| // SPDX-License-Identifier: GPL-2.0-only | 
 | #undef DEBUG | 
 |  | 
 | /* | 
 |  * ARM performance counter support. | 
 |  * | 
 |  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles | 
 |  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> | 
 |  * | 
 |  * This code is based on the sparc64 perf event code, which is in turn based | 
 |  * on the x86 code. | 
 |  */ | 
 | #define pr_fmt(fmt) "hw perfevents: " fmt | 
 |  | 
 | #include <linux/bitmap.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/cpu_pm.h> | 
 | #include <linux/export.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/perf/arm_pmu.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched/clock.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/irqdesc.h> | 
 |  | 
 | #include <asm/irq_regs.h> | 
 |  | 
 | static int armpmu_count_irq_users(const int irq); | 
 |  | 
 | struct pmu_irq_ops { | 
 | 	void (*enable_pmuirq)(unsigned int irq); | 
 | 	void (*disable_pmuirq)(unsigned int irq); | 
 | 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid); | 
 | }; | 
 |  | 
 | static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid) | 
 | { | 
 | 	free_irq(irq, per_cpu_ptr(devid, cpu)); | 
 | } | 
 |  | 
 | static const struct pmu_irq_ops pmuirq_ops = { | 
 | 	.enable_pmuirq = enable_irq, | 
 | 	.disable_pmuirq = disable_irq_nosync, | 
 | 	.free_pmuirq = armpmu_free_pmuirq | 
 | }; | 
 |  | 
 | static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid) | 
 | { | 
 | 	free_nmi(irq, per_cpu_ptr(devid, cpu)); | 
 | } | 
 |  | 
 | static const struct pmu_irq_ops pmunmi_ops = { | 
 | 	.enable_pmuirq = enable_nmi, | 
 | 	.disable_pmuirq = disable_nmi_nosync, | 
 | 	.free_pmuirq = armpmu_free_pmunmi | 
 | }; | 
 |  | 
 | static void armpmu_enable_percpu_pmuirq(unsigned int irq) | 
 | { | 
 | 	enable_percpu_irq(irq, IRQ_TYPE_NONE); | 
 | } | 
 |  | 
 | static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu, | 
 | 				   void __percpu *devid) | 
 | { | 
 | 	if (armpmu_count_irq_users(irq) == 1) | 
 | 		free_percpu_irq(irq, devid); | 
 | } | 
 |  | 
 | static const struct pmu_irq_ops percpu_pmuirq_ops = { | 
 | 	.enable_pmuirq = armpmu_enable_percpu_pmuirq, | 
 | 	.disable_pmuirq = disable_percpu_irq, | 
 | 	.free_pmuirq = armpmu_free_percpu_pmuirq | 
 | }; | 
 |  | 
 | static void armpmu_enable_percpu_pmunmi(unsigned int irq) | 
 | { | 
 | 	if (!prepare_percpu_nmi(irq)) | 
 | 		enable_percpu_nmi(irq, IRQ_TYPE_NONE); | 
 | } | 
 |  | 
 | static void armpmu_disable_percpu_pmunmi(unsigned int irq) | 
 | { | 
 | 	disable_percpu_nmi(irq); | 
 | 	teardown_percpu_nmi(irq); | 
 | } | 
 |  | 
 | static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu, | 
 | 				      void __percpu *devid) | 
 | { | 
 | 	if (armpmu_count_irq_users(irq) == 1) | 
 | 		free_percpu_nmi(irq, devid); | 
 | } | 
 |  | 
 | static const struct pmu_irq_ops percpu_pmunmi_ops = { | 
 | 	.enable_pmuirq = armpmu_enable_percpu_pmunmi, | 
 | 	.disable_pmuirq = armpmu_disable_percpu_pmunmi, | 
 | 	.free_pmuirq = armpmu_free_percpu_pmunmi | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); | 
 | static DEFINE_PER_CPU(int, cpu_irq); | 
 | static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops); | 
 |  | 
 | static bool has_nmi; | 
 |  | 
 | static inline u64 arm_pmu_event_max_period(struct perf_event *event) | 
 | { | 
 | 	if (event->hw.flags & ARMPMU_EVT_64BIT) | 
 | 		return GENMASK_ULL(63, 0); | 
 | 	else if (event->hw.flags & ARMPMU_EVT_47BIT) | 
 | 		return GENMASK_ULL(46, 0); | 
 | 	else | 
 | 		return GENMASK_ULL(31, 0); | 
 | } | 
 |  | 
 | static int | 
 | armpmu_map_cache_event(const unsigned (*cache_map) | 
 | 				      [PERF_COUNT_HW_CACHE_MAX] | 
 | 				      [PERF_COUNT_HW_CACHE_OP_MAX] | 
 | 				      [PERF_COUNT_HW_CACHE_RESULT_MAX], | 
 | 		       u64 config) | 
 | { | 
 | 	unsigned int cache_type, cache_op, cache_result, ret; | 
 |  | 
 | 	cache_type = (config >>  0) & 0xff; | 
 | 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cache_op = (config >>  8) & 0xff; | 
 | 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cache_result = (config >> 16) & 0xff; | 
 | 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!cache_map) | 
 | 		return -ENOENT; | 
 |  | 
 | 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; | 
 |  | 
 | 	if (ret == CACHE_OP_UNSUPPORTED) | 
 | 		return -ENOENT; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) | 
 | { | 
 | 	int mapping; | 
 |  | 
 | 	if (config >= PERF_COUNT_HW_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!event_map) | 
 | 		return -ENOENT; | 
 |  | 
 | 	mapping = (*event_map)[config]; | 
 | 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; | 
 | } | 
 |  | 
 | static int | 
 | armpmu_map_raw_event(u32 raw_event_mask, u64 config) | 
 | { | 
 | 	return (int)(config & raw_event_mask); | 
 | } | 
 |  | 
 | int | 
 | armpmu_map_event(struct perf_event *event, | 
 | 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX], | 
 | 		 const unsigned (*cache_map) | 
 | 				[PERF_COUNT_HW_CACHE_MAX] | 
 | 				[PERF_COUNT_HW_CACHE_OP_MAX] | 
 | 				[PERF_COUNT_HW_CACHE_RESULT_MAX], | 
 | 		 u32 raw_event_mask) | 
 | { | 
 | 	u64 config = event->attr.config; | 
 | 	int type = event->attr.type; | 
 |  | 
 | 	if (type == event->pmu->type) | 
 | 		return armpmu_map_raw_event(raw_event_mask, config); | 
 |  | 
 | 	switch (type) { | 
 | 	case PERF_TYPE_HARDWARE: | 
 | 		return armpmu_map_hw_event(event_map, config); | 
 | 	case PERF_TYPE_HW_CACHE: | 
 | 		return armpmu_map_cache_event(cache_map, config); | 
 | 	case PERF_TYPE_RAW: | 
 | 		return armpmu_map_raw_event(raw_event_mask, config); | 
 | 	} | 
 |  | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | int armpmu_event_set_period(struct perf_event *event) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	s64 left = local64_read(&hwc->period_left); | 
 | 	s64 period = hwc->sample_period; | 
 | 	u64 max_period; | 
 | 	int ret = 0; | 
 |  | 
 | 	max_period = arm_pmu_event_max_period(event); | 
 | 	if (unlikely(left <= -period)) { | 
 | 		left = period; | 
 | 		local64_set(&hwc->period_left, left); | 
 | 		hwc->last_period = period; | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	if (unlikely(left <= 0)) { | 
 | 		left += period; | 
 | 		local64_set(&hwc->period_left, left); | 
 | 		hwc->last_period = period; | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Limit the maximum period to prevent the counter value | 
 | 	 * from overtaking the one we are about to program. In | 
 | 	 * effect we are reducing max_period to account for | 
 | 	 * interrupt latency (and we are being very conservative). | 
 | 	 */ | 
 | 	if (left > (max_period >> 1)) | 
 | 		left = (max_period >> 1); | 
 |  | 
 | 	local64_set(&hwc->prev_count, (u64)-left); | 
 |  | 
 | 	armpmu->write_counter(event, (u64)(-left) & max_period); | 
 |  | 
 | 	perf_event_update_userpage(event); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | u64 armpmu_event_update(struct perf_event *event) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	u64 delta, prev_raw_count, new_raw_count; | 
 | 	u64 max_period = arm_pmu_event_max_period(event); | 
 |  | 
 | again: | 
 | 	prev_raw_count = local64_read(&hwc->prev_count); | 
 | 	new_raw_count = armpmu->read_counter(event); | 
 |  | 
 | 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, | 
 | 			     new_raw_count) != prev_raw_count) | 
 | 		goto again; | 
 |  | 
 | 	delta = (new_raw_count - prev_raw_count) & max_period; | 
 |  | 
 | 	local64_add(delta, &event->count); | 
 | 	local64_sub(delta, &hwc->period_left); | 
 |  | 
 | 	return new_raw_count; | 
 | } | 
 |  | 
 | static void | 
 | armpmu_read(struct perf_event *event) | 
 | { | 
 | 	armpmu_event_update(event); | 
 | } | 
 |  | 
 | static void | 
 | armpmu_stop(struct perf_event *event, int flags) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	/* | 
 | 	 * ARM pmu always has to update the counter, so ignore | 
 | 	 * PERF_EF_UPDATE, see comments in armpmu_start(). | 
 | 	 */ | 
 | 	if (!(hwc->state & PERF_HES_STOPPED)) { | 
 | 		armpmu->disable(event); | 
 | 		armpmu_event_update(event); | 
 | 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
 | 	} | 
 | } | 
 |  | 
 | static void armpmu_start(struct perf_event *event, int flags) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	/* | 
 | 	 * ARM pmu always has to reprogram the period, so ignore | 
 | 	 * PERF_EF_RELOAD, see the comment below. | 
 | 	 */ | 
 | 	if (flags & PERF_EF_RELOAD) | 
 | 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); | 
 |  | 
 | 	hwc->state = 0; | 
 | 	/* | 
 | 	 * Set the period again. Some counters can't be stopped, so when we | 
 | 	 * were stopped we simply disabled the IRQ source and the counter | 
 | 	 * may have been left counting. If we don't do this step then we may | 
 | 	 * get an interrupt too soon or *way* too late if the overflow has | 
 | 	 * happened since disabling. | 
 | 	 */ | 
 | 	armpmu_event_set_period(event); | 
 | 	armpmu->enable(event); | 
 | } | 
 |  | 
 | static void | 
 | armpmu_del(struct perf_event *event, int flags) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
 | 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int idx = hwc->idx; | 
 |  | 
 | 	armpmu_stop(event, PERF_EF_UPDATE); | 
 | 	hw_events->events[idx] = NULL; | 
 | 	armpmu->clear_event_idx(hw_events, event); | 
 | 	perf_event_update_userpage(event); | 
 | 	/* Clear the allocated counter */ | 
 | 	hwc->idx = -1; | 
 | } | 
 |  | 
 | static int | 
 | armpmu_add(struct perf_event *event, int flags) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
 | 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int idx; | 
 |  | 
 | 	/* An event following a process won't be stopped earlier */ | 
 | 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* If we don't have a space for the counter then finish early. */ | 
 | 	idx = armpmu->get_event_idx(hw_events, event); | 
 | 	if (idx < 0) | 
 | 		return idx; | 
 |  | 
 | 	/* | 
 | 	 * If there is an event in the counter we are going to use then make | 
 | 	 * sure it is disabled. | 
 | 	 */ | 
 | 	event->hw.idx = idx; | 
 | 	armpmu->disable(event); | 
 | 	hw_events->events[idx] = event; | 
 |  | 
 | 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
 | 	if (flags & PERF_EF_START) | 
 | 		armpmu_start(event, PERF_EF_RELOAD); | 
 |  | 
 | 	/* Propagate our changes to the userspace mapping. */ | 
 | 	perf_event_update_userpage(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, | 
 | 			       struct perf_event *event) | 
 | { | 
 | 	struct arm_pmu *armpmu; | 
 |  | 
 | 	if (is_software_event(event)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The | 
 | 	 * core perf code won't check that the pmu->ctx == leader->ctx | 
 | 	 * until after pmu->event_init(event). | 
 | 	 */ | 
 | 	if (event->pmu != pmu) | 
 | 		return 0; | 
 |  | 
 | 	if (event->state < PERF_EVENT_STATE_OFF) | 
 | 		return 1; | 
 |  | 
 | 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) | 
 | 		return 1; | 
 |  | 
 | 	armpmu = to_arm_pmu(event->pmu); | 
 | 	return armpmu->get_event_idx(hw_events, event) >= 0; | 
 | } | 
 |  | 
 | static int | 
 | validate_group(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *sibling, *leader = event->group_leader; | 
 | 	struct pmu_hw_events fake_pmu; | 
 |  | 
 | 	/* | 
 | 	 * Initialise the fake PMU. We only need to populate the | 
 | 	 * used_mask for the purposes of validation. | 
 | 	 */ | 
 | 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); | 
 |  | 
 | 	if (!validate_event(event->pmu, &fake_pmu, leader)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (event == leader) | 
 | 		return 0; | 
 |  | 
 | 	for_each_sibling_event(sibling, leader) { | 
 | 		if (!validate_event(event->pmu, &fake_pmu, sibling)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!validate_event(event->pmu, &fake_pmu, event)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) | 
 | { | 
 | 	struct arm_pmu *armpmu; | 
 | 	int ret; | 
 | 	u64 start_clock, finish_clock; | 
 |  | 
 | 	/* | 
 | 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but | 
 | 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will | 
 | 	 * do any necessary shifting, we just need to perform the first | 
 | 	 * dereference. | 
 | 	 */ | 
 | 	armpmu = *(void **)dev; | 
 | 	if (WARN_ON_ONCE(!armpmu)) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	start_clock = sched_clock(); | 
 | 	ret = armpmu->handle_irq(armpmu); | 
 | 	finish_clock = sched_clock(); | 
 |  | 
 | 	perf_sample_event_took(finish_clock - start_clock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | __hw_perf_event_init(struct perf_event *event) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int mapping; | 
 |  | 
 | 	hwc->flags = 0; | 
 | 	mapping = armpmu->map_event(event); | 
 |  | 
 | 	if (mapping < 0) { | 
 | 		pr_debug("event %x:%llx not supported\n", event->attr.type, | 
 | 			 event->attr.config); | 
 | 		return mapping; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We don't assign an index until we actually place the event onto | 
 | 	 * hardware. Use -1 to signify that we haven't decided where to put it | 
 | 	 * yet. For SMP systems, each core has it's own PMU so we can't do any | 
 | 	 * clever allocation or constraints checking at this point. | 
 | 	 */ | 
 | 	hwc->idx		= -1; | 
 | 	hwc->config_base	= 0; | 
 | 	hwc->config		= 0; | 
 | 	hwc->event_base		= 0; | 
 |  | 
 | 	/* | 
 | 	 * Check whether we need to exclude the counter from certain modes. | 
 | 	 */ | 
 | 	if (armpmu->set_event_filter && | 
 | 	    armpmu->set_event_filter(hwc, &event->attr)) { | 
 | 		pr_debug("ARM performance counters do not support " | 
 | 			 "mode exclusion\n"); | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Store the event encoding into the config_base field. | 
 | 	 */ | 
 | 	hwc->config_base	    |= (unsigned long)mapping; | 
 |  | 
 | 	if (!is_sampling_event(event)) { | 
 | 		/* | 
 | 		 * For non-sampling runs, limit the sample_period to half | 
 | 		 * of the counter width. That way, the new counter value | 
 | 		 * is far less likely to overtake the previous one unless | 
 | 		 * you have some serious IRQ latency issues. | 
 | 		 */ | 
 | 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1; | 
 | 		hwc->last_period    = hwc->sample_period; | 
 | 		local64_set(&hwc->period_left, hwc->sample_period); | 
 | 	} | 
 |  | 
 | 	return validate_group(event); | 
 | } | 
 |  | 
 | static int armpmu_event_init(struct perf_event *event) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
 |  | 
 | 	/* | 
 | 	 * Reject CPU-affine events for CPUs that are of a different class to | 
 | 	 * that which this PMU handles. Process-following events (where | 
 | 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to | 
 | 	 * reject them later (in armpmu_add) if they're scheduled on a | 
 | 	 * different class of CPU. | 
 | 	 */ | 
 | 	if (event->cpu != -1 && | 
 | 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* does not support taken branch sampling */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	return __hw_perf_event_init(event); | 
 | } | 
 |  | 
 | static void armpmu_enable(struct pmu *pmu) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
 | 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
 | 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events); | 
 |  | 
 | 	/* For task-bound events we may be called on other CPUs */ | 
 | 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
 | 		return; | 
 |  | 
 | 	if (enabled) | 
 | 		armpmu->start(armpmu); | 
 | } | 
 |  | 
 | static void armpmu_disable(struct pmu *pmu) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
 |  | 
 | 	/* For task-bound events we may be called on other CPUs */ | 
 | 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
 | 		return; | 
 |  | 
 | 	armpmu->stop(armpmu); | 
 | } | 
 |  | 
 | /* | 
 |  * In heterogeneous systems, events are specific to a particular | 
 |  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of | 
 |  * the same microarchitecture. | 
 |  */ | 
 | static bool armpmu_filter(struct pmu *pmu, int cpu) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
 | 	bool ret; | 
 |  | 
 | 	ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); | 
 | 	if (ret && armpmu->filter) | 
 | 		return armpmu->filter(pmu, cpu); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t cpus_show(struct device *dev, | 
 | 			 struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); | 
 | 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); | 
 | } | 
 |  | 
 | static DEVICE_ATTR_RO(cpus); | 
 |  | 
 | static struct attribute *armpmu_common_attrs[] = { | 
 | 	&dev_attr_cpus.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group armpmu_common_attr_group = { | 
 | 	.attrs = armpmu_common_attrs, | 
 | }; | 
 |  | 
 | static int armpmu_count_irq_users(const int irq) | 
 | { | 
 | 	int cpu, count = 0; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		if (per_cpu(cpu_irq, cpu) == irq) | 
 | 			count++; | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq) | 
 | { | 
 | 	const struct pmu_irq_ops *ops = NULL; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		if (per_cpu(cpu_irq, cpu) != irq) | 
 | 			continue; | 
 |  | 
 | 		ops = per_cpu(cpu_irq_ops, cpu); | 
 | 		if (ops) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return ops; | 
 | } | 
 |  | 
 | void armpmu_free_irq(int irq, int cpu) | 
 | { | 
 | 	if (per_cpu(cpu_irq, cpu) == 0) | 
 | 		return; | 
 | 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) | 
 | 		return; | 
 |  | 
 | 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu); | 
 |  | 
 | 	per_cpu(cpu_irq, cpu) = 0; | 
 | 	per_cpu(cpu_irq_ops, cpu) = NULL; | 
 | } | 
 |  | 
 | int armpmu_request_irq(int irq, int cpu) | 
 | { | 
 | 	int err = 0; | 
 | 	const irq_handler_t handler = armpmu_dispatch_irq; | 
 | 	const struct pmu_irq_ops *irq_ops; | 
 |  | 
 | 	if (!irq) | 
 | 		return 0; | 
 |  | 
 | 	if (!irq_is_percpu_devid(irq)) { | 
 | 		unsigned long irq_flags; | 
 |  | 
 | 		err = irq_force_affinity(irq, cpumask_of(cpu)); | 
 |  | 
 | 		if (err && num_possible_cpus() > 1) { | 
 | 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", | 
 | 				irq, cpu); | 
 | 			goto err_out; | 
 | 		} | 
 |  | 
 | 		irq_flags = IRQF_PERCPU | | 
 | 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN | | 
 | 			    IRQF_NO_THREAD; | 
 |  | 
 | 		err = request_nmi(irq, handler, irq_flags, "arm-pmu", | 
 | 				  per_cpu_ptr(&cpu_armpmu, cpu)); | 
 |  | 
 | 		/* If cannot get an NMI, get a normal interrupt */ | 
 | 		if (err) { | 
 | 			err = request_irq(irq, handler, irq_flags, "arm-pmu", | 
 | 					  per_cpu_ptr(&cpu_armpmu, cpu)); | 
 | 			irq_ops = &pmuirq_ops; | 
 | 		} else { | 
 | 			has_nmi = true; | 
 | 			irq_ops = &pmunmi_ops; | 
 | 		} | 
 | 	} else if (armpmu_count_irq_users(irq) == 0) { | 
 | 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu); | 
 |  | 
 | 		/* If cannot get an NMI, get a normal interrupt */ | 
 | 		if (err) { | 
 | 			err = request_percpu_irq(irq, handler, "arm-pmu", | 
 | 						 &cpu_armpmu); | 
 | 			irq_ops = &percpu_pmuirq_ops; | 
 | 		} else { | 
 | 			has_nmi = true; | 
 | 			irq_ops = &percpu_pmunmi_ops; | 
 | 		} | 
 | 	} else { | 
 | 		/* Per cpudevid irq was already requested by another CPU */ | 
 | 		irq_ops = armpmu_find_irq_ops(irq); | 
 |  | 
 | 		if (WARN_ON(!irq_ops)) | 
 | 			err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (err) | 
 | 		goto err_out; | 
 |  | 
 | 	per_cpu(cpu_irq, cpu) = irq; | 
 | 	per_cpu(cpu_irq_ops, cpu) = irq_ops; | 
 | 	return 0; | 
 |  | 
 | err_out: | 
 | 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) | 
 | { | 
 | 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events; | 
 | 	return per_cpu(hw_events->irq, cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * PMU hardware loses all context when a CPU goes offline. | 
 |  * When a CPU is hotplugged back in, since some hardware registers are | 
 |  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading | 
 |  * junk values out of them. | 
 |  */ | 
 | static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) | 
 | { | 
 | 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); | 
 | 	int irq; | 
 |  | 
 | 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) | 
 | 		return 0; | 
 | 	if (pmu->reset) | 
 | 		pmu->reset(pmu); | 
 |  | 
 | 	per_cpu(cpu_armpmu, cpu) = pmu; | 
 |  | 
 | 	irq = armpmu_get_cpu_irq(pmu, cpu); | 
 | 	if (irq) | 
 | 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) | 
 | { | 
 | 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); | 
 | 	int irq; | 
 |  | 
 | 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) | 
 | 		return 0; | 
 |  | 
 | 	irq = armpmu_get_cpu_irq(pmu, cpu); | 
 | 	if (irq) | 
 | 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq); | 
 |  | 
 | 	per_cpu(cpu_armpmu, cpu) = NULL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CPU_PM | 
 | static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) | 
 | { | 
 | 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
 | 	struct perf_event *event; | 
 | 	int idx; | 
 |  | 
 | 	for (idx = 0; idx < armpmu->num_events; idx++) { | 
 | 		event = hw_events->events[idx]; | 
 | 		if (!event) | 
 | 			continue; | 
 |  | 
 | 		switch (cmd) { | 
 | 		case CPU_PM_ENTER: | 
 | 			/* | 
 | 			 * Stop and update the counter | 
 | 			 */ | 
 | 			armpmu_stop(event, PERF_EF_UPDATE); | 
 | 			break; | 
 | 		case CPU_PM_EXIT: | 
 | 		case CPU_PM_ENTER_FAILED: | 
 | 			 /* | 
 | 			  * Restore and enable the counter. | 
 | 			  * armpmu_start() indirectly calls | 
 | 			  * | 
 | 			  * perf_event_update_userpage() | 
 | 			  * | 
 | 			  * that requires RCU read locking to be functional, | 
 | 			  * wrap the call within RCU_NONIDLE to make the | 
 | 			  * RCU subsystem aware this cpu is not idle from | 
 | 			  * an RCU perspective for the armpmu_start() call | 
 | 			  * duration. | 
 | 			  */ | 
 | 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, | 
 | 			     void *v) | 
 | { | 
 | 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); | 
 | 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
 | 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events); | 
 |  | 
 | 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	/* | 
 | 	 * Always reset the PMU registers on power-up even if | 
 | 	 * there are no events running. | 
 | 	 */ | 
 | 	if (cmd == CPU_PM_EXIT && armpmu->reset) | 
 | 		armpmu->reset(armpmu); | 
 |  | 
 | 	if (!enabled) | 
 | 		return NOTIFY_OK; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case CPU_PM_ENTER: | 
 | 		armpmu->stop(armpmu); | 
 | 		cpu_pm_pmu_setup(armpmu, cmd); | 
 | 		break; | 
 | 	case CPU_PM_EXIT: | 
 | 	case CPU_PM_ENTER_FAILED: | 
 | 		cpu_pm_pmu_setup(armpmu, cmd); | 
 | 		armpmu->start(armpmu); | 
 | 		break; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) | 
 | { | 
 | 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; | 
 | 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); | 
 | } | 
 |  | 
 | static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) | 
 | { | 
 | 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); | 
 | } | 
 | #else | 
 | static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } | 
 | static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } | 
 | #endif | 
 |  | 
 | static int cpu_pmu_init(struct arm_pmu *cpu_pmu) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, | 
 | 				       &cpu_pmu->node); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = cpu_pm_pmu_register(cpu_pmu); | 
 | 	if (err) | 
 | 		goto out_unregister; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unregister: | 
 | 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, | 
 | 					    &cpu_pmu->node); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) | 
 | { | 
 | 	cpu_pm_pmu_unregister(cpu_pmu); | 
 | 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, | 
 | 					    &cpu_pmu->node); | 
 | } | 
 |  | 
 | struct arm_pmu *armpmu_alloc(void) | 
 | { | 
 | 	struct arm_pmu *pmu; | 
 | 	int cpu; | 
 |  | 
 | 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL); | 
 | 	if (!pmu) | 
 | 		goto out; | 
 |  | 
 | 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL); | 
 | 	if (!pmu->hw_events) { | 
 | 		pr_info("failed to allocate per-cpu PMU data.\n"); | 
 | 		goto out_free_pmu; | 
 | 	} | 
 |  | 
 | 	pmu->pmu = (struct pmu) { | 
 | 		.pmu_enable	= armpmu_enable, | 
 | 		.pmu_disable	= armpmu_disable, | 
 | 		.event_init	= armpmu_event_init, | 
 | 		.add		= armpmu_add, | 
 | 		.del		= armpmu_del, | 
 | 		.start		= armpmu_start, | 
 | 		.stop		= armpmu_stop, | 
 | 		.read		= armpmu_read, | 
 | 		.filter		= armpmu_filter, | 
 | 		.attr_groups	= pmu->attr_groups, | 
 | 		/* | 
 | 		 * This is a CPU PMU potentially in a heterogeneous | 
 | 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU, | 
 | 		 * and we have taken ctx sharing into account (e.g. with our | 
 | 		 * pmu::filter callback and pmu::event_init group validation). | 
 | 		 */ | 
 | 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS, | 
 | 	}; | 
 |  | 
 | 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = | 
 | 		&armpmu_common_attr_group; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct pmu_hw_events *events; | 
 |  | 
 | 		events = per_cpu_ptr(pmu->hw_events, cpu); | 
 | 		raw_spin_lock_init(&events->pmu_lock); | 
 | 		events->percpu_pmu = pmu; | 
 | 	} | 
 |  | 
 | 	return pmu; | 
 |  | 
 | out_free_pmu: | 
 | 	kfree(pmu); | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void armpmu_free(struct arm_pmu *pmu) | 
 | { | 
 | 	free_percpu(pmu->hw_events); | 
 | 	kfree(pmu); | 
 | } | 
 |  | 
 | int armpmu_register(struct arm_pmu *pmu) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = cpu_pmu_init(pmu); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (!pmu->set_event_filter) | 
 | 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; | 
 |  | 
 | 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); | 
 | 	if (ret) | 
 | 		goto out_destroy; | 
 |  | 
 | 	pr_info("enabled with %s PMU driver, %d counters available%s\n", | 
 | 		pmu->name, pmu->num_events, | 
 | 		has_nmi ? ", using NMIs" : ""); | 
 |  | 
 | 	kvm_host_pmu_init(pmu); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_destroy: | 
 | 	cpu_pmu_destroy(pmu); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int arm_pmu_hp_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, | 
 | 				      "perf/arm/pmu:starting", | 
 | 				      arm_perf_starting_cpu, | 
 | 				      arm_perf_teardown_cpu); | 
 | 	if (ret) | 
 | 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", | 
 | 		       ret); | 
 | 	return ret; | 
 | } | 
 | subsys_initcall(arm_pmu_hp_init); |