|  | // SPDX-License-Identifier: Apache-2.0 OR MIT | 
|  |  | 
|  | //! A dynamically-sized view into a contiguous sequence, `[T]`. | 
|  | //! | 
|  | //! *[See also the slice primitive type](slice).* | 
|  | //! | 
|  | //! Slices are a view into a block of memory represented as a pointer and a | 
|  | //! length. | 
|  | //! | 
|  | //! ``` | 
|  | //! // slicing a Vec | 
|  | //! let vec = vec![1, 2, 3]; | 
|  | //! let int_slice = &vec[..]; | 
|  | //! // coercing an array to a slice | 
|  | //! let str_slice: &[&str] = &["one", "two", "three"]; | 
|  | //! ``` | 
|  | //! | 
|  | //! Slices are either mutable or shared. The shared slice type is `&[T]`, | 
|  | //! while the mutable slice type is `&mut [T]`, where `T` represents the element | 
|  | //! type. For example, you can mutate the block of memory that a mutable slice | 
|  | //! points to: | 
|  | //! | 
|  | //! ``` | 
|  | //! let x = &mut [1, 2, 3]; | 
|  | //! x[1] = 7; | 
|  | //! assert_eq!(x, &[1, 7, 3]); | 
|  | //! ``` | 
|  | //! | 
|  | //! Here are some of the things this module contains: | 
|  | //! | 
|  | //! ## Structs | 
|  | //! | 
|  | //! There are several structs that are useful for slices, such as [`Iter`], which | 
|  | //! represents iteration over a slice. | 
|  | //! | 
|  | //! ## Trait Implementations | 
|  | //! | 
|  | //! There are several implementations of common traits for slices. Some examples | 
|  | //! include: | 
|  | //! | 
|  | //! * [`Clone`] | 
|  | //! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`]. | 
|  | //! * [`Hash`] - for slices whose element type is [`Hash`]. | 
|  | //! | 
|  | //! ## Iteration | 
|  | //! | 
|  | //! The slices implement `IntoIterator`. The iterator yields references to the | 
|  | //! slice elements. | 
|  | //! | 
|  | //! ``` | 
|  | //! let numbers = &[0, 1, 2]; | 
|  | //! for n in numbers { | 
|  | //!     println!("{n} is a number!"); | 
|  | //! } | 
|  | //! ``` | 
|  | //! | 
|  | //! The mutable slice yields mutable references to the elements: | 
|  | //! | 
|  | //! ``` | 
|  | //! let mut scores = [7, 8, 9]; | 
|  | //! for score in &mut scores[..] { | 
|  | //!     *score += 1; | 
|  | //! } | 
|  | //! ``` | 
|  | //! | 
|  | //! This iterator yields mutable references to the slice's elements, so while | 
|  | //! the element type of the slice is `i32`, the element type of the iterator is | 
|  | //! `&mut i32`. | 
|  | //! | 
|  | //! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default | 
|  | //!   iterators. | 
|  | //! * Further methods that return iterators are [`.split`], [`.splitn`], | 
|  | //!   [`.chunks`], [`.windows`] and more. | 
|  | //! | 
|  | //! [`Hash`]: core::hash::Hash | 
|  | //! [`.iter`]: slice::iter | 
|  | //! [`.iter_mut`]: slice::iter_mut | 
|  | //! [`.split`]: slice::split | 
|  | //! [`.splitn`]: slice::splitn | 
|  | //! [`.chunks`]: slice::chunks | 
|  | //! [`.windows`]: slice::windows | 
|  | #![stable(feature = "rust1", since = "1.0.0")] | 
|  | // Many of the usings in this module are only used in the test configuration. | 
|  | // It's cleaner to just turn off the unused_imports warning than to fix them. | 
|  | #![cfg_attr(test, allow(unused_imports, dead_code))] | 
|  |  | 
|  | use core::borrow::{Borrow, BorrowMut}; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use core::cmp::Ordering::{self, Less}; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use core::mem; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use core::mem::size_of; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use core::ptr; | 
|  |  | 
|  | use crate::alloc::Allocator; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use crate::alloc::Global; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use crate::borrow::ToOwned; | 
|  | use crate::boxed::Box; | 
|  | use crate::vec::Vec; | 
|  |  | 
|  | #[unstable(feature = "slice_range", issue = "76393")] | 
|  | pub use core::slice::range; | 
|  | #[unstable(feature = "array_chunks", issue = "74985")] | 
|  | pub use core::slice::ArrayChunks; | 
|  | #[unstable(feature = "array_chunks", issue = "74985")] | 
|  | pub use core::slice::ArrayChunksMut; | 
|  | #[unstable(feature = "array_windows", issue = "75027")] | 
|  | pub use core::slice::ArrayWindows; | 
|  | #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] | 
|  | pub use core::slice::EscapeAscii; | 
|  | #[stable(feature = "slice_get_slice", since = "1.28.0")] | 
|  | pub use core::slice::SliceIndex; | 
|  | #[stable(feature = "from_ref", since = "1.28.0")] | 
|  | pub use core::slice::{from_mut, from_ref}; | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | pub use core::slice::{from_raw_parts, from_raw_parts_mut}; | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | pub use core::slice::{Chunks, Windows}; | 
|  | #[stable(feature = "chunks_exact", since = "1.31.0")] | 
|  | pub use core::slice::{ChunksExact, ChunksExactMut}; | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | pub use core::slice::{ChunksMut, Split, SplitMut}; | 
|  | #[unstable(feature = "slice_group_by", issue = "80552")] | 
|  | pub use core::slice::{GroupBy, GroupByMut}; | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | pub use core::slice::{Iter, IterMut}; | 
|  | #[stable(feature = "rchunks", since = "1.31.0")] | 
|  | pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut}; | 
|  | #[stable(feature = "slice_rsplit", since = "1.27.0")] | 
|  | pub use core::slice::{RSplit, RSplitMut}; | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut}; | 
|  | #[stable(feature = "split_inclusive", since = "1.51.0")] | 
|  | pub use core::slice::{SplitInclusive, SplitInclusiveMut}; | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // Basic slice extension methods | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | // HACK(japaric) needed for the implementation of `vec!` macro during testing | 
|  | // N.B., see the `hack` module in this file for more details. | 
|  | #[cfg(test)] | 
|  | pub use hack::into_vec; | 
|  |  | 
|  | // HACK(japaric) needed for the implementation of `Vec::clone` during testing | 
|  | // N.B., see the `hack` module in this file for more details. | 
|  | #[cfg(test)] | 
|  | pub use hack::to_vec; | 
|  |  | 
|  | // HACK(japaric): With cfg(test) `impl [T]` is not available, these three | 
|  | // functions are actually methods that are in `impl [T]` but not in | 
|  | // `core::slice::SliceExt` - we need to supply these functions for the | 
|  | // `test_permutations` test | 
|  | pub(crate) mod hack { | 
|  | use core::alloc::Allocator; | 
|  |  | 
|  | use crate::boxed::Box; | 
|  | use crate::vec::Vec; | 
|  |  | 
|  | // We shouldn't add inline attribute to this since this is used in | 
|  | // `vec!` macro mostly and causes perf regression. See #71204 for | 
|  | // discussion and perf results. | 
|  | pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> { | 
|  | unsafe { | 
|  | let len = b.len(); | 
|  | let (b, alloc) = Box::into_raw_with_allocator(b); | 
|  | Vec::from_raw_parts_in(b as *mut T, len, len, alloc) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[inline] | 
|  | pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> { | 
|  | T::to_vec(s, alloc) | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | pub trait ConvertVec { | 
|  | fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> | 
|  | where | 
|  | Self: Sized; | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | impl<T: Clone> ConvertVec for T { | 
|  | #[inline] | 
|  | default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { | 
|  | struct DropGuard<'a, T, A: Allocator> { | 
|  | vec: &'a mut Vec<T, A>, | 
|  | num_init: usize, | 
|  | } | 
|  | impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> { | 
|  | #[inline] | 
|  | fn drop(&mut self) { | 
|  | // SAFETY: | 
|  | // items were marked initialized in the loop below | 
|  | unsafe { | 
|  | self.vec.set_len(self.num_init); | 
|  | } | 
|  | } | 
|  | } | 
|  | let mut vec = Vec::with_capacity_in(s.len(), alloc); | 
|  | let mut guard = DropGuard { vec: &mut vec, num_init: 0 }; | 
|  | let slots = guard.vec.spare_capacity_mut(); | 
|  | // .take(slots.len()) is necessary for LLVM to remove bounds checks | 
|  | // and has better codegen than zip. | 
|  | for (i, b) in s.iter().enumerate().take(slots.len()) { | 
|  | guard.num_init = i; | 
|  | slots[i].write(b.clone()); | 
|  | } | 
|  | core::mem::forget(guard); | 
|  | // SAFETY: | 
|  | // the vec was allocated and initialized above to at least this length. | 
|  | unsafe { | 
|  | vec.set_len(s.len()); | 
|  | } | 
|  | vec | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | impl<T: Copy> ConvertVec for T { | 
|  | #[inline] | 
|  | fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { | 
|  | let mut v = Vec::with_capacity_in(s.len(), alloc); | 
|  | // SAFETY: | 
|  | // allocated above with the capacity of `s`, and initialize to `s.len()` in | 
|  | // ptr::copy_to_non_overlapping below. | 
|  | unsafe { | 
|  | s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len()); | 
|  | v.set_len(s.len()); | 
|  | } | 
|  | v | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(test))] | 
|  | impl<T> [T] { | 
|  | /// Sorts the slice. | 
|  | /// | 
|  | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. | 
|  | /// | 
|  | /// When applicable, unstable sorting is preferred because it is generally faster than stable | 
|  | /// sorting and it doesn't allocate auxiliary memory. | 
|  | /// See [`sort_unstable`](slice::sort_unstable). | 
|  | /// | 
|  | /// # Current implementation | 
|  | /// | 
|  | /// The current algorithm is an adaptive, iterative merge sort inspired by | 
|  | /// [timsort](https://en.wikipedia.org/wiki/Timsort). | 
|  | /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of | 
|  | /// two or more sorted sequences concatenated one after another. | 
|  | /// | 
|  | /// Also, it allocates temporary storage half the size of `self`, but for short slices a | 
|  | /// non-allocating insertion sort is used instead. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let mut v = [-5, 4, 1, -3, 2]; | 
|  | /// | 
|  | /// v.sort(); | 
|  | /// assert!(v == [-5, -3, 1, 2, 4]); | 
|  | /// ``` | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | #[inline] | 
|  | pub fn sort(&mut self) | 
|  | where | 
|  | T: Ord, | 
|  | { | 
|  | merge_sort(self, |a, b| a.lt(b)); | 
|  | } | 
|  |  | 
|  | /// Sorts the slice with a comparator function. | 
|  | /// | 
|  | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. | 
|  | /// | 
|  | /// The comparator function must define a total ordering for the elements in the slice. If | 
|  | /// the ordering is not total, the order of the elements is unspecified. An order is a | 
|  | /// total order if it is (for all `a`, `b` and `c`): | 
|  | /// | 
|  | /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and | 
|  | /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. | 
|  | /// | 
|  | /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use | 
|  | /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`. | 
|  | /// | 
|  | /// ``` | 
|  | /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0]; | 
|  | /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap()); | 
|  | /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]); | 
|  | /// ``` | 
|  | /// | 
|  | /// When applicable, unstable sorting is preferred because it is generally faster than stable | 
|  | /// sorting and it doesn't allocate auxiliary memory. | 
|  | /// See [`sort_unstable_by`](slice::sort_unstable_by). | 
|  | /// | 
|  | /// # Current implementation | 
|  | /// | 
|  | /// The current algorithm is an adaptive, iterative merge sort inspired by | 
|  | /// [timsort](https://en.wikipedia.org/wiki/Timsort). | 
|  | /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of | 
|  | /// two or more sorted sequences concatenated one after another. | 
|  | /// | 
|  | /// Also, it allocates temporary storage half the size of `self`, but for short slices a | 
|  | /// non-allocating insertion sort is used instead. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let mut v = [5, 4, 1, 3, 2]; | 
|  | /// v.sort_by(|a, b| a.cmp(b)); | 
|  | /// assert!(v == [1, 2, 3, 4, 5]); | 
|  | /// | 
|  | /// // reverse sorting | 
|  | /// v.sort_by(|a, b| b.cmp(a)); | 
|  | /// assert!(v == [5, 4, 3, 2, 1]); | 
|  | /// ``` | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | #[inline] | 
|  | pub fn sort_by<F>(&mut self, mut compare: F) | 
|  | where | 
|  | F: FnMut(&T, &T) -> Ordering, | 
|  | { | 
|  | merge_sort(self, |a, b| compare(a, b) == Less); | 
|  | } | 
|  |  | 
|  | /// Sorts the slice with a key extraction function. | 
|  | /// | 
|  | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*)) | 
|  | /// worst-case, where the key function is *O*(*m*). | 
|  | /// | 
|  | /// For expensive key functions (e.g. functions that are not simple property accesses or | 
|  | /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be | 
|  | /// significantly faster, as it does not recompute element keys. | 
|  | /// | 
|  | /// When applicable, unstable sorting is preferred because it is generally faster than stable | 
|  | /// sorting and it doesn't allocate auxiliary memory. | 
|  | /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key). | 
|  | /// | 
|  | /// # Current implementation | 
|  | /// | 
|  | /// The current algorithm is an adaptive, iterative merge sort inspired by | 
|  | /// [timsort](https://en.wikipedia.org/wiki/Timsort). | 
|  | /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of | 
|  | /// two or more sorted sequences concatenated one after another. | 
|  | /// | 
|  | /// Also, it allocates temporary storage half the size of `self`, but for short slices a | 
|  | /// non-allocating insertion sort is used instead. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let mut v = [-5i32, 4, 1, -3, 2]; | 
|  | /// | 
|  | /// v.sort_by_key(|k| k.abs()); | 
|  | /// assert!(v == [1, 2, -3, 4, -5]); | 
|  | /// ``` | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[stable(feature = "slice_sort_by_key", since = "1.7.0")] | 
|  | #[inline] | 
|  | pub fn sort_by_key<K, F>(&mut self, mut f: F) | 
|  | where | 
|  | F: FnMut(&T) -> K, | 
|  | K: Ord, | 
|  | { | 
|  | merge_sort(self, |a, b| f(a).lt(&f(b))); | 
|  | } | 
|  |  | 
|  | /// Sorts the slice with a key extraction function. | 
|  | /// | 
|  | /// During sorting, the key function is called at most once per element, by using | 
|  | /// temporary storage to remember the results of key evaluation. | 
|  | /// The order of calls to the key function is unspecified and may change in future versions | 
|  | /// of the standard library. | 
|  | /// | 
|  | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*)) | 
|  | /// worst-case, where the key function is *O*(*m*). | 
|  | /// | 
|  | /// For simple key functions (e.g., functions that are property accesses or | 
|  | /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be | 
|  | /// faster. | 
|  | /// | 
|  | /// # Current implementation | 
|  | /// | 
|  | /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, | 
|  | /// which combines the fast average case of randomized quicksort with the fast worst case of | 
|  | /// heapsort, while achieving linear time on slices with certain patterns. It uses some | 
|  | /// randomization to avoid degenerate cases, but with a fixed seed to always provide | 
|  | /// deterministic behavior. | 
|  | /// | 
|  | /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the | 
|  | /// length of the slice. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let mut v = [-5i32, 4, 32, -3, 2]; | 
|  | /// | 
|  | /// v.sort_by_cached_key(|k| k.to_string()); | 
|  | /// assert!(v == [-3, -5, 2, 32, 4]); | 
|  | /// ``` | 
|  | /// | 
|  | /// [pdqsort]: https://github.com/orlp/pdqsort | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")] | 
|  | #[inline] | 
|  | pub fn sort_by_cached_key<K, F>(&mut self, f: F) | 
|  | where | 
|  | F: FnMut(&T) -> K, | 
|  | K: Ord, | 
|  | { | 
|  | // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. | 
|  | macro_rules! sort_by_key { | 
|  | ($t:ty, $slice:ident, $f:ident) => {{ | 
|  | let mut indices: Vec<_> = | 
|  | $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect(); | 
|  | // The elements of `indices` are unique, as they are indexed, so any sort will be | 
|  | // stable with respect to the original slice. We use `sort_unstable` here because | 
|  | // it requires less memory allocation. | 
|  | indices.sort_unstable(); | 
|  | for i in 0..$slice.len() { | 
|  | let mut index = indices[i].1; | 
|  | while (index as usize) < i { | 
|  | index = indices[index as usize].1; | 
|  | } | 
|  | indices[i].1 = index; | 
|  | $slice.swap(i, index as usize); | 
|  | } | 
|  | }}; | 
|  | } | 
|  |  | 
|  | let sz_u8 = mem::size_of::<(K, u8)>(); | 
|  | let sz_u16 = mem::size_of::<(K, u16)>(); | 
|  | let sz_u32 = mem::size_of::<(K, u32)>(); | 
|  | let sz_usize = mem::size_of::<(K, usize)>(); | 
|  |  | 
|  | let len = self.len(); | 
|  | if len < 2 { | 
|  | return; | 
|  | } | 
|  | if sz_u8 < sz_u16 && len <= (u8::MAX as usize) { | 
|  | return sort_by_key!(u8, self, f); | 
|  | } | 
|  | if sz_u16 < sz_u32 && len <= (u16::MAX as usize) { | 
|  | return sort_by_key!(u16, self, f); | 
|  | } | 
|  | if sz_u32 < sz_usize && len <= (u32::MAX as usize) { | 
|  | return sort_by_key!(u32, self, f); | 
|  | } | 
|  | sort_by_key!(usize, self, f) | 
|  | } | 
|  |  | 
|  | /// Copies `self` into a new `Vec`. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let s = [10, 40, 30]; | 
|  | /// let x = s.to_vec(); | 
|  | /// // Here, `s` and `x` can be modified independently. | 
|  | /// ``` | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[rustc_conversion_suggestion] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | #[inline] | 
|  | pub fn to_vec(&self) -> Vec<T> | 
|  | where | 
|  | T: Clone, | 
|  | { | 
|  | self.to_vec_in(Global) | 
|  | } | 
|  |  | 
|  | /// Copies `self` into a new `Vec` with an allocator. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let s = [10, 40, 30]; | 
|  | /// let x = s.to_vec_in(System); | 
|  | /// // Here, `s` and `x` can be modified independently. | 
|  | /// ``` | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[inline] | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A> | 
|  | where | 
|  | T: Clone, | 
|  | { | 
|  | // N.B., see the `hack` module in this file for more details. | 
|  | hack::to_vec(self, alloc) | 
|  | } | 
|  |  | 
|  | /// Converts `self` into a vector without clones or allocation. | 
|  | /// | 
|  | /// The resulting vector can be converted back into a box via | 
|  | /// `Vec<T>`'s `into_boxed_slice` method. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let s: Box<[i32]> = Box::new([10, 40, 30]); | 
|  | /// let x = s.into_vec(); | 
|  | /// // `s` cannot be used anymore because it has been converted into `x`. | 
|  | /// | 
|  | /// assert_eq!(x, vec![10, 40, 30]); | 
|  | /// ``` | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | #[inline] | 
|  | pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> { | 
|  | // N.B., see the `hack` module in this file for more details. | 
|  | hack::into_vec(self) | 
|  | } | 
|  |  | 
|  | /// Creates a vector by repeating a slice `n` times. | 
|  | /// | 
|  | /// # Panics | 
|  | /// | 
|  | /// This function will panic if the capacity would overflow. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// Basic usage: | 
|  | /// | 
|  | /// ``` | 
|  | /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); | 
|  | /// ``` | 
|  | /// | 
|  | /// A panic upon overflow: | 
|  | /// | 
|  | /// ```should_panic | 
|  | /// // this will panic at runtime | 
|  | /// b"0123456789abcdef".repeat(usize::MAX); | 
|  | /// ``` | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "repeat_generic_slice", since = "1.40.0")] | 
|  | pub fn repeat(&self, n: usize) -> Vec<T> | 
|  | where | 
|  | T: Copy, | 
|  | { | 
|  | if n == 0 { | 
|  | return Vec::new(); | 
|  | } | 
|  |  | 
|  | // If `n` is larger than zero, it can be split as | 
|  | // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`. | 
|  | // `2^expn` is the number represented by the leftmost '1' bit of `n`, | 
|  | // and `rem` is the remaining part of `n`. | 
|  |  | 
|  | // Using `Vec` to access `set_len()`. | 
|  | let capacity = self.len().checked_mul(n).expect("capacity overflow"); | 
|  | let mut buf = Vec::with_capacity(capacity); | 
|  |  | 
|  | // `2^expn` repetition is done by doubling `buf` `expn`-times. | 
|  | buf.extend(self); | 
|  | { | 
|  | let mut m = n >> 1; | 
|  | // If `m > 0`, there are remaining bits up to the leftmost '1'. | 
|  | while m > 0 { | 
|  | // `buf.extend(buf)`: | 
|  | unsafe { | 
|  | ptr::copy_nonoverlapping( | 
|  | buf.as_ptr(), | 
|  | (buf.as_mut_ptr() as *mut T).add(buf.len()), | 
|  | buf.len(), | 
|  | ); | 
|  | // `buf` has capacity of `self.len() * n`. | 
|  | let buf_len = buf.len(); | 
|  | buf.set_len(buf_len * 2); | 
|  | } | 
|  |  | 
|  | m >>= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // `rem` (`= n - 2^expn`) repetition is done by copying | 
|  | // first `rem` repetitions from `buf` itself. | 
|  | let rem_len = capacity - buf.len(); // `self.len() * rem` | 
|  | if rem_len > 0 { | 
|  | // `buf.extend(buf[0 .. rem_len])`: | 
|  | unsafe { | 
|  | // This is non-overlapping since `2^expn > rem`. | 
|  | ptr::copy_nonoverlapping( | 
|  | buf.as_ptr(), | 
|  | (buf.as_mut_ptr() as *mut T).add(buf.len()), | 
|  | rem_len, | 
|  | ); | 
|  | // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`). | 
|  | buf.set_len(capacity); | 
|  | } | 
|  | } | 
|  | buf | 
|  | } | 
|  |  | 
|  | /// Flattens a slice of `T` into a single value `Self::Output`. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// assert_eq!(["hello", "world"].concat(), "helloworld"); | 
|  | /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); | 
|  | /// ``` | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output | 
|  | where | 
|  | Self: Concat<Item>, | 
|  | { | 
|  | Concat::concat(self) | 
|  | } | 
|  |  | 
|  | /// Flattens a slice of `T` into a single value `Self::Output`, placing a | 
|  | /// given separator between each. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// assert_eq!(["hello", "world"].join(" "), "hello world"); | 
|  | /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); | 
|  | /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]); | 
|  | /// ``` | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[stable(feature = "rename_connect_to_join", since = "1.3.0")] | 
|  | pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output | 
|  | where | 
|  | Self: Join<Separator>, | 
|  | { | 
|  | Join::join(self, sep) | 
|  | } | 
|  |  | 
|  | /// Flattens a slice of `T` into a single value `Self::Output`, placing a | 
|  | /// given separator between each. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// # #![allow(deprecated)] | 
|  | /// assert_eq!(["hello", "world"].connect(" "), "hello world"); | 
|  | /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]); | 
|  | /// ``` | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | #[deprecated(since = "1.3.0", note = "renamed to join")] | 
|  | pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output | 
|  | where | 
|  | Self: Join<Separator>, | 
|  | { | 
|  | Join::join(self, sep) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(test))] | 
|  | impl [u8] { | 
|  | /// Returns a vector containing a copy of this slice where each byte | 
|  | /// is mapped to its ASCII upper case equivalent. | 
|  | /// | 
|  | /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', | 
|  | /// but non-ASCII letters are unchanged. | 
|  | /// | 
|  | /// To uppercase the value in-place, use [`make_ascii_uppercase`]. | 
|  | /// | 
|  | /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[must_use = "this returns the uppercase bytes as a new Vec, \ | 
|  | without modifying the original"] | 
|  | #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] | 
|  | #[inline] | 
|  | pub fn to_ascii_uppercase(&self) -> Vec<u8> { | 
|  | let mut me = self.to_vec(); | 
|  | me.make_ascii_uppercase(); | 
|  | me | 
|  | } | 
|  |  | 
|  | /// Returns a vector containing a copy of this slice where each byte | 
|  | /// is mapped to its ASCII lower case equivalent. | 
|  | /// | 
|  | /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', | 
|  | /// but non-ASCII letters are unchanged. | 
|  | /// | 
|  | /// To lowercase the value in-place, use [`make_ascii_lowercase`]. | 
|  | /// | 
|  | /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | #[must_use = "this returns the lowercase bytes as a new Vec, \ | 
|  | without modifying the original"] | 
|  | #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] | 
|  | #[inline] | 
|  | pub fn to_ascii_lowercase(&self) -> Vec<u8> { | 
|  | let mut me = self.to_vec(); | 
|  | me.make_ascii_lowercase(); | 
|  | me | 
|  | } | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // Extension traits for slices over specific kinds of data | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | /// Helper trait for [`[T]::concat`](slice::concat). | 
|  | /// | 
|  | /// Note: the `Item` type parameter is not used in this trait, | 
|  | /// but it allows impls to be more generic. | 
|  | /// Without it, we get this error: | 
|  | /// | 
|  | /// ```error | 
|  | /// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica | 
|  | ///    --> src/liballoc/slice.rs:608:6 | 
|  | ///     | | 
|  | /// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] { | 
|  | ///     |      ^ unconstrained type parameter | 
|  | /// ``` | 
|  | /// | 
|  | /// This is because there could exist `V` types with multiple `Borrow<[_]>` impls, | 
|  | /// such that multiple `T` types would apply: | 
|  | /// | 
|  | /// ``` | 
|  | /// # #[allow(dead_code)] | 
|  | /// pub struct Foo(Vec<u32>, Vec<String>); | 
|  | /// | 
|  | /// impl std::borrow::Borrow<[u32]> for Foo { | 
|  | ///     fn borrow(&self) -> &[u32] { &self.0 } | 
|  | /// } | 
|  | /// | 
|  | /// impl std::borrow::Borrow<[String]> for Foo { | 
|  | ///     fn borrow(&self) -> &[String] { &self.1 } | 
|  | /// } | 
|  | /// ``` | 
|  | #[unstable(feature = "slice_concat_trait", issue = "27747")] | 
|  | pub trait Concat<Item: ?Sized> { | 
|  | #[unstable(feature = "slice_concat_trait", issue = "27747")] | 
|  | /// The resulting type after concatenation | 
|  | type Output; | 
|  |  | 
|  | /// Implementation of [`[T]::concat`](slice::concat) | 
|  | #[unstable(feature = "slice_concat_trait", issue = "27747")] | 
|  | fn concat(slice: &Self) -> Self::Output; | 
|  | } | 
|  |  | 
|  | /// Helper trait for [`[T]::join`](slice::join) | 
|  | #[unstable(feature = "slice_concat_trait", issue = "27747")] | 
|  | pub trait Join<Separator> { | 
|  | #[unstable(feature = "slice_concat_trait", issue = "27747")] | 
|  | /// The resulting type after concatenation | 
|  | type Output; | 
|  |  | 
|  | /// Implementation of [`[T]::join`](slice::join) | 
|  | #[unstable(feature = "slice_concat_trait", issue = "27747")] | 
|  | fn join(slice: &Self, sep: Separator) -> Self::Output; | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "slice_concat_ext", issue = "27747")] | 
|  | impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] { | 
|  | type Output = Vec<T>; | 
|  |  | 
|  | fn concat(slice: &Self) -> Vec<T> { | 
|  | let size = slice.iter().map(|slice| slice.borrow().len()).sum(); | 
|  | let mut result = Vec::with_capacity(size); | 
|  | for v in slice { | 
|  | result.extend_from_slice(v.borrow()) | 
|  | } | 
|  | result | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "slice_concat_ext", issue = "27747")] | 
|  | impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] { | 
|  | type Output = Vec<T>; | 
|  |  | 
|  | fn join(slice: &Self, sep: &T) -> Vec<T> { | 
|  | let mut iter = slice.iter(); | 
|  | let first = match iter.next() { | 
|  | Some(first) => first, | 
|  | None => return vec![], | 
|  | }; | 
|  | let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1; | 
|  | let mut result = Vec::with_capacity(size); | 
|  | result.extend_from_slice(first.borrow()); | 
|  |  | 
|  | for v in iter { | 
|  | result.push(sep.clone()); | 
|  | result.extend_from_slice(v.borrow()) | 
|  | } | 
|  | result | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "slice_concat_ext", issue = "27747")] | 
|  | impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] { | 
|  | type Output = Vec<T>; | 
|  |  | 
|  | fn join(slice: &Self, sep: &[T]) -> Vec<T> { | 
|  | let mut iter = slice.iter(); | 
|  | let first = match iter.next() { | 
|  | Some(first) => first, | 
|  | None => return vec![], | 
|  | }; | 
|  | let size = | 
|  | slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1); | 
|  | let mut result = Vec::with_capacity(size); | 
|  | result.extend_from_slice(first.borrow()); | 
|  |  | 
|  | for v in iter { | 
|  | result.extend_from_slice(sep); | 
|  | result.extend_from_slice(v.borrow()) | 
|  | } | 
|  | result | 
|  | } | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // Standard trait implementations for slices | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T> Borrow<[T]> for Vec<T> { | 
|  | fn borrow(&self) -> &[T] { | 
|  | &self[..] | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T> BorrowMut<[T]> for Vec<T> { | 
|  | fn borrow_mut(&mut self) -> &mut [T] { | 
|  | &mut self[..] | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: Clone> ToOwned for [T] { | 
|  | type Owned = Vec<T>; | 
|  | #[cfg(not(test))] | 
|  | fn to_owned(&self) -> Vec<T> { | 
|  | self.to_vec() | 
|  | } | 
|  |  | 
|  | #[cfg(test)] | 
|  | fn to_owned(&self) -> Vec<T> { | 
|  | hack::to_vec(self, Global) | 
|  | } | 
|  |  | 
|  | fn clone_into(&self, target: &mut Vec<T>) { | 
|  | // drop anything in target that will not be overwritten | 
|  | target.truncate(self.len()); | 
|  |  | 
|  | // target.len <= self.len due to the truncate above, so the | 
|  | // slices here are always in-bounds. | 
|  | let (init, tail) = self.split_at(target.len()); | 
|  |  | 
|  | // reuse the contained values' allocations/resources. | 
|  | target.clone_from_slice(init); | 
|  | target.extend_from_slice(tail); | 
|  | } | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // Sorting | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | /// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted. | 
|  | /// | 
|  | /// This is the integral subroutine of insertion sort. | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | fn insert_head<T, F>(v: &mut [T], is_less: &mut F) | 
|  | where | 
|  | F: FnMut(&T, &T) -> bool, | 
|  | { | 
|  | if v.len() >= 2 && is_less(&v[1], &v[0]) { | 
|  | unsafe { | 
|  | // There are three ways to implement insertion here: | 
|  | // | 
|  | // 1. Swap adjacent elements until the first one gets to its final destination. | 
|  | //    However, this way we copy data around more than is necessary. If elements are big | 
|  | //    structures (costly to copy), this method will be slow. | 
|  | // | 
|  | // 2. Iterate until the right place for the first element is found. Then shift the | 
|  | //    elements succeeding it to make room for it and finally place it into the | 
|  | //    remaining hole. This is a good method. | 
|  | // | 
|  | // 3. Copy the first element into a temporary variable. Iterate until the right place | 
|  | //    for it is found. As we go along, copy every traversed element into the slot | 
|  | //    preceding it. Finally, copy data from the temporary variable into the remaining | 
|  | //    hole. This method is very good. Benchmarks demonstrated slightly better | 
|  | //    performance than with the 2nd method. | 
|  | // | 
|  | // All methods were benchmarked, and the 3rd showed best results. So we chose that one. | 
|  | let tmp = mem::ManuallyDrop::new(ptr::read(&v[0])); | 
|  |  | 
|  | // Intermediate state of the insertion process is always tracked by `hole`, which | 
|  | // serves two purposes: | 
|  | // 1. Protects integrity of `v` from panics in `is_less`. | 
|  | // 2. Fills the remaining hole in `v` in the end. | 
|  | // | 
|  | // Panic safety: | 
|  | // | 
|  | // If `is_less` panics at any point during the process, `hole` will get dropped and | 
|  | // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it | 
|  | // initially held exactly once. | 
|  | let mut hole = InsertionHole { src: &*tmp, dest: &mut v[1] }; | 
|  | ptr::copy_nonoverlapping(&v[1], &mut v[0], 1); | 
|  |  | 
|  | for i in 2..v.len() { | 
|  | if !is_less(&v[i], &*tmp) { | 
|  | break; | 
|  | } | 
|  | ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1); | 
|  | hole.dest = &mut v[i]; | 
|  | } | 
|  | // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. | 
|  | } | 
|  | } | 
|  |  | 
|  | // When dropped, copies from `src` into `dest`. | 
|  | struct InsertionHole<T> { | 
|  | src: *const T, | 
|  | dest: *mut T, | 
|  | } | 
|  |  | 
|  | impl<T> Drop for InsertionHole<T> { | 
|  | fn drop(&mut self) { | 
|  | unsafe { | 
|  | ptr::copy_nonoverlapping(self.src, self.dest, 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and | 
|  | /// stores the result into `v[..]`. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough | 
|  | /// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type. | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F) | 
|  | where | 
|  | F: FnMut(&T, &T) -> bool, | 
|  | { | 
|  | let len = v.len(); | 
|  | let v = v.as_mut_ptr(); | 
|  | let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) }; | 
|  |  | 
|  | // The merge process first copies the shorter run into `buf`. Then it traces the newly copied | 
|  | // run and the longer run forwards (or backwards), comparing their next unconsumed elements and | 
|  | // copying the lesser (or greater) one into `v`. | 
|  | // | 
|  | // As soon as the shorter run is fully consumed, the process is done. If the longer run gets | 
|  | // consumed first, then we must copy whatever is left of the shorter run into the remaining | 
|  | // hole in `v`. | 
|  | // | 
|  | // Intermediate state of the process is always tracked by `hole`, which serves two purposes: | 
|  | // 1. Protects integrity of `v` from panics in `is_less`. | 
|  | // 2. Fills the remaining hole in `v` if the longer run gets consumed first. | 
|  | // | 
|  | // Panic safety: | 
|  | // | 
|  | // If `is_less` panics at any point during the process, `hole` will get dropped and fill the | 
|  | // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every | 
|  | // object it initially held exactly once. | 
|  | let mut hole; | 
|  |  | 
|  | if mid <= len - mid { | 
|  | // The left run is shorter. | 
|  | unsafe { | 
|  | ptr::copy_nonoverlapping(v, buf, mid); | 
|  | hole = MergeHole { start: buf, end: buf.add(mid), dest: v }; | 
|  | } | 
|  |  | 
|  | // Initially, these pointers point to the beginnings of their arrays. | 
|  | let left = &mut hole.start; | 
|  | let mut right = v_mid; | 
|  | let out = &mut hole.dest; | 
|  |  | 
|  | while *left < hole.end && right < v_end { | 
|  | // Consume the lesser side. | 
|  | // If equal, prefer the left run to maintain stability. | 
|  | unsafe { | 
|  | let to_copy = if is_less(&*right, &**left) { | 
|  | get_and_increment(&mut right) | 
|  | } else { | 
|  | get_and_increment(left) | 
|  | }; | 
|  | ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // The right run is shorter. | 
|  | unsafe { | 
|  | ptr::copy_nonoverlapping(v_mid, buf, len - mid); | 
|  | hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid }; | 
|  | } | 
|  |  | 
|  | // Initially, these pointers point past the ends of their arrays. | 
|  | let left = &mut hole.dest; | 
|  | let right = &mut hole.end; | 
|  | let mut out = v_end; | 
|  |  | 
|  | while v < *left && buf < *right { | 
|  | // Consume the greater side. | 
|  | // If equal, prefer the right run to maintain stability. | 
|  | unsafe { | 
|  | let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) { | 
|  | decrement_and_get(left) | 
|  | } else { | 
|  | decrement_and_get(right) | 
|  | }; | 
|  | ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of | 
|  | // it will now be copied into the hole in `v`. | 
|  |  | 
|  | unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T { | 
|  | let old = *ptr; | 
|  | *ptr = unsafe { ptr.offset(1) }; | 
|  | old | 
|  | } | 
|  |  | 
|  | unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T { | 
|  | *ptr = unsafe { ptr.offset(-1) }; | 
|  | *ptr | 
|  | } | 
|  |  | 
|  | // When dropped, copies the range `start..end` into `dest..`. | 
|  | struct MergeHole<T> { | 
|  | start: *mut T, | 
|  | end: *mut T, | 
|  | dest: *mut T, | 
|  | } | 
|  |  | 
|  | impl<T> Drop for MergeHole<T> { | 
|  | fn drop(&mut self) { | 
|  | // `T` is not a zero-sized type, and these are pointers into a slice's elements. | 
|  | unsafe { | 
|  | let len = self.end.sub_ptr(self.start); | 
|  | ptr::copy_nonoverlapping(self.start, self.dest, len); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail | 
|  | /// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt). | 
|  | /// | 
|  | /// The algorithm identifies strictly descending and non-descending subsequences, which are called | 
|  | /// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed | 
|  | /// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are | 
|  | /// satisfied: | 
|  | /// | 
|  | /// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len` | 
|  | /// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len` | 
|  | /// | 
|  | /// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case. | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | fn merge_sort<T, F>(v: &mut [T], mut is_less: F) | 
|  | where | 
|  | F: FnMut(&T, &T) -> bool, | 
|  | { | 
|  | // Slices of up to this length get sorted using insertion sort. | 
|  | const MAX_INSERTION: usize = 20; | 
|  | // Very short runs are extended using insertion sort to span at least this many elements. | 
|  | const MIN_RUN: usize = 10; | 
|  |  | 
|  | // Sorting has no meaningful behavior on zero-sized types. | 
|  | if size_of::<T>() == 0 { | 
|  | return; | 
|  | } | 
|  |  | 
|  | let len = v.len(); | 
|  |  | 
|  | // Short arrays get sorted in-place via insertion sort to avoid allocations. | 
|  | if len <= MAX_INSERTION { | 
|  | if len >= 2 { | 
|  | for i in (0..len - 1).rev() { | 
|  | insert_head(&mut v[i..], &mut is_less); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it | 
|  | // shallow copies of the contents of `v` without risking the dtors running on copies if | 
|  | // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run, | 
|  | // which will always have length at most `len / 2`. | 
|  | let mut buf = Vec::with_capacity(len / 2); | 
|  |  | 
|  | // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a | 
|  | // strange decision, but consider the fact that merges more often go in the opposite direction | 
|  | // (forwards). According to benchmarks, merging forwards is slightly faster than merging | 
|  | // backwards. To conclude, identifying runs by traversing backwards improves performance. | 
|  | let mut runs = vec![]; | 
|  | let mut end = len; | 
|  | while end > 0 { | 
|  | // Find the next natural run, and reverse it if it's strictly descending. | 
|  | let mut start = end - 1; | 
|  | if start > 0 { | 
|  | start -= 1; | 
|  | unsafe { | 
|  | if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) { | 
|  | while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { | 
|  | start -= 1; | 
|  | } | 
|  | v[start..end].reverse(); | 
|  | } else { | 
|  | while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) | 
|  | { | 
|  | start -= 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert some more elements into the run if it's too short. Insertion sort is faster than | 
|  | // merge sort on short sequences, so this significantly improves performance. | 
|  | while start > 0 && end - start < MIN_RUN { | 
|  | start -= 1; | 
|  | insert_head(&mut v[start..end], &mut is_less); | 
|  | } | 
|  |  | 
|  | // Push this run onto the stack. | 
|  | runs.push(Run { start, len: end - start }); | 
|  | end = start; | 
|  |  | 
|  | // Merge some pairs of adjacent runs to satisfy the invariants. | 
|  | while let Some(r) = collapse(&runs) { | 
|  | let left = runs[r + 1]; | 
|  | let right = runs[r]; | 
|  | unsafe { | 
|  | merge( | 
|  | &mut v[left.start..right.start + right.len], | 
|  | left.len, | 
|  | buf.as_mut_ptr(), | 
|  | &mut is_less, | 
|  | ); | 
|  | } | 
|  | runs[r] = Run { start: left.start, len: left.len + right.len }; | 
|  | runs.remove(r + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, exactly one run must remain in the stack. | 
|  | debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len); | 
|  |  | 
|  | // Examines the stack of runs and identifies the next pair of runs to merge. More specifically, | 
|  | // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the | 
|  | // algorithm should continue building a new run instead, `None` is returned. | 
|  | // | 
|  | // TimSort is infamous for its buggy implementations, as described here: | 
|  | // http://envisage-project.eu/timsort-specification-and-verification/ | 
|  | // | 
|  | // The gist of the story is: we must enforce the invariants on the top four runs on the stack. | 
|  | // Enforcing them on just top three is not sufficient to ensure that the invariants will still | 
|  | // hold for *all* runs in the stack. | 
|  | // | 
|  | // This function correctly checks invariants for the top four runs. Additionally, if the top | 
|  | // run starts at index 0, it will always demand a merge operation until the stack is fully | 
|  | // collapsed, in order to complete the sort. | 
|  | #[inline] | 
|  | fn collapse(runs: &[Run]) -> Option<usize> { | 
|  | let n = runs.len(); | 
|  | if n >= 2 | 
|  | && (runs[n - 1].start == 0 | 
|  | || runs[n - 2].len <= runs[n - 1].len | 
|  | || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) | 
|  | || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) | 
|  | { | 
|  | if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) } | 
|  | } else { | 
|  | None | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Clone, Copy)] | 
|  | struct Run { | 
|  | start: usize, | 
|  | len: usize, | 
|  | } | 
|  | } |