blob: c44d5db4a99f0781cd586235d1c9ace657b475d3 [file] [log] [blame]
/*---------------------------------------------------------------------------+
| fpu_entry.c |
| |
| The entry function for wm-FPU-emu |
| |
| Copyright (C) 1992,1993 |
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
| Australia. E-mail apm233m@vaxc.cc.monash.edu.au |
| |
| See the files "README" and "COPYING" for further copyright and warranty |
| information. |
| |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| Note: |
| The file contains code which accesses user memory. |
| Emulator static data may change when user memory is accessed, due to |
| other processes using the emulator while swapping is in progress. |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| math_emulate() is the sole entry point for wm-FPU-emu |
+---------------------------------------------------------------------------*/
#include <linux/config.h>
#ifdef CONFIG_MATH_EMULATION
#include <linux/signal.h>
#include <linux/segment.h>
#include "fpu_system.h"
#include "fpu_emu.h"
#include "exception.h"
#include "control_w.h"
#include "status_w.h"
#include <asm/segment.h>
#define __BAD__ Un_impl /* Not implemented */
#ifndef NO_UNDOC_CODE /* Un-documented FPU op-codes supported by default. */
/* WARNING: These codes are not documented by Intel in their 80486 manual
and may not work on FPU clones or later Intel FPUs. */
/* Changes to support the un-doc codes provided by Linus Torvalds. */
#define _d9_d8_ fstp_i /* unofficial code (19) */
#define _dc_d0_ fcom_st /* unofficial code (14) */
#define _dc_d8_ fcompst /* unofficial code (1c) */
#define _dd_c8_ fxch_i /* unofficial code (0d) */
#define _de_d0_ fcompst /* unofficial code (16) */
#define _df_c0_ ffreep /* unofficial code (07) ffree + pop */
#define _df_c8_ fxch_i /* unofficial code (0f) */
#define _df_d0_ fstp_i /* unofficial code (17) */
#define _df_d8_ fstp_i /* unofficial code (1f) */
static FUNC st_instr_table[64] = {
fadd__, fld_i_, __BAD__, __BAD__, fadd_i, ffree_, faddp_, _df_c0_,
fmul__, fxch_i, __BAD__, __BAD__, fmul_i, _dd_c8_, fmulp_, _df_c8_,
fcom_st, fp_nop, __BAD__, __BAD__, _dc_d0_, fst_i_, _de_d0_, _df_d0_,
fcompst, _d9_d8_, __BAD__, __BAD__, _dc_d8_, fstp_i, fcompp, _df_d8_,
fsub__, fp_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_,
fsubr_, fconst, fucompp, __BAD__, fsub_i, fucomp, fsubp_, __BAD__,
fdiv__, trig_a, __BAD__, __BAD__, fdivri, __BAD__, fdivrp, __BAD__,
fdivr_, trig_b, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__,
};
#else /* Support only documented FPU op-codes */
static FUNC st_instr_table[64] = {
fadd__, fld_i_, __BAD__, __BAD__, fadd_i, ffree_, faddp_, __BAD__,
fmul__, fxch_i, __BAD__, __BAD__, fmul_i, __BAD__, fmulp_, __BAD__,
fcom_st, fp_nop, __BAD__, __BAD__, __BAD__, fst_i_, __BAD__, __BAD__,
fcompst, __BAD__, __BAD__, __BAD__, __BAD__, fstp_i, fcompp, __BAD__,
fsub__, fp_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_,
fsubr_, fconst, fucompp, __BAD__, fsub_i, fucomp, fsubp_, __BAD__,
fdiv__, trig_a, __BAD__, __BAD__, fdivri, __BAD__, fdivrp, __BAD__,
fdivr_, trig_b, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__,
};
#endif NO_UNDOC_CODE
#define _NONE_ 0 /* Take no special action */
#define _REG0_ 1 /* Need to check for not empty st(0) */
#define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */
#define _REGi_ 0 /* Uses st(rm) */
#define _PUSH_ 3 /* Need to check for space to push onto stack */
#define _null_ 4 /* Function illegal or not implemented */
#define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */
#define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */
#define _REGIc 0 /* Compare st(0) and st(rm) */
#define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */
#ifndef NO_UNDOC_CODE
/* Un-documented FPU op-codes supported by default. (see above) */
static unsigned char type_table[64] = {
_REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _REGi_,
_REGI_, _REGIn, _null_, _null_, _REGIi, _REGI_, _REGIp, _REGI_,
_REGIc, _NONE_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_,
_REGIc, _REG0_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_,
_REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,
_REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_,
_REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
_REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_
};
#else /* Support only documented FPU op-codes */
static unsigned char type_table[64] = {
_REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _null_,
_REGI_, _REGIn, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
_REGIc, _NONE_, _null_, _null_, _null_, _REG0_, _null_, _null_,
_REGIc, _null_, _null_, _null_, _null_, _REG0_, _REGIc, _null_,
_REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,
_REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_,
_REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
_REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_
};
#endif NO_UNDOC_CODE
/* Be careful when using any of these global variables...
they might change if swapping is triggered */
unsigned char FPU_rm;
char FPU_st0_tag;
FPU_REG *FPU_st0_ptr;
#ifdef PARANOID
char emulating=0;
#endif PARANOID
#define bswapw(x) __asm__("xchgb %%al,%%ah":"=a" (x):"0" ((short)x))
void math_emulate(long arg)
{
unsigned char FPU_modrm;
unsigned short code;
#ifdef PARANOID
if ( emulating )
{
printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n");
}
RE_ENTRANT_CHECK_ON
#endif PARANOID
if (!current->used_math)
{
finit();
current->used_math = 1;
}
FPU_info = (struct info *) &arg;
/* We cannot handle emulation in v86-mode */
if (FPU_EFLAGS & 0x00020000)
{
FPU_ORIG_EIP = FPU_EIP;
math_abort(FPU_info,SIGILL);
}
/* user code space? */
if (FPU_CS != USER_CS)
{
printk("math_emulate: %04x:%08x\n",FPU_CS,FPU_EIP);
panic("Math emulation needed in kernel");
}
FPU_lookahead = 1;
if (current->flags & PF_PTRACED)
FPU_lookahead = 0;
do_another_FPU_instruction:
RE_ENTRANT_CHECK_OFF
code = get_fs_word((unsigned short *) FPU_EIP);
RE_ENTRANT_CHECK_ON
if ( (code & 0xff) == 0x9b ) /* fwait */
{
if (status_word & SW_Summary)
goto do_the_FPU_interrupt;
else
{
FPU_EIP++;
goto FPU_instruction_done;
}
}
if (status_word & SW_Summary)
{
/* Ignore the error for now if the current instruction is a no-wait
control instruction */
/* The 80486 manual contradicts itself on this topic,
so I use the following list of such instructions until
I can check on a real 80486:
fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex.
*/
if ( ! ( (((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */
(((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv,
fnstsw */
((code & 0xc000) != 0xc000))) ) )
{
/* This is a guess about what a real FPU might do to this bit: */
/* status_word &= ~SW_Summary; ****/
/*
* We need to simulate the action of the kernel to FPU
* interrupts here.
* Currently, the "real FPU" part of the kernel (0.99.10)
* clears the exception flags, sets the registers to empty,
* and passes information back to the interrupted process
* via the cs selector and operand selector, so we do the same.
*/
do_the_FPU_interrupt:
cs_selector &= 0xffff0000;
cs_selector |= (status_word & ~SW_Top) | ((top&7) << SW_Top_Shift);
operand_selector = tag_word();
status_word = 0;
top = 0;
{
int r;
for (r = 0; r < 8; r++)
{
regs[r].tag = TW_Empty;
}
}
RE_ENTRANT_CHECK_OFF
send_sig(SIGFPE, current, 1);
return;
}
}
FPU_entry_eip = FPU_ORIG_EIP = FPU_EIP;
if ( (code & 0xff) == 0x66 ) /* size prefix */
{
FPU_EIP++;
RE_ENTRANT_CHECK_OFF
code = get_fs_word((unsigned short *) FPU_EIP);
RE_ENTRANT_CHECK_ON
}
FPU_EIP += 2;
FPU_modrm = code >> 8;
FPU_rm = FPU_modrm & 7;
if ( FPU_modrm < 0300 )
{
/* All of these instructions use the mod/rm byte to get a data address */
get_address(FPU_modrm);
if ( !(code & 1) )
{
unsigned short status1 = status_word;
FPU_st0_ptr = &st(0);
FPU_st0_tag = FPU_st0_ptr->tag;
/* Stack underflow has priority */
if ( NOT_EMPTY_0 )
{
switch ( (code >> 1) & 3 )
{
case 0:
reg_load_single();
break;
case 1:
reg_load_int32();
break;
case 2:
reg_load_double();
break;
case 3:
reg_load_int16();
break;
}
/* No more access to user memory, it is safe
to use static data now */
FPU_st0_ptr = &st(0);
FPU_st0_tag = FPU_st0_ptr->tag;
/* NaN operands have the next priority. */
/* We have to delay looking at st(0) until after
loading the data, because that data might contain an SNaN */
if ( (FPU_st0_tag == TW_NaN) ||
(FPU_loaded_data.tag == TW_NaN) )
{
/* Restore the status word; we might have loaded a
denormal. */
status_word = status1;
if ( (FPU_modrm & 0x30) == 0x10 )
{
/* fcom or fcomp */
EXCEPTION(EX_Invalid);
setcc(SW_C3 | SW_C2 | SW_C0);
if ( FPU_modrm & 0x08 )
pop(); /* fcomp, so we pop. */
}
else
real_2op_NaN(FPU_st0_ptr, &FPU_loaded_data, FPU_st0_ptr);
goto reg_mem_instr_done;
}
switch ( (FPU_modrm >> 3) & 7 )
{
case 0: /* fadd */
reg_add(FPU_st0_ptr, &FPU_loaded_data, FPU_st0_ptr,
control_word);
break;
case 1: /* fmul */
reg_mul(FPU_st0_ptr, &FPU_loaded_data, FPU_st0_ptr,
control_word);
break;
case 2: /* fcom */
compare_st_data();
break;
case 3: /* fcomp */
compare_st_data();
pop();
break;
case 4: /* fsub */
reg_sub(FPU_st0_ptr, &FPU_loaded_data, FPU_st0_ptr,
control_word);
break;
case 5: /* fsubr */
reg_sub(&FPU_loaded_data, FPU_st0_ptr, FPU_st0_ptr,
control_word);
break;
case 6: /* fdiv */
reg_div(FPU_st0_ptr, &FPU_loaded_data, FPU_st0_ptr,
control_word);
break;
case 7: /* fdivr */
if ( FPU_st0_tag == TW_Zero )
status_word = status1; /* Undo any denorm tag,
zero-divide has priority. */
reg_div(&FPU_loaded_data, FPU_st0_ptr, FPU_st0_ptr,
control_word);
break;
}
}
else
{
if ( (FPU_modrm & 0x30) == 0x10 )
{
/* The instruction is fcom or fcomp */
EXCEPTION(EX_StackUnder);
setcc(SW_C3 | SW_C2 | SW_C0);
if ( FPU_modrm & 0x08 )
pop(); /* fcomp, Empty or not, we pop. */
}
else
stack_underflow();
}
}
else
{
load_store_instr(((FPU_modrm & 0x38) | (code & 6)) >> 1);
}
reg_mem_instr_done:
data_operand_offset = (unsigned long)FPU_data_address;
}
else
{
/* None of these instructions access user memory */
unsigned char instr_index = (FPU_modrm & 0x38) | (code & 7);
FPU_st0_ptr = &st(0);
FPU_st0_tag = FPU_st0_ptr->tag;
switch ( type_table[(int) instr_index] )
{
case _NONE_: /* also _REGIc: _REGIn */
break;
case _REG0_:
if ( !NOT_EMPTY_0 )
{
stack_underflow();
goto FPU_instruction_done;
}
break;
case _REGIi:
if ( !NOT_EMPTY_0 || !NOT_EMPTY(FPU_rm) )
{
stack_underflow_i(FPU_rm);
goto FPU_instruction_done;
}
break;
case _REGIp:
if ( !NOT_EMPTY_0 || !NOT_EMPTY(FPU_rm) )
{
stack_underflow_i(FPU_rm);
pop();
goto FPU_instruction_done;
}
break;
case _REGI_:
if ( !NOT_EMPTY_0 || !NOT_EMPTY(FPU_rm) )
{
stack_underflow();
goto FPU_instruction_done;
}
break;
case _PUSH_: /* Only used by the fld st(i) instruction */
break;
case _null_:
Un_impl();
goto FPU_instruction_done;
default:
EXCEPTION(EX_INTERNAL|0x111);
goto FPU_instruction_done;
}
(*st_instr_table[(int) instr_index])();
}
FPU_instruction_done:
ip_offset = FPU_entry_eip;
bswapw(code);
*(1 + (unsigned short *)&cs_selector) = code & 0x7ff;
#ifdef DEBUG
RE_ENTRANT_CHECK_OFF
emu_printall();
RE_ENTRANT_CHECK_ON
#endif DEBUG
if (FPU_lookahead && !need_resched)
{
unsigned char next;
/* (This test should generate no machine code) */
while ( 1 )
{
RE_ENTRANT_CHECK_OFF
next = get_fs_byte((unsigned char *) FPU_EIP);
RE_ENTRANT_CHECK_ON
if ( ((next & 0xf8) == 0xd8) || (next == 0x9b) ) /* fwait */
{
goto do_another_FPU_instruction;
}
else if ( next == 0x66 ) /* size prefix */
{
RE_ENTRANT_CHECK_OFF
next = get_fs_byte((unsigned char *) (FPU_EIP+1));
RE_ENTRANT_CHECK_ON
if ( (next & 0xf8) == 0xd8 )
{
FPU_EIP++;
goto do_another_FPU_instruction;
}
}
break;
}
}
RE_ENTRANT_CHECK_OFF
}
void __math_abort(struct info * info, unsigned int signal)
{
FPU_EIP = FPU_ORIG_EIP;
send_sig(signal,current,1);
RE_ENTRANT_CHECK_OFF
__asm__("movl %0,%%esp ; ret"::"g" (((long) info)-4));
#ifdef PARANOID
printk("ERROR: wm-FPU-emu math_abort failed!\n");
#endif PARANOID
}
#else /* no math emulation */
#include <linux/signal.h>
#include <linux/sched.h>
void math_emulate(long arg)
{
printk("math-meulation not enabled and no coprocessor found.\n");
printk("killing %s.\n",current->comm);
send_sig(SIGFPE,current,1);
schedule();
}
#endif /* CONFIG_MATH_EMULATION */