blob: c467b55b41744ebec0680f5112cc4bb1ba00c513 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Qualcomm ICE (Inline Crypto Engine) support.
*
* Copyright (c) 2013-2019, The Linux Foundation. All rights reserved.
* Copyright (c) 2019, Google LLC
* Copyright (c) 2023, Linaro Limited
*/
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/firmware/qcom/qcom_scm.h>
#include <soc/qcom/ice.h>
#define AES_256_XTS_KEY_SIZE 64 /* for raw keys only */
#define QCOM_ICE_HWKM_WRAPPED_KEY_SIZE 100 /* assuming HWKM v2 */
/* QCOM ICE registers */
#define QCOM_ICE_REG_CONTROL 0x0000
#define QCOM_ICE_LEGACY_MODE_ENABLED BIT(0)
#define QCOM_ICE_REG_VERSION 0x0008
#define QCOM_ICE_REG_FUSE_SETTING 0x0010
#define QCOM_ICE_FUSE_SETTING_MASK BIT(0)
#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK BIT(1)
#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK BIT(2)
#define QCOM_ICE_REG_BIST_STATUS 0x0070
#define QCOM_ICE_BIST_STATUS_MASK GENMASK(31, 28)
#define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000
#define QCOM_ICE_REG_CRYPTOCFG_BASE 0x4040
#define QCOM_ICE_REG_CRYPTOCFG_SIZE 0x80
#define QCOM_ICE_REG_CRYPTOCFG(slot) (QCOM_ICE_REG_CRYPTOCFG_BASE + \
QCOM_ICE_REG_CRYPTOCFG_SIZE * (slot))
union crypto_cfg {
__le32 regval;
struct {
u8 dusize;
u8 capidx;
u8 reserved;
#define QCOM_ICE_HWKM_CFG_ENABLE_VAL BIT(7)
u8 cfge;
};
};
/* QCOM ICE HWKM (Hardware Key Manager) registers */
#define HWKM_OFFSET 0x8000
#define QCOM_ICE_REG_HWKM_TZ_KM_CTL (HWKM_OFFSET + 0x1000)
#define QCOM_ICE_HWKM_DISABLE_CRC_CHECKS_VAL (BIT(1) | BIT(2))
#define QCOM_ICE_REG_HWKM_TZ_KM_STATUS (HWKM_OFFSET + 0x1004)
#define QCOM_ICE_HWKM_KT_CLEAR_DONE BIT(0)
#define QCOM_ICE_HWKM_BOOT_CMD_LIST0_DONE BIT(1)
#define QCOM_ICE_HWKM_BOOT_CMD_LIST1_DONE BIT(2)
#define QCOM_ICE_HWKM_CRYPTO_BIST_DONE_V2 BIT(7)
#define QCOM_ICE_HWKM_BIST_DONE_V2 BIT(9)
#define QCOM_ICE_REG_HWKM_BANK0_BANKN_IRQ_STATUS (HWKM_OFFSET + 0x2008)
#define QCOM_ICE_HWKM_RSP_FIFO_CLEAR_VAL BIT(3)
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_0 (HWKM_OFFSET + 0x5000)
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_1 (HWKM_OFFSET + 0x5004)
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_2 (HWKM_OFFSET + 0x5008)
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_3 (HWKM_OFFSET + 0x500C)
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_4 (HWKM_OFFSET + 0x5010)
#define qcom_ice_writel(engine, val, reg) \
writel((val), (engine)->base + (reg))
#define qcom_ice_readl(engine, reg) \
readl((engine)->base + (reg))
static bool qcom_ice_use_wrapped_keys;
module_param_named(use_wrapped_keys, qcom_ice_use_wrapped_keys, bool, 0660);
MODULE_PARM_DESC(use_wrapped_keys,
"Support wrapped keys instead of raw keys, if available on the platform");
struct qcom_ice {
struct device *dev;
void __iomem *base;
struct clk *core_clk;
bool use_hwkm;
bool hwkm_init_complete;
};
static bool qcom_ice_check_supported(struct qcom_ice *ice)
{
u32 regval = qcom_ice_readl(ice, QCOM_ICE_REG_VERSION);
struct device *dev = ice->dev;
int major = FIELD_GET(GENMASK(31, 24), regval);
int minor = FIELD_GET(GENMASK(23, 16), regval);
int step = FIELD_GET(GENMASK(15, 0), regval);
/* For now this driver only supports ICE version 3 and 4. */
if (major != 3 && major != 4) {
dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
major, minor, step);
return false;
}
dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
major, minor, step);
/* If fuses are blown, ICE might not work in the standard way. */
regval = qcom_ice_readl(ice, QCOM_ICE_REG_FUSE_SETTING);
if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
return false;
}
/*
* Check for HWKM support and decide whether to use it or not. ICE
* v3.2.1 and later have HWKM v2. ICE v3.2.0 has HWKM v1. Earlier ICE
* versions don't have HWKM at all. However, for HWKM to be fully
* usable by Linux, the TrustZone software also needs to support certain
* SCM calls including the ones to generate and prepare keys. That
* effectively makes the earliest supported SoC be SM8650, which has
* HWKM v2. Therefore, this driver doesn't include support for HWKM v1,
* and it checks for the SCM call support before it decides to use HWKM.
*
* Also, since HWKM and legacy mode are mutually exclusive, and
* ICE-capable storage driver(s) need to know early on whether to
* advertise support for raw keys or wrapped keys, HWKM cannot be used
* unconditionally. A module parameter is used to opt into using it.
*/
if ((major >= 4 ||
(major == 3 && (minor >= 3 || (minor == 2 && step >= 1)))) &&
qcom_scm_has_wrapped_key_support()) {
if (qcom_ice_use_wrapped_keys) {
dev_info(dev, "Using HWKM. Supporting wrapped keys only.\n");
ice->use_hwkm = true;
} else {
dev_info(dev, "Not using HWKM. Supporting raw keys only.\n");
}
} else if (qcom_ice_use_wrapped_keys) {
dev_warn(dev, "A supported HWKM is not present. Ignoring qcom_ice.use_wrapped_keys=1.\n");
} else {
dev_info(dev, "A supported HWKM is not present. Supporting raw keys only.\n");
}
return true;
}
static void qcom_ice_low_power_mode_enable(struct qcom_ice *ice)
{
u32 regval;
regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL);
/* Enable low power mode sequence */
regval |= 0x7000;
qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
}
static void qcom_ice_optimization_enable(struct qcom_ice *ice)
{
u32 regval;
/* ICE Optimizations Enable Sequence */
regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL);
regval |= 0xd807100;
/* ICE HPG requires delay before writing */
udelay(5);
qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
udelay(5);
}
/*
* Wait until the ICE BIST (built-in self-test) has completed.
*
* This may be necessary before ICE can be used.
* Note that we don't really care whether the BIST passed or failed;
* we really just want to make sure that it isn't still running. This is
* because (a) the BIST is a FIPS compliance thing that never fails in
* practice, (b) ICE is documented to reject crypto requests if the BIST
* fails, so we needn't do it in software too, and (c) properly testing
* storage encryption requires testing the full storage stack anyway,
* and not relying on hardware-level self-tests.
*/
static int qcom_ice_wait_bist_status(struct qcom_ice *ice)
{
u32 regval;
int err;
err = readl_poll_timeout(ice->base + QCOM_ICE_REG_BIST_STATUS,
regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
50, 5000);
if (err) {
dev_err(ice->dev, "Timed out waiting for ICE self-test to complete\n");
return err;
}
if (ice->use_hwkm &&
qcom_ice_readl(ice, QCOM_ICE_REG_HWKM_TZ_KM_STATUS) !=
(QCOM_ICE_HWKM_KT_CLEAR_DONE |
QCOM_ICE_HWKM_BOOT_CMD_LIST0_DONE |
QCOM_ICE_HWKM_BOOT_CMD_LIST1_DONE |
QCOM_ICE_HWKM_CRYPTO_BIST_DONE_V2 |
QCOM_ICE_HWKM_BIST_DONE_V2)) {
dev_err(ice->dev, "HWKM self-test error!\n");
/*
* Too late to revoke use_hwkm here, as it was already
* propagated up the stack into the crypto capabilities.
*/
}
return 0;
}
static void qcom_ice_hwkm_init(struct qcom_ice *ice)
{
u32 regval;
if (!ice->use_hwkm)
return;
BUILD_BUG_ON(QCOM_ICE_HWKM_WRAPPED_KEY_SIZE >
BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE);
/*
* When ICE is in HWKM mode, it only supports wrapped keys.
* When ICE is in legacy mode, it only supports raw keys.
*
* Put ICE in HWKM mode. ICE defaults to legacy mode.
*/
regval = qcom_ice_readl(ice, QCOM_ICE_REG_CONTROL);
regval &= ~QCOM_ICE_LEGACY_MODE_ENABLED;
qcom_ice_writel(ice, regval, QCOM_ICE_REG_CONTROL);
/* Disable CRC checks. This HWKM feature is not used. */
qcom_ice_writel(ice, QCOM_ICE_HWKM_DISABLE_CRC_CHECKS_VAL,
QCOM_ICE_REG_HWKM_TZ_KM_CTL);
/*
* Allow the HWKM slave to read and write the keyslots in the ICE HWKM
* slave. Without this, TrustZone cannot program keys into ICE.
*/
qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_0);
qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_1);
qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_2);
qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_3);
qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_4);
/* Clear the HWKM response FIFO. */
qcom_ice_writel(ice, QCOM_ICE_HWKM_RSP_FIFO_CLEAR_VAL,
QCOM_ICE_REG_HWKM_BANK0_BANKN_IRQ_STATUS);
ice->hwkm_init_complete = true;
}
int qcom_ice_enable(struct qcom_ice *ice)
{
qcom_ice_low_power_mode_enable(ice);
qcom_ice_optimization_enable(ice);
qcom_ice_hwkm_init(ice);
return qcom_ice_wait_bist_status(ice);
}
EXPORT_SYMBOL_GPL(qcom_ice_enable);
int qcom_ice_resume(struct qcom_ice *ice)
{
struct device *dev = ice->dev;
int err;
err = clk_prepare_enable(ice->core_clk);
if (err) {
dev_err(dev, "failed to enable core clock (%d)\n",
err);
return err;
}
qcom_ice_hwkm_init(ice);
return qcom_ice_wait_bist_status(ice);
}
EXPORT_SYMBOL_GPL(qcom_ice_resume);
int qcom_ice_suspend(struct qcom_ice *ice)
{
clk_disable_unprepare(ice->core_clk);
ice->hwkm_init_complete = false;
return 0;
}
EXPORT_SYMBOL_GPL(qcom_ice_suspend);
static unsigned int translate_hwkm_slot(struct qcom_ice *ice, unsigned int slot)
{
return slot * 2;
}
static int qcom_ice_program_wrapped_key(struct qcom_ice *ice, unsigned int slot,
const struct blk_crypto_key *bkey)
{
struct device *dev = ice->dev;
union crypto_cfg cfg = {
.dusize = bkey->crypto_cfg.data_unit_size / 512,
.capidx = QCOM_SCM_ICE_CIPHER_AES_256_XTS,
.cfge = QCOM_ICE_HWKM_CFG_ENABLE_VAL,
};
int err;
if (!ice->use_hwkm) {
dev_err_ratelimited(dev, "Got wrapped key when not using HWKM\n");
return -EINVAL;
}
if (!ice->hwkm_init_complete) {
dev_err_ratelimited(dev, "HWKM not yet initialized\n");
return -EINVAL;
}
/* Clear CFGE before programming the key. */
qcom_ice_writel(ice, 0x0, QCOM_ICE_REG_CRYPTOCFG(slot));
/* Call into TrustZone to program the wrapped key using HWKM. */
err = qcom_scm_ice_set_key(translate_hwkm_slot(ice, slot), bkey->bytes,
bkey->size, cfg.capidx, cfg.dusize);
if (err) {
dev_err_ratelimited(dev,
"qcom_scm_ice_set_key failed; err=%d, slot=%u\n",
err, slot);
return err;
}
/* Set CFGE after programming the key. */
qcom_ice_writel(ice, le32_to_cpu(cfg.regval),
QCOM_ICE_REG_CRYPTOCFG(slot));
return 0;
}
int qcom_ice_program_key(struct qcom_ice *ice, unsigned int slot,
const struct blk_crypto_key *blk_key)
{
struct device *dev = ice->dev;
union {
u8 bytes[AES_256_XTS_KEY_SIZE];
u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
} key;
int i;
int err;
/* Only AES-256-XTS has been tested so far. */
if (blk_key->crypto_cfg.crypto_mode !=
BLK_ENCRYPTION_MODE_AES_256_XTS) {
dev_err_ratelimited(dev, "Unsupported crypto mode: %d\n",
blk_key->crypto_cfg.crypto_mode);
return -EINVAL;
}
if (blk_key->crypto_cfg.key_type == BLK_CRYPTO_KEY_TYPE_HW_WRAPPED)
return qcom_ice_program_wrapped_key(ice, slot, blk_key);
if (ice->use_hwkm) {
dev_err_ratelimited(dev, "Got raw key when using HWKM\n");
return -EINVAL;
}
if (blk_key->size != AES_256_XTS_KEY_SIZE) {
dev_err_ratelimited(dev, "Incorrect key size\n");
return -EINVAL;
}
memcpy(key.bytes, blk_key->bytes, AES_256_XTS_KEY_SIZE);
/* The SCM call requires that the key words are encoded in big endian */
for (i = 0; i < ARRAY_SIZE(key.words); i++)
__cpu_to_be32s(&key.words[i]);
err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
QCOM_SCM_ICE_CIPHER_AES_256_XTS,
blk_key->crypto_cfg.data_unit_size / 512);
memzero_explicit(&key, sizeof(key));
return err;
}
EXPORT_SYMBOL_GPL(qcom_ice_program_key);
int qcom_ice_evict_key(struct qcom_ice *ice, int slot)
{
if (ice->hwkm_init_complete)
slot = translate_hwkm_slot(ice, slot);
return qcom_scm_ice_invalidate_key(slot);
}
EXPORT_SYMBOL_GPL(qcom_ice_evict_key);
/**
* qcom_ice_get_supported_key_type() - Get the supported key type
* @ice: ICE driver data
*
* Return: the blk-crypto key type that the ICE driver is configured to use.
* This is the key type that ICE-capable storage drivers should advertise as
* supported in the crypto capabilities of any disks they register.
*/
enum blk_crypto_key_type qcom_ice_get_supported_key_type(struct qcom_ice *ice)
{
if (ice->use_hwkm)
return BLK_CRYPTO_KEY_TYPE_HW_WRAPPED;
return BLK_CRYPTO_KEY_TYPE_RAW;
}
EXPORT_SYMBOL_GPL(qcom_ice_get_supported_key_type);
/**
* qcom_ice_derive_sw_secret() - Derive software secret from wrapped key
* @ice: ICE driver data
* @eph_key: an ephemerally-wrapped key
* @eph_key_size: size of @eph_key in bytes
* @sw_secret: output buffer for the software secret
*
* Use HWKM to derive the "software secret" from a hardware-wrapped key that is
* given in ephemerally-wrapped form.
*
* Return: 0 on success; -EBADMSG if the given ephemerally-wrapped key is
* invalid; or another -errno value.
*/
int qcom_ice_derive_sw_secret(struct qcom_ice *ice,
const u8 *eph_key, size_t eph_key_size,
u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
{
int err = qcom_scm_derive_sw_secret(eph_key, eph_key_size,
sw_secret,
BLK_CRYPTO_SW_SECRET_SIZE);
if (err == -EIO || err == -EINVAL)
err = -EBADMSG; /* probably invalid key */
return err;
}
EXPORT_SYMBOL_GPL(qcom_ice_derive_sw_secret);
/**
* qcom_ice_generate_key() - Generate a wrapped key for inline encryption
* @ice: ICE driver data
* @lt_key: output buffer for the long-term wrapped key
*
* Use HWKM to generate a new key and return it as a long-term wrapped key.
*
* Return: the size of the resulting wrapped key on success; -errno on failure.
*/
int qcom_ice_generate_key(struct qcom_ice *ice,
u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
{
int err;
err = qcom_scm_generate_ice_key(lt_key, QCOM_ICE_HWKM_WRAPPED_KEY_SIZE);
if (err)
return err;
return QCOM_ICE_HWKM_WRAPPED_KEY_SIZE;
}
EXPORT_SYMBOL_GPL(qcom_ice_generate_key);
/**
* qcom_ice_prepare_key() - Prepare a wrapped key for inline encryption
* @ice: ICE driver data
* @lt_key: a long-term wrapped key
* @lt_key_size: size of @lt_key in bytes
* @eph_key: output buffer for the ephemerally-wrapped key
*
* Use HWKM to re-wrap a long-term wrapped key with the per-boot ephemeral key.
*
* Return: the size of the resulting wrapped key on success; -EBADMSG if the
* given long-term wrapped key is invalid; or another -errno value.
*/
int qcom_ice_prepare_key(struct qcom_ice *ice,
const u8 *lt_key, size_t lt_key_size,
u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
{
int err;
err = qcom_scm_prepare_ice_key(lt_key, lt_key_size,
eph_key, QCOM_ICE_HWKM_WRAPPED_KEY_SIZE);
if (err == -EIO || err == -EINVAL)
err = -EBADMSG; /* probably invalid key */
if (err)
return err;
return QCOM_ICE_HWKM_WRAPPED_KEY_SIZE;
}
EXPORT_SYMBOL_GPL(qcom_ice_prepare_key);
/**
* qcom_ice_import_key() - Import a raw key for inline encryption
* @ice: ICE driver data
* @raw_key: the raw key to import
* @raw_key_size: size of @raw_key in bytes
* @lt_key: output buffer for the long-term wrapped key
*
* Use HWKM to import a raw key and return it as a long-term wrapped key.
*
* Return: the size of the resulting wrapped key on success; -errno on failure.
*/
int qcom_ice_import_key(struct qcom_ice *ice,
const u8 *raw_key, size_t raw_key_size,
u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
{
int err;
err = qcom_scm_import_ice_key(raw_key, raw_key_size,
lt_key, QCOM_ICE_HWKM_WRAPPED_KEY_SIZE);
if (err)
return err;
return QCOM_ICE_HWKM_WRAPPED_KEY_SIZE;
}
EXPORT_SYMBOL_GPL(qcom_ice_import_key);
static struct qcom_ice *qcom_ice_create(struct device *dev,
void __iomem *base)
{
struct qcom_ice *engine;
if (!qcom_scm_is_available())
return ERR_PTR(-EPROBE_DEFER);
if (!qcom_scm_ice_available()) {
dev_warn(dev, "ICE SCM interface not found\n");
return NULL;
}
engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
if (!engine)
return ERR_PTR(-ENOMEM);
engine->dev = dev;
engine->base = base;
/*
* Legacy DT binding uses different clk names for each consumer,
* so lets try those first. If none of those are a match, it means
* the we only have one clock and it is part of the dedicated DT node.
* Also, enable the clock before we check what HW version the driver
* supports.
*/
engine->core_clk = devm_clk_get_optional_enabled(dev, "ice_core_clk");
if (!engine->core_clk)
engine->core_clk = devm_clk_get_optional_enabled(dev, "ice");
if (!engine->core_clk)
engine->core_clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(engine->core_clk))
return ERR_CAST(engine->core_clk);
if (!qcom_ice_check_supported(engine))
return ERR_PTR(-EOPNOTSUPP);
dev_dbg(dev, "Registered Qualcomm Inline Crypto Engine\n");
return engine;
}
/**
* of_qcom_ice_get() - get an ICE instance from a DT node
* @dev: device pointer for the consumer device
*
* This function will provide an ICE instance either by creating one for the
* consumer device if its DT node provides the 'ice' reg range and the 'ice'
* clock (for legacy DT style). On the other hand, if consumer provides a
* phandle via 'qcom,ice' property to an ICE DT, the ICE instance will already
* be created and so this function will return that instead.
*
* Return: ICE pointer on success, NULL if there is no ICE data provided by the
* consumer or ERR_PTR() on error.
*/
static struct qcom_ice *of_qcom_ice_get(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct qcom_ice *ice;
struct resource *res;
void __iomem *base;
struct device_link *link;
if (!dev || !dev->of_node)
return ERR_PTR(-ENODEV);
/*
* In order to support legacy style devicetree bindings, we need
* to create the ICE instance using the consumer device and the reg
* range called 'ice' it provides.
*/
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ice");
if (res) {
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return ERR_CAST(base);
/* create ICE instance using consumer dev */
return qcom_ice_create(&pdev->dev, base);
}
/*
* If the consumer node does not provider an 'ice' reg range
* (legacy DT binding), then it must at least provide a phandle
* to the ICE devicetree node, otherwise ICE is not supported.
*/
struct device_node *node __free(device_node) = of_parse_phandle(dev->of_node,
"qcom,ice", 0);
if (!node)
return NULL;
pdev = of_find_device_by_node(node);
if (!pdev) {
dev_err(dev, "Cannot find device node %s\n", node->name);
return ERR_PTR(-EPROBE_DEFER);
}
ice = platform_get_drvdata(pdev);
if (!ice) {
dev_err(dev, "Cannot get ice instance from %s\n",
dev_name(&pdev->dev));
platform_device_put(pdev);
return ERR_PTR(-EPROBE_DEFER);
}
link = device_link_add(dev, &pdev->dev, DL_FLAG_AUTOREMOVE_SUPPLIER);
if (!link) {
dev_err(&pdev->dev,
"Failed to create device link to consumer %s\n",
dev_name(dev));
platform_device_put(pdev);
ice = ERR_PTR(-EINVAL);
}
return ice;
}
static void qcom_ice_put(const struct qcom_ice *ice)
{
struct platform_device *pdev = to_platform_device(ice->dev);
if (!platform_get_resource_byname(pdev, IORESOURCE_MEM, "ice"))
platform_device_put(pdev);
}
static void devm_of_qcom_ice_put(struct device *dev, void *res)
{
qcom_ice_put(*(struct qcom_ice **)res);
}
/**
* devm_of_qcom_ice_get() - Devres managed helper to get an ICE instance from
* a DT node.
* @dev: device pointer for the consumer device.
*
* This function will provide an ICE instance either by creating one for the
* consumer device if its DT node provides the 'ice' reg range and the 'ice'
* clock (for legacy DT style). On the other hand, if consumer provides a
* phandle via 'qcom,ice' property to an ICE DT, the ICE instance will already
* be created and so this function will return that instead.
*
* Return: ICE pointer on success, NULL if there is no ICE data provided by the
* consumer or ERR_PTR() on error.
*/
struct qcom_ice *devm_of_qcom_ice_get(struct device *dev)
{
struct qcom_ice *ice, **dr;
dr = devres_alloc(devm_of_qcom_ice_put, sizeof(*dr), GFP_KERNEL);
if (!dr)
return ERR_PTR(-ENOMEM);
ice = of_qcom_ice_get(dev);
if (!IS_ERR_OR_NULL(ice)) {
*dr = ice;
devres_add(dev, dr);
} else {
devres_free(dr);
}
return ice;
}
EXPORT_SYMBOL_GPL(devm_of_qcom_ice_get);
static int qcom_ice_probe(struct platform_device *pdev)
{
struct qcom_ice *engine;
void __iomem *base;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base)) {
dev_warn(&pdev->dev, "ICE registers not found\n");
return PTR_ERR(base);
}
engine = qcom_ice_create(&pdev->dev, base);
if (IS_ERR(engine))
return PTR_ERR(engine);
platform_set_drvdata(pdev, engine);
return 0;
}
static const struct of_device_id qcom_ice_of_match_table[] = {
{ .compatible = "qcom,inline-crypto-engine" },
{ },
};
MODULE_DEVICE_TABLE(of, qcom_ice_of_match_table);
static struct platform_driver qcom_ice_driver = {
.probe = qcom_ice_probe,
.driver = {
.name = "qcom-ice",
.of_match_table = qcom_ice_of_match_table,
},
};
module_platform_driver(qcom_ice_driver);
MODULE_DESCRIPTION("Qualcomm Inline Crypto Engine driver");
MODULE_LICENSE("GPL");