blob: 588d71b8c1d344310ed8468959cf33824c0ff6ab [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* kexec_handover.c - kexec handover metadata processing
* Copyright (C) 2023 Alexander Graf <graf@amazon.com>
* Copyright (C) 2025 Microsoft Corporation, Mike Rapoport <rppt@kernel.org>
* Copyright (C) 2025 Google LLC, Changyuan Lyu <changyuanl@google.com>
*/
#define pr_fmt(fmt) "KHO: " fmt
#include <linux/cma.h>
#include <linux/count_zeros.h>
#include <linux/debugfs.h>
#include <linux/kexec.h>
#include <linux/kexec_handover.h>
#include <linux/libfdt.h>
#include <linux/list.h>
#include <linux/memblock.h>
#include <linux/notifier.h>
#include <linux/page-isolation.h>
#include <asm/early_ioremap.h>
/*
* KHO is tightly coupled with mm init and needs access to some of mm
* internal APIs.
*/
#include "../mm/internal.h"
#include "kexec_internal.h"
#define KHO_FDT_COMPATIBLE "kho-v1"
#define PROP_PRESERVED_MEMORY_MAP "preserved-memory-map"
#define PROP_SUB_FDT "fdt"
static bool kho_enable __ro_after_init;
bool kho_is_enabled(void)
{
return kho_enable;
}
EXPORT_SYMBOL_GPL(kho_is_enabled);
static int __init kho_parse_enable(char *p)
{
return kstrtobool(p, &kho_enable);
}
early_param("kho", kho_parse_enable);
/*
* Keep track of memory that is to be preserved across KHO.
*
* The serializing side uses two levels of xarrays to manage chunks of per-order
* 512 byte bitmaps. For instance if PAGE_SIZE = 4096, the entire 1G order of a
* 1TB system would fit inside a single 512 byte bitmap. For order 0 allocations
* each bitmap will cover 16M of address space. Thus, for 16G of memory at most
* 512K of bitmap memory will be needed for order 0.
*
* This approach is fully incremental, as the serialization progresses folios
* can continue be aggregated to the tracker. The final step, immediately prior
* to kexec would serialize the xarray information into a linked list for the
* successor kernel to parse.
*/
#define PRESERVE_BITS (512 * 8)
struct kho_mem_phys_bits {
DECLARE_BITMAP(preserve, PRESERVE_BITS);
};
struct kho_mem_phys {
/*
* Points to kho_mem_phys_bits, a sparse bitmap array. Each bit is sized
* to order.
*/
struct xarray phys_bits;
};
struct kho_mem_track {
/* Points to kho_mem_phys, each order gets its own bitmap tree */
struct xarray orders;
};
struct khoser_mem_chunk;
struct kho_serialization {
struct page *fdt;
struct list_head fdt_list;
struct dentry *sub_fdt_dir;
struct kho_mem_track track;
/* First chunk of serialized preserved memory map */
struct khoser_mem_chunk *preserved_mem_map;
};
static void *xa_load_or_alloc(struct xarray *xa, unsigned long index, size_t sz)
{
void *elm, *res;
elm = xa_load(xa, index);
if (elm)
return elm;
elm = kzalloc(sz, GFP_KERNEL);
if (!elm)
return ERR_PTR(-ENOMEM);
res = xa_cmpxchg(xa, index, NULL, elm, GFP_KERNEL);
if (xa_is_err(res))
res = ERR_PTR(xa_err(res));
if (res) {
kfree(elm);
return res;
}
return elm;
}
static void __kho_unpreserve(struct kho_mem_track *track, unsigned long pfn,
unsigned long end_pfn)
{
struct kho_mem_phys_bits *bits;
struct kho_mem_phys *physxa;
while (pfn < end_pfn) {
const unsigned int order =
min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn));
const unsigned long pfn_high = pfn >> order;
physxa = xa_load(&track->orders, order);
if (!physxa)
continue;
bits = xa_load(&physxa->phys_bits, pfn_high / PRESERVE_BITS);
if (!bits)
continue;
clear_bit(pfn_high % PRESERVE_BITS, bits->preserve);
pfn += 1 << order;
}
}
static int __kho_preserve_order(struct kho_mem_track *track, unsigned long pfn,
unsigned int order)
{
struct kho_mem_phys_bits *bits;
struct kho_mem_phys *physxa;
const unsigned long pfn_high = pfn >> order;
might_sleep();
physxa = xa_load_or_alloc(&track->orders, order, sizeof(*physxa));
if (IS_ERR(physxa))
return PTR_ERR(physxa);
bits = xa_load_or_alloc(&physxa->phys_bits, pfn_high / PRESERVE_BITS,
sizeof(*bits));
if (IS_ERR(bits))
return PTR_ERR(bits);
set_bit(pfn_high % PRESERVE_BITS, bits->preserve);
return 0;
}
/* almost as free_reserved_page(), just don't free the page */
static void kho_restore_page(struct page *page, unsigned int order)
{
unsigned int i, nr_pages = (1 << order);
/* Head page gets refcount of 1. */
set_page_count(page, 1);
/* For higher order folios, tail pages get a page count of zero. */
for (i = 1; i < nr_pages; i++)
set_page_count(page + i, 0);
if (order > 0)
prep_compound_page(page, order);
adjust_managed_page_count(page, nr_pages);
}
/**
* kho_restore_folio - recreates the folio from the preserved memory.
* @phys: physical address of the folio.
*
* Return: pointer to the struct folio on success, NULL on failure.
*/
struct folio *kho_restore_folio(phys_addr_t phys)
{
struct page *page = pfn_to_online_page(PHYS_PFN(phys));
unsigned long order;
if (!page)
return NULL;
order = page->private;
if (order > MAX_PAGE_ORDER)
return NULL;
kho_restore_page(page, order);
return page_folio(page);
}
EXPORT_SYMBOL_GPL(kho_restore_folio);
/* Serialize and deserialize struct kho_mem_phys across kexec
*
* Record all the bitmaps in a linked list of pages for the next kernel to
* process. Each chunk holds bitmaps of the same order and each block of bitmaps
* starts at a given physical address. This allows the bitmaps to be sparse. The
* xarray is used to store them in a tree while building up the data structure,
* but the KHO successor kernel only needs to process them once in order.
*
* All of this memory is normal kmalloc() memory and is not marked for
* preservation. The successor kernel will remain isolated to the scratch space
* until it completes processing this list. Once processed all the memory
* storing these ranges will be marked as free.
*/
struct khoser_mem_bitmap_ptr {
phys_addr_t phys_start;
DECLARE_KHOSER_PTR(bitmap, struct kho_mem_phys_bits *);
};
struct khoser_mem_chunk_hdr {
DECLARE_KHOSER_PTR(next, struct khoser_mem_chunk *);
unsigned int order;
unsigned int num_elms;
};
#define KHOSER_BITMAP_SIZE \
((PAGE_SIZE - sizeof(struct khoser_mem_chunk_hdr)) / \
sizeof(struct khoser_mem_bitmap_ptr))
struct khoser_mem_chunk {
struct khoser_mem_chunk_hdr hdr;
struct khoser_mem_bitmap_ptr bitmaps[KHOSER_BITMAP_SIZE];
};
static_assert(sizeof(struct khoser_mem_chunk) == PAGE_SIZE);
static struct khoser_mem_chunk *new_chunk(struct khoser_mem_chunk *cur_chunk,
unsigned long order)
{
struct khoser_mem_chunk *chunk;
chunk = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!chunk)
return NULL;
chunk->hdr.order = order;
if (cur_chunk)
KHOSER_STORE_PTR(cur_chunk->hdr.next, chunk);
return chunk;
}
static void kho_mem_ser_free(struct khoser_mem_chunk *first_chunk)
{
struct khoser_mem_chunk *chunk = first_chunk;
while (chunk) {
struct khoser_mem_chunk *tmp = chunk;
chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
kfree(tmp);
}
}
static int kho_mem_serialize(struct kho_serialization *ser)
{
struct khoser_mem_chunk *first_chunk = NULL;
struct khoser_mem_chunk *chunk = NULL;
struct kho_mem_phys *physxa;
unsigned long order;
xa_for_each(&ser->track.orders, order, physxa) {
struct kho_mem_phys_bits *bits;
unsigned long phys;
chunk = new_chunk(chunk, order);
if (!chunk)
goto err_free;
if (!first_chunk)
first_chunk = chunk;
xa_for_each(&physxa->phys_bits, phys, bits) {
struct khoser_mem_bitmap_ptr *elm;
if (chunk->hdr.num_elms == ARRAY_SIZE(chunk->bitmaps)) {
chunk = new_chunk(chunk, order);
if (!chunk)
goto err_free;
}
elm = &chunk->bitmaps[chunk->hdr.num_elms];
chunk->hdr.num_elms++;
elm->phys_start = (phys * PRESERVE_BITS)
<< (order + PAGE_SHIFT);
KHOSER_STORE_PTR(elm->bitmap, bits);
}
}
ser->preserved_mem_map = first_chunk;
return 0;
err_free:
kho_mem_ser_free(first_chunk);
return -ENOMEM;
}
static void deserialize_bitmap(unsigned int order,
struct khoser_mem_bitmap_ptr *elm)
{
struct kho_mem_phys_bits *bitmap = KHOSER_LOAD_PTR(elm->bitmap);
unsigned long bit;
for_each_set_bit(bit, bitmap->preserve, PRESERVE_BITS) {
int sz = 1 << (order + PAGE_SHIFT);
phys_addr_t phys =
elm->phys_start + (bit << (order + PAGE_SHIFT));
struct page *page = phys_to_page(phys);
memblock_reserve(phys, sz);
memblock_reserved_mark_noinit(phys, sz);
page->private = order;
}
}
static void __init kho_mem_deserialize(const void *fdt)
{
struct khoser_mem_chunk *chunk;
const phys_addr_t *mem;
int len;
mem = fdt_getprop(fdt, 0, PROP_PRESERVED_MEMORY_MAP, &len);
if (!mem || len != sizeof(*mem)) {
pr_err("failed to get preserved memory bitmaps\n");
return;
}
chunk = *mem ? phys_to_virt(*mem) : NULL;
while (chunk) {
unsigned int i;
for (i = 0; i != chunk->hdr.num_elms; i++)
deserialize_bitmap(chunk->hdr.order,
&chunk->bitmaps[i]);
chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
}
}
/*
* With KHO enabled, memory can become fragmented because KHO regions may
* be anywhere in physical address space. The scratch regions give us a
* safe zones that we will never see KHO allocations from. This is where we
* can later safely load our new kexec images into and then use the scratch
* area for early allocations that happen before page allocator is
* initialized.
*/
static struct kho_scratch *kho_scratch;
static unsigned int kho_scratch_cnt;
/*
* The scratch areas are scaled by default as percent of memory allocated from
* memblock. A user can override the scale with command line parameter:
*
* kho_scratch=N%
*
* It is also possible to explicitly define size for a lowmem, a global and
* per-node scratch areas:
*
* kho_scratch=l[KMG],n[KMG],m[KMG]
*
* The explicit size definition takes precedence over scale definition.
*/
static unsigned int scratch_scale __initdata = 200;
static phys_addr_t scratch_size_global __initdata;
static phys_addr_t scratch_size_pernode __initdata;
static phys_addr_t scratch_size_lowmem __initdata;
static int __init kho_parse_scratch_size(char *p)
{
size_t len;
unsigned long sizes[3];
int i;
if (!p)
return -EINVAL;
len = strlen(p);
if (!len)
return -EINVAL;
/* parse nn% */
if (p[len - 1] == '%') {
/* unsigned int max is 4,294,967,295, 10 chars */
char s_scale[11] = {};
int ret = 0;
if (len > ARRAY_SIZE(s_scale))
return -EINVAL;
memcpy(s_scale, p, len - 1);
ret = kstrtouint(s_scale, 10, &scratch_scale);
if (!ret)
pr_notice("scratch scale is %d%%\n", scratch_scale);
return ret;
}
/* parse ll[KMG],mm[KMG],nn[KMG] */
for (i = 0; i < ARRAY_SIZE(sizes); i++) {
char *endp = p;
if (i > 0) {
if (*p != ',')
return -EINVAL;
p += 1;
}
sizes[i] = memparse(p, &endp);
if (!sizes[i] || endp == p)
return -EINVAL;
p = endp;
}
scratch_size_lowmem = sizes[0];
scratch_size_global = sizes[1];
scratch_size_pernode = sizes[2];
scratch_scale = 0;
pr_notice("scratch areas: lowmem: %lluMiB global: %lluMiB pernode: %lldMiB\n",
(u64)(scratch_size_lowmem >> 20),
(u64)(scratch_size_global >> 20),
(u64)(scratch_size_pernode >> 20));
return 0;
}
early_param("kho_scratch", kho_parse_scratch_size);
static void __init scratch_size_update(void)
{
phys_addr_t size;
if (!scratch_scale)
return;
size = memblock_reserved_kern_size(ARCH_LOW_ADDRESS_LIMIT,
NUMA_NO_NODE);
size = size * scratch_scale / 100;
scratch_size_lowmem = round_up(size, CMA_MIN_ALIGNMENT_BYTES);
size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE,
NUMA_NO_NODE);
size = size * scratch_scale / 100 - scratch_size_lowmem;
scratch_size_global = round_up(size, CMA_MIN_ALIGNMENT_BYTES);
}
static phys_addr_t __init scratch_size_node(int nid)
{
phys_addr_t size;
if (scratch_scale) {
size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE,
nid);
size = size * scratch_scale / 100;
} else {
size = scratch_size_pernode;
}
return round_up(size, CMA_MIN_ALIGNMENT_BYTES);
}
/**
* kho_reserve_scratch - Reserve a contiguous chunk of memory for kexec
*
* With KHO we can preserve arbitrary pages in the system. To ensure we still
* have a large contiguous region of memory when we search the physical address
* space for target memory, let's make sure we always have a large CMA region
* active. This CMA region will only be used for movable pages which are not a
* problem for us during KHO because we can just move them somewhere else.
*/
static void __init kho_reserve_scratch(void)
{
phys_addr_t addr, size;
int nid, i = 0;
if (!kho_enable)
return;
scratch_size_update();
/* FIXME: deal with node hot-plug/remove */
kho_scratch_cnt = num_online_nodes() + 2;
size = kho_scratch_cnt * sizeof(*kho_scratch);
kho_scratch = memblock_alloc(size, PAGE_SIZE);
if (!kho_scratch)
goto err_disable_kho;
/*
* reserve scratch area in low memory for lowmem allocations in the
* next kernel
*/
size = scratch_size_lowmem;
addr = memblock_phys_alloc_range(size, CMA_MIN_ALIGNMENT_BYTES, 0,
ARCH_LOW_ADDRESS_LIMIT);
if (!addr)
goto err_free_scratch_desc;
kho_scratch[i].addr = addr;
kho_scratch[i].size = size;
i++;
/* reserve large contiguous area for allocations without nid */
size = scratch_size_global;
addr = memblock_phys_alloc(size, CMA_MIN_ALIGNMENT_BYTES);
if (!addr)
goto err_free_scratch_areas;
kho_scratch[i].addr = addr;
kho_scratch[i].size = size;
i++;
for_each_online_node(nid) {
size = scratch_size_node(nid);
addr = memblock_alloc_range_nid(size, CMA_MIN_ALIGNMENT_BYTES,
0, MEMBLOCK_ALLOC_ACCESSIBLE,
nid, true);
if (!addr)
goto err_free_scratch_areas;
kho_scratch[i].addr = addr;
kho_scratch[i].size = size;
i++;
}
return;
err_free_scratch_areas:
for (i--; i >= 0; i--)
memblock_phys_free(kho_scratch[i].addr, kho_scratch[i].size);
err_free_scratch_desc:
memblock_free(kho_scratch, kho_scratch_cnt * sizeof(*kho_scratch));
err_disable_kho:
kho_enable = false;
}
struct fdt_debugfs {
struct list_head list;
struct debugfs_blob_wrapper wrapper;
struct dentry *file;
};
static int kho_debugfs_fdt_add(struct list_head *list, struct dentry *dir,
const char *name, const void *fdt)
{
struct fdt_debugfs *f;
struct dentry *file;
f = kmalloc(sizeof(*f), GFP_KERNEL);
if (!f)
return -ENOMEM;
f->wrapper.data = (void *)fdt;
f->wrapper.size = fdt_totalsize(fdt);
file = debugfs_create_blob(name, 0400, dir, &f->wrapper);
if (IS_ERR(file)) {
kfree(f);
return PTR_ERR(file);
}
f->file = file;
list_add(&f->list, list);
return 0;
}
/**
* kho_add_subtree - record the physical address of a sub FDT in KHO root tree.
* @ser: serialization control object passed by KHO notifiers.
* @name: name of the sub tree.
* @fdt: the sub tree blob.
*
* Creates a new child node named @name in KHO root FDT and records
* the physical address of @fdt. The pages of @fdt must also be preserved
* by KHO for the new kernel to retrieve it after kexec.
*
* A debugfs blob entry is also created at
* ``/sys/kernel/debug/kho/out/sub_fdts/@name``.
*
* Return: 0 on success, error code on failure
*/
int kho_add_subtree(struct kho_serialization *ser, const char *name, void *fdt)
{
int err = 0;
u64 phys = (u64)virt_to_phys(fdt);
void *root = page_to_virt(ser->fdt);
err |= fdt_begin_node(root, name);
err |= fdt_property(root, PROP_SUB_FDT, &phys, sizeof(phys));
err |= fdt_end_node(root);
if (err)
return err;
return kho_debugfs_fdt_add(&ser->fdt_list, ser->sub_fdt_dir, name, fdt);
}
EXPORT_SYMBOL_GPL(kho_add_subtree);
struct kho_out {
struct blocking_notifier_head chain_head;
struct dentry *dir;
struct mutex lock; /* protects KHO FDT finalization */
struct kho_serialization ser;
bool finalized;
};
static struct kho_out kho_out = {
.chain_head = BLOCKING_NOTIFIER_INIT(kho_out.chain_head),
.lock = __MUTEX_INITIALIZER(kho_out.lock),
.ser = {
.fdt_list = LIST_HEAD_INIT(kho_out.ser.fdt_list),
.track = {
.orders = XARRAY_INIT(kho_out.ser.track.orders, 0),
},
},
.finalized = false,
};
int register_kho_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&kho_out.chain_head, nb);
}
EXPORT_SYMBOL_GPL(register_kho_notifier);
int unregister_kho_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&kho_out.chain_head, nb);
}
EXPORT_SYMBOL_GPL(unregister_kho_notifier);
/**
* kho_preserve_folio - preserve a folio across kexec.
* @folio: folio to preserve.
*
* Instructs KHO to preserve the whole folio across kexec. The order
* will be preserved as well.
*
* Return: 0 on success, error code on failure
*/
int kho_preserve_folio(struct folio *folio)
{
const unsigned long pfn = folio_pfn(folio);
const unsigned int order = folio_order(folio);
struct kho_mem_track *track = &kho_out.ser.track;
if (kho_out.finalized)
return -EBUSY;
return __kho_preserve_order(track, pfn, order);
}
EXPORT_SYMBOL_GPL(kho_preserve_folio);
/**
* kho_preserve_phys - preserve a physically contiguous range across kexec.
* @phys: physical address of the range.
* @size: size of the range.
*
* Instructs KHO to preserve the memory range from @phys to @phys + @size
* across kexec.
*
* Return: 0 on success, error code on failure
*/
int kho_preserve_phys(phys_addr_t phys, size_t size)
{
unsigned long pfn = PHYS_PFN(phys);
unsigned long failed_pfn = 0;
const unsigned long start_pfn = pfn;
const unsigned long end_pfn = PHYS_PFN(phys + size);
int err = 0;
struct kho_mem_track *track = &kho_out.ser.track;
if (kho_out.finalized)
return -EBUSY;
if (!PAGE_ALIGNED(phys) || !PAGE_ALIGNED(size))
return -EINVAL;
while (pfn < end_pfn) {
const unsigned int order =
min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn));
err = __kho_preserve_order(track, pfn, order);
if (err) {
failed_pfn = pfn;
break;
}
pfn += 1 << order;
}
if (err)
__kho_unpreserve(track, start_pfn, failed_pfn);
return err;
}
EXPORT_SYMBOL_GPL(kho_preserve_phys);
/* Handling for debug/kho/out */
static struct dentry *debugfs_root;
static int kho_out_update_debugfs_fdt(void)
{
int err = 0;
struct fdt_debugfs *ff, *tmp;
if (kho_out.finalized) {
err = kho_debugfs_fdt_add(&kho_out.ser.fdt_list, kho_out.dir,
"fdt", page_to_virt(kho_out.ser.fdt));
} else {
list_for_each_entry_safe(ff, tmp, &kho_out.ser.fdt_list, list) {
debugfs_remove(ff->file);
list_del(&ff->list);
kfree(ff);
}
}
return err;
}
static int kho_abort(void)
{
int err;
unsigned long order;
struct kho_mem_phys *physxa;
xa_for_each(&kho_out.ser.track.orders, order, physxa) {
struct kho_mem_phys_bits *bits;
unsigned long phys;
xa_for_each(&physxa->phys_bits, phys, bits)
kfree(bits);
xa_destroy(&physxa->phys_bits);
kfree(physxa);
}
xa_destroy(&kho_out.ser.track.orders);
if (kho_out.ser.preserved_mem_map) {
kho_mem_ser_free(kho_out.ser.preserved_mem_map);
kho_out.ser.preserved_mem_map = NULL;
}
err = blocking_notifier_call_chain(&kho_out.chain_head, KEXEC_KHO_ABORT,
NULL);
err = notifier_to_errno(err);
if (err)
pr_err("Failed to abort KHO finalization: %d\n", err);
return err;
}
static int kho_finalize(void)
{
int err = 0;
u64 *preserved_mem_map;
void *fdt = page_to_virt(kho_out.ser.fdt);
err |= fdt_create(fdt, PAGE_SIZE);
err |= fdt_finish_reservemap(fdt);
err |= fdt_begin_node(fdt, "");
err |= fdt_property_string(fdt, "compatible", KHO_FDT_COMPATIBLE);
/**
* Reserve the preserved-memory-map property in the root FDT, so
* that all property definitions will precede subnodes created by
* KHO callers.
*/
err |= fdt_property_placeholder(fdt, PROP_PRESERVED_MEMORY_MAP,
sizeof(*preserved_mem_map),
(void **)&preserved_mem_map);
if (err)
goto abort;
err = kho_preserve_folio(page_folio(kho_out.ser.fdt));
if (err)
goto abort;
err = blocking_notifier_call_chain(&kho_out.chain_head,
KEXEC_KHO_FINALIZE, &kho_out.ser);
err = notifier_to_errno(err);
if (err)
goto abort;
err = kho_mem_serialize(&kho_out.ser);
if (err)
goto abort;
*preserved_mem_map = (u64)virt_to_phys(kho_out.ser.preserved_mem_map);
err |= fdt_end_node(fdt);
err |= fdt_finish(fdt);
abort:
if (err) {
pr_err("Failed to convert KHO state tree: %d\n", err);
kho_abort();
}
return err;
}
static int kho_out_finalize_get(void *data, u64 *val)
{
mutex_lock(&kho_out.lock);
*val = kho_out.finalized;
mutex_unlock(&kho_out.lock);
return 0;
}
static int kho_out_finalize_set(void *data, u64 _val)
{
int ret = 0;
bool val = !!_val;
mutex_lock(&kho_out.lock);
if (val == kho_out.finalized) {
if (kho_out.finalized)
ret = -EEXIST;
else
ret = -ENOENT;
goto unlock;
}
if (val)
ret = kho_finalize();
else
ret = kho_abort();
if (ret)
goto unlock;
kho_out.finalized = val;
ret = kho_out_update_debugfs_fdt();
unlock:
mutex_unlock(&kho_out.lock);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_kho_out_finalize, kho_out_finalize_get,
kho_out_finalize_set, "%llu\n");
static int scratch_phys_show(struct seq_file *m, void *v)
{
for (int i = 0; i < kho_scratch_cnt; i++)
seq_printf(m, "0x%llx\n", kho_scratch[i].addr);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(scratch_phys);
static int scratch_len_show(struct seq_file *m, void *v)
{
for (int i = 0; i < kho_scratch_cnt; i++)
seq_printf(m, "0x%llx\n", kho_scratch[i].size);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(scratch_len);
static __init int kho_out_debugfs_init(void)
{
struct dentry *dir, *f, *sub_fdt_dir;
dir = debugfs_create_dir("out", debugfs_root);
if (IS_ERR(dir))
return -ENOMEM;
sub_fdt_dir = debugfs_create_dir("sub_fdts", dir);
if (IS_ERR(sub_fdt_dir))
goto err_rmdir;
f = debugfs_create_file("scratch_phys", 0400, dir, NULL,
&scratch_phys_fops);
if (IS_ERR(f))
goto err_rmdir;
f = debugfs_create_file("scratch_len", 0400, dir, NULL,
&scratch_len_fops);
if (IS_ERR(f))
goto err_rmdir;
f = debugfs_create_file("finalize", 0600, dir, NULL,
&fops_kho_out_finalize);
if (IS_ERR(f))
goto err_rmdir;
kho_out.dir = dir;
kho_out.ser.sub_fdt_dir = sub_fdt_dir;
return 0;
err_rmdir:
debugfs_remove_recursive(dir);
return -ENOENT;
}
struct kho_in {
struct dentry *dir;
phys_addr_t fdt_phys;
phys_addr_t scratch_phys;
struct list_head fdt_list;
};
static struct kho_in kho_in = {
.fdt_list = LIST_HEAD_INIT(kho_in.fdt_list),
};
static const void *kho_get_fdt(void)
{
return kho_in.fdt_phys ? phys_to_virt(kho_in.fdt_phys) : NULL;
}
/**
* kho_retrieve_subtree - retrieve a preserved sub FDT by its name.
* @name: the name of the sub FDT passed to kho_add_subtree().
* @phys: if found, the physical address of the sub FDT is stored in @phys.
*
* Retrieve a preserved sub FDT named @name and store its physical
* address in @phys.
*
* Return: 0 on success, error code on failure
*/
int kho_retrieve_subtree(const char *name, phys_addr_t *phys)
{
const void *fdt = kho_get_fdt();
const u64 *val;
int offset, len;
if (!fdt)
return -ENOENT;
if (!phys)
return -EINVAL;
offset = fdt_subnode_offset(fdt, 0, name);
if (offset < 0)
return -ENOENT;
val = fdt_getprop(fdt, offset, PROP_SUB_FDT, &len);
if (!val || len != sizeof(*val))
return -EINVAL;
*phys = (phys_addr_t)*val;
return 0;
}
EXPORT_SYMBOL_GPL(kho_retrieve_subtree);
/* Handling for debugfs/kho/in */
static __init int kho_in_debugfs_init(const void *fdt)
{
struct dentry *sub_fdt_dir;
int err, child;
kho_in.dir = debugfs_create_dir("in", debugfs_root);
if (IS_ERR(kho_in.dir))
return PTR_ERR(kho_in.dir);
sub_fdt_dir = debugfs_create_dir("sub_fdts", kho_in.dir);
if (IS_ERR(sub_fdt_dir)) {
err = PTR_ERR(sub_fdt_dir);
goto err_rmdir;
}
err = kho_debugfs_fdt_add(&kho_in.fdt_list, kho_in.dir, "fdt", fdt);
if (err)
goto err_rmdir;
fdt_for_each_subnode(child, fdt, 0) {
int len = 0;
const char *name = fdt_get_name(fdt, child, NULL);
const u64 *fdt_phys;
fdt_phys = fdt_getprop(fdt, child, "fdt", &len);
if (!fdt_phys)
continue;
if (len != sizeof(*fdt_phys)) {
pr_warn("node `%s`'s prop `fdt` has invalid length: %d\n",
name, len);
continue;
}
err = kho_debugfs_fdt_add(&kho_in.fdt_list, sub_fdt_dir, name,
phys_to_virt(*fdt_phys));
if (err) {
pr_warn("failed to add fdt `%s` to debugfs: %d\n", name,
err);
continue;
}
}
return 0;
err_rmdir:
debugfs_remove_recursive(kho_in.dir);
return err;
}
static __init int kho_init(void)
{
int err = 0;
const void *fdt = kho_get_fdt();
if (!kho_enable)
return 0;
kho_out.ser.fdt = alloc_page(GFP_KERNEL);
if (!kho_out.ser.fdt) {
err = -ENOMEM;
goto err_free_scratch;
}
debugfs_root = debugfs_create_dir("kho", NULL);
if (IS_ERR(debugfs_root)) {
err = -ENOENT;
goto err_free_fdt;
}
err = kho_out_debugfs_init();
if (err)
goto err_free_fdt;
if (fdt) {
err = kho_in_debugfs_init(fdt);
/*
* Failure to create /sys/kernel/debug/kho/in does not prevent
* reviving state from KHO and setting up KHO for the next
* kexec.
*/
if (err)
pr_err("failed exposing handover FDT in debugfs: %d\n",
err);
return 0;
}
for (int i = 0; i < kho_scratch_cnt; i++) {
unsigned long base_pfn = PHYS_PFN(kho_scratch[i].addr);
unsigned long count = kho_scratch[i].size >> PAGE_SHIFT;
unsigned long pfn;
for (pfn = base_pfn; pfn < base_pfn + count;
pfn += pageblock_nr_pages)
init_cma_reserved_pageblock(pfn_to_page(pfn));
}
return 0;
err_free_fdt:
put_page(kho_out.ser.fdt);
kho_out.ser.fdt = NULL;
err_free_scratch:
for (int i = 0; i < kho_scratch_cnt; i++) {
void *start = __va(kho_scratch[i].addr);
void *end = start + kho_scratch[i].size;
free_reserved_area(start, end, -1, "");
}
kho_enable = false;
return err;
}
late_initcall(kho_init);
static void __init kho_release_scratch(void)
{
phys_addr_t start, end;
u64 i;
memmap_init_kho_scratch_pages();
/*
* Mark scratch mem as CMA before we return it. That way we
* ensure that no kernel allocations happen on it. That means
* we can reuse it as scratch memory again later.
*/
__for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
MEMBLOCK_KHO_SCRATCH, &start, &end, NULL) {
ulong start_pfn = pageblock_start_pfn(PFN_DOWN(start));
ulong end_pfn = pageblock_align(PFN_UP(end));
ulong pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages)
set_pageblock_migratetype(pfn_to_page(pfn),
MIGRATE_CMA);
}
}
void __init kho_memory_init(void)
{
struct folio *folio;
if (kho_in.scratch_phys) {
kho_scratch = phys_to_virt(kho_in.scratch_phys);
kho_release_scratch();
kho_mem_deserialize(kho_get_fdt());
folio = kho_restore_folio(kho_in.fdt_phys);
if (!folio)
pr_warn("failed to restore folio for KHO fdt\n");
} else {
kho_reserve_scratch();
}
}
void __init kho_populate(phys_addr_t fdt_phys, u64 fdt_len,
phys_addr_t scratch_phys, u64 scratch_len)
{
void *fdt = NULL;
struct kho_scratch *scratch = NULL;
int err = 0;
unsigned int scratch_cnt = scratch_len / sizeof(*kho_scratch);
/* Validate the input FDT */
fdt = early_memremap(fdt_phys, fdt_len);
if (!fdt) {
pr_warn("setup: failed to memremap FDT (0x%llx)\n", fdt_phys);
err = -EFAULT;
goto out;
}
err = fdt_check_header(fdt);
if (err) {
pr_warn("setup: handover FDT (0x%llx) is invalid: %d\n",
fdt_phys, err);
err = -EINVAL;
goto out;
}
err = fdt_node_check_compatible(fdt, 0, KHO_FDT_COMPATIBLE);
if (err) {
pr_warn("setup: handover FDT (0x%llx) is incompatible with '%s': %d\n",
fdt_phys, KHO_FDT_COMPATIBLE, err);
err = -EINVAL;
goto out;
}
scratch = early_memremap(scratch_phys, scratch_len);
if (!scratch) {
pr_warn("setup: failed to memremap scratch (phys=0x%llx, len=%lld)\n",
scratch_phys, scratch_len);
err = -EFAULT;
goto out;
}
/*
* We pass a safe contiguous blocks of memory to use for early boot
* purporses from the previous kernel so that we can resize the
* memblock array as needed.
*/
for (int i = 0; i < scratch_cnt; i++) {
struct kho_scratch *area = &scratch[i];
u64 size = area->size;
memblock_add(area->addr, size);
err = memblock_mark_kho_scratch(area->addr, size);
if (WARN_ON(err)) {
pr_warn("failed to mark the scratch region 0x%pa+0x%pa: %d",
&area->addr, &size, err);
goto out;
}
pr_debug("Marked 0x%pa+0x%pa as scratch", &area->addr, &size);
}
memblock_reserve(scratch_phys, scratch_len);
/*
* Now that we have a viable region of scratch memory, let's tell
* the memblocks allocator to only use that for any allocations.
* That way we ensure that nothing scribbles over in use data while
* we initialize the page tables which we will need to ingest all
* memory reservations from the previous kernel.
*/
memblock_set_kho_scratch_only();
kho_in.fdt_phys = fdt_phys;
kho_in.scratch_phys = scratch_phys;
kho_scratch_cnt = scratch_cnt;
pr_info("found kexec handover data. Will skip init for some devices\n");
out:
if (fdt)
early_memunmap(fdt, fdt_len);
if (scratch)
early_memunmap(scratch, scratch_len);
if (err)
pr_warn("disabling KHO revival: %d\n", err);
}
/* Helper functions for kexec_file_load */
int kho_fill_kimage(struct kimage *image)
{
ssize_t scratch_size;
int err = 0;
struct kexec_buf scratch;
if (!kho_enable)
return 0;
image->kho.fdt = page_to_phys(kho_out.ser.fdt);
scratch_size = sizeof(*kho_scratch) * kho_scratch_cnt;
scratch = (struct kexec_buf){
.image = image,
.buffer = kho_scratch,
.bufsz = scratch_size,
.mem = KEXEC_BUF_MEM_UNKNOWN,
.memsz = scratch_size,
.buf_align = SZ_64K, /* Makes it easier to map */
.buf_max = ULONG_MAX,
.top_down = true,
};
err = kexec_add_buffer(&scratch);
if (err)
return err;
image->kho.scratch = &image->segment[image->nr_segments - 1];
return 0;
}
static int kho_walk_scratch(struct kexec_buf *kbuf,
int (*func)(struct resource *, void *))
{
int ret = 0;
int i;
for (i = 0; i < kho_scratch_cnt; i++) {
struct resource res = {
.start = kho_scratch[i].addr,
.end = kho_scratch[i].addr + kho_scratch[i].size - 1,
};
/* Try to fit the kimage into our KHO scratch region */
ret = func(&res, kbuf);
if (ret)
break;
}
return ret;
}
int kho_locate_mem_hole(struct kexec_buf *kbuf,
int (*func)(struct resource *, void *))
{
int ret;
if (!kho_enable || kbuf->image->type == KEXEC_TYPE_CRASH)
return 1;
ret = kho_walk_scratch(kbuf, func);
return ret == 1 ? 0 : -EADDRNOTAVAIL;
}