blob: 6b31b29a6cfe4b7223e09277bae3d8b1c7ca8bb1 [file] [log] [blame]
/*
* linux/mm/memory.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* demand-loading started 01.12.91 - seems it is high on the list of
* things wanted, and it should be easy to implement. - Linus
*/
/*
* Ok, demand-loading was easy, shared pages a little bit tricker. Shared
* pages started 02.12.91, seems to work. - Linus.
*
* Tested sharing by executing about 30 /bin/sh: under the old kernel it
* would have taken more than the 6M I have free, but it worked well as
* far as I could see.
*
* Also corrected some "invalidate()"s - I wasn't doing enough of them.
*/
/*
* Real VM (paging to/from disk) started 18.12.91. Much more work and
* thought has to go into this. Oh, well..
* 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
* Found it. Everything seems to work now.
* 20.12.91 - Ok, making the swap-device changeable like the root.
*/
#include <asm/system.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
unsigned long high_memory = 0;
extern void sound_mem_init(void);
extern void die_if_kernel(char *,struct pt_regs *,long);
int nr_swap_pages = 0;
int nr_free_pages = 0;
unsigned long free_page_list = 0;
/*
* The secondary free_page_list is used for malloc() etc things that
* may need pages during interrupts etc. Normal get_free_page() operations
* don't touch it, so it stays as a kind of "panic-list", that can be
* accessed when all other mm tricks have failed.
*/
int nr_secondary_pages = 0;
unsigned long secondary_page_list = 0;
#define copy_page(from,to) \
__asm__("cld ; rep ; movsl": :"S" (from),"D" (to),"c" (1024):"cx","di","si")
unsigned short * mem_map = NULL;
#define CODE_SPACE(addr,p) ((addr) < (p)->end_code)
/*
* oom() prints a message (so that the user knows why the process died),
* and gives the process an untrappable SIGSEGV.
*/
void oom(struct task_struct * task)
{
printk("\nout of memory\n");
task->sigaction[SIGKILL-1].sa_handler = NULL;
task->blocked &= ~(1<<(SIGKILL-1));
send_sig(SIGKILL,task,1);
}
static void free_one_table(unsigned long * page_dir)
{
int j;
unsigned long pg_table = *page_dir;
unsigned long * page_table;
if (!pg_table)
return;
*page_dir = 0;
if (pg_table >= high_memory || !(pg_table & PAGE_PRESENT)) {
printk("Bad page table: [%08x]=%08x\n",page_dir,pg_table);
return;
}
if (mem_map[MAP_NR(pg_table)] & MAP_PAGE_RESERVED)
return;
page_table = (unsigned long *) (pg_table & 0xfffff000);
for (j = 0 ; j < 1024 ; j++,page_table++) {
unsigned long pg = *page_table;
if (!pg)
continue;
*page_table = 0;
if (pg & PAGE_PRESENT)
free_page(0xfffff000 & pg);
else
swap_free(pg);
}
free_page(0xfffff000 & pg_table);
}
/*
* This function clears all user-level page tables of a process - this
* is needed by execve(), so that old pages aren't in the way. Note that
* unlike 'free_page_tables()', this function still leaves a valid
* page-table-tree in memory: it just removes the user pages. The two
* functions are similar, but there is a fundamental difference.
*/
void clear_page_tables(struct task_struct * tsk)
{
int i;
unsigned long pg_dir;
unsigned long * page_dir;
if (!tsk)
return;
if (tsk == task[0])
panic("task[0] (swapper) doesn't support exec()\n");
pg_dir = tsk->tss.cr3;
page_dir = (unsigned long *) pg_dir;
if (!page_dir || page_dir == swapper_pg_dir) {
printk("Trying to clear kernel page-directory: not good\n");
return;
}
if (mem_map[MAP_NR(pg_dir)] > 1) {
unsigned long page;
unsigned long * new_pg;
page = get_free_page(GFP_KERNEL);
if (!page) {
oom(tsk);
return;
}
new_pg = (unsigned long *) page;
for (i = 768 ; i < 1024 ; i++)
new_pg[i] = page_dir[i];
free_page(pg_dir);
tsk->tss.cr3 = page;
return;
}
for (i = 0 ; i < 768 ; i++,page_dir++)
free_one_table(page_dir);
invalidate();
return;
}
/*
* This function frees up all page tables of a process when it exits.
*/
void free_page_tables(struct task_struct * tsk)
{
int i;
unsigned long pg_dir;
unsigned long * page_dir;
if (!tsk)
return;
if (tsk == task[0]) {
printk("task[0] (swapper) killed: unable to recover\n");
panic("Trying to free up swapper memory space");
}
pg_dir = tsk->tss.cr3;
if (!pg_dir || pg_dir == (unsigned long) swapper_pg_dir) {
printk("Trying to free kernel page-directory: not good\n");
return;
}
tsk->tss.cr3 = (unsigned long) swapper_pg_dir;
if (tsk == current)
__asm__ __volatile__("movl %0,%%cr3": :"a" (tsk->tss.cr3));
if (mem_map[MAP_NR(pg_dir)] > 1) {
free_page(pg_dir);
return;
}
page_dir = (unsigned long *) pg_dir;
for (i = 0 ; i < 1024 ; i++,page_dir++)
free_one_table(page_dir);
free_page(pg_dir);
invalidate();
}
/*
* clone_page_tables() clones the page table for a process - both
* processes will have the exact same pages in memory. There are
* probably races in the memory management with cloning, but we'll
* see..
*/
int clone_page_tables(struct task_struct * tsk)
{
unsigned long pg_dir;
pg_dir = current->tss.cr3;
mem_map[MAP_NR(pg_dir)]++;
tsk->tss.cr3 = pg_dir;
return 0;
}
/*
* copy_page_tables() just copies the whole process memory range:
* note the special handling of RESERVED (ie kernel) pages, which
* means that they are always shared by all processes.
*/
int copy_page_tables(struct task_struct * tsk)
{
int i;
unsigned long old_pg_dir, *old_page_dir;
unsigned long new_pg_dir, *new_page_dir;
new_pg_dir = get_free_page(GFP_KERNEL);
if (!new_pg_dir)
return -ENOMEM;
old_pg_dir = current->tss.cr3;
tsk->tss.cr3 = new_pg_dir;
old_page_dir = (unsigned long *) old_pg_dir;
new_page_dir = (unsigned long *) new_pg_dir;
for (i = 0 ; i < 1024 ; i++,old_page_dir++,new_page_dir++) {
int j;
unsigned long old_pg_table, *old_page_table;
unsigned long new_pg_table, *new_page_table;
old_pg_table = *old_page_dir;
if (!old_pg_table)
continue;
if (old_pg_table >= high_memory || !(old_pg_table & PAGE_PRESENT)) {
printk("copy_page_tables: bad page table: "
"probable memory corruption");
*old_page_dir = 0;
continue;
}
if (mem_map[MAP_NR(old_pg_table)] & MAP_PAGE_RESERVED) {
*new_page_dir = old_pg_table;
continue;
}
new_pg_table = get_free_page(GFP_KERNEL);
if (!new_pg_table) {
free_page_tables(tsk);
return -ENOMEM;
}
old_page_table = (unsigned long *) (0xfffff000 & old_pg_table);
new_page_table = (unsigned long *) (0xfffff000 & new_pg_table);
for (j = 0 ; j < 1024 ; j++,old_page_table++,new_page_table++) {
unsigned long pg;
pg = *old_page_table;
if (!pg)
continue;
if (!(pg & PAGE_PRESENT)) {
*new_page_table = swap_duplicate(pg);
continue;
}
if ((pg & (PAGE_RW | PAGE_COW)) == (PAGE_RW | PAGE_COW))
pg &= ~PAGE_RW;
*new_page_table = pg;
if (mem_map[MAP_NR(pg)] & MAP_PAGE_RESERVED)
continue;
*old_page_table = pg;
mem_map[MAP_NR(pg)]++;
}
*new_page_dir = new_pg_table | PAGE_TABLE;
}
invalidate();
return 0;
}
/*
* a more complete version of free_page_tables which performs with page
* granularity.
*/
int unmap_page_range(unsigned long from, unsigned long size)
{
unsigned long page, page_dir;
unsigned long *page_table, *dir;
unsigned long poff, pcnt, pc;
if (from & 0xfff) {
printk("unmap_page_range called with wrong alignment\n");
return -EINVAL;
}
size = (size + 0xfff) >> PAGE_SHIFT;
dir = (unsigned long *) (current->tss.cr3 + ((from >> 20) & 0xffc));
poff = (from >> PAGE_SHIFT) & 0x3ff;
if ((pcnt = 1024 - poff) > size)
pcnt = size;
for ( ; size > 0; ++dir, size -= pcnt,
pcnt = (size > 1024 ? 1024 : size)) {
if (!(page_dir = *dir)) {
poff = 0;
continue;
}
if (!(page_dir & PAGE_PRESENT)) {
printk("unmap_page_range: bad page directory.");
continue;
}
page_table = (unsigned long *)(0xfffff000 & page_dir);
if (poff) {
page_table += poff;
poff = 0;
}
for (pc = pcnt; pc--; page_table++) {
if ((page = *page_table) != 0) {
*page_table = 0;
if (1 & page) {
if (!(mem_map[MAP_NR(page)]
& MAP_PAGE_RESERVED))
--current->rss;
free_page(0xfffff000 & page);
} else
swap_free(page);
}
}
if (pcnt == 1024) {
free_page(0xfffff000 & page_dir);
*dir = 0;
}
}
invalidate();
return 0;
}
int zeromap_page_range(unsigned long from, unsigned long size, int mask)
{
unsigned long *page_table, *dir;
unsigned long poff, pcnt;
unsigned long page;
if (mask) {
if ((mask & 0xfffff001) != PAGE_PRESENT) {
printk("zeromap_page_range: mask = %08x\n",mask);
return -EINVAL;
}
mask |= ZERO_PAGE;
}
if (from & 0xfff) {
printk("zeromap_page_range: from = %08x\n",from);
return -EINVAL;
}
dir = (unsigned long *) (current->tss.cr3 + ((from >> 20) & 0xffc));
size = (size + 0xfff) >> PAGE_SHIFT;
poff = (from >> PAGE_SHIFT) & 0x3ff;
if ((pcnt = 1024 - poff) > size)
pcnt = size;
while (size > 0) {
if (!(PAGE_PRESENT & *dir)) {
if (!(page_table = (unsigned long *)get_free_page(GFP_KERNEL))) {
invalidate();
return -ENOMEM;
}
if (PAGE_PRESENT & *dir) {
free_page((unsigned long) page_table);
page_table = (unsigned long *)(0xfffff000 & *dir++);
} else
*dir++ = ((unsigned long) page_table) | PAGE_TABLE;
} else
page_table = (unsigned long *)(0xfffff000 & *dir++);
page_table += poff;
poff = 0;
for (size -= pcnt; pcnt-- ;) {
if ((page = *page_table) != 0) {
*page_table = 0;
if (page & PAGE_PRESENT) {
if (!(mem_map[MAP_NR(page)]
& MAP_PAGE_RESERVED))
--current->rss;
free_page(0xfffff000 & page);
} else
swap_free(page);
}
*page_table++ = mask;
}
pcnt = (size > 1024 ? 1024 : size);
}
invalidate();
return 0;
}
/*
* maps a range of physical memory into the requested pages. the old
* mappings are removed. any references to nonexistent pages results
* in null mappings (currently treated as "copy-on-access")
*/
int remap_page_range(unsigned long from, unsigned long to, unsigned long size, int mask)
{
unsigned long *page_table, *dir;
unsigned long poff, pcnt;
unsigned long page;
if (mask) {
if ((mask & 0xfffff001) != PAGE_PRESENT) {
printk("remap_page_range: mask = %08x\n",mask);
return -EINVAL;
}
}
if ((from & 0xfff) || (to & 0xfff)) {
printk("remap_page_range: from = %08x, to=%08x\n",from,to);
return -EINVAL;
}
dir = (unsigned long *) (current->tss.cr3 + ((from >> 20) & 0xffc));
size = (size + 0xfff) >> PAGE_SHIFT;
poff = (from >> PAGE_SHIFT) & 0x3ff;
if ((pcnt = 1024 - poff) > size)
pcnt = size;
while (size > 0) {
if (!(PAGE_PRESENT & *dir)) {
if (!(page_table = (unsigned long *)get_free_page(GFP_KERNEL))) {
invalidate();
return -1;
}
*dir++ = ((unsigned long) page_table) | PAGE_TABLE;
}
else
page_table = (unsigned long *)(0xfffff000 & *dir++);
if (poff) {
page_table += poff;
poff = 0;
}
for (size -= pcnt; pcnt-- ;) {
if ((page = *page_table) != 0) {
*page_table = 0;
if (PAGE_PRESENT & page) {
if (!(mem_map[MAP_NR(page)]
& MAP_PAGE_RESERVED))
--current->rss;
free_page(0xfffff000 & page);
} else
swap_free(page);
}
/*
* the first condition should return an invalid access
* when the page is referenced. current assumptions
* cause it to be treated as demand allocation in some
* cases.
*/
if (!mask)
*page_table++ = 0; /* not present */
else if (to >= high_memory)
*page_table++ = (to | mask);
else if (!mem_map[MAP_NR(to)])
*page_table++ = 0; /* not present */
else {
*page_table++ = (to | mask);
if (!(mem_map[MAP_NR(to)] & MAP_PAGE_RESERVED)) {
++current->rss;
mem_map[MAP_NR(to)]++;
}
}
to += PAGE_SIZE;
}
pcnt = (size > 1024 ? 1024 : size);
}
invalidate();
return 0;
}
/*
* This function puts a page in memory at the wanted address.
* It returns the physical address of the page gotten, 0 if
* out of memory (either when trying to access page-table or
* page.)
*/
static unsigned long put_page(struct task_struct * tsk,unsigned long page,
unsigned long address,int prot)
{
unsigned long *page_table;
if ((prot & 0xfffff001) != PAGE_PRESENT)
printk("put_page: prot = %08x\n",prot);
if (page >= high_memory) {
printk("put_page: trying to put page %p at %p\n",page,address);
return 0;
}
page_table = (unsigned long *) (tsk->tss.cr3 + ((address>>20) & 0xffc));
if ((*page_table) & PAGE_PRESENT)
page_table = (unsigned long *) (0xfffff000 & *page_table);
else {
printk("put_page: bad page directory entry\n");
oom(tsk);
*page_table = BAD_PAGETABLE | PAGE_TABLE;
return 0;
}
page_table += ((address & 0x003ff000) >> PAGE_SHIFT);
if (*page_table) {
printk("put_page: page already exists\n");
*page_table = 0;
invalidate();
}
*page_table = page | prot;
/* no need for invalidate */
return page;
}
/*
* The previous function doesn't work very well if you also want to mark
* the page dirty: exec.c wants this, as it has earlier changed the page,
* and we want the dirty-status to be correct (for VM). Thus the same
* routine, but this time we mark it dirty too.
*/
unsigned long put_dirty_page(struct task_struct * tsk, unsigned long page, unsigned long address)
{
unsigned long tmp, *page_table;
if (page >= high_memory)
printk("put_dirty_page: trying to put page %p at %p\n",page,address);
if (mem_map[MAP_NR(page)] != 1)
printk("mem_map disagrees with %p at %p\n",page,address);
page_table = (unsigned long *) (tsk->tss.cr3 + ((address>>20) & 0xffc));
if (PAGE_PRESENT & *page_table)
page_table = (unsigned long *) (0xfffff000 & *page_table);
else {
if (!(tmp=get_free_page(GFP_KERNEL)))
return 0;
if (PAGE_PRESENT & *page_table) {
free_page(tmp);
page_table = (unsigned long *) (0xfffff000 & *page_table);
} else {
*page_table = tmp | PAGE_TABLE;
page_table = (unsigned long *) tmp;
}
}
page_table += (address >> PAGE_SHIFT) & 0x3ff;
if (*page_table) {
printk("put_dirty_page: page already exists\n");
*page_table = 0;
invalidate();
}
*page_table = page | (PAGE_DIRTY | PAGE_PRIVATE);
/* no need for invalidate */
return page;
}
/*
* This routine handles present pages, when users try to write
* to a shared page. It is done by copying the page to a new address
* and decrementing the shared-page counter for the old page.
*
* Note that we do many checks twice (look at do_wp_page()), as
* we have to be careful about race-conditions.
*
* Goto-purists beware: the only reason for goto's here is that it results
* in better assembly code.. The "default" path will see no jumps at all.
*/
static void __do_wp_page(unsigned long error_code, unsigned long address,
struct task_struct * tsk, unsigned long user_esp)
{
unsigned long pde, pte, old_page, prot;
unsigned long new_page;
new_page = __get_free_page(GFP_KERNEL);
pde = tsk->tss.cr3 + ((address>>20) & 0xffc);
pte = *(unsigned long *) pde;
if (!(pte & PAGE_PRESENT))
goto end_wp_page;
if ((pte & PAGE_TABLE) != PAGE_TABLE || pte >= high_memory)
goto bad_wp_pagetable;
pte &= 0xfffff000;
pte += (address>>10) & 0xffc;
old_page = *(unsigned long *) pte;
if (!(old_page & PAGE_PRESENT))
goto end_wp_page;
if (old_page >= high_memory)
goto bad_wp_page;
if (old_page & PAGE_RW)
goto end_wp_page;
tsk->min_flt++;
prot = (old_page & 0x00000fff) | PAGE_RW;
old_page &= 0xfffff000;
if (mem_map[MAP_NR(old_page)] != 1) {
if (new_page) {
if (mem_map[MAP_NR(old_page)] & MAP_PAGE_RESERVED)
++tsk->rss;
copy_page(old_page,new_page);
*(unsigned long *) pte = new_page | prot;
free_page(old_page);
invalidate();
return;
}
free_page(old_page);
oom(tsk);
*(unsigned long *) pte = BAD_PAGE | prot;
invalidate();
return;
}
*(unsigned long *) pte |= PAGE_RW;
invalidate();
if (new_page)
free_page(new_page);
return;
bad_wp_page:
printk("do_wp_page: bogus page at address %08x (%08x)\n",address,old_page);
*(unsigned long *) pte = BAD_PAGE | PAGE_SHARED;
send_sig(SIGKILL, tsk, 1);
goto end_wp_page;
bad_wp_pagetable:
printk("do_wp_page: bogus page-table at address %08x (%08x)\n",address,pte);
*(unsigned long *) pde = BAD_PAGETABLE | PAGE_TABLE;
send_sig(SIGKILL, tsk, 1);
end_wp_page:
if (new_page)
free_page(new_page);
return;
}
/*
* check that a page table change is actually needed, and call
* the low-level function only in that case..
*/
void do_wp_page(unsigned long error_code, unsigned long address,
struct task_struct * tsk, unsigned long user_esp)
{
unsigned long page;
unsigned long * pg_table;
pg_table = (unsigned long *) (tsk->tss.cr3 + ((address>>20) & 0xffc));
page = *pg_table;
if (!page)
return;
if ((page & PAGE_PRESENT) && page < high_memory) {
pg_table = (unsigned long *) ((page & 0xfffff000) + ((address>>10) & 0xffc));
page = *pg_table;
if (!(page & PAGE_PRESENT))
return;
if (page & PAGE_RW)
return;
if (!(page & PAGE_COW)) {
if (user_esp && tsk == current) {
send_sig(SIGSEGV, tsk, 1);
return;
}
}
if (mem_map[MAP_NR(page)] == 1) {
*pg_table |= PAGE_RW | PAGE_DIRTY;
invalidate();
return;
}
__do_wp_page(error_code, address, tsk, user_esp);
return;
}
printk("bad page directory entry %08x\n",page);
*pg_table = 0;
}
int verify_area(int type, void * addr, unsigned long size)
{
unsigned long start;
start = (unsigned long) addr;
if (start >= TASK_SIZE)
return -EFAULT;
if (size > TASK_SIZE - start)
return -EFAULT;
if (type == VERIFY_READ || !size)
return 0;
if (!size)
return 0;
size--;
size += start & 0xfff;
size >>= 12;
start &= 0xfffff000;
do {
do_wp_page(1,start,current,0);
start += 4096;
} while (size--);
return 0;
}
static void get_empty_page(struct task_struct * tsk, unsigned long address)
{
unsigned long tmp;
tmp = get_free_page(GFP_KERNEL);
if (!tmp) {
oom(tsk);
tmp = BAD_PAGE;
}
if (!put_page(tsk,tmp,address,PAGE_PRIVATE))
free_page(tmp);
}
/*
* try_to_share() checks the page at address "address" in the task "p",
* to see if it exists, and if it is clean. If so, share it with the current
* task.
*
* NOTE! This assumes we have checked that p != current, and that they
* share the same executable or library.
*
* We may want to fix this to allow page sharing for PIC pages at different
* addresses so that ELF will really perform properly. As long as the vast
* majority of sharable libraries load at fixed addresses this is not a
* big concern. Any sharing of pages between the buffer cache and the
* code space reduces the need for this as well. - ERY
*/
static int try_to_share(unsigned long address, struct task_struct * tsk,
struct task_struct * p, unsigned long error_code, unsigned long newpage)
{
unsigned long from;
unsigned long to;
unsigned long from_page;
unsigned long to_page;
from_page = p->tss.cr3 + ((address>>20) & 0xffc);
to_page = tsk->tss.cr3 + ((address>>20) & 0xffc);
/* is there a page-directory at from? */
from = *(unsigned long *) from_page;
if (!(from & PAGE_PRESENT))
return 0;
from &= 0xfffff000;
from_page = from + ((address>>10) & 0xffc);
from = *(unsigned long *) from_page;
/* is the page clean and present? */
if ((from & (PAGE_PRESENT | PAGE_DIRTY)) != PAGE_PRESENT)
return 0;
if (from >= high_memory)
return 0;
if (mem_map[MAP_NR(from)] & MAP_PAGE_RESERVED)
return 0;
/* is the destination ok? */
to = *(unsigned long *) to_page;
if (!(to & PAGE_PRESENT))
return 0;
to &= 0xfffff000;
to_page = to + ((address>>10) & 0xffc);
if (*(unsigned long *) to_page)
return 0;
/* share them if read - do COW immediately otherwise */
if (error_code & PAGE_RW) {
copy_page((from & 0xfffff000),newpage);
to = newpage | PAGE_PRIVATE;
} else {
mem_map[MAP_NR(from)]++;
from &= ~PAGE_RW;
to = from;
free_page(newpage);
}
*(unsigned long *) from_page = from;
*(unsigned long *) to_page = to;
invalidate();
return 1;
}
/*
* share_page() tries to find a process that could share a page with
* the current one. Address is the address of the wanted page relative
* to the current data space.
*
* We first check if it is at all feasible by checking executable->i_count.
* It should be >1 if there are other tasks sharing this inode.
*/
static int share_page(struct vm_area_struct * area, struct task_struct * tsk,
struct inode * inode,
unsigned long address, unsigned long error_code, unsigned long newpage)
{
struct task_struct ** p;
if (!inode || inode->i_count < 2)
return 0;
for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) {
if (!*p)
continue;
if (tsk == *p)
continue;
if (inode != (*p)->executable) {
if(!area) continue;
/* Now see if there is something in the VMM that
we can share pages with */
if(area){
struct vm_area_struct * mpnt;
for(mpnt = (*p)->mmap; mpnt; mpnt = mpnt->vm_next){
if(mpnt->vm_ops && mpnt->vm_ops == area->vm_ops &&
mpnt->vm_inode->i_ino == area->vm_inode->i_ino&&
mpnt->vm_inode->i_dev == area->vm_inode->i_dev){
if (mpnt->vm_ops->share(mpnt, area, address))
break;
};
};
if (!mpnt) continue; /* Nope. Nuthin here */
};
}
if (try_to_share(address,tsk,*p,error_code,newpage))
return 1;
}
return 0;
}
/*
* fill in an empty page-table if none exists.
*/
static inline unsigned long get_empty_pgtable(struct task_struct * tsk,unsigned long address)
{
unsigned long page;
unsigned long *p;
p = (unsigned long *) (tsk->tss.cr3 + ((address >> 20) & 0xffc));
if (PAGE_PRESENT & *p)
return *p;
if (*p) {
printk("get_empty_pgtable: bad page-directory entry \n");
*p = 0;
}
page = get_free_page(GFP_KERNEL);
p = (unsigned long *) (tsk->tss.cr3 + ((address >> 20) & 0xffc));
if (PAGE_PRESENT & *p) {
free_page(page);
return *p;
}
if (*p) {
printk("get_empty_pgtable: bad page-directory entry \n");
*p = 0;
}
if (page) {
*p = page | PAGE_TABLE;
return *p;
}
oom(current);
*p = BAD_PAGETABLE | PAGE_TABLE;
return 0;
}
void do_no_page(unsigned long error_code, unsigned long address,
struct task_struct *tsk, unsigned long user_esp)
{
int nr[8], prot;
unsigned long tmp;
unsigned long page;
unsigned int block,i, j;
struct inode * inode;
struct vm_area_struct * mpnt;
page = get_empty_pgtable(tsk,address);
if (!page)
return;
page &= 0xfffff000;
page += (address >> 10) & 0xffc;
tmp = *(unsigned long *) page;
if (tmp & PAGE_PRESENT)
return;
++tsk->rss;
if (tmp) {
++tsk->maj_flt;
swap_in((unsigned long *) page);
return;
}
address &= 0xfffff000;
inode = NULL;
block = 0xffffffff;
if (address < tsk->end_data) {
inode = tsk->executable;
block = 1 + address / BLOCK_SIZE;
} else {
for (mpnt = tsk->mmap ; mpnt ; mpnt = mpnt->vm_next) {
if (address < mpnt->vm_start)
continue;
if (address >= ((mpnt->vm_end + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)))
continue;
mpnt->vm_ops->nopage(error_code, mpnt, address);
return;
}
}
if (!inode) {
++tsk->min_flt;
get_empty_page(tsk,address);
if (tsk != current)
return;
if (address < tsk->brk)
return;
if (address+8192 >= (user_esp & 0xfffff000) &&
address <= current->start_stack)
return;
send_sig(SIGSEGV,tsk,1);
return;
}
page = get_free_page(GFP_KERNEL);
if (share_page(NULL, tsk,inode,address,error_code,page)) {
++tsk->min_flt;
return;
}
if (!page) {
oom(current);
put_page(tsk,BAD_PAGE,address,PAGE_PRIVATE);
return;
}
prot = PAGE_PRIVATE;
if (CODE_SPACE(address, tsk))
prot = PAGE_READONLY;
if (block != 0xffffffff) {
for (i=0, j=0; i< PAGE_SIZE ; j++, block++,i +=inode->i_sb->s_blocksize)
nr[j] = bmap(inode,block);
page = bread_page(page,inode->i_dev,nr,
inode->i_sb->s_blocksize,prot);
}
if (!(error_code & PAGE_RW) && share_page(NULL, tsk,inode,address, error_code,page))
return;
i = address + PAGE_SIZE - tsk->end_data;
if (i > PAGE_SIZE-1)
i = 0;
tmp = page + PAGE_SIZE;
while (i--) {
tmp--;
*(char *)tmp = 0;
}
if (put_page(tsk,page,address,prot))
return;
free_page(page);
oom(current);
}
/*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to one of the appropriate
* routines.
*/
extern "C" void do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
unsigned long address;
unsigned long user_esp = 0;
unsigned long stack_limit;
unsigned int bit;
/* get the address */
__asm__("movl %%cr2,%0":"=r" (address));
if (address < TASK_SIZE) {
if (error_code & 4) { /* user mode access? */
if (regs->eflags & VM_MASK) {
bit = (address - 0xA0000) >> PAGE_SHIFT;
if (bit < 32)
current->screen_bitmap |= 1 << bit;
} else
user_esp = regs->esp;
}
if (error_code & 1)
do_wp_page(error_code, address, current, user_esp);
else
do_no_page(error_code, address, current, user_esp);
if (!user_esp)
return;
stack_limit = current->rlim[RLIMIT_STACK].rlim_cur;
if (stack_limit >= RLIM_INFINITY)
return;
if (stack_limit >= current->start_stack)
return;
stack_limit = current->start_stack - stack_limit;
if (user_esp < stack_limit)
send_sig(SIGSEGV, current, 1);
return;
}
printk("Unable to handle kernel paging request at address %08x\n",address);
die_if_kernel("Oops", regs, error_code);
do_exit(SIGKILL);
}
/*
* BAD_PAGE is the page that is used for page faults when linux
* is out-of-memory. Older versions of linux just did a
* do_exit(), but using this instead means there is less risk
* for a process dying in kernel mode, possibly leaving a inode
* unused etc..
*
* BAD_PAGETABLE is the accompanying page-table: it is initialized
* to point to BAD_PAGE entries.
*
* ZERO_PAGE is a special page that is used for zero-initialized
* data and COW.
*/
unsigned long __bad_pagetable(void)
{
extern char empty_bad_page_table[PAGE_SIZE];
__asm__ __volatile__("cld ; rep ; stosl":
:"a" (BAD_PAGE + PAGE_TABLE),
"D" ((long) empty_bad_page_table),
"c" (1024)
:"di","cx");
return (unsigned long) empty_bad_page_table;
}
unsigned long __bad_page(void)
{
extern char empty_bad_page[PAGE_SIZE];
__asm__ __volatile__("cld ; rep ; stosl":
:"a" (0),
"D" ((long) empty_bad_page),
"c" (1024)
:"di","cx");
return (unsigned long) empty_bad_page;
}
unsigned long __zero_page(void)
{
extern char empty_zero_page[PAGE_SIZE];
__asm__ __volatile__("cld ; rep ; stosl":
:"a" (0),
"D" ((long) empty_zero_page),
"c" (1024)
:"di","cx");
return (unsigned long) empty_zero_page;
}
void show_mem(void)
{
int i,free = 0,total = 0,reserved = 0;
int shared = 0;
printk("Mem-info:\n");
printk("Free pages: %6dkB\n",nr_free_pages<<2);
printk("Secondary pages: %6dkB\n",nr_secondary_pages<<2);
printk("Free swap: %6dkB\n",nr_swap_pages<<2);
printk("Buffer memory: %6dkB\n",buffermem>>10);
printk("Buffer heads: %6d\n",nr_buffer_heads);
printk("Buffer blocks: %6d\n",nr_buffers);
i = high_memory >> PAGE_SHIFT;
while (i-- > 0) {
total++;
if (mem_map[i] & MAP_PAGE_RESERVED)
reserved++;
else if (!mem_map[i])
free++;
else
shared += mem_map[i]-1;
}
printk("%d pages of RAM\n",total);
printk("%d free pages\n",free);
printk("%d reserved pages\n",reserved);
printk("%d pages shared\n",shared);
}
/*
* paging_init() sets up the page tables - note that the first 4MB are
* already mapped by head.S.
*
* This routines also unmaps the page at virtual kernel address 0, so
* that we can trap those pesky NULL-reference errors in the kernel.
*/
unsigned long paging_init(unsigned long start_mem, unsigned long end_mem)
{
unsigned long * pg_dir;
unsigned long * pg_table;
unsigned long tmp;
unsigned long address;
/*
* Physical page 0 is special: it's a "zero-page", and is guaranteed to
* stay that way - it's write-protected and when there is a c-o-w, the
* mm handler treats it specially.
*/
memset((void *) 0, 0, 4096);
start_mem += 4095;
start_mem &= 0xfffff000;
address = 0;
pg_dir = swapper_pg_dir;
while (address < end_mem) {
tmp = *(pg_dir + 768); /* at virtual addr 0xC0000000 */
if (!tmp) {
tmp = start_mem | PAGE_TABLE;
*(pg_dir + 768) = tmp;
start_mem += 4096;
}
*pg_dir = tmp; /* also map it in at 0x0000000 for init */
pg_dir++;
pg_table = (unsigned long *) (tmp & 0xfffff000);
for (tmp = 0 ; tmp < 1024 ; tmp++,pg_table++) {
if (address && address < end_mem)
*pg_table = address | PAGE_SHARED;
else
*pg_table = 0;
address += 4096;
}
}
invalidate();
return start_mem;
}
void mem_init(unsigned long start_low_mem,
unsigned long start_mem, unsigned long end_mem)
{
int codepages = 0;
int reservedpages = 0;
int datapages = 0;
unsigned long tmp;
unsigned short * p;
extern int etext;
cli();
end_mem &= 0xfffff000;
high_memory = end_mem;
start_mem += 0x0000000f;
start_mem &= 0xfffffff0;
tmp = MAP_NR(end_mem);
mem_map = (unsigned short *) start_mem;
p = mem_map + tmp;
start_mem = (unsigned long) p;
while (p > mem_map)
*--p = MAP_PAGE_RESERVED;
start_low_mem += 0x00000fff;
start_low_mem &= 0xfffff000;
start_mem += 0x00000fff;
start_mem &= 0xfffff000;
while (start_low_mem < 0xA0000) {
mem_map[MAP_NR(start_low_mem)] = 0;
start_low_mem += 4096;
}
while (start_mem < end_mem) {
mem_map[MAP_NR(start_mem)] = 0;
start_mem += 4096;
}
sound_mem_init();
free_page_list = 0;
nr_free_pages = 0;
for (tmp = 0 ; tmp < end_mem ; tmp += 4096) {
if (mem_map[MAP_NR(tmp)]) {
if (tmp >= 0xA0000 && tmp < 0x100000)
reservedpages++;
else if (tmp < (unsigned long) &etext)
codepages++;
else
datapages++;
continue;
}
*(unsigned long *) tmp = free_page_list;
free_page_list = tmp;
nr_free_pages++;
}
tmp = nr_free_pages << PAGE_SHIFT;
printk("Memory: %dk/%dk available (%dk kernel code, %dk reserved, %dk data)\n",
tmp >> 10,
end_mem >> 10,
codepages << 2,
reservedpages << 2,
datapages << 2);
return;
}
void si_meminfo(struct sysinfo *val)
{
int i;
i = high_memory >> PAGE_SHIFT;
val->totalram = 0;
val->freeram = 0;
val->sharedram = 0;
val->bufferram = buffermem;
while (i-- > 0) {
if (mem_map[i] & MAP_PAGE_RESERVED)
continue;
val->totalram++;
if (!mem_map[i]) {
val->freeram++;
continue;
}
val->sharedram += mem_map[i]-1;
}
val->totalram <<= PAGE_SHIFT;
val->freeram <<= PAGE_SHIFT;
val->sharedram <<= PAGE_SHIFT;
return;
}
/* This handles a generic mmap of a disk file */
void file_mmap_nopage(int error_code, struct vm_area_struct * area, unsigned long address)
{
struct inode * inode = area->vm_inode;
unsigned int block;
unsigned int clear;
unsigned long page;
unsigned long tmp;
int nr[8];
int i, j;
int prot = area->vm_page_prot; /* prot for buffer cache.. */
address &= 0xfffff000;
block = address - area->vm_start + area->vm_offset;
block >>= inode->i_sb->s_blocksize_bits;
page = get_free_page(GFP_KERNEL);
if (share_page(area, area->vm_task, inode, address, error_code, page)) {
++area->vm_task->min_flt;
return;
}
++area->vm_task->maj_flt;
if (!page) {
oom(current);
put_page(area->vm_task, BAD_PAGE, address, PAGE_PRIVATE);
return;
}
for (i=0, j=0; i< PAGE_SIZE ; j++, block++, i += inode->i_sb->s_blocksize)
nr[j] = bmap(inode,block);
/*
* If we don't mmap a whole page, we have to clear the end of the page,
* which also means that we can't share the page with the buffer cache.
* This is easy to handle by giving the 'bread_page()' a protection mask
* that contains PAGE_RW, as the cache code won't try to share then..
*/
clear = 0;
if (address + PAGE_SIZE > area->vm_end) {
clear = address + PAGE_SIZE - area->vm_end;
prot |= PAGE_RW;
}
page = bread_page(page, inode->i_dev, nr, inode->i_sb->s_blocksize, prot);
if (!(error_code & PAGE_RW)) {
if (share_page(area, area->vm_task, inode, address, error_code, page))
return;
}
tmp = page + PAGE_SIZE;
while (clear--) {
tmp--;
*(char *)tmp = 0;
}
if (put_page(area->vm_task,page,address,area->vm_page_prot))
return;
free_page(page);
oom(current);
}
void file_mmap_free(struct vm_area_struct * area)
{
if (area->vm_inode)
iput(area->vm_inode);
#if 0
if (area->vm_inode)
printk("Free inode %x:%d (%d)\n",area->vm_inode->i_dev,
area->vm_inode->i_ino, area->vm_inode->i_count);
#endif
}
/*
* Compare the contents of the mmap entries, and decide if we are allowed to
* share the pages
*/
int file_mmap_share(struct vm_area_struct * area1,
struct vm_area_struct * area2,
unsigned long address)
{
if (area1->vm_inode != area2->vm_inode)
return 0;
if (area1->vm_start != area2->vm_start)
return 0;
if (area1->vm_end != area2->vm_end)
return 0;
if (area1->vm_offset != area2->vm_offset)
return 0;
if (area1->vm_page_prot != area2->vm_page_prot)
return 0;
return 1;
}
struct vm_operations_struct file_mmap = {
NULL, /* open */
file_mmap_free, /* close */
file_mmap_nopage, /* nopage */
NULL, /* wppage */
file_mmap_share, /* share */
};