pages; | 
|  | unsigned long high; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &high); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | memcg->high = high; | 
|  |  | 
|  | nr_pages = page_counter_read(&memcg->memory); | 
|  | if (nr_pages > high) | 
|  | try_to_free_mem_cgroup_pages(memcg, nr_pages - high, | 
|  | GFP_KERNEL, true); | 
|  |  | 
|  | memcg_wb_domain_size_changed(memcg); | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_max_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); | 
|  | } | 
|  |  | 
|  | static ssize_t memory_max_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | bool drained = false; | 
|  | unsigned long max; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &max); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | xchg(&memcg->memory.max, max); | 
|  |  | 
|  | for (;;) { | 
|  | unsigned long nr_pages = page_counter_read(&memcg->memory); | 
|  |  | 
|  | if (nr_pages <= max) | 
|  | break; | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | err = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!drained) { | 
|  | drain_all_stock(memcg); | 
|  | drained = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (nr_reclaims) { | 
|  | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, | 
|  | GFP_KERNEL, true)) | 
|  | nr_reclaims--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | memcg_memory_event(memcg, MEMCG_OOM); | 
|  | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | memcg_wb_domain_size_changed(memcg); | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_events_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | seq_printf(m, "low %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_LOW])); | 
|  | seq_printf(m, "high %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); | 
|  | seq_printf(m, "max %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_MAX])); | 
|  | seq_printf(m, "oom %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_OOM])); | 
|  | seq_printf(m, "oom_kill %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memory_stat_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Provide statistics on the state of the memory subsystem as | 
|  | * well as cumulative event counters that show past behavior. | 
|  | * | 
|  | * This list is ordered following a combination of these gradients: | 
|  | * 1) generic big picture -> specifics and details | 
|  | * 2) reflecting userspace activity -> reflecting kernel heuristics | 
|  | * | 
|  | * Current memory state: | 
|  | */ | 
|  |  | 
|  | seq_printf(m, "anon %llu\n", | 
|  | (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE); | 
|  | seq_printf(m, "file %llu\n", | 
|  | (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE); | 
|  | seq_printf(m, "kernel_stack %llu\n", | 
|  | (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024); | 
|  | seq_printf(m, "slab %llu\n", | 
|  | (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + | 
|  | memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * | 
|  | PAGE_SIZE); | 
|  | seq_printf(m, "sock %llu\n", | 
|  | (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE); | 
|  |  | 
|  | seq_printf(m, "shmem %llu\n", | 
|  | (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE); | 
|  | seq_printf(m, "file_mapped %llu\n", | 
|  | (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE); | 
|  | seq_printf(m, "file_dirty %llu\n", | 
|  | (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE); | 
|  | seq_printf(m, "file_writeback %llu\n", | 
|  | (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter | 
|  | * with the NR_ANON_THP vm counter, but right now it's a pain in the | 
|  | * arse because it requires migrating the work out of rmap to a place | 
|  | * where the page->mem_cgroup is set up and stable. | 
|  | */ | 
|  | seq_printf(m, "anon_thp %llu\n", | 
|  | (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE); | 
|  |  | 
|  | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i], | 
|  | (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * | 
|  | PAGE_SIZE); | 
|  |  | 
|  | seq_printf(m, "slab_reclaimable %llu\n", | 
|  | (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * | 
|  | PAGE_SIZE); | 
|  | seq_printf(m, "slab_unreclaimable %llu\n", | 
|  | (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * | 
|  | PAGE_SIZE); | 
|  |  | 
|  | /* Accumulated memory events */ | 
|  |  | 
|  | seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); | 
|  | seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); | 
|  |  | 
|  | seq_printf(m, "workingset_refault %lu\n", | 
|  | memcg_page_state(memcg, WORKINGSET_REFAULT)); | 
|  | seq_printf(m, "workingset_activate %lu\n", | 
|  | memcg_page_state(memcg, WORKINGSET_ACTIVATE)); | 
|  | seq_printf(m, "workingset_nodereclaim %lu\n", | 
|  | memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); | 
|  |  | 
|  | seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); | 
|  | seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) + | 
|  | memcg_events(memcg, PGSCAN_DIRECT)); | 
|  | seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) + | 
|  | memcg_events(memcg, PGSTEAL_DIRECT)); | 
|  | seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); | 
|  | seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); | 
|  | seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); | 
|  | seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | seq_printf(m, "thp_fault_alloc %lu\n", | 
|  | memcg_events(memcg, THP_FAULT_ALLOC)); | 
|  | seq_printf(m, "thp_collapse_alloc %lu\n", | 
|  | memcg_events(memcg, THP_COLLAPSE_ALLOC)); | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memory_oom_group_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | seq_printf(m, "%d\n", memcg->oom_group); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t memory_oom_group_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | int ret, oom_group; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | if (!buf) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = kstrtoint(buf, 0, &oom_group); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (oom_group != 0 && oom_group != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcg->oom_group = oom_group; | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static struct cftype memory_files[] = { | 
|  | { | 
|  | .name = "current", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .read_u64 = memory_current_read, | 
|  | }, | 
|  | { | 
|  | .name = "min", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_min_show, | 
|  | .write = memory_min_write, | 
|  | }, | 
|  | { | 
|  | .name = "low", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_low_show, | 
|  | .write = memory_low_write, | 
|  | }, | 
|  | { | 
|  | .name = "high", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_high_show, | 
|  | .write = memory_high_write, | 
|  | }, | 
|  | { | 
|  | .name = "max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_max_show, | 
|  | .write = memory_max_write, | 
|  | }, | 
|  | { | 
|  | .name = "events", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .file_offset = offsetof(struct mem_cgroup, events_file), | 
|  | .seq_show = memory_events_show, | 
|  | }, | 
|  | { | 
|  | .name = "stat", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_stat_show, | 
|  | }, | 
|  | { | 
|  | .name = "oom.group", | 
|  | .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, | 
|  | .seq_show = memory_oom_group_show, | 
|  | .write = memory_oom_group_write, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | struct cgroup_subsys memory_cgrp_subsys = { | 
|  | .css_alloc = mem_cgroup_css_alloc, | 
|  | .css_online = mem_cgroup_css_online, | 
|  | .css_offline = mem_cgroup_css_offline, | 
|  | .css_released = mem_cgroup_css_released, | 
|  | .css_free = mem_cgroup_css_free, | 
|  | .css_reset = mem_cgroup_css_reset, | 
|  | .can_attach = mem_cgroup_can_attach, | 
|  | .cancel_attach = mem_cgroup_cancel_attach, | 
|  | .post_attach = mem_cgroup_move_task, | 
|  | .bind = mem_cgroup_bind, | 
|  | .dfl_cftypes = memory_files, | 
|  | .legacy_cftypes = mem_cgroup_legacy_files, | 
|  | .early_init = 0, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_protected - check if memory consumption is in the normal range | 
|  | * @root: the top ancestor of the sub-tree being checked | 
|  | * @memcg: the memory cgroup to check | 
|  | * | 
|  | * WARNING: This function is not stateless! It can only be used as part | 
|  | *          of a top-down tree iteration, not for isolated queries. | 
|  | * | 
|  | * Returns one of the following: | 
|  | *   MEMCG_PROT_NONE: cgroup memory is not protected | 
|  | *   MEMCG_PROT_LOW: cgroup memory is protected as long there is | 
|  | *     an unprotected supply of reclaimable memory from other cgroups. | 
|  | *   MEMCG_PROT_MIN: cgroup memory is protected | 
|  | * | 
|  | * @root is exclusive; it is never protected when looked at directly | 
|  | * | 
|  | * To provide a proper hierarchical behavior, effective memory.min/low values | 
|  | * are used. Below is the description of how effective memory.low is calculated. | 
|  | * Effective memory.min values is calculated in the same way. | 
|  | * | 
|  | * Effective memory.low is always equal or less than the original memory.low. | 
|  | * If there is no memory.low overcommittment (which is always true for | 
|  | * top-level memory cgroups), these two values are equal. | 
|  | * Otherwise, it's a part of parent's effective memory.low, | 
|  | * calculated as a cgroup's memory.low usage divided by sum of sibling's | 
|  | * memory.low usages, where memory.low usage is the size of actually | 
|  | * protected memory. | 
|  | * | 
|  | *                                             low_usage | 
|  | * elow = min( memory.low, parent->elow * ------------------ ), | 
|  | *                                        siblings_low_usage | 
|  | * | 
|  | *             | memory.current, if memory.current < memory.low | 
|  | * low_usage = | | 
|  | *	       | 0, otherwise. | 
|  | * | 
|  | * | 
|  | * Such definition of the effective memory.low provides the expected | 
|  | * hierarchical behavior: parent's memory.low value is limiting | 
|  | * children, unprotected memory is reclaimed first and cgroups, | 
|  | * which are not using their guarantee do not affect actual memory | 
|  | * distribution. | 
|  | * | 
|  | * For example, if there are memcgs A, A/B, A/C, A/D and A/E: | 
|  | * | 
|  | *     A      A/memory.low = 2G, A/memory.current = 6G | 
|  | *    //\\ | 
|  | *   BC  DE   B/memory.low = 3G  B/memory.current = 2G | 
|  | *            C/memory.low = 1G  C/memory.current = 2G | 
|  | *            D/memory.low = 0   D/memory.current = 2G | 
|  | *            E/memory.low = 10G E/memory.current = 0 | 
|  | * | 
|  | * and the memory pressure is applied, the following memory distribution | 
|  | * is expected (approximately): | 
|  | * | 
|  | *     A/memory.current = 2G | 
|  | * | 
|  | *     B/memory.current = 1.3G | 
|  | *     C/memory.current = 0.6G | 
|  | *     D/memory.current = 0 | 
|  | *     E/memory.current = 0 | 
|  | * | 
|  | * These calculations require constant tracking of the actual low usages | 
|  | * (see propagate_protected_usage()), as well as recursive calculation of | 
|  | * effective memory.low values. But as we do call mem_cgroup_protected() | 
|  | * path for each memory cgroup top-down from the reclaim, | 
|  | * it's possible to optimize this part, and save calculated elow | 
|  | * for next usage. This part is intentionally racy, but it's ok, | 
|  | * as memory.low is a best-effort mechanism. | 
|  | */ | 
|  | enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, | 
|  | struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *parent; | 
|  | unsigned long emin, parent_emin; | 
|  | unsigned long elow, parent_elow; | 
|  | unsigned long usage; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return MEMCG_PROT_NONE; | 
|  |  | 
|  | if (!root) | 
|  | root = root_mem_cgroup; | 
|  | if (memcg == root) | 
|  | return MEMCG_PROT_NONE; | 
|  |  | 
|  | usage = page_counter_read(&memcg->memory); | 
|  | if (!usage) | 
|  | return MEMCG_PROT_NONE; | 
|  |  | 
|  | emin = memcg->memory.min; | 
|  | elow = memcg->memory.low; | 
|  |  | 
|  | parent = parent_mem_cgroup(memcg); | 
|  | /* No parent means a non-hierarchical mode on v1 memcg */ | 
|  | if (!parent) | 
|  | return MEMCG_PROT_NONE; | 
|  |  | 
|  | if (parent == root) | 
|  | goto exit; | 
|  |  | 
|  | parent_emin = READ_ONCE(parent->memory.emin); | 
|  | emin = min(emin, parent_emin); | 
|  | if (emin && parent_emin) { | 
|  | unsigned long min_usage, siblings_min_usage; | 
|  |  | 
|  | min_usage = min(usage, memcg->memory.min); | 
|  | siblings_min_usage = atomic_long_read( | 
|  | &parent->memory.children_min_usage); | 
|  |  | 
|  | if (min_usage && siblings_min_usage) | 
|  | emin = min(emin, parent_emin * min_usage / | 
|  | siblings_min_usage); | 
|  | } | 
|  |  | 
|  | parent_elow = READ_ONCE(parent->memory.elow); | 
|  | elow = min(elow, parent_elow); | 
|  | if (elow && parent_elow) { | 
|  | unsigned long low_usage, siblings_low_usage; | 
|  |  | 
|  | low_usage = min(usage, memcg->memory.low); | 
|  | siblings_low_usage = atomic_long_read( | 
|  | &parent->memory.children_low_usage); | 
|  |  | 
|  | if (low_usage && siblings_low_usage) | 
|  | elow = min(elow, parent_elow * low_usage / | 
|  | siblings_low_usage); | 
|  | } | 
|  |  | 
|  | exit: | 
|  | memcg->memory.emin = emin; | 
|  | memcg->memory.elow = elow; | 
|  |  | 
|  | if (usage <= emin) | 
|  | return MEMCG_PROT_MIN; | 
|  | else if (usage <= elow) | 
|  | return MEMCG_PROT_LOW; | 
|  | else | 
|  | return MEMCG_PROT_NONE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_try_charge - try charging a page | 
|  | * @page: page to charge | 
|  | * @mm: mm context of the victim | 
|  | * @gfp_mask: reclaim mode | 
|  | * @memcgp: charged memcg return | 
|  | * @compound: charge the page as compound or small page | 
|  | * | 
|  | * Try to charge @page to the memcg that @mm belongs to, reclaiming | 
|  | * pages according to @gfp_mask if necessary. | 
|  | * | 
|  | * Returns 0 on success, with *@memcgp pointing to the charged memcg. | 
|  | * Otherwise, an error code is returned. | 
|  | * | 
|  | * After page->mapping has been set up, the caller must finalize the | 
|  | * charge with mem_cgroup_commit_charge().  Or abort the transaction | 
|  | * with mem_cgroup_cancel_charge() in case page instantiation fails. | 
|  | */ | 
|  | int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, | 
|  | gfp_t gfp_mask, struct mem_cgroup **memcgp, | 
|  | bool compound) | 
|  | { | 
|  | struct mem_cgroup *memcg = NULL; | 
|  | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  | int ret = 0; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | goto out; | 
|  |  | 
|  | if (PageSwapCache(page)) { | 
|  | /* | 
|  | * Every swap fault against a single page tries to charge the | 
|  | * page, bail as early as possible.  shmem_unuse() encounters | 
|  | * already charged pages, too.  The USED bit is protected by | 
|  | * the page lock, which serializes swap cache removal, which | 
|  | * in turn serializes uncharging. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | if (compound_head(page)->mem_cgroup) | 
|  | goto out; | 
|  |  | 
|  | if (do_swap_account) { | 
|  | swp_entry_t ent = { .val = page_private(page), }; | 
|  | unsigned short id = lookup_swap_cgroup_id(ent); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_id(id); | 
|  | if (memcg && !css_tryget_online(&memcg->css)) | 
|  | memcg = NULL; | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!memcg) | 
|  | memcg = get_mem_cgroup_from_mm(mm); | 
|  |  | 
|  | ret = try_charge(memcg, gfp_mask, nr_pages); | 
|  |  | 
|  | css_put(&memcg->css); | 
|  | out: | 
|  | *memcgp = memcg; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, | 
|  | gfp_t gfp_mask, struct mem_cgroup **memcgp, | 
|  | bool compound) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | int ret; | 
|  |  | 
|  | ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); | 
|  | memcg = *memcgp; | 
|  | mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_commit_charge - commit a page charge | 
|  | * @page: page to charge | 
|  | * @memcg: memcg to charge the page to | 
|  | * @lrucare: page might be on LRU already | 
|  | * @compound: charge the page as compound or small page | 
|  | * | 
|  | * Finalize a charge transaction started by mem_cgroup_try_charge(), | 
|  | * after page->mapping has been set up.  This must happen atomically | 
|  | * as part of the page instantiation, i.e. under the page table lock | 
|  | * for anonymous pages, under the page lock for page and swap cache. | 
|  | * | 
|  | * In addition, the page must not be on the LRU during the commit, to | 
|  | * prevent racing with task migration.  If it might be, use @lrucare. | 
|  | * | 
|  | * Use mem_cgroup_cancel_charge() to cancel the transaction instead. | 
|  | */ | 
|  | void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, | 
|  | bool lrucare, bool compound) | 
|  | { | 
|  | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!page->mapping, page); | 
|  | VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | /* | 
|  | * Swap faults will attempt to charge the same page multiple | 
|  | * times.  But reuse_swap_page() might have removed the page | 
|  | * from swapcache already, so we can't check PageSwapCache(). | 
|  | */ | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | commit_charge(page, memcg, lrucare); | 
|  |  | 
|  | local_irq_disable(); | 
|  | mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); | 
|  | memcg_check_events(memcg, page); | 
|  | local_irq_enable(); | 
|  |  | 
|  | if (do_memsw_account() && PageSwapCache(page)) { | 
|  | swp_entry_t entry = { .val = page_private(page) }; | 
|  | /* | 
|  | * The swap entry might not get freed for a long time, | 
|  | * let's not wait for it.  The page already received a | 
|  | * memory+swap charge, drop the swap entry duplicate. | 
|  | */ | 
|  | mem_cgroup_uncharge_swap(entry, nr_pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_cancel_charge - cancel a page charge | 
|  | * @page: page to charge | 
|  | * @memcg: memcg to charge the page to | 
|  | * @compound: charge the page as compound or small page | 
|  | * | 
|  | * Cancel a charge transaction started by mem_cgroup_try_charge(). | 
|  | */ | 
|  | void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, | 
|  | bool compound) | 
|  | { | 
|  | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | /* | 
|  | * Swap faults will attempt to charge the same page multiple | 
|  | * times.  But reuse_swap_page() might have removed the page | 
|  | * from swapcache already, so we can't check PageSwapCache(). | 
|  | */ | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | cancel_charge(memcg, nr_pages); | 
|  | } | 
|  |  | 
|  | struct uncharge_gather { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned long pgpgout; | 
|  | unsigned long nr_anon; | 
|  | unsigned long nr_file; | 
|  | unsigned long nr_kmem; | 
|  | unsigned long nr_huge; | 
|  | unsigned long nr_shmem; | 
|  | struct page *dummy_page; | 
|  | }; | 
|  |  | 
|  | static inline void uncharge_gather_clear(struct uncharge_gather *ug) | 
|  | { | 
|  | memset(ug, 0, sizeof(*ug)); | 
|  | } | 
|  |  | 
|  | static void uncharge_batch(const struct uncharge_gather *ug) | 
|  | { | 
|  | unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!mem_cgroup_is_root(ug->memcg)) { | 
|  | page_counter_uncharge(&ug->memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&ug->memcg->memsw, nr_pages); | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) | 
|  | page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); | 
|  | memcg_oom_recover(ug->memcg); | 
|  | } | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); | 
|  | __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); | 
|  | __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); | 
|  | __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); | 
|  | __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); | 
|  | __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); | 
|  | memcg_check_events(ug->memcg, ug->dummy_page); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | if (!mem_cgroup_is_root(ug->memcg)) | 
|  | css_put_many(&ug->memcg->css, nr_pages); | 
|  | } | 
|  |  | 
|  | static void uncharge_page(struct page *page, struct uncharge_gather *ug) | 
|  | { | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && | 
|  | !PageHWPoison(page) , page); | 
|  |  | 
|  | if (!page->mem_cgroup) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Nobody should be changing or seriously looking at | 
|  | * page->mem_cgroup at this point, we have fully | 
|  | * exclusive access to the page. | 
|  | */ | 
|  |  | 
|  | if (ug->memcg != page->mem_cgroup) { | 
|  | if (ug->memcg) { | 
|  | uncharge_batch(ug); | 
|  | uncharge_gather_clear(ug); | 
|  | } | 
|  | ug->memcg = page->mem_cgroup; | 
|  | } | 
|  |  | 
|  | if (!PageKmemcg(page)) { | 
|  | unsigned int nr_pages = 1; | 
|  |  | 
|  | if (PageTransHuge(page)) { | 
|  | nr_pages <<= compound_order(page); | 
|  | ug->nr_huge += nr_pages; | 
|  | } | 
|  | if (PageAnon(page)) | 
|  | ug->nr_anon += nr_pages; | 
|  | else { | 
|  | ug->nr_file += nr_pages; | 
|  | if (PageSwapBacked(page)) | 
|  | ug->nr_shmem += nr_pages; | 
|  | } | 
|  | ug->pgpgout++; | 
|  | } else { | 
|  | ug->nr_kmem += 1 << compound_order(page); | 
|  | __ClearPageKmemcg(page); | 
|  | } | 
|  |  | 
|  | ug->dummy_page = page; | 
|  | page->mem_cgroup = NULL; | 
|  | } | 
|  |  | 
|  | static void uncharge_list(struct list_head *page_list) | 
|  | { | 
|  | struct uncharge_gather ug; | 
|  | struct list_head *next; | 
|  |  | 
|  | uncharge_gather_clear(&ug); | 
|  |  | 
|  | /* | 
|  | * Note that the list can be a single page->lru; hence the | 
|  | * do-while loop instead of a simple list_for_each_entry(). | 
|  | */ | 
|  | next = page_list->next; | 
|  | do { | 
|  | struct page *page; | 
|  |  | 
|  | page = list_entry(next, struct page, lru); | 
|  | next = page->lru.next; | 
|  |  | 
|  | uncharge_page(page, &ug); | 
|  | } while (next != page_list); | 
|  |  | 
|  | if (ug.memcg) | 
|  | uncharge_batch(&ug); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_uncharge - uncharge a page | 
|  | * @page: page to uncharge | 
|  | * | 
|  | * Uncharge a page previously charged with mem_cgroup_try_charge() and | 
|  | * mem_cgroup_commit_charge(). | 
|  | */ | 
|  | void mem_cgroup_uncharge(struct page *page) | 
|  | { | 
|  | struct uncharge_gather ug; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | /* Don't touch page->lru of any random page, pre-check: */ | 
|  | if (!page->mem_cgroup) | 
|  | return; | 
|  |  | 
|  | uncharge_gather_clear(&ug); | 
|  | uncharge_page(page, &ug); | 
|  | uncharge_batch(&ug); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_uncharge_list - uncharge a list of page | 
|  | * @page_list: list of pages to uncharge | 
|  | * | 
|  | * Uncharge a list of pages previously charged with | 
|  | * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). | 
|  | */ | 
|  | void mem_cgroup_uncharge_list(struct list_head *page_list) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | if (!list_empty(page_list)) | 
|  | uncharge_list(page_list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_migrate - charge a page's replacement | 
|  | * @oldpage: currently circulating page | 
|  | * @newpage: replacement page | 
|  | * | 
|  | * Charge @newpage as a replacement page for @oldpage. @oldpage will | 
|  | * be uncharged upon free. | 
|  | * | 
|  | * Both pages must be locked, @newpage->mapping must be set up. | 
|  | */ | 
|  | void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned int nr_pages; | 
|  | bool compound; | 
|  | unsigned long flags; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | 
|  | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | 
|  | VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); | 
|  | VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), | 
|  | newpage); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | /* Page cache replacement: new page already charged? */ | 
|  | if (newpage->mem_cgroup) | 
|  | return; | 
|  |  | 
|  | /* Swapcache readahead pages can get replaced before being charged */ | 
|  | memcg = oldpage->mem_cgroup; | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | /* Force-charge the new page. The old one will be freed soon */ | 
|  | compound = PageTransHuge(newpage); | 
|  | nr_pages = compound ? hpage_nr_pages(newpage) : 1; | 
|  |  | 
|  | page_counter_charge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_charge(&memcg->memsw, nr_pages); | 
|  | css_get_many(&memcg->css, nr_pages); | 
|  |  | 
|  | commit_charge(newpage, memcg, false); | 
|  |  | 
|  | local_irq_save(flags); | 
|  | mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); | 
|  | memcg_check_events(memcg, newpage); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); | 
|  | EXPORT_SYMBOL(memcg_sockets_enabled_key); | 
|  |  | 
|  | void mem_cgroup_sk_alloc(struct sock *sk) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (!mem_cgroup_sockets_enabled) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Socket cloning can throw us here with sk_memcg already | 
|  | * filled. It won't however, necessarily happen from | 
|  | * process context. So the test for root memcg given | 
|  | * the current task's memcg won't help us in this case. | 
|  | * | 
|  | * Respecting the original socket's memcg is a better | 
|  | * decision in this case. | 
|  | */ | 
|  | if (sk->sk_memcg) { | 
|  | css_get(&sk->sk_memcg->css); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_task(current); | 
|  | if (memcg == root_mem_cgroup) | 
|  | goto out; | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) | 
|  | goto out; | 
|  | if (css_tryget_online(&memcg->css)) | 
|  | sk->sk_memcg = memcg; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void mem_cgroup_sk_free(struct sock *sk) | 
|  | { | 
|  | if (sk->sk_memcg) | 
|  | css_put(&sk->sk_memcg->css); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_charge_skmem - charge socket memory | 
|  | * @memcg: memcg to charge | 
|  | * @nr_pages: number of pages to charge | 
|  | * | 
|  | * Charges @nr_pages to @memcg. Returns %true if the charge fit within | 
|  | * @memcg's configured limit, %false if the charge had to be forced. | 
|  | */ | 
|  | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | gfp_t gfp_mask = GFP_KERNEL; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
|  | struct page_counter *fail; | 
|  |  | 
|  | if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { | 
|  | memcg->tcpmem_pressure = 0; | 
|  | return true; | 
|  | } | 
|  | page_counter_charge(&memcg->tcpmem, nr_pages); | 
|  | memcg->tcpmem_pressure = 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Don't block in the packet receive path */ | 
|  | if (in_softirq()) | 
|  | gfp_mask = GFP_NOWAIT; | 
|  |  | 
|  | mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); | 
|  |  | 
|  | if (try_charge(memcg, gfp_mask, nr_pages) == 0) | 
|  | return true; | 
|  |  | 
|  | try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_uncharge_skmem - uncharge socket memory | 
|  | * @memcg: memcg to uncharge | 
|  | * @nr_pages: number of pages to uncharge | 
|  | */ | 
|  | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
|  | page_counter_uncharge(&memcg->tcpmem, nr_pages); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); | 
|  |  | 
|  | refill_stock(memcg, nr_pages); | 
|  | } | 
|  |  | 
|  | static int __init cgroup_memory(char *s) | 
|  | { | 
|  | char *token; | 
|  |  | 
|  | while ((token = strsep(&s, ",")) != NULL) { | 
|  | if (!*token) | 
|  | continue; | 
|  | if (!strcmp(token, "nosocket")) | 
|  | cgroup_memory_nosocket = true; | 
|  | if (!strcmp(token, "nokmem")) | 
|  | cgroup_memory_nokmem = true; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | __setup("cgroup.memory=", cgroup_memory); | 
|  |  | 
|  | /* | 
|  | * subsys_initcall() for memory controller. | 
|  | * | 
|  | * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this | 
|  | * context because of lock dependencies (cgroup_lock -> cpu hotplug) but | 
|  | * basically everything that doesn't depend on a specific mem_cgroup structure | 
|  | * should be initialized from here. | 
|  | */ | 
|  | static int __init mem_cgroup_init(void) | 
|  | { | 
|  | int cpu, node; | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | /* | 
|  | * Kmem cache creation is mostly done with the slab_mutex held, | 
|  | * so use a workqueue with limited concurrency to avoid stalling | 
|  | * all worker threads in case lots of cgroups are created and | 
|  | * destroyed simultaneously. | 
|  | */ | 
|  | memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); | 
|  | BUG_ON(!memcg_kmem_cache_wq); | 
|  | #endif | 
|  |  | 
|  | cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, | 
|  | memcg_hotplug_cpu_dead); | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, | 
|  | drain_local_stock); | 
|  |  | 
|  | for_each_node(node) { | 
|  | struct mem_cgroup_tree_per_node *rtpn; | 
|  |  | 
|  | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, | 
|  | node_online(node) ? node : NUMA_NO_NODE); | 
|  |  | 
|  | rtpn->rb_root = RB_ROOT; | 
|  | rtpn->rb_rightmost = NULL; | 
|  | spin_lock_init(&rtpn->lock); | 
|  | soft_limit_tree.rb_tree_per_node[node] = rtpn; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(mem_cgroup_init); | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_SWAP | 
|  | static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) | 
|  | { | 
|  | while (!refcount_inc_not_zero(&memcg->id.ref)) { | 
|  | /* | 
|  | * The root cgroup cannot be destroyed, so it's refcount must | 
|  | * always be >= 1. | 
|  | */ | 
|  | if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { | 
|  | VM_BUG_ON(1); | 
|  | break; | 
|  | } | 
|  | memcg = parent_mem_cgroup(memcg); | 
|  | if (!memcg) | 
|  | memcg = root_mem_cgroup; | 
|  | } | 
|  | return memcg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_swapout - transfer a memsw charge to swap | 
|  | * @page: page whose memsw charge to transfer | 
|  | * @entry: swap entry to move the charge to | 
|  | * | 
|  | * Transfer the memsw charge of @page to @entry. | 
|  | */ | 
|  | void mem_cgroup_swapout(struct page *page, swp_entry_t entry) | 
|  | { | 
|  | struct mem_cgroup *memcg, *swap_memcg; | 
|  | unsigned int nr_entries; | 
|  | unsigned short oldid; | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | VM_BUG_ON_PAGE(page_count(page), page); | 
|  |  | 
|  | if (!do_memsw_account()) | 
|  | return; | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  |  | 
|  | /* Readahead page, never charged */ | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * In case the memcg owning these pages has been offlined and doesn't | 
|  | * have an ID allocated to it anymore, charge the closest online | 
|  | * ancestor for the swap instead and transfer the memory+swap charge. | 
|  | */ | 
|  | swap_memcg = mem_cgroup_id_get_online(memcg); | 
|  | nr_entries = hpage_nr_pages(page); | 
|  | /* Get references for the tail pages, too */ | 
|  | if (nr_entries > 1) | 
|  | mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); | 
|  | oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), | 
|  | nr_entries); | 
|  | VM_BUG_ON_PAGE(oldid, page); | 
|  | mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); | 
|  |  | 
|  | page->mem_cgroup = NULL; | 
|  |  | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | page_counter_uncharge(&memcg->memory, nr_entries); | 
|  |  | 
|  | if (memcg != swap_memcg) { | 
|  | if (!mem_cgroup_is_root(swap_memcg)) | 
|  | page_counter_charge(&swap_memcg->memsw, nr_entries); | 
|  | page_counter_uncharge(&memcg->memsw, nr_entries); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupts should be disabled here because the caller holds the | 
|  | * i_pages lock which is taken with interrupts-off. It is | 
|  | * important here to have the interrupts disabled because it is the | 
|  | * only synchronisation we have for updating the per-CPU variables. | 
|  | */ | 
|  | VM_BUG_ON(!irqs_disabled()); | 
|  | mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), | 
|  | -nr_entries); | 
|  | memcg_check_events(memcg, page); | 
|  |  | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | css_put_many(&memcg->css, nr_entries); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_try_charge_swap - try charging swap space for a page | 
|  | * @page: page being added to swap | 
|  | * @entry: swap entry to charge | 
|  | * | 
|  | * Try to charge @page's memcg for the swap space at @entry. | 
|  | * | 
|  | * Returns 0 on success, -ENOMEM on failure. | 
|  | */ | 
|  | int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) | 
|  | { | 
|  | unsigned int nr_pages = hpage_nr_pages(page); | 
|  | struct page_counter *counter; | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned short oldid; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) | 
|  | return 0; | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  |  | 
|  | /* Readahead page, never charged */ | 
|  | if (!memcg) | 
|  | return 0; | 
|  |  | 
|  | if (!entry.val) { | 
|  | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | memcg = mem_cgroup_id_get_online(memcg); | 
|  |  | 
|  | if (!mem_cgroup_is_root(memcg) && | 
|  | !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { | 
|  | memcg_memory_event(memcg, MEMCG_SWAP_MAX); | 
|  | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | 
|  | mem_cgroup_id_put(memcg); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Get references for the tail pages, too */ | 
|  | if (nr_pages > 1) | 
|  | mem_cgroup_id_get_many(memcg, nr_pages - 1); | 
|  | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); | 
|  | VM_BUG_ON_PAGE(oldid, page); | 
|  | mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_uncharge_swap - uncharge swap space | 
|  | * @entry: swap entry to uncharge | 
|  | * @nr_pages: the amount of swap space to uncharge | 
|  | */ | 
|  | void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned short id; | 
|  |  | 
|  | if (!do_swap_account) | 
|  | return; | 
|  |  | 
|  | id = swap_cgroup_record(entry, 0, nr_pages); | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_id(id); | 
|  | if (memcg) { | 
|  | if (!mem_cgroup_is_root(memcg)) { | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | page_counter_uncharge(&memcg->swap, nr_pages); | 
|  | else | 
|  | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  | } | 
|  | mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); | 
|  | mem_cgroup_id_put_many(memcg, nr_pages); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) | 
|  | { | 
|  | long nr_swap_pages = get_nr_swap_pages(); | 
|  |  | 
|  | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return nr_swap_pages; | 
|  | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | 
|  | nr_swap_pages = min_t(long, nr_swap_pages, | 
|  | READ_ONCE(memcg->swap.max) - | 
|  | page_counter_read(&memcg->swap)); | 
|  | return nr_swap_pages; | 
|  | } | 
|  |  | 
|  | bool mem_cgroup_swap_full(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  |  | 
|  | if (vm_swap_full()) | 
|  | return true; | 
|  | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return false; | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  | if (!memcg) | 
|  | return false; | 
|  |  | 
|  | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | 
|  | if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* for remember boot option*/ | 
|  | #ifdef CONFIG_MEMCG_SWAP_ENABLED | 
|  | static int really_do_swap_account __initdata = 1; | 
|  | #else | 
|  | static int really_do_swap_account __initdata; | 
|  | #endif | 
|  |  | 
|  | static int __init enable_swap_account(char *s) | 
|  | { | 
|  | if (!strcmp(s, "1")) | 
|  | really_do_swap_account = 1; | 
|  | else if (!strcmp(s, "0")) | 
|  | really_do_swap_account = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("swapaccount=", enable_swap_account); | 
|  |  | 
|  | static u64 swap_current_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | static int swap_max_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); | 
|  | } | 
|  |  | 
|  | static ssize_t swap_max_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long max; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &max); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | xchg(&memcg->swap.max, max); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int swap_events_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | seq_printf(m, "max %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); | 
|  | seq_printf(m, "fail %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cftype swap_files[] = { | 
|  | { | 
|  | .name = "swap.current", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .read_u64 = swap_current_read, | 
|  | }, | 
|  | { | 
|  | .name = "swap.max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = swap_max_show, | 
|  | .write = swap_max_write, | 
|  | }, | 
|  | { | 
|  | .name = "swap.events", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .file_offset = offsetof(struct mem_cgroup, swap_events_file), | 
|  | .seq_show = swap_events_show, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static struct cftype memsw_cgroup_files[] = { | 
|  | { | 
|  | .name = "memsw.usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "memsw.max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "memsw.limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "memsw.failcnt", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { },	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static int __init mem_cgroup_swap_init(void) | 
|  | { | 
|  | if (!mem_cgroup_disabled() && really_do_swap_account) { | 
|  | do_swap_account = 1; | 
|  | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, | 
|  | swap_files)); | 
|  | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, | 
|  | memsw_cgroup_files)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(mem_cgroup_swap_init); | 
|  |  | 
|  | #endif /* CONFIG_MEMCG_SWAP */ |