| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| * Copyright (c) 2016-2018 Christoph Hellwig. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_errortag.h" |
| #include "xfs_error.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_space.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_iomap.h" |
| #include "xfs_trace.h" |
| #include "xfs_quota.h" |
| #include "xfs_rtgroup.h" |
| #include "xfs_dquot_item.h" |
| #include "xfs_dquot.h" |
| #include "xfs_reflink.h" |
| #include "xfs_health.h" |
| #include "xfs_rtbitmap.h" |
| #include "xfs_icache.h" |
| #include "xfs_zone_alloc.h" |
| |
| #define XFS_ALLOC_ALIGN(mp, off) \ |
| (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log) |
| |
| static int |
| xfs_alert_fsblock_zero( |
| xfs_inode_t *ip, |
| xfs_bmbt_irec_t *imap) |
| { |
| xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO, |
| "Access to block zero in inode %llu " |
| "start_block: %llx start_off: %llx " |
| "blkcnt: %llx extent-state: %x", |
| (unsigned long long)ip->i_ino, |
| (unsigned long long)imap->br_startblock, |
| (unsigned long long)imap->br_startoff, |
| (unsigned long long)imap->br_blockcount, |
| imap->br_state); |
| xfs_bmap_mark_sick(ip, XFS_DATA_FORK); |
| return -EFSCORRUPTED; |
| } |
| |
| u64 |
| xfs_iomap_inode_sequence( |
| struct xfs_inode *ip, |
| u16 iomap_flags) |
| { |
| u64 cookie = 0; |
| |
| if (iomap_flags & IOMAP_F_XATTR) |
| return READ_ONCE(ip->i_af.if_seq); |
| if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp) |
| cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32; |
| return cookie | READ_ONCE(ip->i_df.if_seq); |
| } |
| |
| /* |
| * Check that the iomap passed to us is still valid for the given offset and |
| * length. |
| */ |
| static bool |
| xfs_iomap_valid( |
| struct inode *inode, |
| const struct iomap *iomap) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| |
| if (iomap->type == IOMAP_HOLE) |
| return true; |
| |
| if (iomap->validity_cookie != |
| xfs_iomap_inode_sequence(ip, iomap->flags)) { |
| trace_xfs_iomap_invalid(ip, iomap); |
| return false; |
| } |
| |
| XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS); |
| return true; |
| } |
| |
| const struct iomap_write_ops xfs_iomap_write_ops = { |
| .iomap_valid = xfs_iomap_valid, |
| }; |
| |
| int |
| xfs_bmbt_to_iomap( |
| struct xfs_inode *ip, |
| struct iomap *iomap, |
| struct xfs_bmbt_irec *imap, |
| unsigned int mapping_flags, |
| u16 iomap_flags, |
| u64 sequence_cookie) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_buftarg *target = xfs_inode_buftarg(ip); |
| |
| if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { |
| xfs_bmap_mark_sick(ip, XFS_DATA_FORK); |
| return xfs_alert_fsblock_zero(ip, imap); |
| } |
| |
| if (imap->br_startblock == HOLESTARTBLOCK) { |
| iomap->addr = IOMAP_NULL_ADDR; |
| iomap->type = IOMAP_HOLE; |
| } else if (imap->br_startblock == DELAYSTARTBLOCK || |
| isnullstartblock(imap->br_startblock)) { |
| iomap->addr = IOMAP_NULL_ADDR; |
| iomap->type = IOMAP_DELALLOC; |
| } else { |
| xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock); |
| |
| iomap->addr = BBTOB(daddr); |
| if (mapping_flags & IOMAP_DAX) |
| iomap->addr += target->bt_dax_part_off; |
| |
| if (imap->br_state == XFS_EXT_UNWRITTEN) |
| iomap->type = IOMAP_UNWRITTEN; |
| else |
| iomap->type = IOMAP_MAPPED; |
| |
| /* |
| * Mark iomaps starting at the first sector of a RTG as merge |
| * boundary so that each I/O completions is contained to a |
| * single RTG. |
| */ |
| if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) && |
| xfs_rtbno_is_group_start(mp, imap->br_startblock)) |
| iomap->flags |= IOMAP_F_BOUNDARY; |
| } |
| iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff); |
| iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount); |
| if (mapping_flags & IOMAP_DAX) |
| iomap->dax_dev = target->bt_daxdev; |
| else |
| iomap->bdev = target->bt_bdev; |
| iomap->flags = iomap_flags; |
| |
| if (xfs_ipincount(ip) && |
| (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) |
| iomap->flags |= IOMAP_F_DIRTY; |
| |
| iomap->validity_cookie = sequence_cookie; |
| return 0; |
| } |
| |
| static void |
| xfs_hole_to_iomap( |
| struct xfs_inode *ip, |
| struct iomap *iomap, |
| xfs_fileoff_t offset_fsb, |
| xfs_fileoff_t end_fsb) |
| { |
| struct xfs_buftarg *target = xfs_inode_buftarg(ip); |
| |
| iomap->addr = IOMAP_NULL_ADDR; |
| iomap->type = IOMAP_HOLE; |
| iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb); |
| iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb); |
| iomap->bdev = target->bt_bdev; |
| iomap->dax_dev = target->bt_daxdev; |
| } |
| |
| static inline xfs_fileoff_t |
| xfs_iomap_end_fsb( |
| struct xfs_mount *mp, |
| loff_t offset, |
| loff_t count) |
| { |
| ASSERT(offset <= mp->m_super->s_maxbytes); |
| return min(XFS_B_TO_FSB(mp, offset + count), |
| XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); |
| } |
| |
| static xfs_extlen_t |
| xfs_eof_alignment( |
| struct xfs_inode *ip) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| xfs_extlen_t align = 0; |
| |
| if (!XFS_IS_REALTIME_INODE(ip)) { |
| /* |
| * Round up the allocation request to a stripe unit |
| * (m_dalign) boundary if the file size is >= stripe unit |
| * size, and we are allocating past the allocation eof. |
| * |
| * If mounted with the "-o swalloc" option the alignment is |
| * increased from the strip unit size to the stripe width. |
| */ |
| if (mp->m_swidth && xfs_has_swalloc(mp)) |
| align = mp->m_swidth; |
| else if (mp->m_dalign) |
| align = mp->m_dalign; |
| |
| if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align)) |
| align = 0; |
| } |
| |
| return align; |
| } |
| |
| /* |
| * Check if last_fsb is outside the last extent, and if so grow it to the next |
| * stripe unit boundary. |
| */ |
| xfs_fileoff_t |
| xfs_iomap_eof_align_last_fsb( |
| struct xfs_inode *ip, |
| xfs_fileoff_t end_fsb) |
| { |
| struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); |
| xfs_extlen_t extsz = xfs_get_extsz_hint(ip); |
| xfs_extlen_t align = xfs_eof_alignment(ip); |
| struct xfs_bmbt_irec irec; |
| struct xfs_iext_cursor icur; |
| |
| ASSERT(!xfs_need_iread_extents(ifp)); |
| |
| /* |
| * Always round up the allocation request to the extent hint boundary. |
| */ |
| if (extsz) { |
| if (align) |
| align = roundup_64(align, extsz); |
| else |
| align = extsz; |
| } |
| |
| if (align) { |
| xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align); |
| |
| xfs_iext_last(ifp, &icur); |
| if (!xfs_iext_get_extent(ifp, &icur, &irec) || |
| aligned_end_fsb >= irec.br_startoff + irec.br_blockcount) |
| return aligned_end_fsb; |
| } |
| |
| return end_fsb; |
| } |
| |
| int |
| xfs_iomap_write_direct( |
| struct xfs_inode *ip, |
| xfs_fileoff_t offset_fsb, |
| xfs_fileoff_t count_fsb, |
| unsigned int flags, |
| struct xfs_bmbt_irec *imap, |
| u64 *seq) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp; |
| xfs_filblks_t resaligned; |
| int nimaps; |
| unsigned int dblocks, rblocks; |
| bool force = false; |
| int error; |
| int bmapi_flags = XFS_BMAPI_PREALLOC; |
| int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT; |
| |
| ASSERT(count_fsb > 0); |
| |
| resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, |
| xfs_get_extsz_hint(ip)); |
| if (unlikely(XFS_IS_REALTIME_INODE(ip))) { |
| dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); |
| rblocks = resaligned; |
| } else { |
| dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); |
| rblocks = 0; |
| } |
| |
| error = xfs_qm_dqattach(ip); |
| if (error) |
| return error; |
| |
| /* |
| * For DAX, we do not allocate unwritten extents, but instead we zero |
| * the block before we commit the transaction. Ideally we'd like to do |
| * this outside the transaction context, but if we commit and then crash |
| * we may not have zeroed the blocks and this will be exposed on |
| * recovery of the allocation. Hence we must zero before commit. |
| * |
| * Further, if we are mapping unwritten extents here, we need to zero |
| * and convert them to written so that we don't need an unwritten extent |
| * callback for DAX. This also means that we need to be able to dip into |
| * the reserve block pool for bmbt block allocation if there is no space |
| * left but we need to do unwritten extent conversion. |
| */ |
| if (flags & IOMAP_DAX) { |
| bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO; |
| if (imap->br_state == XFS_EXT_UNWRITTEN) { |
| force = true; |
| nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT; |
| dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; |
| } |
| } |
| |
| error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, |
| rblocks, force, &tp); |
| if (error) |
| return error; |
| |
| error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* |
| * From this point onwards we overwrite the imap pointer that the |
| * caller gave to us. |
| */ |
| nimaps = 1; |
| error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0, |
| imap, &nimaps); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* |
| * Complete the transaction |
| */ |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto out_unlock; |
| |
| if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) { |
| xfs_bmap_mark_sick(ip, XFS_DATA_FORK); |
| error = xfs_alert_fsblock_zero(ip, imap); |
| } |
| |
| out_unlock: |
| *seq = xfs_iomap_inode_sequence(ip, 0); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return error; |
| |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| goto out_unlock; |
| } |
| |
| STATIC bool |
| xfs_quota_need_throttle( |
| struct xfs_inode *ip, |
| xfs_dqtype_t type, |
| xfs_fsblock_t alloc_blocks) |
| { |
| struct xfs_dquot *dq = xfs_inode_dquot(ip, type); |
| struct xfs_dquot_res *res; |
| struct xfs_dquot_pre *pre; |
| |
| if (!dq || !xfs_this_quota_on(ip->i_mount, type)) |
| return false; |
| |
| if (XFS_IS_REALTIME_INODE(ip)) { |
| res = &dq->q_rtb; |
| pre = &dq->q_rtb_prealloc; |
| } else { |
| res = &dq->q_blk; |
| pre = &dq->q_blk_prealloc; |
| } |
| |
| /* no hi watermark, no throttle */ |
| if (!pre->q_prealloc_hi_wmark) |
| return false; |
| |
| /* under the lo watermark, no throttle */ |
| if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark) |
| return false; |
| |
| return true; |
| } |
| |
| STATIC void |
| xfs_quota_calc_throttle( |
| struct xfs_inode *ip, |
| xfs_dqtype_t type, |
| xfs_fsblock_t *qblocks, |
| int *qshift, |
| int64_t *qfreesp) |
| { |
| struct xfs_dquot *dq = xfs_inode_dquot(ip, type); |
| struct xfs_dquot_res *res; |
| struct xfs_dquot_pre *pre; |
| int64_t freesp; |
| int shift = 0; |
| |
| if (!dq) { |
| res = NULL; |
| pre = NULL; |
| } else if (XFS_IS_REALTIME_INODE(ip)) { |
| res = &dq->q_rtb; |
| pre = &dq->q_rtb_prealloc; |
| } else { |
| res = &dq->q_blk; |
| pre = &dq->q_blk_prealloc; |
| } |
| |
| /* no dq, or over hi wmark, squash the prealloc completely */ |
| if (!res || res->reserved >= pre->q_prealloc_hi_wmark) { |
| *qblocks = 0; |
| *qfreesp = 0; |
| return; |
| } |
| |
| freesp = pre->q_prealloc_hi_wmark - res->reserved; |
| if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) { |
| shift = 2; |
| if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT]) |
| shift += 2; |
| if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT]) |
| shift += 2; |
| } |
| |
| if (freesp < *qfreesp) |
| *qfreesp = freesp; |
| |
| /* only overwrite the throttle values if we are more aggressive */ |
| if ((freesp >> shift) < (*qblocks >> *qshift)) { |
| *qblocks = freesp; |
| *qshift = shift; |
| } |
| } |
| |
| static int64_t |
| xfs_iomap_freesp( |
| struct xfs_mount *mp, |
| unsigned int idx, |
| uint64_t low_space[XFS_LOWSP_MAX], |
| int *shift) |
| { |
| int64_t freesp; |
| |
| freesp = xfs_estimate_freecounter(mp, idx); |
| if (freesp < low_space[XFS_LOWSP_5_PCNT]) { |
| *shift = 2; |
| if (freesp < low_space[XFS_LOWSP_4_PCNT]) |
| (*shift)++; |
| if (freesp < low_space[XFS_LOWSP_3_PCNT]) |
| (*shift)++; |
| if (freesp < low_space[XFS_LOWSP_2_PCNT]) |
| (*shift)++; |
| if (freesp < low_space[XFS_LOWSP_1_PCNT]) |
| (*shift)++; |
| } |
| return freesp; |
| } |
| |
| /* |
| * If we don't have a user specified preallocation size, dynamically increase |
| * the preallocation size as the size of the file grows. Cap the maximum size |
| * at a single extent or less if the filesystem is near full. The closer the |
| * filesystem is to being full, the smaller the maximum preallocation. |
| */ |
| STATIC xfs_fsblock_t |
| xfs_iomap_prealloc_size( |
| struct xfs_inode *ip, |
| int whichfork, |
| loff_t offset, |
| loff_t count, |
| struct xfs_iext_cursor *icur) |
| { |
| struct xfs_iext_cursor ncur = *icur; |
| struct xfs_bmbt_irec prev, got; |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| int64_t freesp; |
| xfs_fsblock_t qblocks; |
| xfs_fsblock_t alloc_blocks = 0; |
| xfs_extlen_t plen; |
| int shift = 0; |
| int qshift = 0; |
| |
| /* |
| * As an exception we don't do any preallocation at all if the file is |
| * smaller than the minimum preallocation and we are using the default |
| * dynamic preallocation scheme, as it is likely this is the only write |
| * to the file that is going to be done. |
| */ |
| if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks)) |
| return 0; |
| |
| /* |
| * Use the minimum preallocation size for small files or if we are |
| * writing right after a hole. |
| */ |
| if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) || |
| !xfs_iext_prev_extent(ifp, &ncur, &prev) || |
| prev.br_startoff + prev.br_blockcount < offset_fsb) |
| return mp->m_allocsize_blocks; |
| |
| /* |
| * Take the size of the preceding data extents as the basis for the |
| * preallocation size. Note that we don't care if the previous extents |
| * are written or not. |
| */ |
| plen = prev.br_blockcount; |
| while (xfs_iext_prev_extent(ifp, &ncur, &got)) { |
| if (plen > XFS_MAX_BMBT_EXTLEN / 2 || |
| isnullstartblock(got.br_startblock) || |
| got.br_startoff + got.br_blockcount != prev.br_startoff || |
| got.br_startblock + got.br_blockcount != prev.br_startblock) |
| break; |
| plen += got.br_blockcount; |
| prev = got; |
| } |
| |
| /* |
| * If the size of the extents is greater than half the maximum extent |
| * length, then use the current offset as the basis. This ensures that |
| * for large files the preallocation size always extends to |
| * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe |
| * unit/width alignment of real extents. |
| */ |
| alloc_blocks = plen * 2; |
| if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) |
| alloc_blocks = XFS_B_TO_FSB(mp, offset); |
| qblocks = alloc_blocks; |
| |
| /* |
| * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc |
| * down to the nearest power of two value after throttling. To prevent |
| * the round down from unconditionally reducing the maximum supported |
| * prealloc size, we round up first, apply appropriate throttling, round |
| * down and cap the value to XFS_BMBT_MAX_EXTLEN. |
| */ |
| alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN), |
| alloc_blocks); |
| |
| if (unlikely(XFS_IS_REALTIME_INODE(ip))) |
| freesp = xfs_rtbxlen_to_blen(mp, |
| xfs_iomap_freesp(mp, XC_FREE_RTEXTENTS, |
| mp->m_low_rtexts, &shift)); |
| else |
| freesp = xfs_iomap_freesp(mp, XC_FREE_BLOCKS, mp->m_low_space, |
| &shift); |
| |
| /* |
| * Check each quota to cap the prealloc size, provide a shift value to |
| * throttle with and adjust amount of available space. |
| */ |
| if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks)) |
| xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift, |
| &freesp); |
| if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks)) |
| xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift, |
| &freesp); |
| if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks)) |
| xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift, |
| &freesp); |
| |
| /* |
| * The final prealloc size is set to the minimum of free space available |
| * in each of the quotas and the overall filesystem. |
| * |
| * The shift throttle value is set to the maximum value as determined by |
| * the global low free space values and per-quota low free space values. |
| */ |
| alloc_blocks = min(alloc_blocks, qblocks); |
| shift = max(shift, qshift); |
| |
| if (shift) |
| alloc_blocks >>= shift; |
| /* |
| * rounddown_pow_of_two() returns an undefined result if we pass in |
| * alloc_blocks = 0. |
| */ |
| if (alloc_blocks) |
| alloc_blocks = rounddown_pow_of_two(alloc_blocks); |
| if (alloc_blocks > XFS_MAX_BMBT_EXTLEN) |
| alloc_blocks = XFS_MAX_BMBT_EXTLEN; |
| |
| /* |
| * If we are still trying to allocate more space than is |
| * available, squash the prealloc hard. This can happen if we |
| * have a large file on a small filesystem and the above |
| * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN. |
| */ |
| while (alloc_blocks && alloc_blocks >= freesp) |
| alloc_blocks >>= 4; |
| if (alloc_blocks < mp->m_allocsize_blocks) |
| alloc_blocks = mp->m_allocsize_blocks; |
| trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift, |
| mp->m_allocsize_blocks); |
| return alloc_blocks; |
| } |
| |
| int |
| xfs_iomap_write_unwritten( |
| xfs_inode_t *ip, |
| xfs_off_t offset, |
| xfs_off_t count, |
| bool update_isize) |
| { |
| xfs_mount_t *mp = ip->i_mount; |
| xfs_fileoff_t offset_fsb; |
| xfs_filblks_t count_fsb; |
| xfs_filblks_t numblks_fsb; |
| int nimaps; |
| xfs_trans_t *tp; |
| xfs_bmbt_irec_t imap; |
| struct inode *inode = VFS_I(ip); |
| xfs_fsize_t i_size; |
| uint resblks; |
| int error; |
| |
| trace_xfs_unwritten_convert(ip, offset, count); |
| |
| offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); |
| count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb); |
| |
| /* |
| * Reserve enough blocks in this transaction for two complete extent |
| * btree splits. We may be converting the middle part of an unwritten |
| * extent and in this case we will insert two new extents in the btree |
| * each of which could cause a full split. |
| * |
| * This reservation amount will be used in the first call to |
| * xfs_bmbt_split() to select an AG with enough space to satisfy the |
| * rest of the operation. |
| */ |
| resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1; |
| |
| /* Attach dquots so that bmbt splits are accounted correctly. */ |
| error = xfs_qm_dqattach(ip); |
| if (error) |
| return error; |
| |
| do { |
| /* |
| * Set up a transaction to convert the range of extents |
| * from unwritten to real. Do allocations in a loop until |
| * we have covered the range passed in. |
| * |
| * Note that we can't risk to recursing back into the filesystem |
| * here as we might be asked to write out the same inode that we |
| * complete here and might deadlock on the iolock. |
| */ |
| error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, |
| 0, true, &tp); |
| if (error) |
| return error; |
| |
| error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, |
| XFS_IEXT_WRITE_UNWRITTEN_CNT); |
| if (error) |
| goto error_on_bmapi_transaction; |
| |
| /* |
| * Modify the unwritten extent state of the buffer. |
| */ |
| nimaps = 1; |
| error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, |
| XFS_BMAPI_CONVERT, resblks, &imap, |
| &nimaps); |
| if (error) |
| goto error_on_bmapi_transaction; |
| |
| /* |
| * Log the updated inode size as we go. We have to be careful |
| * to only log it up to the actual write offset if it is |
| * halfway into a block. |
| */ |
| i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb); |
| if (i_size > offset + count) |
| i_size = offset + count; |
| if (update_isize && i_size > i_size_read(inode)) |
| i_size_write(inode, i_size); |
| i_size = xfs_new_eof(ip, i_size); |
| if (i_size) { |
| ip->i_disk_size = i_size; |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| } |
| |
| error = xfs_trans_commit(tp); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| if (error) |
| return error; |
| |
| if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) { |
| xfs_bmap_mark_sick(ip, XFS_DATA_FORK); |
| return xfs_alert_fsblock_zero(ip, &imap); |
| } |
| |
| if ((numblks_fsb = imap.br_blockcount) == 0) { |
| /* |
| * The numblks_fsb value should always get |
| * smaller, otherwise the loop is stuck. |
| */ |
| ASSERT(imap.br_blockcount); |
| break; |
| } |
| offset_fsb += numblks_fsb; |
| count_fsb -= numblks_fsb; |
| } while (count_fsb > 0); |
| |
| return 0; |
| |
| error_on_bmapi_transaction: |
| xfs_trans_cancel(tp); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return error; |
| } |
| |
| static inline bool |
| imap_needs_alloc( |
| struct inode *inode, |
| unsigned flags, |
| struct xfs_bmbt_irec *imap, |
| int nimaps) |
| { |
| /* don't allocate blocks when just zeroing */ |
| if (flags & IOMAP_ZERO) |
| return false; |
| if (!nimaps || |
| imap->br_startblock == HOLESTARTBLOCK || |
| imap->br_startblock == DELAYSTARTBLOCK) |
| return true; |
| /* we convert unwritten extents before copying the data for DAX */ |
| if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN) |
| return true; |
| return false; |
| } |
| |
| static inline bool |
| imap_needs_cow( |
| struct xfs_inode *ip, |
| unsigned int flags, |
| struct xfs_bmbt_irec *imap, |
| int nimaps) |
| { |
| if (!xfs_is_cow_inode(ip)) |
| return false; |
| |
| /* when zeroing we don't have to COW holes or unwritten extents */ |
| if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { |
| if (!nimaps || |
| imap->br_startblock == HOLESTARTBLOCK || |
| imap->br_state == XFS_EXT_UNWRITTEN) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Extents not yet cached requires exclusive access, don't block for |
| * IOMAP_NOWAIT. |
| * |
| * This is basically an opencoded xfs_ilock_data_map_shared() call, but with |
| * support for IOMAP_NOWAIT. |
| */ |
| static int |
| xfs_ilock_for_iomap( |
| struct xfs_inode *ip, |
| unsigned flags, |
| unsigned *lockmode) |
| { |
| if (flags & IOMAP_NOWAIT) { |
| if (xfs_need_iread_extents(&ip->i_df)) |
| return -EAGAIN; |
| if (!xfs_ilock_nowait(ip, *lockmode)) |
| return -EAGAIN; |
| } else { |
| if (xfs_need_iread_extents(&ip->i_df)) |
| *lockmode = XFS_ILOCK_EXCL; |
| xfs_ilock(ip, *lockmode); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Check that the imap we are going to return to the caller spans the entire |
| * range that the caller requested for the IO. |
| */ |
| static bool |
| imap_spans_range( |
| struct xfs_bmbt_irec *imap, |
| xfs_fileoff_t offset_fsb, |
| xfs_fileoff_t end_fsb) |
| { |
| if (imap->br_startoff > offset_fsb) |
| return false; |
| if (imap->br_startoff + imap->br_blockcount < end_fsb) |
| return false; |
| return true; |
| } |
| |
| static bool |
| xfs_bmap_hw_atomic_write_possible( |
| struct xfs_inode *ip, |
| struct xfs_bmbt_irec *imap, |
| xfs_fileoff_t offset_fsb, |
| xfs_fileoff_t end_fsb) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| xfs_fsize_t len = XFS_FSB_TO_B(mp, end_fsb - offset_fsb); |
| |
| /* |
| * atomic writes are required to be naturally aligned for disk blocks, |
| * which ensures that we adhere to block layer rules that we won't |
| * straddle any boundary or violate write alignment requirement. |
| */ |
| if (!IS_ALIGNED(imap->br_startblock, imap->br_blockcount)) |
| return false; |
| |
| /* |
| * Spanning multiple extents would mean that multiple BIOs would be |
| * issued, and so would lose atomicity required for REQ_ATOMIC-based |
| * atomics. |
| */ |
| if (!imap_spans_range(imap, offset_fsb, end_fsb)) |
| return false; |
| |
| /* |
| * The ->iomap_begin caller should ensure this, but check anyway. |
| */ |
| return len <= xfs_inode_buftarg(ip)->bt_awu_max; |
| } |
| |
| static int |
| xfs_direct_write_iomap_begin( |
| struct inode *inode, |
| loff_t offset, |
| loff_t length, |
| unsigned flags, |
| struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_bmbt_irec imap, cmap; |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); |
| xfs_fileoff_t orig_end_fsb = end_fsb; |
| int nimaps = 1, error = 0; |
| bool shared = false; |
| u16 iomap_flags = 0; |
| bool needs_alloc; |
| unsigned int lockmode; |
| u64 seq; |
| |
| ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO)); |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| /* |
| * Writes that span EOF might trigger an IO size update on completion, |
| * so consider them to be dirty for the purposes of O_DSYNC even if |
| * there is no other metadata changes pending or have been made here. |
| */ |
| if (offset + length > i_size_read(inode)) |
| iomap_flags |= IOMAP_F_DIRTY; |
| |
| /* HW-offload atomics are always used in this path */ |
| if (flags & IOMAP_ATOMIC) |
| iomap_flags |= IOMAP_F_ATOMIC_BIO; |
| |
| /* |
| * COW writes may allocate delalloc space or convert unwritten COW |
| * extents, so we need to make sure to take the lock exclusively here. |
| */ |
| if (xfs_is_cow_inode(ip)) |
| lockmode = XFS_ILOCK_EXCL; |
| else |
| lockmode = XFS_ILOCK_SHARED; |
| |
| relock: |
| error = xfs_ilock_for_iomap(ip, flags, &lockmode); |
| if (error) |
| return error; |
| |
| /* |
| * The reflink iflag could have changed since the earlier unlocked |
| * check, check if it again and relock if needed. |
| */ |
| if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) { |
| xfs_iunlock(ip, lockmode); |
| lockmode = XFS_ILOCK_EXCL; |
| goto relock; |
| } |
| |
| error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, |
| &nimaps, 0); |
| if (error) |
| goto out_unlock; |
| |
| if (imap_needs_cow(ip, flags, &imap, nimaps)) { |
| error = -EAGAIN; |
| if (flags & IOMAP_NOWAIT) |
| goto out_unlock; |
| |
| /* may drop and re-acquire the ilock */ |
| error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared, |
| &lockmode, |
| (flags & IOMAP_DIRECT) || IS_DAX(inode)); |
| if (error) |
| goto out_unlock; |
| if (shared) { |
| if ((flags & IOMAP_ATOMIC) && |
| !xfs_bmap_hw_atomic_write_possible(ip, &cmap, |
| offset_fsb, end_fsb)) { |
| error = -ENOPROTOOPT; |
| goto out_unlock; |
| } |
| goto out_found_cow; |
| } |
| end_fsb = imap.br_startoff + imap.br_blockcount; |
| length = XFS_FSB_TO_B(mp, end_fsb) - offset; |
| } |
| |
| needs_alloc = imap_needs_alloc(inode, flags, &imap, nimaps); |
| |
| if (flags & IOMAP_ATOMIC) { |
| error = -ENOPROTOOPT; |
| /* |
| * If we allocate less than what is required for the write |
| * then we may end up with multiple extents, which means that |
| * REQ_ATOMIC-based cannot be used, so avoid this possibility. |
| */ |
| if (needs_alloc && orig_end_fsb - offset_fsb > 1) |
| goto out_unlock; |
| |
| if (!xfs_bmap_hw_atomic_write_possible(ip, &imap, offset_fsb, |
| orig_end_fsb)) |
| goto out_unlock; |
| } |
| |
| if (needs_alloc) |
| goto allocate_blocks; |
| |
| /* |
| * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with |
| * a single map so that we avoid partial IO failures due to the rest of |
| * the I/O range not covered by this map triggering an EAGAIN condition |
| * when it is subsequently mapped and aborting the I/O. |
| */ |
| if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) { |
| error = -EAGAIN; |
| if (!imap_spans_range(&imap, offset_fsb, end_fsb)) |
| goto out_unlock; |
| } |
| |
| /* |
| * For overwrite only I/O, we cannot convert unwritten extents without |
| * requiring sub-block zeroing. This can only be done under an |
| * exclusive IOLOCK, hence return -EAGAIN if this is not a written |
| * extent to tell the caller to try again. |
| */ |
| if (flags & IOMAP_OVERWRITE_ONLY) { |
| error = -EAGAIN; |
| if (imap.br_state != XFS_EXT_NORM && |
| ((offset | length) & mp->m_blockmask)) |
| goto out_unlock; |
| } |
| |
| seq = xfs_iomap_inode_sequence(ip, iomap_flags); |
| xfs_iunlock(ip, lockmode); |
| trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); |
| return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); |
| |
| allocate_blocks: |
| error = -EAGAIN; |
| if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) |
| goto out_unlock; |
| |
| /* |
| * We cap the maximum length we map to a sane size to keep the chunks |
| * of work done where somewhat symmetric with the work writeback does. |
| * This is a completely arbitrary number pulled out of thin air as a |
| * best guess for initial testing. |
| * |
| * Note that the values needs to be less than 32-bits wide until the |
| * lower level functions are updated. |
| */ |
| length = min_t(loff_t, length, 1024 * PAGE_SIZE); |
| end_fsb = xfs_iomap_end_fsb(mp, offset, length); |
| |
| if (offset + length > XFS_ISIZE(ip)) |
| end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb); |
| else if (nimaps && imap.br_startblock == HOLESTARTBLOCK) |
| end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); |
| xfs_iunlock(ip, lockmode); |
| |
| error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb, |
| flags, &imap, &seq); |
| if (error) |
| return error; |
| |
| trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap); |
| return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, |
| iomap_flags | IOMAP_F_NEW, seq); |
| |
| out_found_cow: |
| length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); |
| trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); |
| if (imap.br_startblock != HOLESTARTBLOCK) { |
| seq = xfs_iomap_inode_sequence(ip, 0); |
| error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq); |
| if (error) |
| goto out_unlock; |
| } |
| seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); |
| xfs_iunlock(ip, lockmode); |
| return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); |
| |
| out_unlock: |
| if (lockmode) |
| xfs_iunlock(ip, lockmode); |
| return error; |
| } |
| |
| const struct iomap_ops xfs_direct_write_iomap_ops = { |
| .iomap_begin = xfs_direct_write_iomap_begin, |
| }; |
| |
| #ifdef CONFIG_XFS_RT |
| /* |
| * This is really simple. The space has already been reserved before taking the |
| * IOLOCK, the actual block allocation is done just before submitting the bio |
| * and only recorded in the extent map on I/O completion. |
| */ |
| static int |
| xfs_zoned_direct_write_iomap_begin( |
| struct inode *inode, |
| loff_t offset, |
| loff_t length, |
| unsigned flags, |
| struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| int error; |
| |
| ASSERT(!(flags & IOMAP_OVERWRITE_ONLY)); |
| |
| /* |
| * Needs to be pushed down into the allocator so that only writes into |
| * a single zone can be supported. |
| */ |
| if (flags & IOMAP_NOWAIT) |
| return -EAGAIN; |
| |
| /* |
| * Ensure the extent list is in memory in so that we don't have to do |
| * read it from the I/O completion handler. |
| */ |
| if (xfs_need_iread_extents(&ip->i_df)) { |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| if (error) |
| return error; |
| } |
| |
| iomap->type = IOMAP_MAPPED; |
| iomap->flags = IOMAP_F_DIRTY; |
| iomap->bdev = ip->i_mount->m_rtdev_targp->bt_bdev; |
| iomap->offset = offset; |
| iomap->length = length; |
| iomap->flags = IOMAP_F_ANON_WRITE; |
| return 0; |
| } |
| |
| const struct iomap_ops xfs_zoned_direct_write_iomap_ops = { |
| .iomap_begin = xfs_zoned_direct_write_iomap_begin, |
| }; |
| #endif /* CONFIG_XFS_RT */ |
| |
| static int |
| xfs_atomic_write_cow_iomap_begin( |
| struct inode *inode, |
| loff_t offset, |
| loff_t length, |
| unsigned flags, |
| struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| const xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); |
| xfs_filblks_t count_fsb = end_fsb - offset_fsb; |
| int nmaps = 1; |
| xfs_filblks_t resaligned; |
| struct xfs_bmbt_irec cmap; |
| struct xfs_iext_cursor icur; |
| struct xfs_trans *tp; |
| unsigned int dblocks = 0, rblocks = 0; |
| int error; |
| u64 seq; |
| |
| ASSERT(flags & IOMAP_WRITE); |
| ASSERT(flags & IOMAP_DIRECT); |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| if (!xfs_can_sw_atomic_write(mp)) { |
| ASSERT(xfs_can_sw_atomic_write(mp)); |
| return -EINVAL; |
| } |
| |
| /* blocks are always allocated in this path */ |
| if (flags & IOMAP_NOWAIT) |
| return -EAGAIN; |
| |
| trace_xfs_iomap_atomic_write_cow(ip, offset, length); |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| |
| if (!ip->i_cowfp) { |
| ASSERT(!xfs_is_reflink_inode(ip)); |
| xfs_ifork_init_cow(ip); |
| } |
| |
| if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) |
| cmap.br_startoff = end_fsb; |
| if (cmap.br_startoff <= offset_fsb) { |
| xfs_trim_extent(&cmap, offset_fsb, count_fsb); |
| goto found; |
| } |
| |
| end_fsb = cmap.br_startoff; |
| count_fsb = end_fsb - offset_fsb; |
| |
| resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb, |
| xfs_get_cowextsz_hint(ip)); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| |
| if (XFS_IS_REALTIME_INODE(ip)) { |
| dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); |
| rblocks = resaligned; |
| } else { |
| dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); |
| rblocks = 0; |
| } |
| |
| error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, |
| rblocks, false, &tp); |
| if (error) |
| return error; |
| |
| /* extent layout could have changed since the unlock, so check again */ |
| if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) |
| cmap.br_startoff = end_fsb; |
| if (cmap.br_startoff <= offset_fsb) { |
| xfs_trim_extent(&cmap, offset_fsb, count_fsb); |
| xfs_trans_cancel(tp); |
| goto found; |
| } |
| |
| /* |
| * Allocate the entire reservation as unwritten blocks. |
| * |
| * Use XFS_BMAPI_EXTSZALIGN to hint at aligning new extents according to |
| * extszhint, such that there will be a greater chance that future |
| * atomic writes to that same range will be aligned (and don't require |
| * this COW-based method). |
| */ |
| error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, |
| XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC | |
| XFS_BMAPI_EXTSZALIGN, 0, &cmap, &nmaps); |
| if (error) { |
| xfs_trans_cancel(tp); |
| goto out_unlock; |
| } |
| |
| xfs_inode_set_cowblocks_tag(ip); |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto out_unlock; |
| |
| found: |
| if (cmap.br_state != XFS_EXT_NORM) { |
| error = xfs_reflink_convert_cow_locked(ip, offset_fsb, |
| count_fsb); |
| if (error) |
| goto out_unlock; |
| cmap.br_state = XFS_EXT_NORM; |
| } |
| |
| length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount); |
| trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap); |
| seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq); |
| |
| out_unlock: |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return error; |
| } |
| |
| const struct iomap_ops xfs_atomic_write_cow_iomap_ops = { |
| .iomap_begin = xfs_atomic_write_cow_iomap_begin, |
| }; |
| |
| static int |
| xfs_dax_write_iomap_end( |
| struct inode *inode, |
| loff_t pos, |
| loff_t length, |
| ssize_t written, |
| unsigned flags, |
| struct iomap *iomap) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| |
| if (!xfs_is_cow_inode(ip)) |
| return 0; |
| |
| if (!written) |
| return xfs_reflink_cancel_cow_range(ip, pos, length, true); |
| |
| return xfs_reflink_end_cow(ip, pos, written); |
| } |
| |
| const struct iomap_ops xfs_dax_write_iomap_ops = { |
| .iomap_begin = xfs_direct_write_iomap_begin, |
| .iomap_end = xfs_dax_write_iomap_end, |
| }; |
| |
| /* |
| * Convert a hole to a delayed allocation. |
| */ |
| static void |
| xfs_bmap_add_extent_hole_delay( |
| struct xfs_inode *ip, /* incore inode pointer */ |
| int whichfork, |
| struct xfs_iext_cursor *icur, |
| struct xfs_bmbt_irec *new) /* new data to add to file extents */ |
| { |
| struct xfs_ifork *ifp; /* inode fork pointer */ |
| xfs_bmbt_irec_t left; /* left neighbor extent entry */ |
| xfs_filblks_t newlen=0; /* new indirect size */ |
| xfs_filblks_t oldlen=0; /* old indirect size */ |
| xfs_bmbt_irec_t right; /* right neighbor extent entry */ |
| uint32_t state = xfs_bmap_fork_to_state(whichfork); |
| xfs_filblks_t temp; /* temp for indirect calculations */ |
| |
| ifp = xfs_ifork_ptr(ip, whichfork); |
| ASSERT(isnullstartblock(new->br_startblock)); |
| |
| /* |
| * Check and set flags if this segment has a left neighbor |
| */ |
| if (xfs_iext_peek_prev_extent(ifp, icur, &left)) { |
| state |= BMAP_LEFT_VALID; |
| if (isnullstartblock(left.br_startblock)) |
| state |= BMAP_LEFT_DELAY; |
| } |
| |
| /* |
| * Check and set flags if the current (right) segment exists. |
| * If it doesn't exist, we're converting the hole at end-of-file. |
| */ |
| if (xfs_iext_get_extent(ifp, icur, &right)) { |
| state |= BMAP_RIGHT_VALID; |
| if (isnullstartblock(right.br_startblock)) |
| state |= BMAP_RIGHT_DELAY; |
| } |
| |
| /* |
| * Set contiguity flags on the left and right neighbors. |
| * Don't let extents get too large, even if the pieces are contiguous. |
| */ |
| if ((state & BMAP_LEFT_VALID) && (state & BMAP_LEFT_DELAY) && |
| left.br_startoff + left.br_blockcount == new->br_startoff && |
| left.br_blockcount + new->br_blockcount <= XFS_MAX_BMBT_EXTLEN) |
| state |= BMAP_LEFT_CONTIG; |
| |
| if ((state & BMAP_RIGHT_VALID) && (state & BMAP_RIGHT_DELAY) && |
| new->br_startoff + new->br_blockcount == right.br_startoff && |
| new->br_blockcount + right.br_blockcount <= XFS_MAX_BMBT_EXTLEN && |
| (!(state & BMAP_LEFT_CONTIG) || |
| (left.br_blockcount + new->br_blockcount + |
| right.br_blockcount <= XFS_MAX_BMBT_EXTLEN))) |
| state |= BMAP_RIGHT_CONTIG; |
| |
| /* |
| * Switch out based on the contiguity flags. |
| */ |
| switch (state & (BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG)) { |
| case BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG: |
| /* |
| * New allocation is contiguous with delayed allocations |
| * on the left and on the right. |
| * Merge all three into a single extent record. |
| */ |
| temp = left.br_blockcount + new->br_blockcount + |
| right.br_blockcount; |
| |
| oldlen = startblockval(left.br_startblock) + |
| startblockval(new->br_startblock) + |
| startblockval(right.br_startblock); |
| newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp), |
| oldlen); |
| left.br_startblock = nullstartblock(newlen); |
| left.br_blockcount = temp; |
| |
| xfs_iext_remove(ip, icur, state); |
| xfs_iext_prev(ifp, icur); |
| xfs_iext_update_extent(ip, state, icur, &left); |
| break; |
| |
| case BMAP_LEFT_CONTIG: |
| /* |
| * New allocation is contiguous with a delayed allocation |
| * on the left. |
| * Merge the new allocation with the left neighbor. |
| */ |
| temp = left.br_blockcount + new->br_blockcount; |
| |
| oldlen = startblockval(left.br_startblock) + |
| startblockval(new->br_startblock); |
| newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp), |
| oldlen); |
| left.br_blockcount = temp; |
| left.br_startblock = nullstartblock(newlen); |
| |
| xfs_iext_prev(ifp, icur); |
| xfs_iext_update_extent(ip, state, icur, &left); |
| break; |
| |
| case BMAP_RIGHT_CONTIG: |
| /* |
| * New allocation is contiguous with a delayed allocation |
| * on the right. |
| * Merge the new allocation with the right neighbor. |
| */ |
| temp = new->br_blockcount + right.br_blockcount; |
| oldlen = startblockval(new->br_startblock) + |
| startblockval(right.br_startblock); |
| newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp), |
| oldlen); |
| right.br_startoff = new->br_startoff; |
| right.br_startblock = nullstartblock(newlen); |
| right.br_blockcount = temp; |
| xfs_iext_update_extent(ip, state, icur, &right); |
| break; |
| |
| case 0: |
| /* |
| * New allocation is not contiguous with another |
| * delayed allocation. |
| * Insert a new entry. |
| */ |
| oldlen = newlen = 0; |
| xfs_iext_insert(ip, icur, new, state); |
| break; |
| } |
| if (oldlen != newlen) { |
| ASSERT(oldlen > newlen); |
| xfs_add_fdblocks(ip->i_mount, oldlen - newlen); |
| |
| /* |
| * Nothing to do for disk quota accounting here. |
| */ |
| xfs_mod_delalloc(ip, 0, (int64_t)newlen - oldlen); |
| } |
| } |
| |
| /* |
| * Add a delayed allocation extent to an inode. Blocks are reserved from the |
| * global pool and the extent inserted into the inode in-core extent tree. |
| * |
| * On entry, got refers to the first extent beyond the offset of the extent to |
| * allocate or eof is specified if no such extent exists. On return, got refers |
| * to the extent record that was inserted to the inode fork. |
| * |
| * Note that the allocated extent may have been merged with contiguous extents |
| * during insertion into the inode fork. Thus, got does not reflect the current |
| * state of the inode fork on return. If necessary, the caller can use lastx to |
| * look up the updated record in the inode fork. |
| */ |
| static int |
| xfs_bmapi_reserve_delalloc( |
| struct xfs_inode *ip, |
| int whichfork, |
| xfs_fileoff_t off, |
| xfs_filblks_t len, |
| xfs_filblks_t prealloc, |
| struct xfs_bmbt_irec *got, |
| struct xfs_iext_cursor *icur, |
| int eof) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); |
| xfs_extlen_t alen; |
| xfs_extlen_t indlen; |
| uint64_t fdblocks; |
| int error; |
| xfs_fileoff_t aoff; |
| bool use_cowextszhint = |
| whichfork == XFS_COW_FORK && !prealloc; |
| |
| retry: |
| /* |
| * Cap the alloc length. Keep track of prealloc so we know whether to |
| * tag the inode before we return. |
| */ |
| aoff = off; |
| alen = XFS_FILBLKS_MIN(len + prealloc, XFS_MAX_BMBT_EXTLEN); |
| if (!eof) |
| alen = XFS_FILBLKS_MIN(alen, got->br_startoff - aoff); |
| if (prealloc && alen >= len) |
| prealloc = alen - len; |
| |
| /* |
| * If we're targetting the COW fork but aren't creating a speculative |
| * posteof preallocation, try to expand the reservation to align with |
| * the COW extent size hint if there's sufficient free space. |
| * |
| * Unlike the data fork, the CoW cancellation functions will free all |
| * the reservations at inactivation, so we don't require that every |
| * delalloc reservation have a dirty pagecache. |
| */ |
| if (use_cowextszhint) { |
| struct xfs_bmbt_irec prev; |
| xfs_extlen_t extsz = xfs_get_cowextsz_hint(ip); |
| |
| if (!xfs_iext_peek_prev_extent(ifp, icur, &prev)) |
| prev.br_startoff = NULLFILEOFF; |
| |
| error = xfs_bmap_extsize_align(mp, got, &prev, extsz, 0, eof, |
| 1, 0, &aoff, &alen); |
| ASSERT(!error); |
| } |
| |
| /* |
| * Make a transaction-less quota reservation for delayed allocation |
| * blocks. This number gets adjusted later. We return if we haven't |
| * allocated blocks already inside this loop. |
| */ |
| error = xfs_quota_reserve_blkres(ip, alen); |
| if (error) |
| goto out; |
| |
| /* |
| * Split changing sb for alen and indlen since they could be coming |
| * from different places. |
| */ |
| indlen = (xfs_extlen_t)xfs_bmap_worst_indlen(ip, alen); |
| ASSERT(indlen > 0); |
| |
| fdblocks = indlen; |
| if (XFS_IS_REALTIME_INODE(ip)) { |
| ASSERT(!xfs_is_zoned_inode(ip)); |
| error = xfs_dec_frextents(mp, xfs_blen_to_rtbxlen(mp, alen)); |
| if (error) |
| goto out_unreserve_quota; |
| } else { |
| fdblocks += alen; |
| } |
| |
| error = xfs_dec_fdblocks(mp, fdblocks, false); |
| if (error) |
| goto out_unreserve_frextents; |
| |
| ip->i_delayed_blks += alen; |
| xfs_mod_delalloc(ip, alen, indlen); |
| |
| got->br_startoff = aoff; |
| got->br_startblock = nullstartblock(indlen); |
| got->br_blockcount = alen; |
| got->br_state = XFS_EXT_NORM; |
| |
| xfs_bmap_add_extent_hole_delay(ip, whichfork, icur, got); |
| |
| /* |
| * Tag the inode if blocks were preallocated. Note that COW fork |
| * preallocation can occur at the start or end of the extent, even when |
| * prealloc == 0, so we must also check the aligned offset and length. |
| */ |
| if (whichfork == XFS_DATA_FORK && prealloc) |
| xfs_inode_set_eofblocks_tag(ip); |
| if (whichfork == XFS_COW_FORK && (prealloc || aoff < off || alen > len)) |
| xfs_inode_set_cowblocks_tag(ip); |
| |
| return 0; |
| |
| out_unreserve_frextents: |
| if (XFS_IS_REALTIME_INODE(ip)) |
| xfs_add_frextents(mp, xfs_blen_to_rtbxlen(mp, alen)); |
| out_unreserve_quota: |
| if (XFS_IS_QUOTA_ON(mp)) |
| xfs_quota_unreserve_blkres(ip, alen); |
| out: |
| if (error == -ENOSPC || error == -EDQUOT) { |
| trace_xfs_delalloc_enospc(ip, off, len); |
| |
| if (prealloc || use_cowextszhint) { |
| /* retry without any preallocation */ |
| use_cowextszhint = false; |
| prealloc = 0; |
| goto retry; |
| } |
| } |
| return error; |
| } |
| |
| static int |
| xfs_zoned_buffered_write_iomap_begin( |
| struct inode *inode, |
| loff_t offset, |
| loff_t count, |
| unsigned flags, |
| struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct iomap_iter *iter = |
| container_of(iomap, struct iomap_iter, iomap); |
| struct xfs_zone_alloc_ctx *ac = iter->private; |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); |
| u16 iomap_flags = IOMAP_F_SHARED; |
| unsigned int lockmode = XFS_ILOCK_EXCL; |
| xfs_filblks_t count_fsb; |
| xfs_extlen_t indlen; |
| struct xfs_bmbt_irec got; |
| struct xfs_iext_cursor icur; |
| int error = 0; |
| |
| ASSERT(!xfs_get_extsz_hint(ip)); |
| ASSERT(!(flags & IOMAP_UNSHARE)); |
| ASSERT(ac); |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| error = xfs_qm_dqattach(ip); |
| if (error) |
| return error; |
| |
| error = xfs_ilock_for_iomap(ip, flags, &lockmode); |
| if (error) |
| return error; |
| |
| if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || |
| XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { |
| xfs_bmap_mark_sick(ip, XFS_DATA_FORK); |
| error = -EFSCORRUPTED; |
| goto out_unlock; |
| } |
| |
| XFS_STATS_INC(mp, xs_blk_mapw); |
| |
| error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); |
| if (error) |
| goto out_unlock; |
| |
| /* |
| * For zeroing operations check if there is any data to zero first. |
| * |
| * For regular writes we always need to allocate new blocks, but need to |
| * provide the source mapping when the range is unaligned to support |
| * read-modify-write of the whole block in the page cache. |
| * |
| * In either case we need to limit the reported range to the boundaries |
| * of the source map in the data fork. |
| */ |
| if (!IS_ALIGNED(offset, mp->m_sb.sb_blocksize) || |
| !IS_ALIGNED(offset + count, mp->m_sb.sb_blocksize) || |
| (flags & IOMAP_ZERO)) { |
| struct xfs_bmbt_irec smap; |
| struct xfs_iext_cursor scur; |
| |
| if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &scur, |
| &smap)) |
| smap.br_startoff = end_fsb; /* fake hole until EOF */ |
| if (smap.br_startoff > offset_fsb) { |
| /* |
| * We never need to allocate blocks for zeroing a hole. |
| */ |
| if (flags & IOMAP_ZERO) { |
| xfs_hole_to_iomap(ip, iomap, offset_fsb, |
| smap.br_startoff); |
| goto out_unlock; |
| } |
| end_fsb = min(end_fsb, smap.br_startoff); |
| } else { |
| end_fsb = min(end_fsb, |
| smap.br_startoff + smap.br_blockcount); |
| xfs_trim_extent(&smap, offset_fsb, |
| end_fsb - offset_fsb); |
| error = xfs_bmbt_to_iomap(ip, srcmap, &smap, flags, 0, |
| xfs_iomap_inode_sequence(ip, 0)); |
| if (error) |
| goto out_unlock; |
| } |
| } |
| |
| if (!ip->i_cowfp) |
| xfs_ifork_init_cow(ip); |
| |
| if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) |
| got.br_startoff = end_fsb; |
| if (got.br_startoff <= offset_fsb) { |
| trace_xfs_reflink_cow_found(ip, &got); |
| goto done; |
| } |
| |
| /* |
| * Cap the maximum length to keep the chunks of work done here somewhat |
| * symmetric with the work writeback does. |
| */ |
| end_fsb = min(end_fsb, got.br_startoff); |
| count_fsb = min3(end_fsb - offset_fsb, XFS_MAX_BMBT_EXTLEN, |
| XFS_B_TO_FSB(mp, 1024 * PAGE_SIZE)); |
| |
| /* |
| * The block reservation is supposed to cover all blocks that the |
| * operation could possible write, but there is a nasty corner case |
| * where blocks could be stolen from underneath us: |
| * |
| * 1) while this thread iterates over a larger buffered write, |
| * 2) another thread is causing a write fault that calls into |
| * ->page_mkwrite in range this thread writes to, using up the |
| * delalloc reservation created by a previous call to this function. |
| * 3) another thread does direct I/O on the range that the write fault |
| * happened on, which causes writeback of the dirty data. |
| * 4) this then set the stale flag, which cuts the current iomap |
| * iteration short, causing the new call to ->iomap_begin that gets |
| * us here again, but now without a sufficient reservation. |
| * |
| * This is a very unusual I/O pattern, and nothing but generic/095 is |
| * known to hit it. There's not really much we can do here, so turn this |
| * into a short write. |
| */ |
| if (count_fsb > ac->reserved_blocks) { |
| xfs_warn_ratelimited(mp, |
| "Short write on ino 0x%llx comm %.20s due to three-way race with write fault and direct I/O", |
| ip->i_ino, current->comm); |
| count_fsb = ac->reserved_blocks; |
| if (!count_fsb) { |
| error = -EIO; |
| goto out_unlock; |
| } |
| } |
| |
| error = xfs_quota_reserve_blkres(ip, count_fsb); |
| if (error) |
| goto out_unlock; |
| |
| indlen = xfs_bmap_worst_indlen(ip, count_fsb); |
| error = xfs_dec_fdblocks(mp, indlen, false); |
| if (error) |
| goto out_unlock; |
| ip->i_delayed_blks += count_fsb; |
| xfs_mod_delalloc(ip, count_fsb, indlen); |
| |
| got.br_startoff = offset_fsb; |
| got.br_startblock = nullstartblock(indlen); |
| got.br_blockcount = count_fsb; |
| got.br_state = XFS_EXT_NORM; |
| xfs_bmap_add_extent_hole_delay(ip, XFS_COW_FORK, &icur, &got); |
| ac->reserved_blocks -= count_fsb; |
| iomap_flags |= IOMAP_F_NEW; |
| |
| trace_xfs_iomap_alloc(ip, offset, XFS_FSB_TO_B(mp, count_fsb), |
| XFS_COW_FORK, &got); |
| done: |
| error = xfs_bmbt_to_iomap(ip, iomap, &got, flags, iomap_flags, |
| xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED)); |
| out_unlock: |
| xfs_iunlock(ip, lockmode); |
| return error; |
| } |
| |
| static int |
| xfs_buffered_write_iomap_begin( |
| struct inode *inode, |
| loff_t offset, |
| loff_t count, |
| unsigned flags, |
| struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count); |
| struct xfs_bmbt_irec imap, cmap; |
| struct xfs_iext_cursor icur, ccur; |
| xfs_fsblock_t prealloc_blocks = 0; |
| bool eof = false, cow_eof = false, shared = false; |
| int allocfork = XFS_DATA_FORK; |
| int error = 0; |
| unsigned int lockmode = XFS_ILOCK_EXCL; |
| unsigned int iomap_flags = 0; |
| u64 seq; |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| if (xfs_is_zoned_inode(ip)) |
| return xfs_zoned_buffered_write_iomap_begin(inode, offset, |
| count, flags, iomap, srcmap); |
| |
| /* we can't use delayed allocations when using extent size hints */ |
| if (xfs_get_extsz_hint(ip)) |
| return xfs_direct_write_iomap_begin(inode, offset, count, |
| flags, iomap, srcmap); |
| |
| error = xfs_qm_dqattach(ip); |
| if (error) |
| return error; |
| |
| error = xfs_ilock_for_iomap(ip, flags, &lockmode); |
| if (error) |
| return error; |
| |
| if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) || |
| XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) { |
| xfs_bmap_mark_sick(ip, XFS_DATA_FORK); |
| error = -EFSCORRUPTED; |
| goto out_unlock; |
| } |
| |
| XFS_STATS_INC(mp, xs_blk_mapw); |
| |
| error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); |
| if (error) |
| goto out_unlock; |
| |
| /* |
| * Search the data fork first to look up our source mapping. We |
| * always need the data fork map, as we have to return it to the |
| * iomap code so that the higher level write code can read data in to |
| * perform read-modify-write cycles for unaligned writes. |
| */ |
| eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap); |
| if (eof) |
| imap.br_startoff = end_fsb; /* fake hole until the end */ |
| |
| /* We never need to allocate blocks for zeroing or unsharing a hole. */ |
| if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) && |
| imap.br_startoff > offset_fsb) { |
| xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff); |
| goto out_unlock; |
| } |
| |
| /* |
| * For zeroing, trim a delalloc extent that extends beyond the EOF |
| * block. If it starts beyond the EOF block, convert it to an |
| * unwritten extent. |
| */ |
| if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb && |
| isnullstartblock(imap.br_startblock)) { |
| xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); |
| |
| if (offset_fsb >= eof_fsb) |
| goto convert_delay; |
| if (end_fsb > eof_fsb) { |
| end_fsb = eof_fsb; |
| xfs_trim_extent(&imap, offset_fsb, |
| end_fsb - offset_fsb); |
| } |
| } |
| |
| /* |
| * Search the COW fork extent list even if we did not find a data fork |
| * extent. This serves two purposes: first this implements the |
| * speculative preallocation using cowextsize, so that we also unshare |
| * block adjacent to shared blocks instead of just the shared blocks |
| * themselves. Second the lookup in the extent list is generally faster |
| * than going out to the shared extent tree. |
| */ |
| if (xfs_is_cow_inode(ip)) { |
| if (!ip->i_cowfp) { |
| ASSERT(!xfs_is_reflink_inode(ip)); |
| xfs_ifork_init_cow(ip); |
| } |
| cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, |
| &ccur, &cmap); |
| if (!cow_eof && cmap.br_startoff <= offset_fsb) { |
| trace_xfs_reflink_cow_found(ip, &cmap); |
| goto found_cow; |
| } |
| } |
| |
| if (imap.br_startoff <= offset_fsb) { |
| /* |
| * For reflink files we may need a delalloc reservation when |
| * overwriting shared extents. This includes zeroing of |
| * existing extents that contain data. |
| */ |
| if (!xfs_is_cow_inode(ip) || |
| ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) { |
| trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, |
| &imap); |
| goto found_imap; |
| } |
| |
| xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); |
| |
| /* Trim the mapping to the nearest shared extent boundary. */ |
| error = xfs_bmap_trim_cow(ip, &imap, &shared); |
| if (error) |
| goto out_unlock; |
| |
| /* Not shared? Just report the (potentially capped) extent. */ |
| if (!shared) { |
| trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK, |
| &imap); |
| goto found_imap; |
| } |
| |
| /* |
| * Fork all the shared blocks from our write offset until the |
| * end of the extent. |
| */ |
| allocfork = XFS_COW_FORK; |
| end_fsb = imap.br_startoff + imap.br_blockcount; |
| } else { |
| /* |
| * We cap the maximum length we map here to MAX_WRITEBACK_PAGES |
| * pages to keep the chunks of work done where somewhat |
| * symmetric with the work writeback does. This is a completely |
| * arbitrary number pulled out of thin air. |
| * |
| * Note that the values needs to be less than 32-bits wide until |
| * the lower level functions are updated. |
| */ |
| count = min_t(loff_t, count, 1024 * PAGE_SIZE); |
| end_fsb = xfs_iomap_end_fsb(mp, offset, count); |
| |
| if (xfs_is_always_cow_inode(ip)) |
| allocfork = XFS_COW_FORK; |
| } |
| |
| if (eof && offset + count > XFS_ISIZE(ip)) { |
| /* |
| * Determine the initial size of the preallocation. |
| * We clean up any extra preallocation when the file is closed. |
| */ |
| if (xfs_has_allocsize(mp)) |
| prealloc_blocks = mp->m_allocsize_blocks; |
| else if (allocfork == XFS_DATA_FORK) |
| prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, |
| offset, count, &icur); |
| else |
| prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork, |
| offset, count, &ccur); |
| if (prealloc_blocks) { |
| xfs_extlen_t align; |
| xfs_off_t end_offset; |
| xfs_fileoff_t p_end_fsb; |
| |
| end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1); |
| p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) + |
| prealloc_blocks; |
| |
| align = xfs_eof_alignment(ip); |
| if (align) |
| p_end_fsb = roundup_64(p_end_fsb, align); |
| |
| p_end_fsb = min(p_end_fsb, |
| XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes)); |
| ASSERT(p_end_fsb > offset_fsb); |
| prealloc_blocks = p_end_fsb - end_fsb; |
| } |
| } |
| |
| /* |
| * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch |
| * them out if the write happens to fail. |
| */ |
| iomap_flags |= IOMAP_F_NEW; |
| if (allocfork == XFS_COW_FORK) { |
| error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, |
| end_fsb - offset_fsb, prealloc_blocks, &cmap, |
| &ccur, cow_eof); |
| if (error) |
| goto out_unlock; |
| |
| trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap); |
| goto found_cow; |
| } |
| |
| error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb, |
| end_fsb - offset_fsb, prealloc_blocks, &imap, &icur, |
| eof); |
| if (error) |
| goto out_unlock; |
| |
| trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap); |
| found_imap: |
| seq = xfs_iomap_inode_sequence(ip, iomap_flags); |
| xfs_iunlock(ip, lockmode); |
| return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq); |
| |
| convert_delay: |
| xfs_iunlock(ip, lockmode); |
| truncate_pagecache(inode, offset); |
| error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset, |
| iomap, NULL); |
| if (error) |
| return error; |
| |
| trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap); |
| return 0; |
| |
| found_cow: |
| if (imap.br_startoff <= offset_fsb) { |
| error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, |
| xfs_iomap_inode_sequence(ip, 0)); |
| if (error) |
| goto out_unlock; |
| } else { |
| xfs_trim_extent(&cmap, offset_fsb, |
| imap.br_startoff - offset_fsb); |
| } |
| |
| iomap_flags |= IOMAP_F_SHARED; |
| seq = xfs_iomap_inode_sequence(ip, iomap_flags); |
| xfs_iunlock(ip, lockmode); |
| return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq); |
| |
| out_unlock: |
| xfs_iunlock(ip, lockmode); |
| return error; |
| } |
| |
| static void |
| xfs_buffered_write_delalloc_punch( |
| struct inode *inode, |
| loff_t offset, |
| loff_t length, |
| struct iomap *iomap) |
| { |
| struct iomap_iter *iter = |
| container_of(iomap, struct iomap_iter, iomap); |
| |
| xfs_bmap_punch_delalloc_range(XFS_I(inode), |
| (iomap->flags & IOMAP_F_SHARED) ? |
| XFS_COW_FORK : XFS_DATA_FORK, |
| offset, offset + length, iter->private); |
| } |
| |
| static int |
| xfs_buffered_write_iomap_end( |
| struct inode *inode, |
| loff_t offset, |
| loff_t length, |
| ssize_t written, |
| unsigned flags, |
| struct iomap *iomap) |
| { |
| loff_t start_byte, end_byte; |
| |
| /* If we didn't reserve the blocks, we're not allowed to punch them. */ |
| if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW)) |
| return 0; |
| |
| /* |
| * iomap_page_mkwrite() will never fail in a way that requires delalloc |
| * extents that it allocated to be revoked. Hence never try to release |
| * them here. |
| */ |
| if (flags & IOMAP_FAULT) |
| return 0; |
| |
| /* Nothing to do if we've written the entire delalloc extent */ |
| start_byte = iomap_last_written_block(inode, offset, written); |
| end_byte = round_up(offset + length, i_blocksize(inode)); |
| if (start_byte >= end_byte) |
| return 0; |
| |
| /* For zeroing operations the callers already hold invalidate_lock. */ |
| if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) { |
| rwsem_assert_held_write(&inode->i_mapping->invalidate_lock); |
| iomap_write_delalloc_release(inode, start_byte, end_byte, flags, |
| iomap, xfs_buffered_write_delalloc_punch); |
| } else { |
| filemap_invalidate_lock(inode->i_mapping); |
| iomap_write_delalloc_release(inode, start_byte, end_byte, flags, |
| iomap, xfs_buffered_write_delalloc_punch); |
| filemap_invalidate_unlock(inode->i_mapping); |
| } |
| |
| return 0; |
| } |
| |
| const struct iomap_ops xfs_buffered_write_iomap_ops = { |
| .iomap_begin = xfs_buffered_write_iomap_begin, |
| .iomap_end = xfs_buffered_write_iomap_end, |
| }; |
| |
| static int |
| xfs_read_iomap_begin( |
| struct inode *inode, |
| loff_t offset, |
| loff_t length, |
| unsigned flags, |
| struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_bmbt_irec imap; |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length); |
| int nimaps = 1, error = 0; |
| bool shared = false; |
| unsigned int lockmode = XFS_ILOCK_SHARED; |
| u64 seq; |
| |
| ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO))); |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| error = xfs_ilock_for_iomap(ip, flags, &lockmode); |
| if (error) |
| return error; |
| error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, |
| &nimaps, 0); |
| if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode))) |
| error = xfs_reflink_trim_around_shared(ip, &imap, &shared); |
| seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0); |
| xfs_iunlock(ip, lockmode); |
| |
| if (error) |
| return error; |
| trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap); |
| return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, |
| shared ? IOMAP_F_SHARED : 0, seq); |
| } |
| |
| const struct iomap_ops xfs_read_iomap_ops = { |
| .iomap_begin = xfs_read_iomap_begin, |
| }; |
| |
| static int |
| xfs_seek_iomap_begin( |
| struct inode *inode, |
| loff_t offset, |
| loff_t length, |
| unsigned flags, |
| struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); |
| xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF; |
| struct xfs_iext_cursor icur; |
| struct xfs_bmbt_irec imap, cmap; |
| int error = 0; |
| unsigned lockmode; |
| u64 seq; |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| lockmode = xfs_ilock_data_map_shared(ip); |
| error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK); |
| if (error) |
| goto out_unlock; |
| |
| if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) { |
| /* |
| * If we found a data extent we are done. |
| */ |
| if (imap.br_startoff <= offset_fsb) |
| goto done; |
| data_fsb = imap.br_startoff; |
| } else { |
| /* |
| * Fake a hole until the end of the file. |
| */ |
| data_fsb = xfs_iomap_end_fsb(mp, offset, length); |
| } |
| |
| /* |
| * If a COW fork extent covers the hole, report it - capped to the next |
| * data fork extent: |
| */ |
| if (xfs_inode_has_cow_data(ip) && |
| xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap)) |
| cow_fsb = cmap.br_startoff; |
| if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { |
| if (data_fsb < cow_fsb + cmap.br_blockcount) |
| end_fsb = min(end_fsb, data_fsb); |
| xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb); |
| seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED); |
| error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, |
| IOMAP_F_SHARED, seq); |
| /* |
| * This is a COW extent, so we must probe the page cache |
| * because there could be dirty page cache being backed |
| * by this extent. |
| */ |
| iomap->type = IOMAP_UNWRITTEN; |
| goto out_unlock; |
| } |
| |
| /* |
| * Else report a hole, capped to the next found data or COW extent. |
| */ |
| if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb) |
| imap.br_blockcount = cow_fsb - offset_fsb; |
| else |
| imap.br_blockcount = data_fsb - offset_fsb; |
| imap.br_startoff = offset_fsb; |
| imap.br_startblock = HOLESTARTBLOCK; |
| imap.br_state = XFS_EXT_NORM; |
| done: |
| seq = xfs_iomap_inode_sequence(ip, 0); |
| xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb); |
| error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq); |
| out_unlock: |
| xfs_iunlock(ip, lockmode); |
| return error; |
| } |
| |
| const struct iomap_ops xfs_seek_iomap_ops = { |
| .iomap_begin = xfs_seek_iomap_begin, |
| }; |
| |
| static int |
| xfs_xattr_iomap_begin( |
| struct inode *inode, |
| loff_t offset, |
| loff_t length, |
| unsigned flags, |
| struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length); |
| struct xfs_bmbt_irec imap; |
| int nimaps = 1, error = 0; |
| unsigned lockmode; |
| int seq; |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| lockmode = xfs_ilock_attr_map_shared(ip); |
| |
| /* if there are no attribute fork or extents, return ENOENT */ |
| if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) { |
| error = -ENOENT; |
| goto out_unlock; |
| } |
| |
| ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL); |
| error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, |
| &nimaps, XFS_BMAPI_ATTRFORK); |
| out_unlock: |
| |
| seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR); |
| xfs_iunlock(ip, lockmode); |
| |
| if (error) |
| return error; |
| ASSERT(nimaps); |
| return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq); |
| } |
| |
| const struct iomap_ops xfs_xattr_iomap_ops = { |
| .iomap_begin = xfs_xattr_iomap_begin, |
| }; |
| |
| int |
| xfs_zero_range( |
| struct xfs_inode *ip, |
| loff_t pos, |
| loff_t len, |
| struct xfs_zone_alloc_ctx *ac, |
| bool *did_zero) |
| { |
| struct inode *inode = VFS_I(ip); |
| |
| xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); |
| |
| if (IS_DAX(inode)) |
| return dax_zero_range(inode, pos, len, did_zero, |
| &xfs_dax_write_iomap_ops); |
| return iomap_zero_range(inode, pos, len, did_zero, |
| &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops, |
| ac); |
| } |
| |
| int |
| xfs_truncate_page( |
| struct xfs_inode *ip, |
| loff_t pos, |
| struct xfs_zone_alloc_ctx *ac, |
| bool *did_zero) |
| { |
| struct inode *inode = VFS_I(ip); |
| |
| if (IS_DAX(inode)) |
| return dax_truncate_page(inode, pos, did_zero, |
| &xfs_dax_write_iomap_ops); |
| return iomap_truncate_page(inode, pos, did_zero, |
| &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops, |
| ac); |
| } |