| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2019 Western Digital Corporation or its affiliates. |
| * |
| * Authors: |
| * Anup Patel <anup.patel@wdc.com> |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/hugetlb.h> |
| #include <linux/module.h> |
| #include <linux/uaccess.h> |
| #include <linux/vmalloc.h> |
| #include <linux/kvm_host.h> |
| #include <linux/sched/signal.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_nacl.h> |
| |
| static void mmu_wp_memory_region(struct kvm *kvm, int slot) |
| { |
| struct kvm_memslots *slots = kvm_memslots(kvm); |
| struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); |
| phys_addr_t start = memslot->base_gfn << PAGE_SHIFT; |
| phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; |
| struct kvm_gstage gstage; |
| |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| |
| spin_lock(&kvm->mmu_lock); |
| kvm_riscv_gstage_wp_range(&gstage, start, end); |
| spin_unlock(&kvm->mmu_lock); |
| kvm_flush_remote_tlbs_memslot(kvm, memslot); |
| } |
| |
| int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa, |
| unsigned long size, bool writable, bool in_atomic) |
| { |
| int ret = 0; |
| unsigned long pfn; |
| phys_addr_t addr, end; |
| struct kvm_mmu_memory_cache pcache = { |
| .gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0, |
| .gfp_zero = __GFP_ZERO, |
| }; |
| struct kvm_gstage_mapping map; |
| struct kvm_gstage gstage; |
| |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| |
| end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK; |
| pfn = __phys_to_pfn(hpa); |
| |
| for (addr = gpa; addr < end; addr += PAGE_SIZE) { |
| map.addr = addr; |
| map.pte = pfn_pte(pfn, PAGE_KERNEL_IO); |
| map.level = 0; |
| |
| if (!writable) |
| map.pte = pte_wrprotect(map.pte); |
| |
| ret = kvm_mmu_topup_memory_cache(&pcache, kvm_riscv_gstage_pgd_levels); |
| if (ret) |
| goto out; |
| |
| spin_lock(&kvm->mmu_lock); |
| ret = kvm_riscv_gstage_set_pte(&gstage, &pcache, &map); |
| spin_unlock(&kvm->mmu_lock); |
| if (ret) |
| goto out; |
| |
| pfn++; |
| } |
| |
| out: |
| kvm_mmu_free_memory_cache(&pcache); |
| return ret; |
| } |
| |
| void kvm_riscv_mmu_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size) |
| { |
| struct kvm_gstage gstage; |
| |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| |
| spin_lock(&kvm->mmu_lock); |
| kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false); |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, |
| unsigned long mask) |
| { |
| phys_addr_t base_gfn = slot->base_gfn + gfn_offset; |
| phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; |
| phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; |
| struct kvm_gstage gstage; |
| |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| |
| kvm_riscv_gstage_wp_range(&gstage, start, end); |
| } |
| |
| void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) |
| { |
| } |
| |
| void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free) |
| { |
| } |
| |
| void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) |
| { |
| } |
| |
| void kvm_arch_flush_shadow_all(struct kvm *kvm) |
| { |
| kvm_riscv_mmu_free_pgd(kvm); |
| } |
| |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| struct kvm_memory_slot *slot) |
| { |
| gpa_t gpa = slot->base_gfn << PAGE_SHIFT; |
| phys_addr_t size = slot->npages << PAGE_SHIFT; |
| struct kvm_gstage gstage; |
| |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| |
| spin_lock(&kvm->mmu_lock); |
| kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false); |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| void kvm_arch_commit_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| /* |
| * At this point memslot has been committed and there is an |
| * allocated dirty_bitmap[], dirty pages will be tracked while |
| * the memory slot is write protected. |
| */ |
| if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) |
| mmu_wp_memory_region(kvm, new->id); |
| } |
| |
| int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| const struct kvm_memory_slot *old, |
| struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| hva_t hva, reg_end, size; |
| gpa_t base_gpa; |
| bool writable; |
| int ret = 0; |
| |
| if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && |
| change != KVM_MR_FLAGS_ONLY) |
| return 0; |
| |
| /* |
| * Prevent userspace from creating a memory region outside of the GPA |
| * space addressable by the KVM guest GPA space. |
| */ |
| if ((new->base_gfn + new->npages) >= |
| (kvm_riscv_gstage_gpa_size >> PAGE_SHIFT)) |
| return -EFAULT; |
| |
| hva = new->userspace_addr; |
| size = new->npages << PAGE_SHIFT; |
| reg_end = hva + size; |
| base_gpa = new->base_gfn << PAGE_SHIFT; |
| writable = !(new->flags & KVM_MEM_READONLY); |
| |
| mmap_read_lock(current->mm); |
| |
| /* |
| * A memory region could potentially cover multiple VMAs, and |
| * any holes between them, so iterate over all of them to find |
| * out if we can map any of them right now. |
| * |
| * +--------------------------------------------+ |
| * +---------------+----------------+ +----------------+ |
| * | : VMA 1 | VMA 2 | | VMA 3 : | |
| * +---------------+----------------+ +----------------+ |
| * | memory region | |
| * +--------------------------------------------+ |
| */ |
| do { |
| struct vm_area_struct *vma; |
| hva_t vm_start, vm_end; |
| |
| vma = find_vma_intersection(current->mm, hva, reg_end); |
| if (!vma) |
| break; |
| |
| /* |
| * Mapping a read-only VMA is only allowed if the |
| * memory region is configured as read-only. |
| */ |
| if (writable && !(vma->vm_flags & VM_WRITE)) { |
| ret = -EPERM; |
| break; |
| } |
| |
| /* Take the intersection of this VMA with the memory region */ |
| vm_start = max(hva, vma->vm_start); |
| vm_end = min(reg_end, vma->vm_end); |
| |
| if (vma->vm_flags & VM_PFNMAP) { |
| gpa_t gpa = base_gpa + (vm_start - hva); |
| phys_addr_t pa; |
| |
| pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; |
| pa += vm_start - vma->vm_start; |
| |
| /* IO region dirty page logging not allowed */ |
| if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = kvm_riscv_mmu_ioremap(kvm, gpa, pa, vm_end - vm_start, |
| writable, false); |
| if (ret) |
| break; |
| } |
| hva = vm_end; |
| } while (hva < reg_end); |
| |
| if (change == KVM_MR_FLAGS_ONLY) |
| goto out; |
| |
| if (ret) |
| kvm_riscv_mmu_iounmap(kvm, base_gpa, size); |
| |
| out: |
| mmap_read_unlock(current->mm); |
| return ret; |
| } |
| |
| bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| struct kvm_gstage gstage; |
| |
| if (!kvm->arch.pgd) |
| return false; |
| |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| kvm_riscv_gstage_unmap_range(&gstage, range->start << PAGE_SHIFT, |
| (range->end - range->start) << PAGE_SHIFT, |
| range->may_block); |
| return false; |
| } |
| |
| bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| pte_t *ptep; |
| u32 ptep_level = 0; |
| u64 size = (range->end - range->start) << PAGE_SHIFT; |
| struct kvm_gstage gstage; |
| |
| if (!kvm->arch.pgd) |
| return false; |
| |
| WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); |
| |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT, |
| &ptep, &ptep_level)) |
| return false; |
| |
| return ptep_test_and_clear_young(NULL, 0, ptep); |
| } |
| |
| bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| pte_t *ptep; |
| u32 ptep_level = 0; |
| u64 size = (range->end - range->start) << PAGE_SHIFT; |
| struct kvm_gstage gstage; |
| |
| if (!kvm->arch.pgd) |
| return false; |
| |
| WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); |
| |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT, |
| &ptep, &ptep_level)) |
| return false; |
| |
| return pte_young(ptep_get(ptep)); |
| } |
| |
| int kvm_riscv_mmu_map(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, |
| gpa_t gpa, unsigned long hva, bool is_write, |
| struct kvm_gstage_mapping *out_map) |
| { |
| int ret; |
| kvm_pfn_t hfn; |
| bool writable; |
| short vma_pageshift; |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| struct vm_area_struct *vma; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache; |
| bool logging = (memslot->dirty_bitmap && |
| !(memslot->flags & KVM_MEM_READONLY)) ? true : false; |
| unsigned long vma_pagesize, mmu_seq; |
| struct kvm_gstage gstage; |
| struct page *page; |
| |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| |
| /* Setup initial state of output mapping */ |
| memset(out_map, 0, sizeof(*out_map)); |
| |
| /* We need minimum second+third level pages */ |
| ret = kvm_mmu_topup_memory_cache(pcache, kvm_riscv_gstage_pgd_levels); |
| if (ret) { |
| kvm_err("Failed to topup G-stage cache\n"); |
| return ret; |
| } |
| |
| mmap_read_lock(current->mm); |
| |
| vma = vma_lookup(current->mm, hva); |
| if (unlikely(!vma)) { |
| kvm_err("Failed to find VMA for hva 0x%lx\n", hva); |
| mmap_read_unlock(current->mm); |
| return -EFAULT; |
| } |
| |
| if (is_vm_hugetlb_page(vma)) |
| vma_pageshift = huge_page_shift(hstate_vma(vma)); |
| else |
| vma_pageshift = PAGE_SHIFT; |
| vma_pagesize = 1ULL << vma_pageshift; |
| if (logging || (vma->vm_flags & VM_PFNMAP)) |
| vma_pagesize = PAGE_SIZE; |
| |
| if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) |
| gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; |
| |
| /* |
| * Read mmu_invalidate_seq so that KVM can detect if the results of |
| * vma_lookup() or __kvm_faultin_pfn() become stale prior to acquiring |
| * kvm->mmu_lock. |
| * |
| * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs |
| * with the smp_wmb() in kvm_mmu_invalidate_end(). |
| */ |
| mmu_seq = kvm->mmu_invalidate_seq; |
| mmap_read_unlock(current->mm); |
| |
| if (vma_pagesize != PUD_SIZE && |
| vma_pagesize != PMD_SIZE && |
| vma_pagesize != PAGE_SIZE) { |
| kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize); |
| return -EFAULT; |
| } |
| |
| hfn = __kvm_faultin_pfn(memslot, gfn, is_write ? FOLL_WRITE : 0, |
| &writable, &page); |
| if (hfn == KVM_PFN_ERR_HWPOISON) { |
| send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, |
| vma_pageshift, current); |
| return 0; |
| } |
| if (is_error_noslot_pfn(hfn)) |
| return -EFAULT; |
| |
| /* |
| * If logging is active then we allow writable pages only |
| * for write faults. |
| */ |
| if (logging && !is_write) |
| writable = false; |
| |
| spin_lock(&kvm->mmu_lock); |
| |
| if (mmu_invalidate_retry(kvm, mmu_seq)) |
| goto out_unlock; |
| |
| if (writable) { |
| mark_page_dirty_in_slot(kvm, memslot, gfn); |
| ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT, |
| vma_pagesize, false, true, out_map); |
| } else { |
| ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT, |
| vma_pagesize, true, true, out_map); |
| } |
| |
| if (ret) |
| kvm_err("Failed to map in G-stage\n"); |
| |
| out_unlock: |
| kvm_release_faultin_page(kvm, page, ret && ret != -EEXIST, writable); |
| spin_unlock(&kvm->mmu_lock); |
| return ret; |
| } |
| |
| int kvm_riscv_mmu_alloc_pgd(struct kvm *kvm) |
| { |
| struct page *pgd_page; |
| |
| if (kvm->arch.pgd != NULL) { |
| kvm_err("kvm_arch already initialized?\n"); |
| return -EINVAL; |
| } |
| |
| pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(kvm_riscv_gstage_pgd_size)); |
| if (!pgd_page) |
| return -ENOMEM; |
| kvm->arch.pgd = page_to_virt(pgd_page); |
| kvm->arch.pgd_phys = page_to_phys(pgd_page); |
| |
| return 0; |
| } |
| |
| void kvm_riscv_mmu_free_pgd(struct kvm *kvm) |
| { |
| struct kvm_gstage gstage; |
| void *pgd = NULL; |
| |
| spin_lock(&kvm->mmu_lock); |
| if (kvm->arch.pgd) { |
| gstage.kvm = kvm; |
| gstage.flags = 0; |
| gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); |
| gstage.pgd = kvm->arch.pgd; |
| kvm_riscv_gstage_unmap_range(&gstage, 0UL, kvm_riscv_gstage_gpa_size, false); |
| pgd = READ_ONCE(kvm->arch.pgd); |
| kvm->arch.pgd = NULL; |
| kvm->arch.pgd_phys = 0; |
| } |
| spin_unlock(&kvm->mmu_lock); |
| |
| if (pgd) |
| free_pages((unsigned long)pgd, get_order(kvm_riscv_gstage_pgd_size)); |
| } |
| |
| void kvm_riscv_mmu_update_hgatp(struct kvm_vcpu *vcpu) |
| { |
| unsigned long hgatp = kvm_riscv_gstage_mode << HGATP_MODE_SHIFT; |
| struct kvm_arch *k = &vcpu->kvm->arch; |
| |
| hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID; |
| hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN; |
| |
| ncsr_write(CSR_HGATP, hgatp); |
| |
| if (!kvm_riscv_gstage_vmid_bits()) |
| kvm_riscv_local_hfence_gvma_all(); |
| } |